Merge pull request #420 from TheBlueMatt/2019-12-chan-ext-signer
[rust-lightning] / lightning / src / ln / chan_utils.rs
1 //! Various utilities for building scripts and deriving keys related to channels. These are
2 //! largely of interest for those implementing chain::keysinterface::ChannelKeys message signing
3 //! by hand.
4
5 use bitcoin::blockdata::script::{Script,Builder};
6 use bitcoin::blockdata::opcodes;
7 use bitcoin::blockdata::transaction::{TxIn,TxOut,OutPoint,Transaction, SigHashType};
8 use bitcoin::consensus::encode::{self, Decodable, Encodable};
9 use bitcoin::util::bip143;
10
11 use bitcoin_hashes::{Hash, HashEngine};
12 use bitcoin_hashes::sha256::Hash as Sha256;
13 use bitcoin_hashes::ripemd160::Hash as Ripemd160;
14 use bitcoin_hashes::hash160::Hash as Hash160;
15 use bitcoin_hashes::sha256d::Hash as Sha256dHash;
16
17 use ln::channelmanager::{PaymentHash, PaymentPreimage};
18 use ln::msgs::DecodeError;
19 use util::ser::{Readable, Writeable, Writer, WriterWriteAdaptor};
20
21 use secp256k1::key::{SecretKey,PublicKey};
22 use secp256k1::{Secp256k1, Signature};
23 use secp256k1;
24
25 pub(super) const HTLC_SUCCESS_TX_WEIGHT: u64 = 703;
26 pub(super) const HTLC_TIMEOUT_TX_WEIGHT: u64 = 663;
27
28 // Various functions for key derivation and transaction creation for use within channels. Primarily
29 // used in Channel and ChannelMonitor.
30
31 pub(super) fn build_commitment_secret(commitment_seed: &[u8; 32], idx: u64) -> [u8; 32] {
32         let mut res: [u8; 32] = commitment_seed.clone();
33         for i in 0..48 {
34                 let bitpos = 47 - i;
35                 if idx & (1 << bitpos) == (1 << bitpos) {
36                         res[bitpos / 8] ^= 1 << (bitpos & 7);
37                         res = Sha256::hash(&res).into_inner();
38                 }
39         }
40         res
41 }
42
43 /// Derives a per-commitment-transaction private key (eg an htlc key or payment key) from the base
44 /// private key for that type of key and the per_commitment_point (available in TxCreationKeys)
45 pub fn derive_private_key<T: secp256k1::Signing>(secp_ctx: &Secp256k1<T>, per_commitment_point: &PublicKey, base_secret: &SecretKey) -> Result<SecretKey, secp256k1::Error> {
46         let mut sha = Sha256::engine();
47         sha.input(&per_commitment_point.serialize());
48         sha.input(&PublicKey::from_secret_key(&secp_ctx, &base_secret).serialize());
49         let res = Sha256::from_engine(sha).into_inner();
50
51         let mut key = base_secret.clone();
52         key.add_assign(&res)?;
53         Ok(key)
54 }
55
56 pub(super) fn derive_public_key<T: secp256k1::Signing>(secp_ctx: &Secp256k1<T>, per_commitment_point: &PublicKey, base_point: &PublicKey) -> Result<PublicKey, secp256k1::Error> {
57         let mut sha = Sha256::engine();
58         sha.input(&per_commitment_point.serialize());
59         sha.input(&base_point.serialize());
60         let res = Sha256::from_engine(sha).into_inner();
61
62         let hashkey = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&res)?);
63         base_point.combine(&hashkey)
64 }
65
66 /// Derives a revocation key from its constituent parts.
67 /// Note that this is infallible iff we trust that at least one of the two input keys are randomly
68 /// generated (ie our own).
69 pub(super) fn derive_private_revocation_key<T: secp256k1::Signing>(secp_ctx: &Secp256k1<T>, per_commitment_secret: &SecretKey, revocation_base_secret: &SecretKey) -> Result<SecretKey, secp256k1::Error> {
70         let revocation_base_point = PublicKey::from_secret_key(&secp_ctx, &revocation_base_secret);
71         let per_commitment_point = PublicKey::from_secret_key(&secp_ctx, &per_commitment_secret);
72
73         let rev_append_commit_hash_key = {
74                 let mut sha = Sha256::engine();
75                 sha.input(&revocation_base_point.serialize());
76                 sha.input(&per_commitment_point.serialize());
77
78                 Sha256::from_engine(sha).into_inner()
79         };
80         let commit_append_rev_hash_key = {
81                 let mut sha = Sha256::engine();
82                 sha.input(&per_commitment_point.serialize());
83                 sha.input(&revocation_base_point.serialize());
84
85                 Sha256::from_engine(sha).into_inner()
86         };
87
88         let mut part_a = revocation_base_secret.clone();
89         part_a.mul_assign(&rev_append_commit_hash_key)?;
90         let mut part_b = per_commitment_secret.clone();
91         part_b.mul_assign(&commit_append_rev_hash_key)?;
92         part_a.add_assign(&part_b[..])?;
93         Ok(part_a)
94 }
95
96 pub(super) fn derive_public_revocation_key<T: secp256k1::Verification>(secp_ctx: &Secp256k1<T>, per_commitment_point: &PublicKey, revocation_base_point: &PublicKey) -> Result<PublicKey, secp256k1::Error> {
97         let rev_append_commit_hash_key = {
98                 let mut sha = Sha256::engine();
99                 sha.input(&revocation_base_point.serialize());
100                 sha.input(&per_commitment_point.serialize());
101
102                 Sha256::from_engine(sha).into_inner()
103         };
104         let commit_append_rev_hash_key = {
105                 let mut sha = Sha256::engine();
106                 sha.input(&per_commitment_point.serialize());
107                 sha.input(&revocation_base_point.serialize());
108
109                 Sha256::from_engine(sha).into_inner()
110         };
111
112         let mut part_a = revocation_base_point.clone();
113         part_a.mul_assign(&secp_ctx, &rev_append_commit_hash_key)?;
114         let mut part_b = per_commitment_point.clone();
115         part_b.mul_assign(&secp_ctx, &commit_append_rev_hash_key)?;
116         part_a.combine(&part_b)
117 }
118
119 /// The set of public keys which are used in the creation of one commitment transaction.
120 /// These are derived from the channel base keys and per-commitment data.
121 pub struct TxCreationKeys {
122         /// The per-commitment public key which was used to derive the other keys.
123         pub per_commitment_point: PublicKey,
124         /// The revocation key which is used to allow the owner of the commitment transaction to
125         /// provide their counterparty the ability to punish them if they broadcast an old state.
126         pub revocation_key: PublicKey,
127         /// A's HTLC Key
128         pub a_htlc_key: PublicKey,
129         /// B's HTLC Key
130         pub b_htlc_key: PublicKey,
131         /// A's Payment Key (which isn't allowed to be spent from for some delay)
132         pub a_delayed_payment_key: PublicKey,
133         /// B's Payment Key
134         pub b_payment_key: PublicKey,
135 }
136
137 impl TxCreationKeys {
138         pub(super) fn new<T: secp256k1::Signing + secp256k1::Verification>(secp_ctx: &Secp256k1<T>, per_commitment_point: &PublicKey, a_delayed_payment_base: &PublicKey, a_htlc_base: &PublicKey, b_revocation_base: &PublicKey, b_payment_base: &PublicKey, b_htlc_base: &PublicKey) -> Result<TxCreationKeys, secp256k1::Error> {
139                 Ok(TxCreationKeys {
140                         per_commitment_point: per_commitment_point.clone(),
141                         revocation_key: derive_public_revocation_key(&secp_ctx, &per_commitment_point, &b_revocation_base)?,
142                         a_htlc_key: derive_public_key(&secp_ctx, &per_commitment_point, &a_htlc_base)?,
143                         b_htlc_key: derive_public_key(&secp_ctx, &per_commitment_point, &b_htlc_base)?,
144                         a_delayed_payment_key: derive_public_key(&secp_ctx, &per_commitment_point, &a_delayed_payment_base)?,
145                         b_payment_key: derive_public_key(&secp_ctx, &per_commitment_point, &b_payment_base)?,
146                 })
147         }
148 }
149
150 /// Gets the "to_local" output redeemscript, ie the script which is time-locked or spendable by
151 /// the revocation key
152 pub(super) fn get_revokeable_redeemscript(revocation_key: &PublicKey, to_self_delay: u16, delayed_payment_key: &PublicKey) -> Script {
153         Builder::new().push_opcode(opcodes::all::OP_IF)
154                       .push_slice(&revocation_key.serialize())
155                       .push_opcode(opcodes::all::OP_ELSE)
156                       .push_int(to_self_delay as i64)
157                       .push_opcode(opcodes::all::OP_CSV)
158                       .push_opcode(opcodes::all::OP_DROP)
159                       .push_slice(&delayed_payment_key.serialize())
160                       .push_opcode(opcodes::all::OP_ENDIF)
161                       .push_opcode(opcodes::all::OP_CHECKSIG)
162                       .into_script()
163 }
164
165 #[derive(Clone, PartialEq)]
166 /// Information about an HTLC as it appears in a commitment transaction
167 pub struct HTLCOutputInCommitment {
168         /// Whether the HTLC was "offered" (ie outbound in relation to this commitment transaction).
169         /// Note that this is not the same as whether it is ountbound *from us*. To determine that you
170         /// need to compare this value to whether the commitment transaction in question is that of
171         /// the remote party or our own.
172         pub offered: bool,
173         /// The value, in msat, of the HTLC. The value as it appears in the commitment transaction is
174         /// this divided by 1000.
175         pub amount_msat: u64,
176         /// The CLTV lock-time at which this HTLC expires.
177         pub cltv_expiry: u32,
178         /// The hash of the preimage which unlocks this HTLC.
179         pub payment_hash: PaymentHash,
180         /// The position within the commitment transactions' outputs. This may be None if the value is
181         /// below the dust limit (in which case no output appears in the commitment transaction and the
182         /// value is spent to additional transaction fees).
183         pub transaction_output_index: Option<u32>,
184 }
185
186 #[inline]
187 pub(super) fn get_htlc_redeemscript_with_explicit_keys(htlc: &HTLCOutputInCommitment, a_htlc_key: &PublicKey, b_htlc_key: &PublicKey, revocation_key: &PublicKey) -> Script {
188         let payment_hash160 = Ripemd160::hash(&htlc.payment_hash.0[..]).into_inner();
189         if htlc.offered {
190                 Builder::new().push_opcode(opcodes::all::OP_DUP)
191                               .push_opcode(opcodes::all::OP_HASH160)
192                               .push_slice(&Hash160::hash(&revocation_key.serialize())[..])
193                               .push_opcode(opcodes::all::OP_EQUAL)
194                               .push_opcode(opcodes::all::OP_IF)
195                               .push_opcode(opcodes::all::OP_CHECKSIG)
196                               .push_opcode(opcodes::all::OP_ELSE)
197                               .push_slice(&b_htlc_key.serialize()[..])
198                               .push_opcode(opcodes::all::OP_SWAP)
199                               .push_opcode(opcodes::all::OP_SIZE)
200                               .push_int(32)
201                               .push_opcode(opcodes::all::OP_EQUAL)
202                               .push_opcode(opcodes::all::OP_NOTIF)
203                               .push_opcode(opcodes::all::OP_DROP)
204                               .push_int(2)
205                               .push_opcode(opcodes::all::OP_SWAP)
206                               .push_slice(&a_htlc_key.serialize()[..])
207                               .push_int(2)
208                               .push_opcode(opcodes::all::OP_CHECKMULTISIG)
209                               .push_opcode(opcodes::all::OP_ELSE)
210                               .push_opcode(opcodes::all::OP_HASH160)
211                               .push_slice(&payment_hash160)
212                               .push_opcode(opcodes::all::OP_EQUALVERIFY)
213                               .push_opcode(opcodes::all::OP_CHECKSIG)
214                               .push_opcode(opcodes::all::OP_ENDIF)
215                               .push_opcode(opcodes::all::OP_ENDIF)
216                               .into_script()
217         } else {
218                 Builder::new().push_opcode(opcodes::all::OP_DUP)
219                               .push_opcode(opcodes::all::OP_HASH160)
220                               .push_slice(&Hash160::hash(&revocation_key.serialize())[..])
221                               .push_opcode(opcodes::all::OP_EQUAL)
222                               .push_opcode(opcodes::all::OP_IF)
223                               .push_opcode(opcodes::all::OP_CHECKSIG)
224                               .push_opcode(opcodes::all::OP_ELSE)
225                               .push_slice(&b_htlc_key.serialize()[..])
226                               .push_opcode(opcodes::all::OP_SWAP)
227                               .push_opcode(opcodes::all::OP_SIZE)
228                               .push_int(32)
229                               .push_opcode(opcodes::all::OP_EQUAL)
230                               .push_opcode(opcodes::all::OP_IF)
231                               .push_opcode(opcodes::all::OP_HASH160)
232                               .push_slice(&payment_hash160)
233                               .push_opcode(opcodes::all::OP_EQUALVERIFY)
234                               .push_int(2)
235                               .push_opcode(opcodes::all::OP_SWAP)
236                               .push_slice(&a_htlc_key.serialize()[..])
237                               .push_int(2)
238                               .push_opcode(opcodes::all::OP_CHECKMULTISIG)
239                               .push_opcode(opcodes::all::OP_ELSE)
240                               .push_opcode(opcodes::all::OP_DROP)
241                               .push_int(htlc.cltv_expiry as i64)
242                               .push_opcode(opcodes::all::OP_CLTV)
243                               .push_opcode(opcodes::all::OP_DROP)
244                               .push_opcode(opcodes::all::OP_CHECKSIG)
245                               .push_opcode(opcodes::all::OP_ENDIF)
246                               .push_opcode(opcodes::all::OP_ENDIF)
247                               .into_script()
248         }
249 }
250
251 /// note here that 'a_revocation_key' is generated using b_revocation_basepoint and a's
252 /// commitment secret. 'htlc' does *not* need to have its previous_output_index filled.
253 #[inline]
254 pub fn get_htlc_redeemscript(htlc: &HTLCOutputInCommitment, keys: &TxCreationKeys) -> Script {
255         get_htlc_redeemscript_with_explicit_keys(htlc, &keys.a_htlc_key, &keys.b_htlc_key, &keys.revocation_key)
256 }
257
258 /// panics if htlc.transaction_output_index.is_none()!
259 pub fn build_htlc_transaction(prev_hash: &Sha256dHash, feerate_per_kw: u64, to_self_delay: u16, htlc: &HTLCOutputInCommitment, a_delayed_payment_key: &PublicKey, revocation_key: &PublicKey) -> Transaction {
260         let mut txins: Vec<TxIn> = Vec::new();
261         txins.push(TxIn {
262                 previous_output: OutPoint {
263                         txid: prev_hash.clone(),
264                         vout: htlc.transaction_output_index.expect("Can't build an HTLC transaction for a dust output"),
265                 },
266                 script_sig: Script::new(),
267                 sequence: 0,
268                 witness: Vec::new(),
269         });
270
271         let total_fee = if htlc.offered {
272                         feerate_per_kw * HTLC_TIMEOUT_TX_WEIGHT / 1000
273                 } else {
274                         feerate_per_kw * HTLC_SUCCESS_TX_WEIGHT / 1000
275                 };
276
277         let mut txouts: Vec<TxOut> = Vec::new();
278         txouts.push(TxOut {
279                 script_pubkey: get_revokeable_redeemscript(revocation_key, to_self_delay, a_delayed_payment_key).to_v0_p2wsh(),
280                 value: htlc.amount_msat / 1000 - total_fee //TODO: BOLT 3 does not specify if we should add amount_msat before dividing or if we should divide by 1000 before subtracting (as we do here)
281         });
282
283         Transaction {
284                 version: 2,
285                 lock_time: if htlc.offered { htlc.cltv_expiry } else { 0 },
286                 input: txins,
287                 output: txouts,
288         }
289 }
290
291 /// Signs a transaction created by build_htlc_transaction. If the transaction is an
292 /// HTLC-Success transaction (ie htlc.offered is false), preimage must be set!
293 pub(crate) fn sign_htlc_transaction<T: secp256k1::Signing>(tx: &mut Transaction, their_sig: &Signature, preimage: &Option<PaymentPreimage>, htlc: &HTLCOutputInCommitment, a_htlc_key: &PublicKey, b_htlc_key: &PublicKey, revocation_key: &PublicKey, per_commitment_point: &PublicKey, htlc_base_key: &SecretKey, secp_ctx: &Secp256k1<T>) -> Result<(Signature, Script), ()> {
294         if tx.input.len() != 1 { return Err(()); }
295         if tx.input[0].witness.len() != 0 { return Err(()); }
296
297         let htlc_redeemscript = get_htlc_redeemscript_with_explicit_keys(&htlc, a_htlc_key, b_htlc_key, revocation_key);
298
299         let our_htlc_key = derive_private_key(secp_ctx, per_commitment_point, htlc_base_key).map_err(|_| ())?;
300         let sighash = hash_to_message!(&bip143::SighashComponents::new(&tx).sighash_all(&tx.input[0], &htlc_redeemscript, htlc.amount_msat / 1000)[..]);
301         let local_tx = PublicKey::from_secret_key(&secp_ctx, &our_htlc_key) == *a_htlc_key;
302         let our_sig = secp_ctx.sign(&sighash, &our_htlc_key);
303
304         tx.input[0].witness.push(Vec::new()); // First is the multisig dummy
305
306         if local_tx { // b, then a
307                 tx.input[0].witness.push(their_sig.serialize_der().to_vec());
308                 tx.input[0].witness.push(our_sig.serialize_der().to_vec());
309         } else {
310                 tx.input[0].witness.push(our_sig.serialize_der().to_vec());
311                 tx.input[0].witness.push(their_sig.serialize_der().to_vec());
312         }
313         tx.input[0].witness[1].push(SigHashType::All as u8);
314         tx.input[0].witness[2].push(SigHashType::All as u8);
315
316         if htlc.offered {
317                 tx.input[0].witness.push(Vec::new());
318                 assert!(preimage.is_none());
319         } else {
320                 tx.input[0].witness.push(preimage.unwrap().0.to_vec());
321         }
322
323         tx.input[0].witness.push(htlc_redeemscript.as_bytes().to_vec());
324
325         Ok((our_sig, htlc_redeemscript))
326 }
327
328 #[derive(Clone)]
329 /// We use this to track local commitment transactions and put off signing them until we are ready
330 /// to broadcast. Eventually this will require a signer which is possibly external, but for now we
331 /// just pass in the SecretKeys required.
332 pub(crate) struct LocalCommitmentTransaction {
333         tx: Transaction
334 }
335 impl LocalCommitmentTransaction {
336         #[cfg(test)]
337         pub fn dummy() -> Self {
338                 Self { tx: Transaction {
339                         version: 2,
340                         input: Vec::new(),
341                         output: Vec::new(),
342                         lock_time: 0,
343                 } }
344         }
345
346         pub fn new_missing_local_sig(mut tx: Transaction, their_sig: &Signature, our_funding_key: &PublicKey, their_funding_key: &PublicKey) -> LocalCommitmentTransaction {
347                 if tx.input.len() != 1 { panic!("Tried to store a commitment transaction that had input count != 1!"); }
348                 if tx.input[0].witness.len() != 0 { panic!("Tried to store a signed commitment transaction?"); }
349
350                 tx.input[0].witness.push(Vec::new()); // First is the multisig dummy
351
352                 if our_funding_key.serialize()[..] < their_funding_key.serialize()[..] {
353                         tx.input[0].witness.push(Vec::new());
354                         tx.input[0].witness.push(their_sig.serialize_der().to_vec());
355                         tx.input[0].witness[2].push(SigHashType::All as u8);
356                 } else {
357                         tx.input[0].witness.push(their_sig.serialize_der().to_vec());
358                         tx.input[0].witness[1].push(SigHashType::All as u8);
359                         tx.input[0].witness.push(Vec::new());
360                 }
361
362                 Self { tx }
363         }
364
365         pub fn txid(&self) -> Sha256dHash {
366                 self.tx.txid()
367         }
368
369         pub fn has_local_sig(&self) -> bool {
370                 if self.tx.input.len() != 1 { panic!("Commitment transactions must have input count == 1!"); }
371                 if self.tx.input[0].witness.len() == 4 {
372                         assert!(!self.tx.input[0].witness[1].is_empty());
373                         assert!(!self.tx.input[0].witness[2].is_empty());
374                         true
375                 } else {
376                         assert_eq!(self.tx.input[0].witness.len(), 3);
377                         assert!(self.tx.input[0].witness[0].is_empty());
378                         assert!(self.tx.input[0].witness[1].is_empty() || self.tx.input[0].witness[2].is_empty());
379                         false
380                 }
381         }
382
383         pub fn add_local_sig<T: secp256k1::Signing>(&mut self, funding_key: &SecretKey, funding_redeemscript: &Script, channel_value_satoshis: u64, secp_ctx: &Secp256k1<T>) {
384                 if self.has_local_sig() { return; }
385                 let sighash = hash_to_message!(&bip143::SighashComponents::new(&self.tx)
386                         .sighash_all(&self.tx.input[0], funding_redeemscript, channel_value_satoshis)[..]);
387                 let our_sig = secp_ctx.sign(&sighash, funding_key);
388
389                 if self.tx.input[0].witness[1].is_empty() {
390                         self.tx.input[0].witness[1] = our_sig.serialize_der().to_vec();
391                         self.tx.input[0].witness[1].push(SigHashType::All as u8);
392                 } else {
393                         self.tx.input[0].witness[2] = our_sig.serialize_der().to_vec();
394                         self.tx.input[0].witness[2].push(SigHashType::All as u8);
395                 }
396
397                 self.tx.input[0].witness.push(funding_redeemscript.as_bytes().to_vec());
398         }
399
400         pub fn without_valid_witness(&self) -> &Transaction { &self.tx }
401         pub fn with_valid_witness(&self) -> &Transaction {
402                 assert!(self.has_local_sig());
403                 &self.tx
404         }
405 }
406 impl PartialEq for LocalCommitmentTransaction {
407         // We dont care whether we are signed in equality comparison
408         fn eq(&self, o: &Self) -> bool {
409                 self.txid() == o.txid()
410         }
411 }
412 impl Writeable for LocalCommitmentTransaction {
413         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
414                 if let Err(e) = self.tx.consensus_encode(&mut WriterWriteAdaptor(writer)) {
415                         match e {
416                                 encode::Error::Io(e) => return Err(e),
417                                 _ => panic!("local tx must have been well-formed!"),
418                         }
419                 }
420                 Ok(())
421         }
422 }
423 impl<R: ::std::io::Read> Readable<R> for LocalCommitmentTransaction {
424         fn read(reader: &mut R) -> Result<Self, DecodeError> {
425                 let tx = match Transaction::consensus_decode(reader.by_ref()) {
426                         Ok(tx) => tx,
427                         Err(e) => match e {
428                                 encode::Error::Io(ioe) => return Err(DecodeError::Io(ioe)),
429                                 _ => return Err(DecodeError::InvalidValue),
430                         },
431                 };
432
433                 if tx.input.len() != 1 {
434                         // Ensure tx didn't hit the 0-input ambiguity case.
435                         return Err(DecodeError::InvalidValue);
436                 }
437                 Ok(Self { tx })
438         }
439 }