construct funding redeem script in signer
[rust-lightning] / lightning / src / ln / chan_utils.rs
1 //! Various utilities for building scripts and deriving keys related to channels. These are
2 //! largely of interest for those implementing chain::keysinterface::ChannelKeys message signing
3 //! by hand.
4
5 use bitcoin::blockdata::script::{Script,Builder};
6 use bitcoin::blockdata::opcodes;
7 use bitcoin::blockdata::transaction::{TxIn,TxOut,OutPoint,Transaction, SigHashType};
8 use bitcoin::consensus::encode::{self, Decodable, Encodable};
9 use bitcoin::util::bip143;
10
11 use bitcoin_hashes::{Hash, HashEngine};
12 use bitcoin_hashes::sha256::Hash as Sha256;
13 use bitcoin_hashes::ripemd160::Hash as Ripemd160;
14 use bitcoin_hashes::hash160::Hash as Hash160;
15 use bitcoin_hashes::sha256d::Hash as Sha256dHash;
16
17 use ln::channelmanager::{PaymentHash, PaymentPreimage};
18 use ln::msgs::DecodeError;
19 use util::ser::{Readable, Writeable, Writer, WriterWriteAdaptor};
20
21 use secp256k1::key::{SecretKey,PublicKey};
22 use secp256k1::{Secp256k1, Signature};
23 use secp256k1;
24
25 pub(super) const HTLC_SUCCESS_TX_WEIGHT: u64 = 703;
26 pub(super) const HTLC_TIMEOUT_TX_WEIGHT: u64 = 663;
27
28 // Various functions for key derivation and transaction creation for use within channels. Primarily
29 // used in Channel and ChannelMonitor.
30
31 pub(super) fn build_commitment_secret(commitment_seed: &[u8; 32], idx: u64) -> [u8; 32] {
32         let mut res: [u8; 32] = commitment_seed.clone();
33         for i in 0..48 {
34                 let bitpos = 47 - i;
35                 if idx & (1 << bitpos) == (1 << bitpos) {
36                         res[bitpos / 8] ^= 1 << (bitpos & 7);
37                         res = Sha256::hash(&res).into_inner();
38                 }
39         }
40         res
41 }
42
43 /// Derives a per-commitment-transaction private key (eg an htlc key or payment key) from the base
44 /// private key for that type of key and the per_commitment_point (available in TxCreationKeys)
45 pub fn derive_private_key<T: secp256k1::Signing>(secp_ctx: &Secp256k1<T>, per_commitment_point: &PublicKey, base_secret: &SecretKey) -> Result<SecretKey, secp256k1::Error> {
46         let mut sha = Sha256::engine();
47         sha.input(&per_commitment_point.serialize());
48         sha.input(&PublicKey::from_secret_key(&secp_ctx, &base_secret).serialize());
49         let res = Sha256::from_engine(sha).into_inner();
50
51         let mut key = base_secret.clone();
52         key.add_assign(&res)?;
53         Ok(key)
54 }
55
56 pub(super) fn derive_public_key<T: secp256k1::Signing>(secp_ctx: &Secp256k1<T>, per_commitment_point: &PublicKey, base_point: &PublicKey) -> Result<PublicKey, secp256k1::Error> {
57         let mut sha = Sha256::engine();
58         sha.input(&per_commitment_point.serialize());
59         sha.input(&base_point.serialize());
60         let res = Sha256::from_engine(sha).into_inner();
61
62         let hashkey = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&res)?);
63         base_point.combine(&hashkey)
64 }
65
66 /// Derives a revocation key from its constituent parts.
67 /// Note that this is infallible iff we trust that at least one of the two input keys are randomly
68 /// generated (ie our own).
69 pub(super) fn derive_private_revocation_key<T: secp256k1::Signing>(secp_ctx: &Secp256k1<T>, per_commitment_secret: &SecretKey, revocation_base_secret: &SecretKey) -> Result<SecretKey, secp256k1::Error> {
70         let revocation_base_point = PublicKey::from_secret_key(&secp_ctx, &revocation_base_secret);
71         let per_commitment_point = PublicKey::from_secret_key(&secp_ctx, &per_commitment_secret);
72
73         let rev_append_commit_hash_key = {
74                 let mut sha = Sha256::engine();
75                 sha.input(&revocation_base_point.serialize());
76                 sha.input(&per_commitment_point.serialize());
77
78                 Sha256::from_engine(sha).into_inner()
79         };
80         let commit_append_rev_hash_key = {
81                 let mut sha = Sha256::engine();
82                 sha.input(&per_commitment_point.serialize());
83                 sha.input(&revocation_base_point.serialize());
84
85                 Sha256::from_engine(sha).into_inner()
86         };
87
88         let mut part_a = revocation_base_secret.clone();
89         part_a.mul_assign(&rev_append_commit_hash_key)?;
90         let mut part_b = per_commitment_secret.clone();
91         part_b.mul_assign(&commit_append_rev_hash_key)?;
92         part_a.add_assign(&part_b[..])?;
93         Ok(part_a)
94 }
95
96 pub(super) fn derive_public_revocation_key<T: secp256k1::Verification>(secp_ctx: &Secp256k1<T>, per_commitment_point: &PublicKey, revocation_base_point: &PublicKey) -> Result<PublicKey, secp256k1::Error> {
97         let rev_append_commit_hash_key = {
98                 let mut sha = Sha256::engine();
99                 sha.input(&revocation_base_point.serialize());
100                 sha.input(&per_commitment_point.serialize());
101
102                 Sha256::from_engine(sha).into_inner()
103         };
104         let commit_append_rev_hash_key = {
105                 let mut sha = Sha256::engine();
106                 sha.input(&per_commitment_point.serialize());
107                 sha.input(&revocation_base_point.serialize());
108
109                 Sha256::from_engine(sha).into_inner()
110         };
111
112         let mut part_a = revocation_base_point.clone();
113         part_a.mul_assign(&secp_ctx, &rev_append_commit_hash_key)?;
114         let mut part_b = per_commitment_point.clone();
115         part_b.mul_assign(&secp_ctx, &commit_append_rev_hash_key)?;
116         part_a.combine(&part_b)
117 }
118
119 /// The set of public keys which are used in the creation of one commitment transaction.
120 /// These are derived from the channel base keys and per-commitment data.
121 pub struct TxCreationKeys {
122         /// The per-commitment public key which was used to derive the other keys.
123         pub per_commitment_point: PublicKey,
124         /// The revocation key which is used to allow the owner of the commitment transaction to
125         /// provide their counterparty the ability to punish them if they broadcast an old state.
126         pub revocation_key: PublicKey,
127         /// A's HTLC Key
128         pub a_htlc_key: PublicKey,
129         /// B's HTLC Key
130         pub b_htlc_key: PublicKey,
131         /// A's Payment Key (which isn't allowed to be spent from for some delay)
132         pub a_delayed_payment_key: PublicKey,
133         /// B's Payment Key
134         pub b_payment_key: PublicKey,
135 }
136
137 impl TxCreationKeys {
138         pub(super) fn new<T: secp256k1::Signing + secp256k1::Verification>(secp_ctx: &Secp256k1<T>, per_commitment_point: &PublicKey, a_delayed_payment_base: &PublicKey, a_htlc_base: &PublicKey, b_revocation_base: &PublicKey, b_payment_base: &PublicKey, b_htlc_base: &PublicKey) -> Result<TxCreationKeys, secp256k1::Error> {
139                 Ok(TxCreationKeys {
140                         per_commitment_point: per_commitment_point.clone(),
141                         revocation_key: derive_public_revocation_key(&secp_ctx, &per_commitment_point, &b_revocation_base)?,
142                         a_htlc_key: derive_public_key(&secp_ctx, &per_commitment_point, &a_htlc_base)?,
143                         b_htlc_key: derive_public_key(&secp_ctx, &per_commitment_point, &b_htlc_base)?,
144                         a_delayed_payment_key: derive_public_key(&secp_ctx, &per_commitment_point, &a_delayed_payment_base)?,
145                         b_payment_key: derive_public_key(&secp_ctx, &per_commitment_point, &b_payment_base)?,
146                 })
147         }
148 }
149
150 /// Gets the "to_local" output redeemscript, ie the script which is time-locked or spendable by
151 /// the revocation key
152 pub(super) fn get_revokeable_redeemscript(revocation_key: &PublicKey, to_self_delay: u16, delayed_payment_key: &PublicKey) -> Script {
153         Builder::new().push_opcode(opcodes::all::OP_IF)
154                       .push_slice(&revocation_key.serialize())
155                       .push_opcode(opcodes::all::OP_ELSE)
156                       .push_int(to_self_delay as i64)
157                       .push_opcode(opcodes::all::OP_CSV)
158                       .push_opcode(opcodes::all::OP_DROP)
159                       .push_slice(&delayed_payment_key.serialize())
160                       .push_opcode(opcodes::all::OP_ENDIF)
161                       .push_opcode(opcodes::all::OP_CHECKSIG)
162                       .into_script()
163 }
164
165 #[derive(Clone, PartialEq)]
166 /// Information about an HTLC as it appears in a commitment transaction
167 pub struct HTLCOutputInCommitment {
168         /// Whether the HTLC was "offered" (ie outbound in relation to this commitment transaction).
169         /// Note that this is not the same as whether it is ountbound *from us*. To determine that you
170         /// need to compare this value to whether the commitment transaction in question is that of
171         /// the remote party or our own.
172         pub offered: bool,
173         /// The value, in msat, of the HTLC. The value as it appears in the commitment transaction is
174         /// this divided by 1000.
175         pub amount_msat: u64,
176         /// The CLTV lock-time at which this HTLC expires.
177         pub cltv_expiry: u32,
178         /// The hash of the preimage which unlocks this HTLC.
179         pub payment_hash: PaymentHash,
180         /// The position within the commitment transactions' outputs. This may be None if the value is
181         /// below the dust limit (in which case no output appears in the commitment transaction and the
182         /// value is spent to additional transaction fees).
183         pub transaction_output_index: Option<u32>,
184 }
185
186 #[inline]
187 pub(super) fn get_htlc_redeemscript_with_explicit_keys(htlc: &HTLCOutputInCommitment, a_htlc_key: &PublicKey, b_htlc_key: &PublicKey, revocation_key: &PublicKey) -> Script {
188         let payment_hash160 = Ripemd160::hash(&htlc.payment_hash.0[..]).into_inner();
189         if htlc.offered {
190                 Builder::new().push_opcode(opcodes::all::OP_DUP)
191                               .push_opcode(opcodes::all::OP_HASH160)
192                               .push_slice(&Hash160::hash(&revocation_key.serialize())[..])
193                               .push_opcode(opcodes::all::OP_EQUAL)
194                               .push_opcode(opcodes::all::OP_IF)
195                               .push_opcode(opcodes::all::OP_CHECKSIG)
196                               .push_opcode(opcodes::all::OP_ELSE)
197                               .push_slice(&b_htlc_key.serialize()[..])
198                               .push_opcode(opcodes::all::OP_SWAP)
199                               .push_opcode(opcodes::all::OP_SIZE)
200                               .push_int(32)
201                               .push_opcode(opcodes::all::OP_EQUAL)
202                               .push_opcode(opcodes::all::OP_NOTIF)
203                               .push_opcode(opcodes::all::OP_DROP)
204                               .push_int(2)
205                               .push_opcode(opcodes::all::OP_SWAP)
206                               .push_slice(&a_htlc_key.serialize()[..])
207                               .push_int(2)
208                               .push_opcode(opcodes::all::OP_CHECKMULTISIG)
209                               .push_opcode(opcodes::all::OP_ELSE)
210                               .push_opcode(opcodes::all::OP_HASH160)
211                               .push_slice(&payment_hash160)
212                               .push_opcode(opcodes::all::OP_EQUALVERIFY)
213                               .push_opcode(opcodes::all::OP_CHECKSIG)
214                               .push_opcode(opcodes::all::OP_ENDIF)
215                               .push_opcode(opcodes::all::OP_ENDIF)
216                               .into_script()
217         } else {
218                 Builder::new().push_opcode(opcodes::all::OP_DUP)
219                               .push_opcode(opcodes::all::OP_HASH160)
220                               .push_slice(&Hash160::hash(&revocation_key.serialize())[..])
221                               .push_opcode(opcodes::all::OP_EQUAL)
222                               .push_opcode(opcodes::all::OP_IF)
223                               .push_opcode(opcodes::all::OP_CHECKSIG)
224                               .push_opcode(opcodes::all::OP_ELSE)
225                               .push_slice(&b_htlc_key.serialize()[..])
226                               .push_opcode(opcodes::all::OP_SWAP)
227                               .push_opcode(opcodes::all::OP_SIZE)
228                               .push_int(32)
229                               .push_opcode(opcodes::all::OP_EQUAL)
230                               .push_opcode(opcodes::all::OP_IF)
231                               .push_opcode(opcodes::all::OP_HASH160)
232                               .push_slice(&payment_hash160)
233                               .push_opcode(opcodes::all::OP_EQUALVERIFY)
234                               .push_int(2)
235                               .push_opcode(opcodes::all::OP_SWAP)
236                               .push_slice(&a_htlc_key.serialize()[..])
237                               .push_int(2)
238                               .push_opcode(opcodes::all::OP_CHECKMULTISIG)
239                               .push_opcode(opcodes::all::OP_ELSE)
240                               .push_opcode(opcodes::all::OP_DROP)
241                               .push_int(htlc.cltv_expiry as i64)
242                               .push_opcode(opcodes::all::OP_CLTV)
243                               .push_opcode(opcodes::all::OP_DROP)
244                               .push_opcode(opcodes::all::OP_CHECKSIG)
245                               .push_opcode(opcodes::all::OP_ENDIF)
246                               .push_opcode(opcodes::all::OP_ENDIF)
247                               .into_script()
248         }
249 }
250
251 /// note here that 'a_revocation_key' is generated using b_revocation_basepoint and a's
252 /// commitment secret. 'htlc' does *not* need to have its previous_output_index filled.
253 #[inline]
254 pub fn get_htlc_redeemscript(htlc: &HTLCOutputInCommitment, keys: &TxCreationKeys) -> Script {
255         get_htlc_redeemscript_with_explicit_keys(htlc, &keys.a_htlc_key, &keys.b_htlc_key, &keys.revocation_key)
256 }
257
258 /// Gets the redeemscript for a funding output from the two funding public keys.
259 /// Note that the order of funding public keys does not matter.
260 pub fn make_funding_redeemscript(a: &PublicKey, b: &PublicKey) -> Script {
261         let our_funding_key = a.serialize();
262         let their_funding_key = b.serialize();
263
264         let builder = Builder::new().push_opcode(opcodes::all::OP_PUSHNUM_2);
265         if our_funding_key[..] < their_funding_key[..] {
266                 builder.push_slice(&our_funding_key)
267                         .push_slice(&their_funding_key)
268         } else {
269                 builder.push_slice(&their_funding_key)
270                         .push_slice(&our_funding_key)
271         }.push_opcode(opcodes::all::OP_PUSHNUM_2).push_opcode(opcodes::all::OP_CHECKMULTISIG).into_script()
272 }
273
274 /// panics if htlc.transaction_output_index.is_none()!
275 pub fn build_htlc_transaction(prev_hash: &Sha256dHash, feerate_per_kw: u64, to_self_delay: u16, htlc: &HTLCOutputInCommitment, a_delayed_payment_key: &PublicKey, revocation_key: &PublicKey) -> Transaction {
276         let mut txins: Vec<TxIn> = Vec::new();
277         txins.push(TxIn {
278                 previous_output: OutPoint {
279                         txid: prev_hash.clone(),
280                         vout: htlc.transaction_output_index.expect("Can't build an HTLC transaction for a dust output"),
281                 },
282                 script_sig: Script::new(),
283                 sequence: 0,
284                 witness: Vec::new(),
285         });
286
287         let total_fee = if htlc.offered {
288                         feerate_per_kw * HTLC_TIMEOUT_TX_WEIGHT / 1000
289                 } else {
290                         feerate_per_kw * HTLC_SUCCESS_TX_WEIGHT / 1000
291                 };
292
293         let mut txouts: Vec<TxOut> = Vec::new();
294         txouts.push(TxOut {
295                 script_pubkey: get_revokeable_redeemscript(revocation_key, to_self_delay, a_delayed_payment_key).to_v0_p2wsh(),
296                 value: htlc.amount_msat / 1000 - total_fee //TODO: BOLT 3 does not specify if we should add amount_msat before dividing or if we should divide by 1000 before subtracting (as we do here)
297         });
298
299         Transaction {
300                 version: 2,
301                 lock_time: if htlc.offered { htlc.cltv_expiry } else { 0 },
302                 input: txins,
303                 output: txouts,
304         }
305 }
306
307 /// Signs a transaction created by build_htlc_transaction. If the transaction is an
308 /// HTLC-Success transaction (ie htlc.offered is false), preimage must be set!
309 pub(crate) fn sign_htlc_transaction<T: secp256k1::Signing>(tx: &mut Transaction, their_sig: &Signature, preimage: &Option<PaymentPreimage>, htlc: &HTLCOutputInCommitment, a_htlc_key: &PublicKey, b_htlc_key: &PublicKey, revocation_key: &PublicKey, per_commitment_point: &PublicKey, htlc_base_key: &SecretKey, secp_ctx: &Secp256k1<T>) -> Result<(Signature, Script), ()> {
310         if tx.input.len() != 1 { return Err(()); }
311         if tx.input[0].witness.len() != 0 { return Err(()); }
312
313         let htlc_redeemscript = get_htlc_redeemscript_with_explicit_keys(&htlc, a_htlc_key, b_htlc_key, revocation_key);
314
315         let our_htlc_key = derive_private_key(secp_ctx, per_commitment_point, htlc_base_key).map_err(|_| ())?;
316         let sighash = hash_to_message!(&bip143::SighashComponents::new(&tx).sighash_all(&tx.input[0], &htlc_redeemscript, htlc.amount_msat / 1000)[..]);
317         let local_tx = PublicKey::from_secret_key(&secp_ctx, &our_htlc_key) == *a_htlc_key;
318         let our_sig = secp_ctx.sign(&sighash, &our_htlc_key);
319
320         tx.input[0].witness.push(Vec::new()); // First is the multisig dummy
321
322         if local_tx { // b, then a
323                 tx.input[0].witness.push(their_sig.serialize_der().to_vec());
324                 tx.input[0].witness.push(our_sig.serialize_der().to_vec());
325         } else {
326                 tx.input[0].witness.push(our_sig.serialize_der().to_vec());
327                 tx.input[0].witness.push(their_sig.serialize_der().to_vec());
328         }
329         tx.input[0].witness[1].push(SigHashType::All as u8);
330         tx.input[0].witness[2].push(SigHashType::All as u8);
331
332         if htlc.offered {
333                 tx.input[0].witness.push(Vec::new());
334                 assert!(preimage.is_none());
335         } else {
336                 tx.input[0].witness.push(preimage.unwrap().0.to_vec());
337         }
338
339         tx.input[0].witness.push(htlc_redeemscript.as_bytes().to_vec());
340
341         Ok((our_sig, htlc_redeemscript))
342 }
343
344 #[derive(Clone)]
345 /// We use this to track local commitment transactions and put off signing them until we are ready
346 /// to broadcast. Eventually this will require a signer which is possibly external, but for now we
347 /// just pass in the SecretKeys required.
348 pub(crate) struct LocalCommitmentTransaction {
349         tx: Transaction
350 }
351 impl LocalCommitmentTransaction {
352         #[cfg(test)]
353         pub fn dummy() -> Self {
354                 Self { tx: Transaction {
355                         version: 2,
356                         input: Vec::new(),
357                         output: Vec::new(),
358                         lock_time: 0,
359                 } }
360         }
361
362         pub fn new_missing_local_sig(mut tx: Transaction, their_sig: &Signature, our_funding_key: &PublicKey, their_funding_key: &PublicKey) -> LocalCommitmentTransaction {
363                 if tx.input.len() != 1 { panic!("Tried to store a commitment transaction that had input count != 1!"); }
364                 if tx.input[0].witness.len() != 0 { panic!("Tried to store a signed commitment transaction?"); }
365
366                 tx.input[0].witness.push(Vec::new()); // First is the multisig dummy
367
368                 if our_funding_key.serialize()[..] < their_funding_key.serialize()[..] {
369                         tx.input[0].witness.push(Vec::new());
370                         tx.input[0].witness.push(their_sig.serialize_der().to_vec());
371                         tx.input[0].witness[2].push(SigHashType::All as u8);
372                 } else {
373                         tx.input[0].witness.push(their_sig.serialize_der().to_vec());
374                         tx.input[0].witness[1].push(SigHashType::All as u8);
375                         tx.input[0].witness.push(Vec::new());
376                 }
377
378                 Self { tx }
379         }
380
381         pub fn txid(&self) -> Sha256dHash {
382                 self.tx.txid()
383         }
384
385         pub fn has_local_sig(&self) -> bool {
386                 if self.tx.input.len() != 1 { panic!("Commitment transactions must have input count == 1!"); }
387                 if self.tx.input[0].witness.len() == 4 {
388                         assert!(!self.tx.input[0].witness[1].is_empty());
389                         assert!(!self.tx.input[0].witness[2].is_empty());
390                         true
391                 } else {
392                         assert_eq!(self.tx.input[0].witness.len(), 3);
393                         assert!(self.tx.input[0].witness[0].is_empty());
394                         assert!(self.tx.input[0].witness[1].is_empty() || self.tx.input[0].witness[2].is_empty());
395                         false
396                 }
397         }
398
399         pub fn add_local_sig<T: secp256k1::Signing>(&mut self, funding_key: &SecretKey, funding_redeemscript: &Script, channel_value_satoshis: u64, secp_ctx: &Secp256k1<T>) {
400                 if self.has_local_sig() { return; }
401                 let sighash = hash_to_message!(&bip143::SighashComponents::new(&self.tx)
402                         .sighash_all(&self.tx.input[0], funding_redeemscript, channel_value_satoshis)[..]);
403                 let our_sig = secp_ctx.sign(&sighash, funding_key);
404
405                 if self.tx.input[0].witness[1].is_empty() {
406                         self.tx.input[0].witness[1] = our_sig.serialize_der().to_vec();
407                         self.tx.input[0].witness[1].push(SigHashType::All as u8);
408                 } else {
409                         self.tx.input[0].witness[2] = our_sig.serialize_der().to_vec();
410                         self.tx.input[0].witness[2].push(SigHashType::All as u8);
411                 }
412
413                 self.tx.input[0].witness.push(funding_redeemscript.as_bytes().to_vec());
414         }
415
416         pub fn without_valid_witness(&self) -> &Transaction { &self.tx }
417         pub fn with_valid_witness(&self) -> &Transaction {
418                 assert!(self.has_local_sig());
419                 &self.tx
420         }
421 }
422 impl PartialEq for LocalCommitmentTransaction {
423         // We dont care whether we are signed in equality comparison
424         fn eq(&self, o: &Self) -> bool {
425                 self.txid() == o.txid()
426         }
427 }
428 impl Writeable for LocalCommitmentTransaction {
429         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
430                 if let Err(e) = self.tx.consensus_encode(&mut WriterWriteAdaptor(writer)) {
431                         match e {
432                                 encode::Error::Io(e) => return Err(e),
433                                 _ => panic!("local tx must have been well-formed!"),
434                         }
435                 }
436                 Ok(())
437         }
438 }
439 impl<R: ::std::io::Read> Readable<R> for LocalCommitmentTransaction {
440         fn read(reader: &mut R) -> Result<Self, DecodeError> {
441                 let tx = match Transaction::consensus_decode(reader.by_ref()) {
442                         Ok(tx) => tx,
443                         Err(e) => match e {
444                                 encode::Error::Io(ioe) => return Err(DecodeError::Io(ioe)),
445                                 _ => return Err(DecodeError::InvalidValue),
446                         },
447                 };
448
449                 if tx.input.len() != 1 {
450                         // Ensure tx didn't hit the 0-input ambiguity case.
451                         return Err(DecodeError::InvalidValue);
452                 }
453                 Ok(Self { tx })
454         }
455 }