9d3b955861dbfca672fabf614ab4378f58aaa6a7
[rust-lightning] / lightning / src / chain / keysinterface.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! keysinterface provides keys into rust-lightning and defines some useful enums which describe
11 //! spendable on-chain outputs which the user owns and is responsible for using just as any other
12 //! on-chain output which is theirs.
13
14 use bitcoin::blockdata::transaction::{Transaction, TxOut, TxIn, SigHashType};
15 use bitcoin::blockdata::script::{Script, Builder};
16 use bitcoin::blockdata::opcodes;
17 use bitcoin::network::constants::Network;
18 use bitcoin::util::bip32::{ExtendedPrivKey, ExtendedPubKey, ChildNumber};
19 use bitcoin::util::bip143;
20
21 use bitcoin::hashes::{Hash, HashEngine};
22 use bitcoin::hashes::sha256::HashEngine as Sha256State;
23 use bitcoin::hashes::sha256::Hash as Sha256;
24 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
25 use bitcoin::hash_types::WPubkeyHash;
26
27 use bitcoin::secp256k1::key::{SecretKey, PublicKey};
28 use bitcoin::secp256k1::{Secp256k1, Signature, Signing};
29 use bitcoin::secp256k1;
30
31 use util::{byte_utils, transaction_utils};
32 use util::ser::{Writeable, Writer, Readable};
33
34 use chain::transaction::OutPoint;
35 use ln::chan_utils;
36 use ln::chan_utils::{HTLCOutputInCommitment, make_funding_redeemscript, ChannelPublicKeys, HolderCommitmentTransaction, ChannelTransactionParameters, CommitmentTransaction};
37 use ln::msgs::UnsignedChannelAnnouncement;
38
39 use std::collections::HashSet;
40 use std::sync::atomic::{AtomicUsize, Ordering};
41 use std::io::Error;
42 use ln::msgs::{DecodeError, MAX_VALUE_MSAT};
43
44 /// Information about a spendable output to a P2WSH script. See
45 /// SpendableOutputDescriptor::DelayedPaymentOutput for more details on how to spend this.
46 #[derive(Clone, Debug, PartialEq)]
47 pub struct DelayedPaymentOutputDescriptor {
48         /// The outpoint which is spendable
49         pub outpoint: OutPoint,
50         /// Per commitment point to derive delayed_payment_key by key holder
51         pub per_commitment_point: PublicKey,
52         /// The nSequence value which must be set in the spending input to satisfy the OP_CSV in
53         /// the witness_script.
54         pub to_self_delay: u16,
55         /// The output which is referenced by the given outpoint
56         pub output: TxOut,
57         /// The revocation point specific to the commitment transaction which was broadcast. Used to
58         /// derive the witnessScript for this output.
59         pub revocation_pubkey: PublicKey,
60         /// Arbitrary identification information returned by a call to
61         /// `Sign::channel_keys_id()`. This may be useful in re-deriving keys used in
62         /// the channel to spend the output.
63         pub channel_keys_id: [u8; 32],
64         /// The value of the channel which this output originated from, possibly indirectly.
65         pub channel_value_satoshis: u64,
66 }
67 impl DelayedPaymentOutputDescriptor {
68         /// The maximum length a well-formed witness spending one of these should have.
69         // Calculated as 1 byte length + 73 byte signature, 1 byte empty vec push, 1 byte length plus
70         // redeemscript push length.
71         pub const MAX_WITNESS_LENGTH: usize = 1 + 73 + 1 + chan_utils::REVOKEABLE_REDEEMSCRIPT_MAX_LENGTH + 1;
72 }
73
74 /// Information about a spendable output to our "payment key". See
75 /// SpendableOutputDescriptor::StaticPaymentOutput for more details on how to spend this.
76 #[derive(Clone, Debug, PartialEq)]
77 pub struct StaticPaymentOutputDescriptor {
78         /// The outpoint which is spendable
79         pub outpoint: OutPoint,
80         /// The output which is referenced by the given outpoint
81         pub output: TxOut,
82         /// Arbitrary identification information returned by a call to
83         /// `Sign::channel_keys_id()`. This may be useful in re-deriving keys used in
84         /// the channel to spend the output.
85         pub channel_keys_id: [u8; 32],
86         /// The value of the channel which this transactions spends.
87         pub channel_value_satoshis: u64,
88 }
89 impl StaticPaymentOutputDescriptor {
90         /// The maximum length a well-formed witness spending one of these should have.
91         // Calculated as 1 byte legnth + 73 byte signature, 1 byte empty vec push, 1 byte length plus
92         // redeemscript push length.
93         pub const MAX_WITNESS_LENGTH: usize = 1 + 73 + 34;
94 }
95
96 /// When on-chain outputs are created by rust-lightning (which our counterparty is not able to
97 /// claim at any point in the future) an event is generated which you must track and be able to
98 /// spend on-chain. The information needed to do this is provided in this enum, including the
99 /// outpoint describing which txid and output index is available, the full output which exists at
100 /// that txid/index, and any keys or other information required to sign.
101 #[derive(Clone, Debug, PartialEq)]
102 pub enum SpendableOutputDescriptor {
103         /// An output to a script which was provided via KeysInterface directly, either from
104         /// `get_destination_script()` or `get_shutdown_pubkey()`, thus you should already know how to
105         /// spend it. No secret keys are provided as rust-lightning was never given any key.
106         /// These may include outputs from a transaction punishing our counterparty or claiming an HTLC
107         /// on-chain using the payment preimage or after it has timed out.
108         StaticOutput {
109                 /// The outpoint which is spendable
110                 outpoint: OutPoint,
111                 /// The output which is referenced by the given outpoint.
112                 output: TxOut,
113         },
114         /// An output to a P2WSH script which can be spent with a single signature after a CSV delay.
115         ///
116         /// The witness in the spending input should be:
117         /// <BIP 143 signature> <empty vector> (MINIMALIF standard rule) <provided witnessScript>
118         ///
119         /// Note that the nSequence field in the spending input must be set to to_self_delay
120         /// (which means the transaction is not broadcastable until at least to_self_delay
121         /// blocks after the outpoint confirms).
122         ///
123         /// These are generally the result of a "revocable" output to us, spendable only by us unless
124         /// it is an output from an old state which we broadcast (which should never happen).
125         ///
126         /// To derive the delayed_payment key which is used to sign for this input, you must pass the
127         /// holder delayed_payment_base_key (ie the private key which corresponds to the pubkey in
128         /// Sign::pubkeys().delayed_payment_basepoint) and the provided per_commitment_point to
129         /// chan_utils::derive_private_key. The public key can be generated without the secret key
130         /// using chan_utils::derive_public_key and only the delayed_payment_basepoint which appears in
131         /// Sign::pubkeys().
132         ///
133         /// To derive the revocation_pubkey provided here (which is used in the witness
134         /// script generation), you must pass the counterparty revocation_basepoint (which appears in the
135         /// call to Sign::ready_channel) and the provided per_commitment point
136         /// to chan_utils::derive_public_revocation_key.
137         ///
138         /// The witness script which is hashed and included in the output script_pubkey may be
139         /// regenerated by passing the revocation_pubkey (derived as above), our delayed_payment pubkey
140         /// (derived as above), and the to_self_delay contained here to
141         /// chan_utils::get_revokeable_redeemscript.
142         DelayedPaymentOutput(DelayedPaymentOutputDescriptor),
143         /// An output to a P2WPKH, spendable exclusively by our payment key (ie the private key which
144         /// corresponds to the public key in Sign::pubkeys().payment_point).
145         /// The witness in the spending input, is, thus, simply:
146         /// <BIP 143 signature> <payment key>
147         ///
148         /// These are generally the result of our counterparty having broadcast the current state,
149         /// allowing us to claim the non-HTLC-encumbered outputs immediately.
150         StaticPaymentOutput(StaticPaymentOutputDescriptor),
151 }
152
153 impl Writeable for SpendableOutputDescriptor {
154         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
155                 match self {
156                         &SpendableOutputDescriptor::StaticOutput { ref outpoint, ref output } => {
157                                 0u8.write(writer)?;
158                                 outpoint.write(writer)?;
159                                 output.write(writer)?;
160                         },
161                         &SpendableOutputDescriptor::DelayedPaymentOutput(ref descriptor) => {
162                                 1u8.write(writer)?;
163                                 descriptor.outpoint.write(writer)?;
164                                 descriptor.per_commitment_point.write(writer)?;
165                                 descriptor.to_self_delay.write(writer)?;
166                                 descriptor.output.write(writer)?;
167                                 descriptor.revocation_pubkey.write(writer)?;
168                                 descriptor.channel_keys_id.write(writer)?;
169                                 descriptor.channel_value_satoshis.write(writer)?;
170                         },
171                         &SpendableOutputDescriptor::StaticPaymentOutput(ref descriptor) => {
172                                 2u8.write(writer)?;
173                                 descriptor.outpoint.write(writer)?;
174                                 descriptor.output.write(writer)?;
175                                 descriptor.channel_keys_id.write(writer)?;
176                                 descriptor.channel_value_satoshis.write(writer)?;
177                         },
178                 }
179                 Ok(())
180         }
181 }
182
183 impl Readable for SpendableOutputDescriptor {
184         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
185                 match Readable::read(reader)? {
186                         0u8 => Ok(SpendableOutputDescriptor::StaticOutput {
187                                 outpoint: Readable::read(reader)?,
188                                 output: Readable::read(reader)?,
189                         }),
190                         1u8 => Ok(SpendableOutputDescriptor::DelayedPaymentOutput(DelayedPaymentOutputDescriptor {
191                                 outpoint: Readable::read(reader)?,
192                                 per_commitment_point: Readable::read(reader)?,
193                                 to_self_delay: Readable::read(reader)?,
194                                 output: Readable::read(reader)?,
195                                 revocation_pubkey: Readable::read(reader)?,
196                                 channel_keys_id: Readable::read(reader)?,
197                                 channel_value_satoshis: Readable::read(reader)?,
198                         })),
199                         2u8 => Ok(SpendableOutputDescriptor::StaticPaymentOutput(StaticPaymentOutputDescriptor {
200                                 outpoint: Readable::read(reader)?,
201                                 output: Readable::read(reader)?,
202                                 channel_keys_id: Readable::read(reader)?,
203                                 channel_value_satoshis: Readable::read(reader)?,
204                         })),
205                         _ => Err(DecodeError::InvalidValue),
206                 }
207         }
208 }
209
210 /// A trait to sign lightning channel transactions as described in BOLT 3.
211 ///
212 /// Signing services could be implemented on a hardware wallet. In this case,
213 /// the current Sign would be a front-end on top of a communication
214 /// channel connected to your secure device and lightning key material wouldn't
215 /// reside on a hot server. Nevertheless, a this deployment would still need
216 /// to trust the ChannelManager to avoid loss of funds as this latest component
217 /// could ask to sign commitment transaction with HTLCs paying to attacker pubkeys.
218 ///
219 /// A more secure iteration would be to use hashlock (or payment points) to pair
220 /// invoice/incoming HTLCs with outgoing HTLCs to implement a no-trust-ChannelManager
221 /// at the price of more state and computation on the hardware wallet side. In the future,
222 /// we are looking forward to design such interface.
223 ///
224 /// In any case, ChannelMonitor or fallback watchtowers are always going to be trusted
225 /// to act, as liveness and breach reply correctness are always going to be hard requirements
226 /// of LN security model, orthogonal of key management issues.
227 // TODO: We should remove Clone by instead requesting a new Sign copy when we create
228 // ChannelMonitors instead of expecting to clone the one out of the Channel into the monitors.
229 pub trait Sign : Send+Clone + Writeable {
230         /// Gets the per-commitment point for a specific commitment number
231         ///
232         /// Note that the commitment number starts at (1 << 48) - 1 and counts backwards.
233         fn get_per_commitment_point<T: secp256k1::Signing + secp256k1::Verification>(&self, idx: u64, secp_ctx: &Secp256k1<T>) -> PublicKey;
234         /// Gets the commitment secret for a specific commitment number as part of the revocation process
235         ///
236         /// An external signer implementation should error here if the commitment was already signed
237         /// and should refuse to sign it in the future.
238         ///
239         /// May be called more than once for the same index.
240         ///
241         /// Note that the commitment number starts at (1 << 48) - 1 and counts backwards.
242         // TODO: return a Result so we can signal a validation error
243         fn release_commitment_secret(&self, idx: u64) -> [u8; 32];
244         /// Gets the holder's channel public keys and basepoints
245         fn pubkeys(&self) -> &ChannelPublicKeys;
246         /// Gets an arbitrary identifier describing the set of keys which are provided back to you in
247         /// some SpendableOutputDescriptor types. This should be sufficient to identify this
248         /// Sign object uniquely and lookup or re-derive its keys.
249         fn channel_keys_id(&self) -> [u8; 32];
250
251         /// Create a signature for a counterparty's commitment transaction and associated HTLC transactions.
252         ///
253         /// Note that if signing fails or is rejected, the channel will be force-closed.
254         //
255         // TODO: Document the things someone using this interface should enforce before signing.
256         fn sign_counterparty_commitment<T: secp256k1::Signing + secp256k1::Verification>(&self, commitment_tx: &CommitmentTransaction, secp_ctx: &Secp256k1<T>) -> Result<(Signature, Vec<Signature>), ()>;
257
258         /// Create a signatures for a holder's commitment transaction and its claiming HTLC transactions.
259         /// This will only ever be called with a non-revoked commitment_tx.  This will be called with the
260         /// latest commitment_tx when we initiate a force-close.
261         /// This will be called with the previous latest, just to get claiming HTLC signatures, if we are
262         /// reacting to a ChannelMonitor replica that decided to broadcast before it had been updated to
263         /// the latest.
264         /// This may be called multiple times for the same transaction.
265         ///
266         /// An external signer implementation should check that the commitment has not been revoked.
267         ///
268         /// May return Err if key derivation fails.  Callers, such as ChannelMonitor, will panic in such a case.
269         //
270         // TODO: Document the things someone using this interface should enforce before signing.
271         // TODO: Key derivation failure should panic rather than Err
272         fn sign_holder_commitment_and_htlcs<T: secp256k1::Signing + secp256k1::Verification>(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<T>) -> Result<(Signature, Vec<Signature>), ()>;
273
274         /// Same as sign_holder_commitment, but exists only for tests to get access to holder commitment
275         /// transactions which will be broadcasted later, after the channel has moved on to a newer
276         /// state. Thus, needs its own method as sign_holder_commitment may enforce that we only ever
277         /// get called once.
278         #[cfg(any(test,feature = "unsafe_revoked_tx_signing"))]
279         fn unsafe_sign_holder_commitment_and_htlcs<T: secp256k1::Signing + secp256k1::Verification>(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<T>) -> Result<(Signature, Vec<Signature>), ()>;
280
281         /// Create a signature for the given input in a transaction spending an HTLC or commitment
282         /// transaction output when our counterparty broadcasts an old state.
283         ///
284         /// A justice transaction may claim multiples outputs at the same time if timelocks are
285         /// similar, but only a signature for the input at index `input` should be signed for here.
286         /// It may be called multiples time for same output(s) if a fee-bump is needed with regards
287         /// to an upcoming timelock expiration.
288         ///
289         /// Amount is value of the output spent by this input, committed to in the BIP 143 signature.
290         ///
291         /// per_commitment_key is revocation secret which was provided by our counterparty when they
292         /// revoked the state which they eventually broadcast. It's not a _holder_ secret key and does
293         /// not allow the spending of any funds by itself (you need our holder revocation_secret to do
294         /// so).
295         ///
296         /// htlc holds HTLC elements (hash, timelock) if the output being spent is a HTLC output, thus
297         /// changing the format of the witness script (which is committed to in the BIP 143
298         /// signatures).
299         fn sign_justice_transaction<T: secp256k1::Signing + secp256k1::Verification>(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, htlc: &Option<HTLCOutputInCommitment>, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()>;
300
301         /// Create a signature for a claiming transaction for a HTLC output on a counterparty's commitment
302         /// transaction, either offered or received.
303         ///
304         /// Such a transaction may claim multiples offered outputs at same time if we know the
305         /// preimage for each when we create it, but only the input at index `input` should be
306         /// signed for here. It may be called multiple times for same output(s) if a fee-bump is
307         /// needed with regards to an upcoming timelock expiration.
308         ///
309         /// Witness_script is either a offered or received script as defined in BOLT3 for HTLC
310         /// outputs.
311         ///
312         /// Amount is value of the output spent by this input, committed to in the BIP 143 signature.
313         ///
314         /// Per_commitment_point is the dynamic point corresponding to the channel state
315         /// detected onchain. It has been generated by our counterparty and is used to derive
316         /// channel state keys, which are then included in the witness script and committed to in the
317         /// BIP 143 signature.
318         fn sign_counterparty_htlc_transaction<T: secp256k1::Signing + secp256k1::Verification>(&self, htlc_tx: &Transaction, input: usize, amount: u64, per_commitment_point: &PublicKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()>;
319
320         /// Create a signature for a (proposed) closing transaction.
321         ///
322         /// Note that, due to rounding, there may be one "missing" satoshi, and either party may have
323         /// chosen to forgo their output as dust.
324         fn sign_closing_transaction<T: secp256k1::Signing>(&self, closing_tx: &Transaction, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()>;
325
326         /// Signs a channel announcement message with our funding key, proving it comes from one
327         /// of the channel participants.
328         ///
329         /// Note that if this fails or is rejected, the channel will not be publicly announced and
330         /// our counterparty may (though likely will not) close the channel on us for violating the
331         /// protocol.
332         fn sign_channel_announcement<T: secp256k1::Signing>(&self, msg: &UnsignedChannelAnnouncement, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()>;
333
334         /// Set the counterparty static channel data, including basepoints,
335         /// counterparty_selected/holder_selected_contest_delay and funding outpoint.
336         /// This is done as soon as the funding outpoint is known.  Since these are static channel data,
337         /// they MUST NOT be allowed to change to different values once set.
338         ///
339         /// channel_parameters.is_populated() MUST be true.
340         ///
341         /// We bind holder_selected_contest_delay late here for API convenience.
342         ///
343         /// Will be called before any signatures are applied.
344         fn ready_channel(&mut self, channel_parameters: &ChannelTransactionParameters);
345 }
346
347 /// A trait to describe an object which can get user secrets and key material.
348 pub trait KeysInterface: Send + Sync {
349         /// A type which implements Sign which will be returned by get_channel_signer.
350         type Signer : Sign;
351
352         /// Get node secret key (aka node_id or network_key).
353         ///
354         /// This method must return the same value each time it is called.
355         fn get_node_secret(&self) -> SecretKey;
356         /// Get a script pubkey which we send funds to when claiming on-chain contestable outputs.
357         ///
358         /// This method should return a different value each time it is called, to avoid linking
359         /// on-chain funds across channels as controlled to the same user.
360         fn get_destination_script(&self) -> Script;
361         /// Get a public key which we will send funds to (in the form of a P2WPKH output) when closing
362         /// a channel.
363         ///
364         /// This method should return a different value each time it is called, to avoid linking
365         /// on-chain funds across channels as controlled to the same user.
366         fn get_shutdown_pubkey(&self) -> PublicKey;
367         /// Get a new set of Sign for per-channel secrets. These MUST be unique even if you
368         /// restarted with some stale data!
369         ///
370         /// This method must return a different value each time it is called.
371         fn get_channel_signer(&self, inbound: bool, channel_value_satoshis: u64) -> Self::Signer;
372         /// Gets a unique, cryptographically-secure, random 32 byte value. This is used for encrypting
373         /// onion packets and for temporary channel IDs. There is no requirement that these be
374         /// persisted anywhere, though they must be unique across restarts.
375         ///
376         /// This method must return a different value each time it is called.
377         fn get_secure_random_bytes(&self) -> [u8; 32];
378
379         /// Reads a `Signer` for this `KeysInterface` from the given input stream.
380         /// This is only called during deserialization of other objects which contain
381         /// `Sign`-implementing objects (ie `ChannelMonitor`s and `ChannelManager`s).
382         /// The bytes are exactly those which `<Self::Signer as Writeable>::write()` writes, and
383         /// contain no versioning scheme. You may wish to include your own version prefix and ensure
384         /// you've read all of the provided bytes to ensure no corruption occurred.
385         fn read_chan_signer(&self, reader: &[u8]) -> Result<Self::Signer, DecodeError>;
386 }
387
388 #[derive(Clone)]
389 /// A simple implementation of Sign that just keeps the private keys in memory.
390 ///
391 /// This implementation performs no policy checks and is insufficient by itself as
392 /// a secure external signer.
393 pub struct InMemorySigner {
394         /// Private key of anchor tx
395         pub funding_key: SecretKey,
396         /// Holder secret key for blinded revocation pubkey
397         pub revocation_base_key: SecretKey,
398         /// Holder secret key used for our balance in counterparty-broadcasted commitment transactions
399         pub payment_key: SecretKey,
400         /// Holder secret key used in HTLC tx
401         pub delayed_payment_base_key: SecretKey,
402         /// Holder htlc secret key used in commitment tx htlc outputs
403         pub htlc_base_key: SecretKey,
404         /// Commitment seed
405         pub commitment_seed: [u8; 32],
406         /// Holder public keys and basepoints
407         pub(crate) holder_channel_pubkeys: ChannelPublicKeys,
408         /// Counterparty public keys and counterparty/holder selected_contest_delay, populated on channel acceptance
409         channel_parameters: Option<ChannelTransactionParameters>,
410         /// The total value of this channel
411         channel_value_satoshis: u64,
412         /// Key derivation parameters
413         channel_keys_id: [u8; 32],
414 }
415
416 impl InMemorySigner {
417         /// Create a new InMemorySigner
418         pub fn new<C: Signing>(
419                 secp_ctx: &Secp256k1<C>,
420                 funding_key: SecretKey,
421                 revocation_base_key: SecretKey,
422                 payment_key: SecretKey,
423                 delayed_payment_base_key: SecretKey,
424                 htlc_base_key: SecretKey,
425                 commitment_seed: [u8; 32],
426                 channel_value_satoshis: u64,
427                 channel_keys_id: [u8; 32]) -> InMemorySigner {
428                 let holder_channel_pubkeys =
429                         InMemorySigner::make_holder_keys(secp_ctx, &funding_key, &revocation_base_key,
430                                                              &payment_key, &delayed_payment_base_key,
431                                                              &htlc_base_key);
432                 InMemorySigner {
433                         funding_key,
434                         revocation_base_key,
435                         payment_key,
436                         delayed_payment_base_key,
437                         htlc_base_key,
438                         commitment_seed,
439                         channel_value_satoshis,
440                         holder_channel_pubkeys,
441                         channel_parameters: None,
442                         channel_keys_id,
443                 }
444         }
445
446         fn make_holder_keys<C: Signing>(secp_ctx: &Secp256k1<C>,
447                                        funding_key: &SecretKey,
448                                        revocation_base_key: &SecretKey,
449                                        payment_key: &SecretKey,
450                                        delayed_payment_base_key: &SecretKey,
451                                        htlc_base_key: &SecretKey) -> ChannelPublicKeys {
452                 let from_secret = |s: &SecretKey| PublicKey::from_secret_key(secp_ctx, s);
453                 ChannelPublicKeys {
454                         funding_pubkey: from_secret(&funding_key),
455                         revocation_basepoint: from_secret(&revocation_base_key),
456                         payment_point: from_secret(&payment_key),
457                         delayed_payment_basepoint: from_secret(&delayed_payment_base_key),
458                         htlc_basepoint: from_secret(&htlc_base_key),
459                 }
460         }
461
462         /// Counterparty pubkeys.
463         /// Will panic if ready_channel wasn't called.
464         pub fn counterparty_pubkeys(&self) -> &ChannelPublicKeys { &self.get_channel_parameters().counterparty_parameters.as_ref().unwrap().pubkeys }
465
466         /// The contest_delay value specified by our counterparty and applied on holder-broadcastable
467         /// transactions, ie the amount of time that we have to wait to recover our funds if we
468         /// broadcast a transaction.
469         /// Will panic if ready_channel wasn't called.
470         pub fn counterparty_selected_contest_delay(&self) -> u16 { self.get_channel_parameters().counterparty_parameters.as_ref().unwrap().selected_contest_delay }
471
472         /// The contest_delay value specified by us and applied on transactions broadcastable
473         /// by our counterparty, ie the amount of time that they have to wait to recover their funds
474         /// if they broadcast a transaction.
475         /// Will panic if ready_channel wasn't called.
476         pub fn holder_selected_contest_delay(&self) -> u16 { self.get_channel_parameters().holder_selected_contest_delay }
477
478         /// Whether the holder is the initiator
479         /// Will panic if ready_channel wasn't called.
480         pub fn is_outbound(&self) -> bool { self.get_channel_parameters().is_outbound_from_holder }
481
482         /// Funding outpoint
483         /// Will panic if ready_channel wasn't called.
484         pub fn funding_outpoint(&self) -> &OutPoint { self.get_channel_parameters().funding_outpoint.as_ref().unwrap() }
485
486         /// Obtain a ChannelTransactionParameters for this channel, to be used when verifying or
487         /// building transactions.
488         ///
489         /// Will panic if ready_channel wasn't called.
490         pub fn get_channel_parameters(&self) -> &ChannelTransactionParameters {
491                 self.channel_parameters.as_ref().unwrap()
492         }
493
494         /// Sign the single input of spend_tx at index `input_idx` which spends the output
495         /// described by descriptor, returning the witness stack for the input.
496         ///
497         /// Returns an Err if the input at input_idx does not exist, has a non-empty script_sig,
498         /// or is not spending the outpoint described by `descriptor.outpoint`.
499         pub fn sign_counterparty_payment_input<C: Signing>(&self, spend_tx: &Transaction, input_idx: usize, descriptor: &StaticPaymentOutputDescriptor, secp_ctx: &Secp256k1<C>) -> Result<Vec<Vec<u8>>, ()> {
500                 // TODO: We really should be taking the SigHashCache as a parameter here instead of
501                 // spend_tx, but ideally the SigHashCache would expose the transaction's inputs read-only
502                 // so that we can check them. This requires upstream rust-bitcoin changes (as well as
503                 // bindings updates to support SigHashCache objects).
504                 if spend_tx.input.len() <= input_idx { return Err(()); }
505                 if !spend_tx.input[input_idx].script_sig.is_empty() { return Err(()); }
506                 if spend_tx.input[input_idx].previous_output != descriptor.outpoint.into_bitcoin_outpoint() { return Err(()); }
507
508                 let remotepubkey = self.pubkeys().payment_point;
509                 let witness_script = bitcoin::Address::p2pkh(&::bitcoin::PublicKey{compressed: true, key: remotepubkey}, Network::Testnet).script_pubkey();
510                 let sighash = hash_to_message!(&bip143::SigHashCache::new(spend_tx).signature_hash(input_idx, &witness_script, descriptor.output.value, SigHashType::All)[..]);
511                 let remotesig = secp_ctx.sign(&sighash, &self.payment_key);
512
513                 let mut witness = Vec::with_capacity(2);
514                 witness.push(remotesig.serialize_der().to_vec());
515                 witness[0].push(SigHashType::All as u8);
516                 witness.push(remotepubkey.serialize().to_vec());
517                 Ok(witness)
518         }
519
520         /// Sign the single input of spend_tx at index `input_idx` which spends the output
521         /// described by descriptor, returning the witness stack for the input.
522         ///
523         /// Returns an Err if the input at input_idx does not exist, has a non-empty script_sig,
524         /// is not spending the outpoint described by `descriptor.outpoint`, or does not have a
525         /// sequence set to `descriptor.to_self_delay`.
526         pub fn sign_dynamic_p2wsh_input<C: Signing>(&self, spend_tx: &Transaction, input_idx: usize, descriptor: &DelayedPaymentOutputDescriptor, secp_ctx: &Secp256k1<C>) -> Result<Vec<Vec<u8>>, ()> {
527                 // TODO: We really should be taking the SigHashCache as a parameter here instead of
528                 // spend_tx, but ideally the SigHashCache would expose the transaction's inputs read-only
529                 // so that we can check them. This requires upstream rust-bitcoin changes (as well as
530                 // bindings updates to support SigHashCache objects).
531                 if spend_tx.input.len() <= input_idx { return Err(()); }
532                 if !spend_tx.input[input_idx].script_sig.is_empty() { return Err(()); }
533                 if spend_tx.input[input_idx].previous_output != descriptor.outpoint.into_bitcoin_outpoint() { return Err(()); }
534                 if spend_tx.input[input_idx].sequence != descriptor.to_self_delay as u32 { return Err(()); }
535
536                 let delayed_payment_key = chan_utils::derive_private_key(&secp_ctx, &descriptor.per_commitment_point, &self.delayed_payment_base_key)
537                         .expect("We constructed the payment_base_key, so we can only fail here if the RNG is busted.");
538                 let delayed_payment_pubkey = PublicKey::from_secret_key(&secp_ctx, &delayed_payment_key);
539                 let witness_script = chan_utils::get_revokeable_redeemscript(&descriptor.revocation_pubkey, descriptor.to_self_delay, &delayed_payment_pubkey);
540                 let sighash = hash_to_message!(&bip143::SigHashCache::new(spend_tx).signature_hash(input_idx, &witness_script, descriptor.output.value, SigHashType::All)[..]);
541                 let local_delayedsig = secp_ctx.sign(&sighash, &delayed_payment_key);
542
543                 let mut witness = Vec::with_capacity(3);
544                 witness.push(local_delayedsig.serialize_der().to_vec());
545                 witness[0].push(SigHashType::All as u8);
546                 witness.push(vec!()); //MINIMALIF
547                 witness.push(witness_script.clone().into_bytes());
548                 Ok(witness)
549         }
550 }
551
552 impl Sign for InMemorySigner {
553         fn get_per_commitment_point<T: secp256k1::Signing + secp256k1::Verification>(&self, idx: u64, secp_ctx: &Secp256k1<T>) -> PublicKey {
554                 let commitment_secret = SecretKey::from_slice(&chan_utils::build_commitment_secret(&self.commitment_seed, idx)).unwrap();
555                 PublicKey::from_secret_key(secp_ctx, &commitment_secret)
556         }
557
558         fn release_commitment_secret(&self, idx: u64) -> [u8; 32] {
559                 chan_utils::build_commitment_secret(&self.commitment_seed, idx)
560         }
561
562         fn pubkeys(&self) -> &ChannelPublicKeys { &self.holder_channel_pubkeys }
563         fn channel_keys_id(&self) -> [u8; 32] { self.channel_keys_id }
564
565         fn sign_counterparty_commitment<T: secp256k1::Signing + secp256k1::Verification>(&self, commitment_tx: &CommitmentTransaction, secp_ctx: &Secp256k1<T>) -> Result<(Signature, Vec<Signature>), ()> {
566                 let trusted_tx = commitment_tx.trust();
567                 let keys = trusted_tx.keys();
568
569                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
570                 let channel_funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey);
571
572                 let built_tx = trusted_tx.built_transaction();
573                 let commitment_sig = built_tx.sign(&self.funding_key, &channel_funding_redeemscript, self.channel_value_satoshis, secp_ctx);
574                 let commitment_txid = built_tx.txid;
575
576                 let mut htlc_sigs = Vec::with_capacity(commitment_tx.htlcs().len());
577                 for htlc in commitment_tx.htlcs() {
578                         let htlc_tx = chan_utils::build_htlc_transaction(&commitment_txid, commitment_tx.feerate_per_kw(), self.holder_selected_contest_delay(), htlc, &keys.broadcaster_delayed_payment_key, &keys.revocation_key);
579                         let htlc_redeemscript = chan_utils::get_htlc_redeemscript(&htlc, &keys);
580                         let htlc_sighash = hash_to_message!(&bip143::SigHashCache::new(&htlc_tx).signature_hash(0, &htlc_redeemscript, htlc.amount_msat / 1000, SigHashType::All)[..]);
581                         let holder_htlc_key = match chan_utils::derive_private_key(&secp_ctx, &keys.per_commitment_point, &self.htlc_base_key) {
582                                 Ok(s) => s,
583                                 Err(_) => return Err(()),
584                         };
585                         htlc_sigs.push(secp_ctx.sign(&htlc_sighash, &holder_htlc_key));
586                 }
587
588                 Ok((commitment_sig, htlc_sigs))
589         }
590
591         fn sign_holder_commitment_and_htlcs<T: secp256k1::Signing + secp256k1::Verification>(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<T>) -> Result<(Signature, Vec<Signature>), ()> {
592                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
593                 let funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey);
594                 let trusted_tx = commitment_tx.trust();
595                 let sig = trusted_tx.built_transaction().sign(&self.funding_key, &funding_redeemscript, self.channel_value_satoshis, secp_ctx);
596                 let channel_parameters = self.get_channel_parameters();
597                 let htlc_sigs = trusted_tx.get_htlc_sigs(&self.htlc_base_key, &channel_parameters.as_holder_broadcastable(), secp_ctx)?;
598                 Ok((sig, htlc_sigs))
599         }
600
601         #[cfg(any(test,feature = "unsafe_revoked_tx_signing"))]
602         fn unsafe_sign_holder_commitment_and_htlcs<T: secp256k1::Signing + secp256k1::Verification>(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<T>) -> Result<(Signature, Vec<Signature>), ()> {
603                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
604                 let funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey);
605                 let trusted_tx = commitment_tx.trust();
606                 let sig = trusted_tx.built_transaction().sign(&self.funding_key, &funding_redeemscript, self.channel_value_satoshis, secp_ctx);
607                 let channel_parameters = self.get_channel_parameters();
608                 let htlc_sigs = trusted_tx.get_htlc_sigs(&self.htlc_base_key, &channel_parameters.as_holder_broadcastable(), secp_ctx)?;
609                 Ok((sig, htlc_sigs))
610         }
611
612         fn sign_justice_transaction<T: secp256k1::Signing + secp256k1::Verification>(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, htlc: &Option<HTLCOutputInCommitment>, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()> {
613                 let revocation_key = match chan_utils::derive_private_revocation_key(&secp_ctx, &per_commitment_key, &self.revocation_base_key) {
614                         Ok(revocation_key) => revocation_key,
615                         Err(_) => return Err(())
616                 };
617                 let per_commitment_point = PublicKey::from_secret_key(secp_ctx, &per_commitment_key);
618                 let revocation_pubkey = match chan_utils::derive_public_revocation_key(&secp_ctx, &per_commitment_point, &self.pubkeys().revocation_basepoint) {
619                         Ok(revocation_pubkey) => revocation_pubkey,
620                         Err(_) => return Err(())
621                 };
622                 let witness_script = if let &Some(ref htlc) = htlc {
623                         let counterparty_htlcpubkey = match chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.counterparty_pubkeys().htlc_basepoint) {
624                                 Ok(counterparty_htlcpubkey) => counterparty_htlcpubkey,
625                                 Err(_) => return Err(())
626                         };
627                         let holder_htlcpubkey = match chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.pubkeys().htlc_basepoint) {
628                                 Ok(holder_htlcpubkey) => holder_htlcpubkey,
629                                 Err(_) => return Err(())
630                         };
631                         chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, &counterparty_htlcpubkey, &holder_htlcpubkey, &revocation_pubkey)
632                 } else {
633                         let counterparty_delayedpubkey = match chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.counterparty_pubkeys().delayed_payment_basepoint) {
634                                 Ok(counterparty_delayedpubkey) => counterparty_delayedpubkey,
635                                 Err(_) => return Err(())
636                         };
637                         chan_utils::get_revokeable_redeemscript(&revocation_pubkey, self.holder_selected_contest_delay(), &counterparty_delayedpubkey)
638                 };
639                 let mut sighash_parts = bip143::SigHashCache::new(justice_tx);
640                 let sighash = hash_to_message!(&sighash_parts.signature_hash(input, &witness_script, amount, SigHashType::All)[..]);
641                 return Ok(secp_ctx.sign(&sighash, &revocation_key))
642         }
643
644         fn sign_counterparty_htlc_transaction<T: secp256k1::Signing + secp256k1::Verification>(&self, htlc_tx: &Transaction, input: usize, amount: u64, per_commitment_point: &PublicKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()> {
645                 if let Ok(htlc_key) = chan_utils::derive_private_key(&secp_ctx, &per_commitment_point, &self.htlc_base_key) {
646                         let witness_script = if let Ok(revocation_pubkey) = chan_utils::derive_public_revocation_key(&secp_ctx, &per_commitment_point, &self.pubkeys().revocation_basepoint) {
647                                 if let Ok(counterparty_htlcpubkey) = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.counterparty_pubkeys().htlc_basepoint) {
648                                         if let Ok(htlcpubkey) = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.pubkeys().htlc_basepoint) {
649                                                 chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, &counterparty_htlcpubkey, &htlcpubkey, &revocation_pubkey)
650                                         } else { return Err(()) }
651                                 } else { return Err(()) }
652                         } else { return Err(()) };
653                         let mut sighash_parts = bip143::SigHashCache::new(htlc_tx);
654                         let sighash = hash_to_message!(&sighash_parts.signature_hash(input, &witness_script, amount, SigHashType::All)[..]);
655                         return Ok(secp_ctx.sign(&sighash, &htlc_key))
656                 }
657                 Err(())
658         }
659
660         fn sign_closing_transaction<T: secp256k1::Signing>(&self, closing_tx: &Transaction, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()> {
661                 if closing_tx.input.len() != 1 { return Err(()); }
662                 if closing_tx.input[0].witness.len() != 0 { return Err(()); }
663                 if closing_tx.output.len() > 2 { return Err(()); }
664
665                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
666                 let channel_funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey);
667
668                 let sighash = hash_to_message!(&bip143::SigHashCache::new(closing_tx)
669                         .signature_hash(0, &channel_funding_redeemscript, self.channel_value_satoshis, SigHashType::All)[..]);
670                 Ok(secp_ctx.sign(&sighash, &self.funding_key))
671         }
672
673         fn sign_channel_announcement<T: secp256k1::Signing>(&self, msg: &UnsignedChannelAnnouncement, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()> {
674                 let msghash = hash_to_message!(&Sha256dHash::hash(&msg.encode()[..])[..]);
675                 Ok(secp_ctx.sign(&msghash, &self.funding_key))
676         }
677
678         fn ready_channel(&mut self, channel_parameters: &ChannelTransactionParameters) {
679                 assert!(self.channel_parameters.is_none(), "Acceptance already noted");
680                 assert!(channel_parameters.is_populated(), "Channel parameters must be fully populated");
681                 self.channel_parameters = Some(channel_parameters.clone());
682         }
683 }
684
685 impl Writeable for InMemorySigner {
686         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), Error> {
687                 self.funding_key.write(writer)?;
688                 self.revocation_base_key.write(writer)?;
689                 self.payment_key.write(writer)?;
690                 self.delayed_payment_base_key.write(writer)?;
691                 self.htlc_base_key.write(writer)?;
692                 self.commitment_seed.write(writer)?;
693                 self.channel_parameters.write(writer)?;
694                 self.channel_value_satoshis.write(writer)?;
695                 self.channel_keys_id.write(writer)?;
696
697                 Ok(())
698         }
699 }
700
701 impl Readable for InMemorySigner {
702         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
703                 let funding_key = Readable::read(reader)?;
704                 let revocation_base_key = Readable::read(reader)?;
705                 let payment_key = Readable::read(reader)?;
706                 let delayed_payment_base_key = Readable::read(reader)?;
707                 let htlc_base_key = Readable::read(reader)?;
708                 let commitment_seed = Readable::read(reader)?;
709                 let counterparty_channel_data = Readable::read(reader)?;
710                 let channel_value_satoshis = Readable::read(reader)?;
711                 let secp_ctx = Secp256k1::signing_only();
712                 let holder_channel_pubkeys =
713                         InMemorySigner::make_holder_keys(&secp_ctx, &funding_key, &revocation_base_key,
714                                                              &payment_key, &delayed_payment_base_key,
715                                                              &htlc_base_key);
716                 let keys_id = Readable::read(reader)?;
717
718                 Ok(InMemorySigner {
719                         funding_key,
720                         revocation_base_key,
721                         payment_key,
722                         delayed_payment_base_key,
723                         htlc_base_key,
724                         commitment_seed,
725                         channel_value_satoshis,
726                         holder_channel_pubkeys,
727                         channel_parameters: counterparty_channel_data,
728                         channel_keys_id: keys_id,
729                 })
730         }
731 }
732
733 /// Simple KeysInterface implementor that takes a 32-byte seed for use as a BIP 32 extended key
734 /// and derives keys from that.
735 ///
736 /// Your node_id is seed/0'
737 /// ChannelMonitor closes may use seed/1'
738 /// Cooperative closes may use seed/2'
739 /// The two close keys may be needed to claim on-chain funds!
740 pub struct KeysManager {
741         secp_ctx: Secp256k1<secp256k1::SignOnly>,
742         node_secret: SecretKey,
743         destination_script: Script,
744         shutdown_pubkey: PublicKey,
745         channel_master_key: ExtendedPrivKey,
746         channel_child_index: AtomicUsize,
747         rand_bytes_master_key: ExtendedPrivKey,
748         rand_bytes_child_index: AtomicUsize,
749
750         seed: [u8; 32],
751         starting_time_secs: u64,
752         starting_time_nanos: u32,
753 }
754
755 impl KeysManager {
756         /// Constructs a KeysManager from a 32-byte seed. If the seed is in some way biased (eg your
757         /// CSRNG is busted) this may panic (but more importantly, you will possibly lose funds).
758         /// starting_time isn't strictly required to actually be a time, but it must absolutely,
759         /// without a doubt, be unique to this instance. ie if you start multiple times with the same
760         /// seed, starting_time must be unique to each run. Thus, the easiest way to achieve this is to
761         /// simply use the current time (with very high precision).
762         ///
763         /// The seed MUST be backed up safely prior to use so that the keys can be re-created, however,
764         /// obviously, starting_time should be unique every time you reload the library - it is only
765         /// used to generate new ephemeral key data (which will be stored by the individual channel if
766         /// necessary).
767         ///
768         /// Note that the seed is required to recover certain on-chain funds independent of
769         /// ChannelMonitor data, though a current copy of ChannelMonitor data is also required for any
770         /// channel, and some on-chain during-closing funds.
771         ///
772         /// Note that until the 0.1 release there is no guarantee of backward compatibility between
773         /// versions. Once the library is more fully supported, the docs will be updated to include a
774         /// detailed description of the guarantee.
775         pub fn new(seed: &[u8; 32], starting_time_secs: u64, starting_time_nanos: u32) -> Self {
776                 let secp_ctx = Secp256k1::signing_only();
777                 // Note that when we aren't serializing the key, network doesn't matter
778                 match ExtendedPrivKey::new_master(Network::Testnet, seed) {
779                         Ok(master_key) => {
780                                 let node_secret = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(0).unwrap()).expect("Your RNG is busted").private_key.key;
781                                 let destination_script = match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(1).unwrap()) {
782                                         Ok(destination_key) => {
783                                                 let wpubkey_hash = WPubkeyHash::hash(&ExtendedPubKey::from_private(&secp_ctx, &destination_key).public_key.to_bytes());
784                                                 Builder::new().push_opcode(opcodes::all::OP_PUSHBYTES_0)
785                                                               .push_slice(&wpubkey_hash.into_inner())
786                                                               .into_script()
787                                         },
788                                         Err(_) => panic!("Your RNG is busted"),
789                                 };
790                                 let shutdown_pubkey = match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(2).unwrap()) {
791                                         Ok(shutdown_key) => ExtendedPubKey::from_private(&secp_ctx, &shutdown_key).public_key.key,
792                                         Err(_) => panic!("Your RNG is busted"),
793                                 };
794                                 let channel_master_key = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(3).unwrap()).expect("Your RNG is busted");
795                                 let rand_bytes_master_key = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(4).unwrap()).expect("Your RNG is busted");
796
797                                 KeysManager {
798                                         secp_ctx,
799                                         node_secret,
800                                         destination_script,
801                                         shutdown_pubkey,
802                                         channel_master_key,
803                                         channel_child_index: AtomicUsize::new(0),
804                                         rand_bytes_master_key,
805                                         rand_bytes_child_index: AtomicUsize::new(0),
806
807                                         seed: *seed,
808                                         starting_time_secs,
809                                         starting_time_nanos,
810                                 }
811                         },
812                         Err(_) => panic!("Your rng is busted"),
813                 }
814         }
815         fn derive_unique_start(&self) -> Sha256State {
816                 let mut unique_start = Sha256::engine();
817                 unique_start.input(&byte_utils::be64_to_array(self.starting_time_secs));
818                 unique_start.input(&byte_utils::be32_to_array(self.starting_time_nanos));
819                 unique_start.input(&self.seed);
820                 unique_start
821         }
822         /// Derive an old set of Sign for per-channel secrets based on a key derivation
823         /// parameters.
824         /// Key derivation parameters are accessible through a per-channel secrets
825         /// Sign::channel_keys_id and is provided inside DynamicOuputP2WSH in case of
826         /// onchain output detection for which a corresponding delayed_payment_key must be derived.
827         pub fn derive_channel_keys(&self, channel_value_satoshis: u64, params: &[u8; 32]) -> InMemorySigner {
828                 let chan_id = byte_utils::slice_to_be64(&params[0..8]);
829                 assert!(chan_id <= std::u32::MAX as u64); // Otherwise the params field wasn't created by us
830                 let mut unique_start = Sha256::engine();
831                 unique_start.input(params);
832                 unique_start.input(&self.seed);
833
834                 // We only seriously intend to rely on the channel_master_key for true secure
835                 // entropy, everything else just ensures uniqueness. We rely on the unique_start (ie
836                 // starting_time provided in the constructor) to be unique.
837                 let child_privkey = self.channel_master_key.ckd_priv(&self.secp_ctx, ChildNumber::from_hardened_idx(chan_id as u32).expect("key space exhausted")).expect("Your RNG is busted");
838                 unique_start.input(&child_privkey.private_key.key[..]);
839
840                 let seed = Sha256::from_engine(unique_start).into_inner();
841
842                 let commitment_seed = {
843                         let mut sha = Sha256::engine();
844                         sha.input(&seed);
845                         sha.input(&b"commitment seed"[..]);
846                         Sha256::from_engine(sha).into_inner()
847                 };
848                 macro_rules! key_step {
849                         ($info: expr, $prev_key: expr) => {{
850                                 let mut sha = Sha256::engine();
851                                 sha.input(&seed);
852                                 sha.input(&$prev_key[..]);
853                                 sha.input(&$info[..]);
854                                 SecretKey::from_slice(&Sha256::from_engine(sha).into_inner()).expect("SHA-256 is busted")
855                         }}
856                 }
857                 let funding_key = key_step!(b"funding key", commitment_seed);
858                 let revocation_base_key = key_step!(b"revocation base key", funding_key);
859                 let payment_key = key_step!(b"payment key", revocation_base_key);
860                 let delayed_payment_base_key = key_step!(b"delayed payment base key", payment_key);
861                 let htlc_base_key = key_step!(b"HTLC base key", delayed_payment_base_key);
862
863                 InMemorySigner::new(
864                         &self.secp_ctx,
865                         funding_key,
866                         revocation_base_key,
867                         payment_key,
868                         delayed_payment_base_key,
869                         htlc_base_key,
870                         commitment_seed,
871                         channel_value_satoshis,
872                         params.clone()
873                 )
874         }
875
876         /// Creates a Transaction which spends the given descriptors to the given outputs, plus an
877         /// output to the given change destination (if sufficient change value remains). The
878         /// transaction will have a feerate, at least, of the given value.
879         ///
880         /// Returns `Err(())` if the output value is greater than the input value minus required fee or
881         /// if a descriptor was duplicated.
882         ///
883         /// We do not enforce that outputs meet the dust limit or that any output scripts are standard.
884         ///
885         /// May panic if the `SpendableOutputDescriptor`s were not generated by Channels which used
886         /// this KeysManager or one of the `InMemorySigner` created by this KeysManager.
887         pub fn spend_spendable_outputs<C: Signing>(&self, descriptors: &[&SpendableOutputDescriptor], outputs: Vec<TxOut>, change_destination_script: Script, feerate_sat_per_1000_weight: u32, secp_ctx: &Secp256k1<C>) -> Result<Transaction, ()> {
888                 let mut input = Vec::new();
889                 let mut input_value = 0;
890                 let mut witness_weight = 0;
891                 let mut output_set = HashSet::with_capacity(descriptors.len());
892                 for outp in descriptors {
893                         match outp {
894                                 SpendableOutputDescriptor::StaticPaymentOutput(descriptor) => {
895                                         input.push(TxIn {
896                                                 previous_output: descriptor.outpoint.into_bitcoin_outpoint(),
897                                                 script_sig: Script::new(),
898                                                 sequence: 0,
899                                                 witness: Vec::new(),
900                                         });
901                                         witness_weight += StaticPaymentOutputDescriptor::MAX_WITNESS_LENGTH;
902                                         input_value += descriptor.output.value;
903                                         if !output_set.insert(descriptor.outpoint) { return Err(()); }
904                                 },
905                                 SpendableOutputDescriptor::DelayedPaymentOutput(descriptor) => {
906                                         input.push(TxIn {
907                                                 previous_output: descriptor.outpoint.into_bitcoin_outpoint(),
908                                                 script_sig: Script::new(),
909                                                 sequence: descriptor.to_self_delay as u32,
910                                                 witness: Vec::new(),
911                                         });
912                                         witness_weight += DelayedPaymentOutputDescriptor::MAX_WITNESS_LENGTH;
913                                         input_value += descriptor.output.value;
914                                         if !output_set.insert(descriptor.outpoint) { return Err(()); }
915                                 },
916                                 SpendableOutputDescriptor::StaticOutput { ref outpoint, ref output } => {
917                                         input.push(TxIn {
918                                                 previous_output: outpoint.into_bitcoin_outpoint(),
919                                                 script_sig: Script::new(),
920                                                 sequence: 0,
921                                                 witness: Vec::new(),
922                                         });
923                                         witness_weight += 1 + 73 + 34;
924                                         input_value += output.value;
925                                         if !output_set.insert(*outpoint) { return Err(()); }
926                                 }
927                         }
928                         if input_value > MAX_VALUE_MSAT / 1000 { return Err(()); }
929                 }
930                 let mut spend_tx = Transaction {
931                         version: 2,
932                         lock_time: 0,
933                         input,
934                         output: outputs,
935                 };
936                 transaction_utils::maybe_add_change_output(&mut spend_tx, input_value, witness_weight, feerate_sat_per_1000_weight, change_destination_script)?;
937
938                 let mut keys_cache: Option<(InMemorySigner, [u8; 32])> = None;
939                 let mut input_idx = 0;
940                 for outp in descriptors {
941                         match outp {
942                                 SpendableOutputDescriptor::StaticPaymentOutput(descriptor) => {
943                                         if keys_cache.is_none() || keys_cache.as_ref().unwrap().1 != descriptor.channel_keys_id {
944                                                 keys_cache = Some((
945                                                         self.derive_channel_keys(descriptor.channel_value_satoshis, &descriptor.channel_keys_id),
946                                                         descriptor.channel_keys_id));
947                                         }
948                                         spend_tx.input[input_idx].witness = keys_cache.as_ref().unwrap().0.sign_counterparty_payment_input(&spend_tx, input_idx, &descriptor, &secp_ctx).unwrap();
949                                 },
950                                 SpendableOutputDescriptor::DelayedPaymentOutput(descriptor) => {
951                                         if keys_cache.is_none() || keys_cache.as_ref().unwrap().1 != descriptor.channel_keys_id {
952                                                 keys_cache = Some((
953                                                         self.derive_channel_keys(descriptor.channel_value_satoshis, &descriptor.channel_keys_id),
954                                                         descriptor.channel_keys_id));
955                                         }
956                                         spend_tx.input[input_idx].witness = keys_cache.as_ref().unwrap().0.sign_dynamic_p2wsh_input(&spend_tx, input_idx, &descriptor, &secp_ctx).unwrap();
957                                 },
958                                 SpendableOutputDescriptor::StaticOutput { ref output, .. } => {
959                                         let derivation_idx = if output.script_pubkey == self.destination_script {
960                                                 1
961                                         } else {
962                                                 2
963                                         };
964                                         let secret = {
965                                                 // Note that when we aren't serializing the key, network doesn't matter
966                                                 match ExtendedPrivKey::new_master(Network::Testnet, &self.seed) {
967                                                         Ok(master_key) => {
968                                                                 match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(derivation_idx).expect("key space exhausted")) {
969                                                                         Ok(key) => key,
970                                                                         Err(_) => panic!("Your RNG is busted"),
971                                                                 }
972                                                         }
973                                                         Err(_) => panic!("Your rng is busted"),
974                                                 }
975                                         };
976                                         let pubkey = ExtendedPubKey::from_private(&secp_ctx, &secret).public_key;
977                                         if derivation_idx == 2 {
978                                                 assert_eq!(pubkey.key, self.shutdown_pubkey);
979                                         }
980                                         let witness_script = bitcoin::Address::p2pkh(&pubkey, Network::Testnet).script_pubkey();
981                                         let sighash = hash_to_message!(&bip143::SigHashCache::new(&spend_tx).signature_hash(input_idx, &witness_script, output.value, SigHashType::All)[..]);
982                                         let sig = secp_ctx.sign(&sighash, &secret.private_key.key);
983                                         spend_tx.input[input_idx].witness.push(sig.serialize_der().to_vec());
984                                         spend_tx.input[input_idx].witness[0].push(SigHashType::All as u8);
985                                         spend_tx.input[input_idx].witness.push(pubkey.key.serialize().to_vec());
986                                 },
987                         }
988                         input_idx += 1;
989                 }
990                 Ok(spend_tx)
991         }
992 }
993
994 impl KeysInterface for KeysManager {
995         type Signer = InMemorySigner;
996
997         fn get_node_secret(&self) -> SecretKey {
998                 self.node_secret.clone()
999         }
1000
1001         fn get_destination_script(&self) -> Script {
1002                 self.destination_script.clone()
1003         }
1004
1005         fn get_shutdown_pubkey(&self) -> PublicKey {
1006                 self.shutdown_pubkey.clone()
1007         }
1008
1009         fn get_channel_signer(&self, _inbound: bool, channel_value_satoshis: u64) -> Self::Signer {
1010                 let child_ix = self.channel_child_index.fetch_add(1, Ordering::AcqRel);
1011                 assert!(child_ix <= std::u32::MAX as usize);
1012                 let mut id = [0; 32];
1013                 id[0..8].copy_from_slice(&byte_utils::be64_to_array(child_ix as u64));
1014                 id[8..16].copy_from_slice(&byte_utils::be64_to_array(self.starting_time_nanos as u64));
1015                 id[16..24].copy_from_slice(&byte_utils::be64_to_array(self.starting_time_secs));
1016                 self.derive_channel_keys(channel_value_satoshis, &id)
1017         }
1018
1019         fn get_secure_random_bytes(&self) -> [u8; 32] {
1020                 let mut sha = self.derive_unique_start();
1021
1022                 let child_ix = self.rand_bytes_child_index.fetch_add(1, Ordering::AcqRel);
1023                 let child_privkey = self.rand_bytes_master_key.ckd_priv(&self.secp_ctx, ChildNumber::from_hardened_idx(child_ix as u32).expect("key space exhausted")).expect("Your RNG is busted");
1024                 sha.input(&child_privkey.private_key.key[..]);
1025
1026                 sha.input(b"Unique Secure Random Bytes Salt");
1027                 Sha256::from_engine(sha).into_inner()
1028         }
1029
1030         fn read_chan_signer(&self, reader: &[u8]) -> Result<Self::Signer, DecodeError> {
1031                 InMemorySigner::read(&mut std::io::Cursor::new(reader))
1032         }
1033 }