Merge pull request #764 from lightning-signer/revoke-enforcement
[rust-lightning] / lightning / src / chain / keysinterface.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! keysinterface provides keys into rust-lightning and defines some useful enums which describe
11 //! spendable on-chain outputs which the user owns and is responsible for using just as any other
12 //! on-chain output which is theirs.
13
14 use bitcoin::blockdata::transaction::{Transaction, TxOut, SigHashType};
15 use bitcoin::blockdata::script::{Script, Builder};
16 use bitcoin::blockdata::opcodes;
17 use bitcoin::network::constants::Network;
18 use bitcoin::util::bip32::{ExtendedPrivKey, ExtendedPubKey, ChildNumber};
19 use bitcoin::util::bip143;
20
21 use bitcoin::hashes::{Hash, HashEngine};
22 use bitcoin::hashes::sha256::HashEngine as Sha256State;
23 use bitcoin::hashes::sha256::Hash as Sha256;
24 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
25 use bitcoin::hash_types::WPubkeyHash;
26
27 use bitcoin::secp256k1::key::{SecretKey, PublicKey};
28 use bitcoin::secp256k1::{Secp256k1, Signature, Signing};
29 use bitcoin::secp256k1;
30
31 use util::byte_utils;
32 use util::ser::{Writeable, Writer, Readable};
33
34 use chain::transaction::OutPoint;
35 use ln::chan_utils;
36 use ln::chan_utils::{HTLCOutputInCommitment, make_funding_redeemscript, ChannelPublicKeys, HolderCommitmentTransaction, ChannelTransactionParameters, CommitmentTransaction};
37 use ln::msgs::UnsignedChannelAnnouncement;
38
39 use std::sync::atomic::{AtomicUsize, Ordering};
40 use std::io::Error;
41 use ln::msgs::DecodeError;
42
43 /// When on-chain outputs are created by rust-lightning (which our counterparty is not able to
44 /// claim at any point in the future) an event is generated which you must track and be able to
45 /// spend on-chain. The information needed to do this is provided in this enum, including the
46 /// outpoint describing which txid and output index is available, the full output which exists at
47 /// that txid/index, and any keys or other information required to sign.
48 #[derive(Clone, Debug, PartialEq)]
49 pub enum SpendableOutputDescriptor {
50         /// An output to a script which was provided via KeysInterface, thus you should already know
51         /// how to spend it. No keys are provided as rust-lightning was never given any keys - only the
52         /// script_pubkey as it appears in the output.
53         /// These may include outputs from a transaction punishing our counterparty or claiming an HTLC
54         /// on-chain using the payment preimage or after it has timed out.
55         StaticOutput {
56                 /// The outpoint which is spendable
57                 outpoint: OutPoint,
58                 /// The output which is referenced by the given outpoint.
59                 output: TxOut,
60         },
61         /// An output to a P2WSH script which can be spent with a single signature after a CSV delay.
62         ///
63         /// The witness in the spending input should be:
64         /// <BIP 143 signature> <empty vector> (MINIMALIF standard rule) <provided witnessScript>
65         ///
66         /// Note that the nSequence field in the spending input must be set to to_self_delay
67         /// (which means the transaction is not broadcastable until at least to_self_delay
68         /// blocks after the outpoint confirms).
69         ///
70         /// These are generally the result of a "revocable" output to us, spendable only by us unless
71         /// it is an output from an old state which we broadcast (which should never happen).
72         ///
73         /// To derive the delayed_payment key which is used to sign for this input, you must pass the
74         /// holder delayed_payment_base_key (ie the private key which corresponds to the pubkey in
75         /// ChannelKeys::pubkeys().delayed_payment_basepoint) and the provided per_commitment_point to
76         /// chan_utils::derive_private_key. The public key can be generated without the secret key
77         /// using chan_utils::derive_public_key and only the delayed_payment_basepoint which appears in
78         /// ChannelKeys::pubkeys().
79         ///
80         /// To derive the revocation_pubkey provided here (which is used in the witness
81         /// script generation), you must pass the counterparty revocation_basepoint (which appears in the
82         /// call to ChannelKeys::ready_channel) and the provided per_commitment point
83         /// to chan_utils::derive_public_revocation_key.
84         ///
85         /// The witness script which is hashed and included in the output script_pubkey may be
86         /// regenerated by passing the revocation_pubkey (derived as above), our delayed_payment pubkey
87         /// (derived as above), and the to_self_delay contained here to
88         /// chan_utils::get_revokeable_redeemscript.
89         //
90         // TODO: we need to expose utility methods in KeyManager to do all the relevant derivation.
91         DynamicOutputP2WSH {
92                 /// The outpoint which is spendable
93                 outpoint: OutPoint,
94                 /// Per commitment point to derive delayed_payment_key by key holder
95                 per_commitment_point: PublicKey,
96                 /// The nSequence value which must be set in the spending input to satisfy the OP_CSV in
97                 /// the witness_script.
98                 to_self_delay: u16,
99                 /// The output which is referenced by the given outpoint
100                 output: TxOut,
101                 /// The channel keys state used to proceed to derivation of signing key. Must
102                 /// be pass to KeysInterface::derive_channel_keys.
103                 key_derivation_params: (u64, u64),
104                 /// The revocation_pubkey used to derive witnessScript
105                 revocation_pubkey: PublicKey
106         },
107         /// An output to a P2WPKH, spendable exclusively by our payment key (ie the private key which
108         /// corresponds to the public key in ChannelKeys::pubkeys().payment_point).
109         /// The witness in the spending input, is, thus, simply:
110         /// <BIP 143 signature> <payment key>
111         ///
112         /// These are generally the result of our counterparty having broadcast the current state,
113         /// allowing us to claim the non-HTLC-encumbered outputs immediately.
114         StaticOutputCounterpartyPayment {
115                 /// The outpoint which is spendable
116                 outpoint: OutPoint,
117                 /// The output which is reference by the given outpoint
118                 output: TxOut,
119                 /// The channel keys state used to proceed to derivation of signing key. Must
120                 /// be pass to KeysInterface::derive_channel_keys.
121                 key_derivation_params: (u64, u64),
122         }
123 }
124
125 impl Writeable for SpendableOutputDescriptor {
126         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
127                 match self {
128                         &SpendableOutputDescriptor::StaticOutput { ref outpoint, ref output } => {
129                                 0u8.write(writer)?;
130                                 outpoint.write(writer)?;
131                                 output.write(writer)?;
132                         },
133                         &SpendableOutputDescriptor::DynamicOutputP2WSH { ref outpoint, ref per_commitment_point, ref to_self_delay, ref output, ref key_derivation_params, ref revocation_pubkey } => {
134                                 1u8.write(writer)?;
135                                 outpoint.write(writer)?;
136                                 per_commitment_point.write(writer)?;
137                                 to_self_delay.write(writer)?;
138                                 output.write(writer)?;
139                                 key_derivation_params.0.write(writer)?;
140                                 key_derivation_params.1.write(writer)?;
141                                 revocation_pubkey.write(writer)?;
142                         },
143                         &SpendableOutputDescriptor::StaticOutputCounterpartyPayment { ref outpoint, ref output, ref key_derivation_params } => {
144                                 2u8.write(writer)?;
145                                 outpoint.write(writer)?;
146                                 output.write(writer)?;
147                                 key_derivation_params.0.write(writer)?;
148                                 key_derivation_params.1.write(writer)?;
149                         },
150                 }
151                 Ok(())
152         }
153 }
154
155 impl Readable for SpendableOutputDescriptor {
156         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
157                 match Readable::read(reader)? {
158                         0u8 => Ok(SpendableOutputDescriptor::StaticOutput {
159                                 outpoint: Readable::read(reader)?,
160                                 output: Readable::read(reader)?,
161                         }),
162                         1u8 => Ok(SpendableOutputDescriptor::DynamicOutputP2WSH {
163                                 outpoint: Readable::read(reader)?,
164                                 per_commitment_point: Readable::read(reader)?,
165                                 to_self_delay: Readable::read(reader)?,
166                                 output: Readable::read(reader)?,
167                                 key_derivation_params: (Readable::read(reader)?, Readable::read(reader)?),
168                                 revocation_pubkey: Readable::read(reader)?,
169                         }),
170                         2u8 => Ok(SpendableOutputDescriptor::StaticOutputCounterpartyPayment {
171                                 outpoint: Readable::read(reader)?,
172                                 output: Readable::read(reader)?,
173                                 key_derivation_params: (Readable::read(reader)?, Readable::read(reader)?),
174                         }),
175                         _ => Err(DecodeError::InvalidValue),
176                 }
177         }
178 }
179
180 /// Set of lightning keys needed to operate a channel as described in BOLT 3.
181 ///
182 /// Signing services could be implemented on a hardware wallet. In this case,
183 /// the current ChannelKeys would be a front-end on top of a communication
184 /// channel connected to your secure device and lightning key material wouldn't
185 /// reside on a hot server. Nevertheless, a this deployment would still need
186 /// to trust the ChannelManager to avoid loss of funds as this latest component
187 /// could ask to sign commitment transaction with HTLCs paying to attacker pubkeys.
188 ///
189 /// A more secure iteration would be to use hashlock (or payment points) to pair
190 /// invoice/incoming HTLCs with outgoing HTLCs to implement a no-trust-ChannelManager
191 /// at the price of more state and computation on the hardware wallet side. In the future,
192 /// we are looking forward to design such interface.
193 ///
194 /// In any case, ChannelMonitor or fallback watchtowers are always going to be trusted
195 /// to act, as liveness and breach reply correctness are always going to be hard requirements
196 /// of LN security model, orthogonal of key management issues.
197 ///
198 /// If you're implementing a custom signer, you almost certainly want to implement
199 /// Readable/Writable to serialize out a unique reference to this set of keys so
200 /// that you can serialize the full ChannelManager object.
201 ///
202 // (TODO: We shouldn't require that, and should have an API to get them at deser time, due mostly
203 // to the possibility of reentrancy issues by calling the user's code during our deserialization
204 // routine).
205 // TODO: We should remove Clone by instead requesting a new ChannelKeys copy when we create
206 // ChannelMonitors instead of expecting to clone the one out of the Channel into the monitors.
207 pub trait ChannelKeys : Send+Clone + Writeable {
208         /// Gets the per-commitment point for a specific commitment number
209         ///
210         /// Note that the commitment number starts at (1 << 48) - 1 and counts backwards.
211         fn get_per_commitment_point<T: secp256k1::Signing + secp256k1::Verification>(&self, idx: u64, secp_ctx: &Secp256k1<T>) -> PublicKey;
212         /// Gets the commitment secret for a specific commitment number as part of the revocation process
213         ///
214         /// An external signer implementation should error here if the commitment was already signed
215         /// and should refuse to sign it in the future.
216         ///
217         /// May be called more than once for the same index.
218         ///
219         /// Note that the commitment number starts at (1 << 48) - 1 and counts backwards.
220         /// TODO: return a Result so we can signal a validation error
221         fn release_commitment_secret(&self, idx: u64) -> [u8; 32];
222         /// Gets the holder's channel public keys and basepoints
223         fn pubkeys(&self) -> &ChannelPublicKeys;
224         /// Gets arbitrary identifiers describing the set of keys which are provided back to you in
225         /// some SpendableOutputDescriptor types. These should be sufficient to identify this
226         /// ChannelKeys object uniquely and lookup or re-derive its keys.
227         fn key_derivation_params(&self) -> (u64, u64);
228
229         /// Create a signature for a counterparty's commitment transaction and associated HTLC transactions.
230         ///
231         /// Note that if signing fails or is rejected, the channel will be force-closed.
232         //
233         // TODO: Document the things someone using this interface should enforce before signing.
234         fn sign_counterparty_commitment<T: secp256k1::Signing + secp256k1::Verification>(&self, commitment_tx: &CommitmentTransaction, secp_ctx: &Secp256k1<T>) -> Result<(Signature, Vec<Signature>), ()>;
235
236         /// Create a signatures for a holder's commitment transaction and its claiming HTLC transactions.
237         /// This will only ever be called with a non-revoked commitment_tx.  This will be called with the
238         /// latest commitment_tx when we initiate a force-close.
239         /// This will be called with the previous latest, just to get claiming HTLC signatures, if we are
240         /// reacting to a ChannelMonitor replica that decided to broadcast before it had been updated to
241         /// the latest.
242         /// This may be called multiple times for the same transaction.
243         ///
244         /// An external signer implementation should check that the commitment has not been revoked.
245         ///
246         /// May return Err if key derivation fails.  Callers, such as ChannelMonitor, will panic in such a case.
247         //
248         // TODO: Document the things someone using this interface should enforce before signing.
249         // TODO: Key derivation failure should panic rather than Err
250         fn sign_holder_commitment_and_htlcs<T: secp256k1::Signing + secp256k1::Verification>(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<T>) -> Result<(Signature, Vec<Signature>), ()>;
251
252         /// Same as sign_holder_commitment, but exists only for tests to get access to holder commitment
253         /// transactions which will be broadcasted later, after the channel has moved on to a newer
254         /// state. Thus, needs its own method as sign_holder_commitment may enforce that we only ever
255         /// get called once.
256         #[cfg(any(test,feature = "unsafe_revoked_tx_signing"))]
257         fn unsafe_sign_holder_commitment_and_htlcs<T: secp256k1::Signing + secp256k1::Verification>(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<T>) -> Result<(Signature, Vec<Signature>), ()>;
258
259         /// Create a signature for the given input in a transaction spending an HTLC or commitment
260         /// transaction output when our counterparty broadcasts an old state.
261         ///
262         /// A justice transaction may claim multiples outputs at the same time if timelocks are
263         /// similar, but only a signature for the input at index `input` should be signed for here.
264         /// It may be called multiples time for same output(s) if a fee-bump is needed with regards
265         /// to an upcoming timelock expiration.
266         ///
267         /// Amount is value of the output spent by this input, committed to in the BIP 143 signature.
268         ///
269         /// per_commitment_key is revocation secret which was provided by our counterparty when they
270         /// revoked the state which they eventually broadcast. It's not a _holder_ secret key and does
271         /// not allow the spending of any funds by itself (you need our holder revocation_secret to do
272         /// so).
273         ///
274         /// htlc holds HTLC elements (hash, timelock) if the output being spent is a HTLC output, thus
275         /// changing the format of the witness script (which is committed to in the BIP 143
276         /// signatures).
277         fn sign_justice_transaction<T: secp256k1::Signing + secp256k1::Verification>(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, htlc: &Option<HTLCOutputInCommitment>, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()>;
278
279         /// Create a signature for a claiming transaction for a HTLC output on a counterparty's commitment
280         /// transaction, either offered or received.
281         ///
282         /// Such a transaction may claim multiples offered outputs at same time if we know the
283         /// preimage for each when we create it, but only the input at index `input` should be
284         /// signed for here. It may be called multiple times for same output(s) if a fee-bump is
285         /// needed with regards to an upcoming timelock expiration.
286         ///
287         /// Witness_script is either a offered or received script as defined in BOLT3 for HTLC
288         /// outputs.
289         ///
290         /// Amount is value of the output spent by this input, committed to in the BIP 143 signature.
291         ///
292         /// Per_commitment_point is the dynamic point corresponding to the channel state
293         /// detected onchain. It has been generated by our counterparty and is used to derive
294         /// channel state keys, which are then included in the witness script and committed to in the
295         /// BIP 143 signature.
296         fn sign_counterparty_htlc_transaction<T: secp256k1::Signing + secp256k1::Verification>(&self, htlc_tx: &Transaction, input: usize, amount: u64, per_commitment_point: &PublicKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()>;
297
298         /// Create a signature for a (proposed) closing transaction.
299         ///
300         /// Note that, due to rounding, there may be one "missing" satoshi, and either party may have
301         /// chosen to forgo their output as dust.
302         fn sign_closing_transaction<T: secp256k1::Signing>(&self, closing_tx: &Transaction, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()>;
303
304         /// Signs a channel announcement message with our funding key, proving it comes from one
305         /// of the channel participants.
306         ///
307         /// Note that if this fails or is rejected, the channel will not be publicly announced and
308         /// our counterparty may (though likely will not) close the channel on us for violating the
309         /// protocol.
310         fn sign_channel_announcement<T: secp256k1::Signing>(&self, msg: &UnsignedChannelAnnouncement, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()>;
311
312         /// Set the counterparty static channel data, including basepoints,
313         /// counterparty_selected/holder_selected_contest_delay and funding outpoint.
314         /// This is done as soon as the funding outpoint is known.  Since these are static channel data,
315         /// they MUST NOT be allowed to change to different values once set.
316         ///
317         /// channel_parameters.is_populated() MUST be true.
318         ///
319         /// We bind holder_selected_contest_delay late here for API convenience.
320         ///
321         /// Will be called before any signatures are applied.
322         fn ready_channel(&mut self, channel_parameters: &ChannelTransactionParameters);
323 }
324
325 /// A trait to describe an object which can get user secrets and key material.
326 pub trait KeysInterface: Send + Sync {
327         /// A type which implements ChannelKeys which will be returned by get_channel_keys.
328         type ChanKeySigner : ChannelKeys;
329
330         /// Get node secret key (aka node_id or network_key)
331         fn get_node_secret(&self) -> SecretKey;
332         /// Get destination redeemScript to encumber static protocol exit points.
333         fn get_destination_script(&self) -> Script;
334         /// Get shutdown_pubkey to use as PublicKey at channel closure
335         fn get_shutdown_pubkey(&self) -> PublicKey;
336         /// Get a new set of ChannelKeys for per-channel secrets. These MUST be unique even if you
337         /// restarted with some stale data!
338         fn get_channel_keys(&self, inbound: bool, channel_value_satoshis: u64) -> Self::ChanKeySigner;
339         /// Gets a unique, cryptographically-secure, random 32 byte value. This is used for encrypting
340         /// onion packets and for temporary channel IDs. There is no requirement that these be
341         /// persisted anywhere, though they must be unique across restarts.
342         fn get_secure_random_bytes(&self) -> [u8; 32];
343
344         /// Reads a `ChanKeySigner` for this `KeysInterface` from the given input stream.
345         /// This is only called during deserialization of other objects which contain
346         /// `ChannelKeys`-implementing objects (ie `ChannelMonitor`s and `ChannelManager`s).
347         /// The bytes are exactly those which `<Self::ChanKeySigner as Writeable>::write()` writes, and
348         /// contain no versioning scheme. You may wish to include your own version prefix and ensure
349         /// you've read all of the provided bytes to ensure no corruption occurred.
350         fn read_chan_signer(&self, reader: &[u8]) -> Result<Self::ChanKeySigner, DecodeError>;
351 }
352
353 #[derive(Clone)]
354 /// A simple implementation of ChannelKeys that just keeps the private keys in memory.
355 ///
356 /// This implementation performs no policy checks and is insufficient by itself as
357 /// a secure external signer.
358 pub struct InMemoryChannelKeys {
359         /// Private key of anchor tx
360         pub funding_key: SecretKey,
361         /// Holder secret key for blinded revocation pubkey
362         pub revocation_base_key: SecretKey,
363         /// Holder secret key used for our balance in counterparty-broadcasted commitment transactions
364         pub payment_key: SecretKey,
365         /// Holder secret key used in HTLC tx
366         pub delayed_payment_base_key: SecretKey,
367         /// Holder htlc secret key used in commitment tx htlc outputs
368         pub htlc_base_key: SecretKey,
369         /// Commitment seed
370         pub commitment_seed: [u8; 32],
371         /// Holder public keys and basepoints
372         pub(crate) holder_channel_pubkeys: ChannelPublicKeys,
373         /// Counterparty public keys and counterparty/holder selected_contest_delay, populated on channel acceptance
374         channel_parameters: Option<ChannelTransactionParameters>,
375         /// The total value of this channel
376         channel_value_satoshis: u64,
377         /// Key derivation parameters
378         key_derivation_params: (u64, u64),
379 }
380
381 impl InMemoryChannelKeys {
382         /// Create a new InMemoryChannelKeys
383         pub fn new<C: Signing>(
384                 secp_ctx: &Secp256k1<C>,
385                 funding_key: SecretKey,
386                 revocation_base_key: SecretKey,
387                 payment_key: SecretKey,
388                 delayed_payment_base_key: SecretKey,
389                 htlc_base_key: SecretKey,
390                 commitment_seed: [u8; 32],
391                 channel_value_satoshis: u64,
392                 key_derivation_params: (u64, u64)) -> InMemoryChannelKeys {
393                 let holder_channel_pubkeys =
394                         InMemoryChannelKeys::make_holder_keys(secp_ctx, &funding_key, &revocation_base_key,
395                                                              &payment_key, &delayed_payment_base_key,
396                                                              &htlc_base_key);
397                 InMemoryChannelKeys {
398                         funding_key,
399                         revocation_base_key,
400                         payment_key,
401                         delayed_payment_base_key,
402                         htlc_base_key,
403                         commitment_seed,
404                         channel_value_satoshis,
405                         holder_channel_pubkeys,
406                         channel_parameters: None,
407                         key_derivation_params,
408                 }
409         }
410
411         fn make_holder_keys<C: Signing>(secp_ctx: &Secp256k1<C>,
412                                        funding_key: &SecretKey,
413                                        revocation_base_key: &SecretKey,
414                                        payment_key: &SecretKey,
415                                        delayed_payment_base_key: &SecretKey,
416                                        htlc_base_key: &SecretKey) -> ChannelPublicKeys {
417                 let from_secret = |s: &SecretKey| PublicKey::from_secret_key(secp_ctx, s);
418                 ChannelPublicKeys {
419                         funding_pubkey: from_secret(&funding_key),
420                         revocation_basepoint: from_secret(&revocation_base_key),
421                         payment_point: from_secret(&payment_key),
422                         delayed_payment_basepoint: from_secret(&delayed_payment_base_key),
423                         htlc_basepoint: from_secret(&htlc_base_key),
424                 }
425         }
426
427         /// Counterparty pubkeys.
428         /// Will panic if ready_channel wasn't called.
429         pub fn counterparty_pubkeys(&self) -> &ChannelPublicKeys { &self.get_channel_parameters().counterparty_parameters.as_ref().unwrap().pubkeys }
430
431         /// The contest_delay value specified by our counterparty and applied on holder-broadcastable
432         /// transactions, ie the amount of time that we have to wait to recover our funds if we
433         /// broadcast a transaction.
434         /// Will panic if ready_channel wasn't called.
435         pub fn counterparty_selected_contest_delay(&self) -> u16 { self.get_channel_parameters().counterparty_parameters.as_ref().unwrap().selected_contest_delay }
436
437         /// The contest_delay value specified by us and applied on transactions broadcastable
438         /// by our counterparty, ie the amount of time that they have to wait to recover their funds
439         /// if they broadcast a transaction.
440         /// Will panic if ready_channel wasn't called.
441         pub fn holder_selected_contest_delay(&self) -> u16 { self.get_channel_parameters().holder_selected_contest_delay }
442
443         /// Whether the holder is the initiator
444         /// Will panic if ready_channel wasn't called.
445         pub fn is_outbound(&self) -> bool { self.get_channel_parameters().is_outbound_from_holder }
446
447         /// Funding outpoint
448         /// Will panic if ready_channel wasn't called.
449         pub fn funding_outpoint(&self) -> &OutPoint { self.get_channel_parameters().funding_outpoint.as_ref().unwrap() }
450
451         /// Obtain a ChannelTransactionParameters for this channel, to be used when verifying or
452         /// building transactions.
453         ///
454         /// Will panic if ready_channel wasn't called.
455         pub fn get_channel_parameters(&self) -> &ChannelTransactionParameters {
456                 self.channel_parameters.as_ref().unwrap()
457         }
458 }
459
460 impl ChannelKeys for InMemoryChannelKeys {
461         fn get_per_commitment_point<T: secp256k1::Signing + secp256k1::Verification>(&self, idx: u64, secp_ctx: &Secp256k1<T>) -> PublicKey {
462                 let commitment_secret = SecretKey::from_slice(&chan_utils::build_commitment_secret(&self.commitment_seed, idx)).unwrap();
463                 PublicKey::from_secret_key(secp_ctx, &commitment_secret)
464         }
465
466         fn release_commitment_secret(&self, idx: u64) -> [u8; 32] {
467                 chan_utils::build_commitment_secret(&self.commitment_seed, idx)
468         }
469
470         fn pubkeys(&self) -> &ChannelPublicKeys { &self.holder_channel_pubkeys }
471         fn key_derivation_params(&self) -> (u64, u64) { self.key_derivation_params }
472
473         fn sign_counterparty_commitment<T: secp256k1::Signing + secp256k1::Verification>(&self, commitment_tx: &CommitmentTransaction, secp_ctx: &Secp256k1<T>) -> Result<(Signature, Vec<Signature>), ()> {
474                 let trusted_tx = commitment_tx.trust();
475                 let keys = trusted_tx.keys();
476
477                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
478                 let channel_funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey);
479
480                 let built_tx = trusted_tx.built_transaction();
481                 let commitment_sig = built_tx.sign(&self.funding_key, &channel_funding_redeemscript, self.channel_value_satoshis, secp_ctx);
482                 let commitment_txid = built_tx.txid;
483
484                 let mut htlc_sigs = Vec::with_capacity(commitment_tx.htlcs().len());
485                 for htlc in commitment_tx.htlcs() {
486                         let htlc_tx = chan_utils::build_htlc_transaction(&commitment_txid, commitment_tx.feerate_per_kw(), self.holder_selected_contest_delay(), htlc, &keys.broadcaster_delayed_payment_key, &keys.revocation_key);
487                         let htlc_redeemscript = chan_utils::get_htlc_redeemscript(&htlc, &keys);
488                         let htlc_sighash = hash_to_message!(&bip143::SigHashCache::new(&htlc_tx).signature_hash(0, &htlc_redeemscript, htlc.amount_msat / 1000, SigHashType::All)[..]);
489                         let holder_htlc_key = match chan_utils::derive_private_key(&secp_ctx, &keys.per_commitment_point, &self.htlc_base_key) {
490                                 Ok(s) => s,
491                                 Err(_) => return Err(()),
492                         };
493                         htlc_sigs.push(secp_ctx.sign(&htlc_sighash, &holder_htlc_key));
494                 }
495
496                 Ok((commitment_sig, htlc_sigs))
497         }
498
499         fn sign_holder_commitment_and_htlcs<T: secp256k1::Signing + secp256k1::Verification>(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<T>) -> Result<(Signature, Vec<Signature>), ()> {
500                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
501                 let funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey);
502                 let trusted_tx = commitment_tx.trust();
503                 let sig = trusted_tx.built_transaction().sign(&self.funding_key, &funding_redeemscript, self.channel_value_satoshis, secp_ctx);
504                 let channel_parameters = self.get_channel_parameters();
505                 let htlc_sigs = trusted_tx.get_htlc_sigs(&self.htlc_base_key, &channel_parameters.as_holder_broadcastable(), secp_ctx)?;
506                 Ok((sig, htlc_sigs))
507         }
508
509         #[cfg(any(test,feature = "unsafe_revoked_tx_signing"))]
510         fn unsafe_sign_holder_commitment_and_htlcs<T: secp256k1::Signing + secp256k1::Verification>(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<T>) -> Result<(Signature, Vec<Signature>), ()> {
511                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
512                 let funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey);
513                 let trusted_tx = commitment_tx.trust();
514                 let sig = trusted_tx.built_transaction().sign(&self.funding_key, &funding_redeemscript, self.channel_value_satoshis, secp_ctx);
515                 let channel_parameters = self.get_channel_parameters();
516                 let htlc_sigs = trusted_tx.get_htlc_sigs(&self.htlc_base_key, &channel_parameters.as_holder_broadcastable(), secp_ctx)?;
517                 Ok((sig, htlc_sigs))
518         }
519
520         fn sign_justice_transaction<T: secp256k1::Signing + secp256k1::Verification>(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, htlc: &Option<HTLCOutputInCommitment>, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()> {
521                 let revocation_key = match chan_utils::derive_private_revocation_key(&secp_ctx, &per_commitment_key, &self.revocation_base_key) {
522                         Ok(revocation_key) => revocation_key,
523                         Err(_) => return Err(())
524                 };
525                 let per_commitment_point = PublicKey::from_secret_key(secp_ctx, &per_commitment_key);
526                 let revocation_pubkey = match chan_utils::derive_public_revocation_key(&secp_ctx, &per_commitment_point, &self.pubkeys().revocation_basepoint) {
527                         Ok(revocation_pubkey) => revocation_pubkey,
528                         Err(_) => return Err(())
529                 };
530                 let witness_script = if let &Some(ref htlc) = htlc {
531                         let counterparty_htlcpubkey = match chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.counterparty_pubkeys().htlc_basepoint) {
532                                 Ok(counterparty_htlcpubkey) => counterparty_htlcpubkey,
533                                 Err(_) => return Err(())
534                         };
535                         let holder_htlcpubkey = match chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.pubkeys().htlc_basepoint) {
536                                 Ok(holder_htlcpubkey) => holder_htlcpubkey,
537                                 Err(_) => return Err(())
538                         };
539                         chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, &counterparty_htlcpubkey, &holder_htlcpubkey, &revocation_pubkey)
540                 } else {
541                         let counterparty_delayedpubkey = match chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.counterparty_pubkeys().delayed_payment_basepoint) {
542                                 Ok(counterparty_delayedpubkey) => counterparty_delayedpubkey,
543                                 Err(_) => return Err(())
544                         };
545                         chan_utils::get_revokeable_redeemscript(&revocation_pubkey, self.holder_selected_contest_delay(), &counterparty_delayedpubkey)
546                 };
547                 let mut sighash_parts = bip143::SigHashCache::new(justice_tx);
548                 let sighash = hash_to_message!(&sighash_parts.signature_hash(input, &witness_script, amount, SigHashType::All)[..]);
549                 return Ok(secp_ctx.sign(&sighash, &revocation_key))
550         }
551
552         fn sign_counterparty_htlc_transaction<T: secp256k1::Signing + secp256k1::Verification>(&self, htlc_tx: &Transaction, input: usize, amount: u64, per_commitment_point: &PublicKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()> {
553                 if let Ok(htlc_key) = chan_utils::derive_private_key(&secp_ctx, &per_commitment_point, &self.htlc_base_key) {
554                         let witness_script = if let Ok(revocation_pubkey) = chan_utils::derive_public_revocation_key(&secp_ctx, &per_commitment_point, &self.pubkeys().revocation_basepoint) {
555                                 if let Ok(counterparty_htlcpubkey) = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.counterparty_pubkeys().htlc_basepoint) {
556                                         if let Ok(htlcpubkey) = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.pubkeys().htlc_basepoint) {
557                                                 chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, &counterparty_htlcpubkey, &htlcpubkey, &revocation_pubkey)
558                                         } else { return Err(()) }
559                                 } else { return Err(()) }
560                         } else { return Err(()) };
561                         let mut sighash_parts = bip143::SigHashCache::new(htlc_tx);
562                         let sighash = hash_to_message!(&sighash_parts.signature_hash(input, &witness_script, amount, SigHashType::All)[..]);
563                         return Ok(secp_ctx.sign(&sighash, &htlc_key))
564                 }
565                 Err(())
566         }
567
568         fn sign_closing_transaction<T: secp256k1::Signing>(&self, closing_tx: &Transaction, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()> {
569                 if closing_tx.input.len() != 1 { return Err(()); }
570                 if closing_tx.input[0].witness.len() != 0 { return Err(()); }
571                 if closing_tx.output.len() > 2 { return Err(()); }
572
573                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
574                 let channel_funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey);
575
576                 let sighash = hash_to_message!(&bip143::SigHashCache::new(closing_tx)
577                         .signature_hash(0, &channel_funding_redeemscript, self.channel_value_satoshis, SigHashType::All)[..]);
578                 Ok(secp_ctx.sign(&sighash, &self.funding_key))
579         }
580
581         fn sign_channel_announcement<T: secp256k1::Signing>(&self, msg: &UnsignedChannelAnnouncement, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()> {
582                 let msghash = hash_to_message!(&Sha256dHash::hash(&msg.encode()[..])[..]);
583                 Ok(secp_ctx.sign(&msghash, &self.funding_key))
584         }
585
586         fn ready_channel(&mut self, channel_parameters: &ChannelTransactionParameters) {
587                 assert!(self.channel_parameters.is_none(), "Acceptance already noted");
588                 assert!(channel_parameters.is_populated(), "Channel parameters must be fully populated");
589                 self.channel_parameters = Some(channel_parameters.clone());
590         }
591 }
592
593 impl Writeable for InMemoryChannelKeys {
594         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), Error> {
595                 self.funding_key.write(writer)?;
596                 self.revocation_base_key.write(writer)?;
597                 self.payment_key.write(writer)?;
598                 self.delayed_payment_base_key.write(writer)?;
599                 self.htlc_base_key.write(writer)?;
600                 self.commitment_seed.write(writer)?;
601                 self.channel_parameters.write(writer)?;
602                 self.channel_value_satoshis.write(writer)?;
603                 self.key_derivation_params.0.write(writer)?;
604                 self.key_derivation_params.1.write(writer)?;
605
606                 Ok(())
607         }
608 }
609
610 impl Readable for InMemoryChannelKeys {
611         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
612                 let funding_key = Readable::read(reader)?;
613                 let revocation_base_key = Readable::read(reader)?;
614                 let payment_key = Readable::read(reader)?;
615                 let delayed_payment_base_key = Readable::read(reader)?;
616                 let htlc_base_key = Readable::read(reader)?;
617                 let commitment_seed = Readable::read(reader)?;
618                 let counterparty_channel_data = Readable::read(reader)?;
619                 let channel_value_satoshis = Readable::read(reader)?;
620                 let secp_ctx = Secp256k1::signing_only();
621                 let holder_channel_pubkeys =
622                         InMemoryChannelKeys::make_holder_keys(&secp_ctx, &funding_key, &revocation_base_key,
623                                                              &payment_key, &delayed_payment_base_key,
624                                                              &htlc_base_key);
625                 let params_1 = Readable::read(reader)?;
626                 let params_2 = Readable::read(reader)?;
627
628                 Ok(InMemoryChannelKeys {
629                         funding_key,
630                         revocation_base_key,
631                         payment_key,
632                         delayed_payment_base_key,
633                         htlc_base_key,
634                         commitment_seed,
635                         channel_value_satoshis,
636                         holder_channel_pubkeys,
637                         channel_parameters: counterparty_channel_data,
638                         key_derivation_params: (params_1, params_2),
639                 })
640         }
641 }
642
643 /// Simple KeysInterface implementor that takes a 32-byte seed for use as a BIP 32 extended key
644 /// and derives keys from that.
645 ///
646 /// Your node_id is seed/0'
647 /// ChannelMonitor closes may use seed/1'
648 /// Cooperative closes may use seed/2'
649 /// The two close keys may be needed to claim on-chain funds!
650 pub struct KeysManager {
651         secp_ctx: Secp256k1<secp256k1::SignOnly>,
652         node_secret: SecretKey,
653         destination_script: Script,
654         shutdown_pubkey: PublicKey,
655         channel_master_key: ExtendedPrivKey,
656         channel_child_index: AtomicUsize,
657         rand_bytes_master_key: ExtendedPrivKey,
658         rand_bytes_child_index: AtomicUsize,
659
660         seed: [u8; 32],
661         starting_time_secs: u64,
662         starting_time_nanos: u32,
663 }
664
665 impl KeysManager {
666         /// Constructs a KeysManager from a 32-byte seed. If the seed is in some way biased (eg your
667         /// CSRNG is busted) this may panic (but more importantly, you will possibly lose funds).
668         /// starting_time isn't strictly required to actually be a time, but it must absolutely,
669         /// without a doubt, be unique to this instance. ie if you start multiple times with the same
670         /// seed, starting_time must be unique to each run. Thus, the easiest way to achieve this is to
671         /// simply use the current time (with very high precision).
672         ///
673         /// The seed MUST be backed up safely prior to use so that the keys can be re-created, however,
674         /// obviously, starting_time should be unique every time you reload the library - it is only
675         /// used to generate new ephemeral key data (which will be stored by the individual channel if
676         /// necessary).
677         ///
678         /// Note that the seed is required to recover certain on-chain funds independent of
679         /// ChannelMonitor data, though a current copy of ChannelMonitor data is also required for any
680         /// channel, and some on-chain during-closing funds.
681         ///
682         /// Note that until the 0.1 release there is no guarantee of backward compatibility between
683         /// versions. Once the library is more fully supported, the docs will be updated to include a
684         /// detailed description of the guarantee.
685         pub fn new(seed: &[u8; 32], network: Network, starting_time_secs: u64, starting_time_nanos: u32) -> Self {
686                 let secp_ctx = Secp256k1::signing_only();
687                 match ExtendedPrivKey::new_master(network.clone(), seed) {
688                         Ok(master_key) => {
689                                 let node_secret = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(0).unwrap()).expect("Your RNG is busted").private_key.key;
690                                 let destination_script = match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(1).unwrap()) {
691                                         Ok(destination_key) => {
692                                                 let wpubkey_hash = WPubkeyHash::hash(&ExtendedPubKey::from_private(&secp_ctx, &destination_key).public_key.to_bytes());
693                                                 Builder::new().push_opcode(opcodes::all::OP_PUSHBYTES_0)
694                                                               .push_slice(&wpubkey_hash.into_inner())
695                                                               .into_script()
696                                         },
697                                         Err(_) => panic!("Your RNG is busted"),
698                                 };
699                                 let shutdown_pubkey = match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(2).unwrap()) {
700                                         Ok(shutdown_key) => ExtendedPubKey::from_private(&secp_ctx, &shutdown_key).public_key.key,
701                                         Err(_) => panic!("Your RNG is busted"),
702                                 };
703                                 let channel_master_key = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(3).unwrap()).expect("Your RNG is busted");
704                                 let rand_bytes_master_key = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(4).unwrap()).expect("Your RNG is busted");
705
706                                 KeysManager {
707                                         secp_ctx,
708                                         node_secret,
709                                         destination_script,
710                                         shutdown_pubkey,
711                                         channel_master_key,
712                                         channel_child_index: AtomicUsize::new(0),
713                                         rand_bytes_master_key,
714                                         rand_bytes_child_index: AtomicUsize::new(0),
715
716                                         seed: *seed,
717                                         starting_time_secs,
718                                         starting_time_nanos,
719                                 }
720                         },
721                         Err(_) => panic!("Your rng is busted"),
722                 }
723         }
724         fn derive_unique_start(&self) -> Sha256State {
725                 let mut unique_start = Sha256::engine();
726                 unique_start.input(&byte_utils::be64_to_array(self.starting_time_secs));
727                 unique_start.input(&byte_utils::be32_to_array(self.starting_time_nanos));
728                 unique_start.input(&self.seed);
729                 unique_start
730         }
731         /// Derive an old set of ChannelKeys for per-channel secrets based on a key derivation
732         /// parameters.
733         /// Key derivation parameters are accessible through a per-channel secrets
734         /// ChannelKeys::key_derivation_params and is provided inside DynamicOuputP2WSH in case of
735         /// onchain output detection for which a corresponding delayed_payment_key must be derived.
736         pub fn derive_channel_keys(&self, channel_value_satoshis: u64, params_1: u64, params_2: u64) -> InMemoryChannelKeys {
737                 let chan_id = ((params_1 & 0xFFFF_FFFF_0000_0000) >> 32) as u32;
738                 let mut unique_start = Sha256::engine();
739                 unique_start.input(&byte_utils::be64_to_array(params_2));
740                 unique_start.input(&byte_utils::be32_to_array(params_1 as u32));
741                 unique_start.input(&self.seed);
742
743                 // We only seriously intend to rely on the channel_master_key for true secure
744                 // entropy, everything else just ensures uniqueness. We rely on the unique_start (ie
745                 // starting_time provided in the constructor) to be unique.
746                 let child_privkey = self.channel_master_key.ckd_priv(&self.secp_ctx, ChildNumber::from_hardened_idx(chan_id).expect("key space exhausted")).expect("Your RNG is busted");
747                 unique_start.input(&child_privkey.private_key.key[..]);
748
749                 let seed = Sha256::from_engine(unique_start).into_inner();
750
751                 let commitment_seed = {
752                         let mut sha = Sha256::engine();
753                         sha.input(&seed);
754                         sha.input(&b"commitment seed"[..]);
755                         Sha256::from_engine(sha).into_inner()
756                 };
757                 macro_rules! key_step {
758                         ($info: expr, $prev_key: expr) => {{
759                                 let mut sha = Sha256::engine();
760                                 sha.input(&seed);
761                                 sha.input(&$prev_key[..]);
762                                 sha.input(&$info[..]);
763                                 SecretKey::from_slice(&Sha256::from_engine(sha).into_inner()).expect("SHA-256 is busted")
764                         }}
765                 }
766                 let funding_key = key_step!(b"funding key", commitment_seed);
767                 let revocation_base_key = key_step!(b"revocation base key", funding_key);
768                 let payment_key = key_step!(b"payment key", revocation_base_key);
769                 let delayed_payment_base_key = key_step!(b"delayed payment base key", payment_key);
770                 let htlc_base_key = key_step!(b"HTLC base key", delayed_payment_base_key);
771
772                 InMemoryChannelKeys::new(
773                         &self.secp_ctx,
774                         funding_key,
775                         revocation_base_key,
776                         payment_key,
777                         delayed_payment_base_key,
778                         htlc_base_key,
779                         commitment_seed,
780                         channel_value_satoshis,
781                         (params_1, params_2),
782                 )
783         }
784 }
785
786 impl KeysInterface for KeysManager {
787         type ChanKeySigner = InMemoryChannelKeys;
788
789         fn get_node_secret(&self) -> SecretKey {
790                 self.node_secret.clone()
791         }
792
793         fn get_destination_script(&self) -> Script {
794                 self.destination_script.clone()
795         }
796
797         fn get_shutdown_pubkey(&self) -> PublicKey {
798                 self.shutdown_pubkey.clone()
799         }
800
801         fn get_channel_keys(&self, _inbound: bool, channel_value_satoshis: u64) -> Self::ChanKeySigner {
802                 let child_ix = self.channel_child_index.fetch_add(1, Ordering::AcqRel);
803                 let ix_and_nanos: u64 = (child_ix as u64) << 32 | (self.starting_time_nanos as u64);
804                 self.derive_channel_keys(channel_value_satoshis, ix_and_nanos, self.starting_time_secs)
805         }
806
807         fn get_secure_random_bytes(&self) -> [u8; 32] {
808                 let mut sha = self.derive_unique_start();
809
810                 let child_ix = self.rand_bytes_child_index.fetch_add(1, Ordering::AcqRel);
811                 let child_privkey = self.rand_bytes_master_key.ckd_priv(&self.secp_ctx, ChildNumber::from_hardened_idx(child_ix as u32).expect("key space exhausted")).expect("Your RNG is busted");
812                 sha.input(&child_privkey.private_key.key[..]);
813
814                 sha.input(b"Unique Secure Random Bytes Salt");
815                 Sha256::from_engine(sha).into_inner()
816         }
817
818         fn read_chan_signer(&self, reader: &[u8]) -> Result<Self::ChanKeySigner, DecodeError> {
819                 InMemoryChannelKeys::read(&mut std::io::Cursor::new(reader))
820         }
821 }