Consider channels "live" even if they are awaiting a monitor update
[rust-lightning] / lightning / src / ln / channelmanager.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! The top-level channel management and payment tracking stuff lives here.
11 //!
12 //! The ChannelManager is the main chunk of logic implementing the lightning protocol and is
13 //! responsible for tracking which channels are open, HTLCs are in flight and reestablishing those
14 //! upon reconnect to the relevant peer(s).
15 //!
16 //! It does not manage routing logic (see routing::router::get_route for that) nor does it manage constructing
17 //! on-chain transactions (it only monitors the chain to watch for any force-closes that might
18 //! imply it needs to fail HTLCs/payments/channels it manages).
19 //!
20
21 use bitcoin::blockdata::block::{Block, BlockHeader};
22 use bitcoin::blockdata::transaction::Transaction;
23 use bitcoin::blockdata::constants::genesis_block;
24 use bitcoin::network::constants::Network;
25
26 use bitcoin::hashes::{Hash, HashEngine};
27 use bitcoin::hashes::hmac::{Hmac, HmacEngine};
28 use bitcoin::hashes::sha256::Hash as Sha256;
29 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
30 use bitcoin::hashes::cmp::fixed_time_eq;
31 use bitcoin::hash_types::{BlockHash, Txid};
32
33 use bitcoin::secp256k1::key::{SecretKey,PublicKey};
34 use bitcoin::secp256k1::Secp256k1;
35 use bitcoin::secp256k1::ecdh::SharedSecret;
36 use bitcoin::secp256k1;
37
38 use chain;
39 use chain::Confirm;
40 use chain::Watch;
41 use chain::chaininterface::{BroadcasterInterface, FeeEstimator};
42 use chain::channelmonitor::{ChannelMonitor, ChannelMonitorUpdate, ChannelMonitorUpdateStep, ChannelMonitorUpdateErr, HTLC_FAIL_BACK_BUFFER, CLTV_CLAIM_BUFFER, LATENCY_GRACE_PERIOD_BLOCKS, ANTI_REORG_DELAY, MonitorEvent, CLOSED_CHANNEL_UPDATE_ID};
43 use chain::transaction::{OutPoint, TransactionData};
44 // Since this struct is returned in `list_channels` methods, expose it here in case users want to
45 // construct one themselves.
46 use ln::{PaymentHash, PaymentPreimage, PaymentSecret};
47 pub use ln::channel::CounterpartyForwardingInfo;
48 use ln::channel::{Channel, ChannelError, ChannelUpdateStatus};
49 use ln::features::{InitFeatures, NodeFeatures};
50 use routing::router::{Route, RouteHop};
51 use ln::msgs;
52 use ln::msgs::NetAddress;
53 use ln::onion_utils;
54 use ln::msgs::{ChannelMessageHandler, DecodeError, LightningError, OptionalField};
55 use chain::keysinterface::{Sign, KeysInterface, KeysManager, InMemorySigner};
56 use util::config::UserConfig;
57 use util::events::{EventHandler, EventsProvider, MessageSendEvent, MessageSendEventsProvider};
58 use util::{byte_utils, events};
59 use util::ser::{Readable, ReadableArgs, MaybeReadable, Writeable, Writer};
60 use util::chacha20::{ChaCha20, ChaChaReader};
61 use util::logger::Logger;
62 use util::errors::APIError;
63
64 use prelude::*;
65 use core::{cmp, mem};
66 use core::cell::RefCell;
67 use std::collections::{HashMap, hash_map, HashSet};
68 use std::io::{Cursor, Read};
69 use std::sync::{Arc, Condvar, Mutex, MutexGuard, RwLock, RwLockReadGuard};
70 use core::sync::atomic::{AtomicUsize, Ordering};
71 use core::time::Duration;
72 #[cfg(any(test, feature = "allow_wallclock_use"))]
73 use std::time::Instant;
74 use core::ops::Deref;
75 use bitcoin::hashes::hex::ToHex;
76
77 // We hold various information about HTLC relay in the HTLC objects in Channel itself:
78 //
79 // Upon receipt of an HTLC from a peer, we'll give it a PendingHTLCStatus indicating if it should
80 // forward the HTLC with information it will give back to us when it does so, or if it should Fail
81 // the HTLC with the relevant message for the Channel to handle giving to the remote peer.
82 //
83 // Once said HTLC is committed in the Channel, if the PendingHTLCStatus indicated Forward, the
84 // Channel will return the PendingHTLCInfo back to us, and we will create an HTLCForwardInfo
85 // with it to track where it came from (in case of onwards-forward error), waiting a random delay
86 // before we forward it.
87 //
88 // We will then use HTLCForwardInfo's PendingHTLCInfo to construct an outbound HTLC, with a
89 // relevant HTLCSource::PreviousHopData filled in to indicate where it came from (which we can use
90 // to either fail-backwards or fulfill the HTLC backwards along the relevant path).
91 // Alternatively, we can fill an outbound HTLC with a HTLCSource::OutboundRoute indicating this is
92 // our payment, which we can use to decode errors or inform the user that the payment was sent.
93
94 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
95 enum PendingHTLCRouting {
96         Forward {
97                 onion_packet: msgs::OnionPacket,
98                 short_channel_id: u64, // This should be NonZero<u64> eventually when we bump MSRV
99         },
100         Receive {
101                 payment_data: msgs::FinalOnionHopData,
102                 incoming_cltv_expiry: u32, // Used to track when we should expire pending HTLCs that go unclaimed
103         },
104 }
105
106 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
107 pub(super) struct PendingHTLCInfo {
108         routing: PendingHTLCRouting,
109         incoming_shared_secret: [u8; 32],
110         payment_hash: PaymentHash,
111         pub(super) amt_to_forward: u64,
112         pub(super) outgoing_cltv_value: u32,
113 }
114
115 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
116 pub(super) enum HTLCFailureMsg {
117         Relay(msgs::UpdateFailHTLC),
118         Malformed(msgs::UpdateFailMalformedHTLC),
119 }
120
121 /// Stores whether we can't forward an HTLC or relevant forwarding info
122 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
123 pub(super) enum PendingHTLCStatus {
124         Forward(PendingHTLCInfo),
125         Fail(HTLCFailureMsg),
126 }
127
128 pub(super) enum HTLCForwardInfo {
129         AddHTLC {
130                 forward_info: PendingHTLCInfo,
131
132                 // These fields are produced in `forward_htlcs()` and consumed in
133                 // `process_pending_htlc_forwards()` for constructing the
134                 // `HTLCSource::PreviousHopData` for failed and forwarded
135                 // HTLCs.
136                 prev_short_channel_id: u64,
137                 prev_htlc_id: u64,
138                 prev_funding_outpoint: OutPoint,
139         },
140         FailHTLC {
141                 htlc_id: u64,
142                 err_packet: msgs::OnionErrorPacket,
143         },
144 }
145
146 /// Tracks the inbound corresponding to an outbound HTLC
147 #[derive(Clone, PartialEq)]
148 pub(crate) struct HTLCPreviousHopData {
149         short_channel_id: u64,
150         htlc_id: u64,
151         incoming_packet_shared_secret: [u8; 32],
152
153         // This field is consumed by `claim_funds_from_hop()` when updating a force-closed backwards
154         // channel with a preimage provided by the forward channel.
155         outpoint: OutPoint,
156 }
157
158 struct ClaimableHTLC {
159         prev_hop: HTLCPreviousHopData,
160         value: u64,
161         /// Contains a total_msat (which may differ from value if this is a Multi-Path Payment) and a
162         /// payment_secret which prevents path-probing attacks and can associate different HTLCs which
163         /// are part of the same payment.
164         payment_data: msgs::FinalOnionHopData,
165         cltv_expiry: u32,
166 }
167
168 /// Tracks the inbound corresponding to an outbound HTLC
169 #[derive(Clone, PartialEq)]
170 pub(crate) enum HTLCSource {
171         PreviousHopData(HTLCPreviousHopData),
172         OutboundRoute {
173                 path: Vec<RouteHop>,
174                 session_priv: SecretKey,
175                 /// Technically we can recalculate this from the route, but we cache it here to avoid
176                 /// doing a double-pass on route when we get a failure back
177                 first_hop_htlc_msat: u64,
178         },
179 }
180 #[cfg(test)]
181 impl HTLCSource {
182         pub fn dummy() -> Self {
183                 HTLCSource::OutboundRoute {
184                         path: Vec::new(),
185                         session_priv: SecretKey::from_slice(&[1; 32]).unwrap(),
186                         first_hop_htlc_msat: 0,
187                 }
188         }
189 }
190
191 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
192 pub(super) enum HTLCFailReason {
193         LightningError {
194                 err: msgs::OnionErrorPacket,
195         },
196         Reason {
197                 failure_code: u16,
198                 data: Vec<u8>,
199         }
200 }
201
202 type ShutdownResult = (Option<(OutPoint, ChannelMonitorUpdate)>, Vec<(HTLCSource, PaymentHash)>);
203
204 /// Error type returned across the channel_state mutex boundary. When an Err is generated for a
205 /// Channel, we generally end up with a ChannelError::Close for which we have to close the channel
206 /// immediately (ie with no further calls on it made). Thus, this step happens inside a
207 /// channel_state lock. We then return the set of things that need to be done outside the lock in
208 /// this struct and call handle_error!() on it.
209
210 struct MsgHandleErrInternal {
211         err: msgs::LightningError,
212         shutdown_finish: Option<(ShutdownResult, Option<msgs::ChannelUpdate>)>,
213 }
214 impl MsgHandleErrInternal {
215         #[inline]
216         fn send_err_msg_no_close(err: String, channel_id: [u8; 32]) -> Self {
217                 Self {
218                         err: LightningError {
219                                 err: err.clone(),
220                                 action: msgs::ErrorAction::SendErrorMessage {
221                                         msg: msgs::ErrorMessage {
222                                                 channel_id,
223                                                 data: err
224                                         },
225                                 },
226                         },
227                         shutdown_finish: None,
228                 }
229         }
230         #[inline]
231         fn ignore_no_close(err: String) -> Self {
232                 Self {
233                         err: LightningError {
234                                 err,
235                                 action: msgs::ErrorAction::IgnoreError,
236                         },
237                         shutdown_finish: None,
238                 }
239         }
240         #[inline]
241         fn from_no_close(err: msgs::LightningError) -> Self {
242                 Self { err, shutdown_finish: None }
243         }
244         #[inline]
245         fn from_finish_shutdown(err: String, channel_id: [u8; 32], shutdown_res: ShutdownResult, channel_update: Option<msgs::ChannelUpdate>) -> Self {
246                 Self {
247                         err: LightningError {
248                                 err: err.clone(),
249                                 action: msgs::ErrorAction::SendErrorMessage {
250                                         msg: msgs::ErrorMessage {
251                                                 channel_id,
252                                                 data: err
253                                         },
254                                 },
255                         },
256                         shutdown_finish: Some((shutdown_res, channel_update)),
257                 }
258         }
259         #[inline]
260         fn from_chan_no_close(err: ChannelError, channel_id: [u8; 32]) -> Self {
261                 Self {
262                         err: match err {
263                                 ChannelError::Ignore(msg) => LightningError {
264                                         err: msg,
265                                         action: msgs::ErrorAction::IgnoreError,
266                                 },
267                                 ChannelError::Close(msg) => LightningError {
268                                         err: msg.clone(),
269                                         action: msgs::ErrorAction::SendErrorMessage {
270                                                 msg: msgs::ErrorMessage {
271                                                         channel_id,
272                                                         data: msg
273                                                 },
274                                         },
275                                 },
276                                 ChannelError::CloseDelayBroadcast(msg) => LightningError {
277                                         err: msg.clone(),
278                                         action: msgs::ErrorAction::SendErrorMessage {
279                                                 msg: msgs::ErrorMessage {
280                                                         channel_id,
281                                                         data: msg
282                                                 },
283                                         },
284                                 },
285                         },
286                         shutdown_finish: None,
287                 }
288         }
289 }
290
291 /// We hold back HTLCs we intend to relay for a random interval greater than this (see
292 /// Event::PendingHTLCsForwardable for the API guidelines indicating how long should be waited).
293 /// This provides some limited amount of privacy. Ideally this would range from somewhere like one
294 /// second to 30 seconds, but people expect lightning to be, you know, kinda fast, sadly.
295 const MIN_HTLC_RELAY_HOLDING_CELL_MILLIS: u64 = 100;
296
297 /// For events which result in both a RevokeAndACK and a CommitmentUpdate, by default they should
298 /// be sent in the order they appear in the return value, however sometimes the order needs to be
299 /// variable at runtime (eg Channel::channel_reestablish needs to re-send messages in the order
300 /// they were originally sent). In those cases, this enum is also returned.
301 #[derive(Clone, PartialEq)]
302 pub(super) enum RAACommitmentOrder {
303         /// Send the CommitmentUpdate messages first
304         CommitmentFirst,
305         /// Send the RevokeAndACK message first
306         RevokeAndACKFirst,
307 }
308
309 // Note this is only exposed in cfg(test):
310 pub(super) struct ChannelHolder<Signer: Sign> {
311         pub(super) by_id: HashMap<[u8; 32], Channel<Signer>>,
312         pub(super) short_to_id: HashMap<u64, [u8; 32]>,
313         /// short channel id -> forward infos. Key of 0 means payments received
314         /// Note that while this is held in the same mutex as the channels themselves, no consistency
315         /// guarantees are made about the existence of a channel with the short id here, nor the short
316         /// ids in the PendingHTLCInfo!
317         pub(super) forward_htlcs: HashMap<u64, Vec<HTLCForwardInfo>>,
318         /// Map from payment hash to any HTLCs which are to us and can be failed/claimed by the user.
319         /// Note that while this is held in the same mutex as the channels themselves, no consistency
320         /// guarantees are made about the channels given here actually existing anymore by the time you
321         /// go to read them!
322         claimable_htlcs: HashMap<PaymentHash, Vec<ClaimableHTLC>>,
323         /// Messages to send to peers - pushed to in the same lock that they are generated in (except
324         /// for broadcast messages, where ordering isn't as strict).
325         pub(super) pending_msg_events: Vec<MessageSendEvent>,
326 }
327
328 /// Events which we process internally but cannot be procsesed immediately at the generation site
329 /// for some reason. They are handled in timer_tick_occurred, so may be processed with
330 /// quite some time lag.
331 enum BackgroundEvent {
332         /// Handle a ChannelMonitorUpdate that closes a channel, broadcasting its current latest holder
333         /// commitment transaction.
334         ClosingMonitorUpdate((OutPoint, ChannelMonitorUpdate)),
335 }
336
337 /// State we hold per-peer. In the future we should put channels in here, but for now we only hold
338 /// the latest Init features we heard from the peer.
339 struct PeerState {
340         latest_features: InitFeatures,
341 }
342
343 /// Stores a PaymentSecret and any other data we may need to validate an inbound payment is
344 /// actually ours and not some duplicate HTLC sent to us by a node along the route.
345 ///
346 /// For users who don't want to bother doing their own payment preimage storage, we also store that
347 /// here.
348 struct PendingInboundPayment {
349         /// The payment secret that the sender must use for us to accept this payment
350         payment_secret: PaymentSecret,
351         /// Time at which this HTLC expires - blocks with a header time above this value will result in
352         /// this payment being removed.
353         expiry_time: u64,
354         /// Arbitrary identifier the user specifies (or not)
355         user_payment_id: u64,
356         // Other required attributes of the payment, optionally enforced:
357         payment_preimage: Option<PaymentPreimage>,
358         min_value_msat: Option<u64>,
359 }
360
361 /// SimpleArcChannelManager is useful when you need a ChannelManager with a static lifetime, e.g.
362 /// when you're using lightning-net-tokio (since tokio::spawn requires parameters with static
363 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
364 /// SimpleRefChannelManager is the more appropriate type. Defining these type aliases prevents
365 /// issues such as overly long function definitions. Note that the ChannelManager can take any
366 /// type that implements KeysInterface for its keys manager, but this type alias chooses the
367 /// concrete type of the KeysManager.
368 pub type SimpleArcChannelManager<M, T, F, L> = ChannelManager<InMemorySigner, Arc<M>, Arc<T>, Arc<KeysManager>, Arc<F>, Arc<L>>;
369
370 /// SimpleRefChannelManager is a type alias for a ChannelManager reference, and is the reference
371 /// counterpart to the SimpleArcChannelManager type alias. Use this type by default when you don't
372 /// need a ChannelManager with a static lifetime. You'll need a static lifetime in cases such as
373 /// usage of lightning-net-tokio (since tokio::spawn requires parameters with static lifetimes).
374 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
375 /// helps with issues such as long function definitions. Note that the ChannelManager can take any
376 /// type that implements KeysInterface for its keys manager, but this type alias chooses the
377 /// concrete type of the KeysManager.
378 pub type SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, M, T, F, L> = ChannelManager<InMemorySigner, &'a M, &'b T, &'c KeysManager, &'d F, &'e L>;
379
380 /// Manager which keeps track of a number of channels and sends messages to the appropriate
381 /// channel, also tracking HTLC preimages and forwarding onion packets appropriately.
382 ///
383 /// Implements ChannelMessageHandler, handling the multi-channel parts and passing things through
384 /// to individual Channels.
385 ///
386 /// Implements Writeable to write out all channel state to disk. Implies peer_disconnected() for
387 /// all peers during write/read (though does not modify this instance, only the instance being
388 /// serialized). This will result in any channels which have not yet exchanged funding_created (ie
389 /// called funding_transaction_generated for outbound channels).
390 ///
391 /// Note that you can be a bit lazier about writing out ChannelManager than you can be with
392 /// ChannelMonitors. With ChannelMonitors you MUST write each monitor update out to disk before
393 /// returning from chain::Watch::watch_/update_channel, with ChannelManagers, writing updates
394 /// happens out-of-band (and will prevent any other ChannelManager operations from occurring during
395 /// the serialization process). If the deserialized version is out-of-date compared to the
396 /// ChannelMonitors passed by reference to read(), those channels will be force-closed based on the
397 /// ChannelMonitor state and no funds will be lost (mod on-chain transaction fees).
398 ///
399 /// Note that the deserializer is only implemented for (BlockHash, ChannelManager), which
400 /// tells you the last block hash which was block_connect()ed. You MUST rescan any blocks along
401 /// the "reorg path" (ie call block_disconnected() until you get to a common block and then call
402 /// block_connected() to step towards your best block) upon deserialization before using the
403 /// object!
404 ///
405 /// Note that ChannelManager is responsible for tracking liveness of its channels and generating
406 /// ChannelUpdate messages informing peers that the channel is temporarily disabled. To avoid
407 /// spam due to quick disconnection/reconnection, updates are not sent until the channel has been
408 /// offline for a full minute. In order to track this, you must call
409 /// timer_tick_occurred roughly once per minute, though it doesn't have to be perfect.
410 ///
411 /// Rather than using a plain ChannelManager, it is preferable to use either a SimpleArcChannelManager
412 /// a SimpleRefChannelManager, for conciseness. See their documentation for more details, but
413 /// essentially you should default to using a SimpleRefChannelManager, and use a
414 /// SimpleArcChannelManager when you require a ChannelManager with a static lifetime, such as when
415 /// you're using lightning-net-tokio.
416 pub struct ChannelManager<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
417         where M::Target: chain::Watch<Signer>,
418         T::Target: BroadcasterInterface,
419         K::Target: KeysInterface<Signer = Signer>,
420         F::Target: FeeEstimator,
421                                 L::Target: Logger,
422 {
423         default_configuration: UserConfig,
424         genesis_hash: BlockHash,
425         fee_estimator: F,
426         chain_monitor: M,
427         tx_broadcaster: T,
428
429         #[cfg(test)]
430         pub(super) best_block: RwLock<BestBlock>,
431         #[cfg(not(test))]
432         best_block: RwLock<BestBlock>,
433         secp_ctx: Secp256k1<secp256k1::All>,
434
435         #[cfg(any(test, feature = "_test_utils"))]
436         pub(super) channel_state: Mutex<ChannelHolder<Signer>>,
437         #[cfg(not(any(test, feature = "_test_utils")))]
438         channel_state: Mutex<ChannelHolder<Signer>>,
439
440         /// Storage for PaymentSecrets and any requirements on future inbound payments before we will
441         /// expose them to users via a PaymentReceived event. HTLCs which do not meet the requirements
442         /// here are failed when we process them as pending-forwardable-HTLCs, and entries are removed
443         /// after we generate a PaymentReceived upon receipt of all MPP parts or when they time out.
444         /// Locked *after* channel_state.
445         pending_inbound_payments: Mutex<HashMap<PaymentHash, PendingInboundPayment>>,
446
447         /// The session_priv bytes of outbound payments which are pending resolution.
448         /// The authoritative state of these HTLCs resides either within Channels or ChannelMonitors
449         /// (if the channel has been force-closed), however we track them here to prevent duplicative
450         /// PaymentSent/PaymentFailed events. Specifically, in the case of a duplicative
451         /// update_fulfill_htlc message after a reconnect, we may "claim" a payment twice.
452         /// Additionally, because ChannelMonitors are often not re-serialized after connecting block(s)
453         /// which may generate a claim event, we may receive similar duplicate claim/fail MonitorEvents
454         /// after reloading from disk while replaying blocks against ChannelMonitors.
455         ///
456         /// Locked *after* channel_state.
457         pending_outbound_payments: Mutex<HashSet<[u8; 32]>>,
458
459         our_network_key: SecretKey,
460         our_network_pubkey: PublicKey,
461
462         /// Used to track the last value sent in a node_announcement "timestamp" field. We ensure this
463         /// value increases strictly since we don't assume access to a time source.
464         last_node_announcement_serial: AtomicUsize,
465
466         /// The highest block timestamp we've seen, which is usually a good guess at the current time.
467         /// Assuming most miners are generating blocks with reasonable timestamps, this shouldn't be
468         /// very far in the past, and can only ever be up to two hours in the future.
469         highest_seen_timestamp: AtomicUsize,
470
471         /// The bulk of our storage will eventually be here (channels and message queues and the like).
472         /// If we are connected to a peer we always at least have an entry here, even if no channels
473         /// are currently open with that peer.
474         /// Because adding or removing an entry is rare, we usually take an outer read lock and then
475         /// operate on the inner value freely. Sadly, this prevents parallel operation when opening a
476         /// new channel.
477         per_peer_state: RwLock<HashMap<PublicKey, Mutex<PeerState>>>,
478
479         pending_events: Mutex<Vec<events::Event>>,
480         pending_background_events: Mutex<Vec<BackgroundEvent>>,
481         /// Used when we have to take a BIG lock to make sure everything is self-consistent.
482         /// Essentially just when we're serializing ourselves out.
483         /// Taken first everywhere where we are making changes before any other locks.
484         /// When acquiring this lock in read mode, rather than acquiring it directly, call
485         /// `PersistenceNotifierGuard::notify_on_drop(..)` and pass the lock to it, to ensure the
486         /// PersistenceNotifier the lock contains sends out a notification when the lock is released.
487         total_consistency_lock: RwLock<()>,
488
489         persistence_notifier: PersistenceNotifier,
490
491         keys_manager: K,
492
493         logger: L,
494 }
495
496 /// Chain-related parameters used to construct a new `ChannelManager`.
497 ///
498 /// Typically, the block-specific parameters are derived from the best block hash for the network,
499 /// as a newly constructed `ChannelManager` will not have created any channels yet. These parameters
500 /// are not needed when deserializing a previously constructed `ChannelManager`.
501 #[derive(Clone, Copy, PartialEq)]
502 pub struct ChainParameters {
503         /// The network for determining the `chain_hash` in Lightning messages.
504         pub network: Network,
505
506         /// The hash and height of the latest block successfully connected.
507         ///
508         /// Used to track on-chain channel funding outputs and send payments with reliable timelocks.
509         pub best_block: BestBlock,
510 }
511
512 /// The best known block as identified by its hash and height.
513 #[derive(Clone, Copy, PartialEq)]
514 pub struct BestBlock {
515         block_hash: BlockHash,
516         height: u32,
517 }
518
519 impl BestBlock {
520         /// Returns the best block from the genesis of the given network.
521         pub fn from_genesis(network: Network) -> Self {
522                 BestBlock {
523                         block_hash: genesis_block(network).header.block_hash(),
524                         height: 0,
525                 }
526         }
527
528         /// Returns the best block as identified by the given block hash and height.
529         pub fn new(block_hash: BlockHash, height: u32) -> Self {
530                 BestBlock { block_hash, height }
531         }
532
533         /// Returns the best block hash.
534         pub fn block_hash(&self) -> BlockHash { self.block_hash }
535
536         /// Returns the best block height.
537         pub fn height(&self) -> u32 { self.height }
538 }
539
540 #[derive(Copy, Clone, PartialEq)]
541 enum NotifyOption {
542         DoPersist,
543         SkipPersist,
544 }
545
546 /// Whenever we release the `ChannelManager`'s `total_consistency_lock`, from read mode, it is
547 /// desirable to notify any listeners on `await_persistable_update_timeout`/
548 /// `await_persistable_update` when new updates are available for persistence. Therefore, this
549 /// struct is responsible for locking the total consistency lock and, upon going out of scope,
550 /// sending the aforementioned notification (since the lock being released indicates that the
551 /// updates are ready for persistence).
552 ///
553 /// We allow callers to either always notify by constructing with `notify_on_drop` or choose to
554 /// notify or not based on whether relevant changes have been made, providing a closure to
555 /// `optionally_notify` which returns a `NotifyOption`.
556 struct PersistenceNotifierGuard<'a, F: Fn() -> NotifyOption> {
557         persistence_notifier: &'a PersistenceNotifier,
558         should_persist: F,
559         // We hold onto this result so the lock doesn't get released immediately.
560         _read_guard: RwLockReadGuard<'a, ()>,
561 }
562
563 impl<'a> PersistenceNotifierGuard<'a, fn() -> NotifyOption> { // We don't care what the concrete F is here, it's unused
564         fn notify_on_drop(lock: &'a RwLock<()>, notifier: &'a PersistenceNotifier) -> PersistenceNotifierGuard<'a, impl Fn() -> NotifyOption> {
565                 PersistenceNotifierGuard::optionally_notify(lock, notifier, || -> NotifyOption { NotifyOption::DoPersist })
566         }
567
568         fn optionally_notify<F: Fn() -> NotifyOption>(lock: &'a RwLock<()>, notifier: &'a PersistenceNotifier, persist_check: F) -> PersistenceNotifierGuard<'a, F> {
569                 let read_guard = lock.read().unwrap();
570
571                 PersistenceNotifierGuard {
572                         persistence_notifier: notifier,
573                         should_persist: persist_check,
574                         _read_guard: read_guard,
575                 }
576         }
577 }
578
579 impl<'a, F: Fn() -> NotifyOption> Drop for PersistenceNotifierGuard<'a, F> {
580         fn drop(&mut self) {
581                 if (self.should_persist)() == NotifyOption::DoPersist {
582                         self.persistence_notifier.notify();
583                 }
584         }
585 }
586
587 /// The amount of time in blocks we require our counterparty wait to claim their money (ie time
588 /// between when we, or our watchtower, must check for them having broadcast a theft transaction).
589 ///
590 /// This can be increased (but not decreased) through [`ChannelHandshakeConfig::our_to_self_delay`]
591 ///
592 /// [`ChannelHandshakeConfig::our_to_self_delay`]: crate::util::config::ChannelHandshakeConfig::our_to_self_delay
593 pub const BREAKDOWN_TIMEOUT: u16 = 6 * 24;
594 /// The amount of time in blocks we're willing to wait to claim money back to us. This matches
595 /// the maximum required amount in lnd as of March 2021.
596 pub(crate) const MAX_LOCAL_BREAKDOWN_TIMEOUT: u16 = 2 * 6 * 24 * 7;
597
598 /// The minimum number of blocks between an inbound HTLC's CLTV and the corresponding outbound
599 /// HTLC's CLTV. The current default represents roughly seven hours of blocks at six blocks/hour.
600 ///
601 /// This can be increased (but not decreased) through [`ChannelConfig::cltv_expiry_delta`]
602 ///
603 /// [`ChannelConfig::cltv_expiry_delta`]: crate::util::config::ChannelConfig::cltv_expiry_delta
604 // This should always be a few blocks greater than channelmonitor::CLTV_CLAIM_BUFFER,
605 // i.e. the node we forwarded the payment on to should always have enough room to reliably time out
606 // the HTLC via a full update_fail_htlc/commitment_signed dance before we hit the
607 // CLTV_CLAIM_BUFFER point (we static assert that it's at least 3 blocks more).
608 pub const MIN_CLTV_EXPIRY_DELTA: u16 = 6*7;
609 pub(super) const CLTV_FAR_FAR_AWAY: u32 = 6 * 24 * 7; //TODO?
610
611 /// Minimum CLTV difference between the current block height and received inbound payments.
612 /// Invoices generated for payment to us must set their `min_final_cltv_expiry` field to at least
613 /// this value.
614 // Note that we fail if exactly HTLC_FAIL_BACK_BUFFER + 1 was used, so we need to add one for
615 // any payments to succeed. Further, we don't want payments to fail if a block was found while
616 // a payment was being routed, so we add an extra block to be safe.
617 pub const MIN_FINAL_CLTV_EXPIRY: u32 = HTLC_FAIL_BACK_BUFFER + 3;
618
619 // Check that our CLTV_EXPIRY is at least CLTV_CLAIM_BUFFER + ANTI_REORG_DELAY + LATENCY_GRACE_PERIOD_BLOCKS,
620 // ie that if the next-hop peer fails the HTLC within
621 // LATENCY_GRACE_PERIOD_BLOCKS then we'll still have CLTV_CLAIM_BUFFER left to timeout it onchain,
622 // then waiting ANTI_REORG_DELAY to be reorg-safe on the outbound HLTC and
623 // failing the corresponding htlc backward, and us now seeing the last block of ANTI_REORG_DELAY before
624 // LATENCY_GRACE_PERIOD_BLOCKS.
625 #[deny(const_err)]
626 #[allow(dead_code)]
627 const CHECK_CLTV_EXPIRY_SANITY: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - CLTV_CLAIM_BUFFER - ANTI_REORG_DELAY - LATENCY_GRACE_PERIOD_BLOCKS;
628
629 // Check for ability of an attacker to make us fail on-chain by delaying an HTLC claim. See
630 // ChannelMontior::would_broadcast_at_height for a description of why this is needed.
631 #[deny(const_err)]
632 #[allow(dead_code)]
633 const CHECK_CLTV_EXPIRY_SANITY_2: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - 2*CLTV_CLAIM_BUFFER;
634
635 /// Details of a channel, as returned by ChannelManager::list_channels and ChannelManager::list_usable_channels
636 #[derive(Clone)]
637 pub struct ChannelDetails {
638         /// The channel's ID (prior to funding transaction generation, this is a random 32 bytes,
639         /// thereafter this is the txid of the funding transaction xor the funding transaction output).
640         /// Note that this means this value is *not* persistent - it can change once during the
641         /// lifetime of the channel.
642         pub channel_id: [u8; 32],
643         /// The Channel's funding transaction output, if we've negotiated the funding transaction with
644         /// our counterparty already.
645         ///
646         /// Note that, if this has been set, `channel_id` will be equivalent to
647         /// `funding_txo.unwrap().to_channel_id()`.
648         pub funding_txo: Option<OutPoint>,
649         /// The position of the funding transaction in the chain. None if the funding transaction has
650         /// not yet been confirmed and the channel fully opened.
651         pub short_channel_id: Option<u64>,
652         /// The node_id of our counterparty
653         pub remote_network_id: PublicKey,
654         /// The Features the channel counterparty provided upon last connection.
655         /// Useful for routing as it is the most up-to-date copy of the counterparty's features and
656         /// many routing-relevant features are present in the init context.
657         pub counterparty_features: InitFeatures,
658         /// The value, in satoshis, of this channel as appears in the funding output
659         pub channel_value_satoshis: u64,
660         /// The user_id passed in to create_channel, or 0 if the channel was inbound.
661         pub user_id: u64,
662         /// The available outbound capacity for sending HTLCs to the remote peer. This does not include
663         /// any pending HTLCs which are not yet fully resolved (and, thus, who's balance is not
664         /// available for inclusion in new outbound HTLCs). This further does not include any pending
665         /// outgoing HTLCs which are awaiting some other resolution to be sent.
666         pub outbound_capacity_msat: u64,
667         /// The available inbound capacity for the remote peer to send HTLCs to us. This does not
668         /// include any pending HTLCs which are not yet fully resolved (and, thus, who's balance is not
669         /// available for inclusion in new inbound HTLCs).
670         /// Note that there are some corner cases not fully handled here, so the actual available
671         /// inbound capacity may be slightly higher than this.
672         pub inbound_capacity_msat: u64,
673         /// True if the channel was initiated (and thus funded) by us.
674         pub is_outbound: bool,
675         /// True if the channel is confirmed, funding_locked messages have been exchanged, and the
676         /// channel is not currently being shut down. `funding_locked` message exchange implies the
677         /// required confirmation count has been reached (and we were connected to the peer at some
678         /// point after the funding transaction received enough confirmations).
679         pub is_funding_locked: bool,
680         /// True if the channel is (a) confirmed and funding_locked messages have been exchanged, (b)
681         /// the peer is connected, and (c) the channel is not currently negotiating a shutdown.
682         ///
683         /// This is a strict superset of `is_funding_locked`.
684         pub is_usable: bool,
685         /// True if this channel is (or will be) publicly-announced.
686         pub is_public: bool,
687         /// Information on the fees and requirements that the counterparty requires when forwarding
688         /// payments to us through this channel.
689         pub counterparty_forwarding_info: Option<CounterpartyForwardingInfo>,
690 }
691
692 /// If a payment fails to send, it can be in one of several states. This enum is returned as the
693 /// Err() type describing which state the payment is in, see the description of individual enum
694 /// states for more.
695 #[derive(Clone, Debug)]
696 pub enum PaymentSendFailure {
697         /// A parameter which was passed to send_payment was invalid, preventing us from attempting to
698         /// send the payment at all. No channel state has been changed or messages sent to peers, and
699         /// once you've changed the parameter at error, you can freely retry the payment in full.
700         ParameterError(APIError),
701         /// A parameter in a single path which was passed to send_payment was invalid, preventing us
702         /// from attempting to send the payment at all. No channel state has been changed or messages
703         /// sent to peers, and once you've changed the parameter at error, you can freely retry the
704         /// payment in full.
705         ///
706         /// The results here are ordered the same as the paths in the route object which was passed to
707         /// send_payment.
708         PathParameterError(Vec<Result<(), APIError>>),
709         /// All paths which were attempted failed to send, with no channel state change taking place.
710         /// You can freely retry the payment in full (though you probably want to do so over different
711         /// paths than the ones selected).
712         AllFailedRetrySafe(Vec<APIError>),
713         /// Some paths which were attempted failed to send, though possibly not all. At least some
714         /// paths have irrevocably committed to the HTLC and retrying the payment in full would result
715         /// in over-/re-payment.
716         ///
717         /// The results here are ordered the same as the paths in the route object which was passed to
718         /// send_payment, and any Errs which are not APIError::MonitorUpdateFailed can be safely
719         /// retried (though there is currently no API with which to do so).
720         ///
721         /// Any entries which contain Err(APIError::MonitorUpdateFailed) or Ok(()) MUST NOT be retried
722         /// as they will result in over-/re-payment. These HTLCs all either successfully sent (in the
723         /// case of Ok(())) or will send once channel_monitor_updated is called on the next-hop channel
724         /// with the latest update_id.
725         PartialFailure(Vec<Result<(), APIError>>),
726 }
727
728 macro_rules! handle_error {
729         ($self: ident, $internal: expr, $counterparty_node_id: expr) => {
730                 match $internal {
731                         Ok(msg) => Ok(msg),
732                         Err(MsgHandleErrInternal { err, shutdown_finish }) => {
733                                 #[cfg(debug_assertions)]
734                                 {
735                                         // In testing, ensure there are no deadlocks where the lock is already held upon
736                                         // entering the macro.
737                                         assert!($self.channel_state.try_lock().is_ok());
738                                 }
739
740                                 let mut msg_events = Vec::with_capacity(2);
741
742                                 if let Some((shutdown_res, update_option)) = shutdown_finish {
743                                         $self.finish_force_close_channel(shutdown_res);
744                                         if let Some(update) = update_option {
745                                                 msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
746                                                         msg: update
747                                                 });
748                                         }
749                                 }
750
751                                 log_error!($self.logger, "{}", err.err);
752                                 if let msgs::ErrorAction::IgnoreError = err.action {
753                                 } else {
754                                         msg_events.push(events::MessageSendEvent::HandleError {
755                                                 node_id: $counterparty_node_id,
756                                                 action: err.action.clone()
757                                         });
758                                 }
759
760                                 if !msg_events.is_empty() {
761                                         $self.channel_state.lock().unwrap().pending_msg_events.append(&mut msg_events);
762                                 }
763
764                                 // Return error in case higher-API need one
765                                 Err(err)
766                         },
767                 }
768         }
769 }
770
771 /// Returns (boolean indicating if we should remove the Channel object from memory, a mapped error)
772 macro_rules! convert_chan_err {
773         ($self: ident, $err: expr, $short_to_id: expr, $channel: expr, $channel_id: expr) => {
774                 match $err {
775                         ChannelError::Ignore(msg) => {
776                                 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore(msg), $channel_id.clone()))
777                         },
778                         ChannelError::Close(msg) => {
779                                 log_trace!($self.logger, "Closing channel {} due to close-required error: {}", log_bytes!($channel_id[..]), msg);
780                                 if let Some(short_id) = $channel.get_short_channel_id() {
781                                         $short_to_id.remove(&short_id);
782                                 }
783                                 let shutdown_res = $channel.force_shutdown(true);
784                                 (true, MsgHandleErrInternal::from_finish_shutdown(msg, *$channel_id, shutdown_res, $self.get_channel_update(&$channel).ok()))
785                         },
786                         ChannelError::CloseDelayBroadcast(msg) => {
787                                 log_error!($self.logger, "Channel {} need to be shutdown but closing transactions not broadcast due to {}", log_bytes!($channel_id[..]), msg);
788                                 if let Some(short_id) = $channel.get_short_channel_id() {
789                                         $short_to_id.remove(&short_id);
790                                 }
791                                 let shutdown_res = $channel.force_shutdown(false);
792                                 (true, MsgHandleErrInternal::from_finish_shutdown(msg, *$channel_id, shutdown_res, $self.get_channel_update(&$channel).ok()))
793                         }
794                 }
795         }
796 }
797
798 macro_rules! break_chan_entry {
799         ($self: ident, $res: expr, $channel_state: expr, $entry: expr) => {
800                 match $res {
801                         Ok(res) => res,
802                         Err(e) => {
803                                 let (drop, res) = convert_chan_err!($self, e, $channel_state.short_to_id, $entry.get_mut(), $entry.key());
804                                 if drop {
805                                         $entry.remove_entry();
806                                 }
807                                 break Err(res);
808                         }
809                 }
810         }
811 }
812
813 macro_rules! try_chan_entry {
814         ($self: ident, $res: expr, $channel_state: expr, $entry: expr) => {
815                 match $res {
816                         Ok(res) => res,
817                         Err(e) => {
818                                 let (drop, res) = convert_chan_err!($self, e, $channel_state.short_to_id, $entry.get_mut(), $entry.key());
819                                 if drop {
820                                         $entry.remove_entry();
821                                 }
822                                 return Err(res);
823                         }
824                 }
825         }
826 }
827
828 macro_rules! handle_monitor_err {
829         ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => {
830                 handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment, Vec::new(), Vec::new())
831         };
832         ($self: ident, $err: expr, $short_to_id: expr, $chan: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr, $failed_forwards: expr, $failed_fails: expr, $chan_id: expr) => {
833                 match $err {
834                         ChannelMonitorUpdateErr::PermanentFailure => {
835                                 log_error!($self.logger, "Closing channel {} due to monitor update ChannelMonitorUpdateErr::PermanentFailure", log_bytes!($chan_id[..]));
836                                 if let Some(short_id) = $chan.get_short_channel_id() {
837                                         $short_to_id.remove(&short_id);
838                                 }
839                                 // TODO: $failed_fails is dropped here, which will cause other channels to hit the
840                                 // chain in a confused state! We need to move them into the ChannelMonitor which
841                                 // will be responsible for failing backwards once things confirm on-chain.
842                                 // It's ok that we drop $failed_forwards here - at this point we'd rather they
843                                 // broadcast HTLC-Timeout and pay the associated fees to get their funds back than
844                                 // us bother trying to claim it just to forward on to another peer. If we're
845                                 // splitting hairs we'd prefer to claim payments that were to us, but we haven't
846                                 // given up the preimage yet, so might as well just wait until the payment is
847                                 // retried, avoiding the on-chain fees.
848                                 let res: Result<(), _> = Err(MsgHandleErrInternal::from_finish_shutdown("ChannelMonitor storage failure".to_owned(), *$chan_id, $chan.force_shutdown(true), $self.get_channel_update(&$chan).ok()));
849                                 (res, true)
850                         },
851                         ChannelMonitorUpdateErr::TemporaryFailure => {
852                                 log_info!($self.logger, "Disabling channel {} due to monitor update TemporaryFailure. On restore will send {} and process {} forwards and {} fails",
853                                                 log_bytes!($chan_id[..]),
854                                                 if $resend_commitment && $resend_raa {
855                                                                 match $action_type {
856                                                                         RAACommitmentOrder::CommitmentFirst => { "commitment then RAA" },
857                                                                         RAACommitmentOrder::RevokeAndACKFirst => { "RAA then commitment" },
858                                                                 }
859                                                         } else if $resend_commitment { "commitment" }
860                                                         else if $resend_raa { "RAA" }
861                                                         else { "nothing" },
862                                                 (&$failed_forwards as &Vec<(PendingHTLCInfo, u64)>).len(),
863                                                 (&$failed_fails as &Vec<(HTLCSource, PaymentHash, HTLCFailReason)>).len());
864                                 if !$resend_commitment {
865                                         debug_assert!($action_type == RAACommitmentOrder::RevokeAndACKFirst || !$resend_raa);
866                                 }
867                                 if !$resend_raa {
868                                         debug_assert!($action_type == RAACommitmentOrder::CommitmentFirst || !$resend_commitment);
869                                 }
870                                 $chan.monitor_update_failed($resend_raa, $resend_commitment, $failed_forwards, $failed_fails);
871                                 (Err(MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore("Failed to update ChannelMonitor".to_owned()), *$chan_id)), false)
872                         },
873                 }
874         };
875         ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr, $failed_forwards: expr, $failed_fails: expr) => { {
876                 let (res, drop) = handle_monitor_err!($self, $err, $channel_state.short_to_id, $entry.get_mut(), $action_type, $resend_raa, $resend_commitment, $failed_forwards, $failed_fails, $entry.key());
877                 if drop {
878                         $entry.remove_entry();
879                 }
880                 res
881         } };
882 }
883
884 macro_rules! return_monitor_err {
885         ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => {
886                 return handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment);
887         };
888         ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr, $failed_forwards: expr, $failed_fails: expr) => {
889                 return handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment, $failed_forwards, $failed_fails);
890         }
891 }
892
893 // Does not break in case of TemporaryFailure!
894 macro_rules! maybe_break_monitor_err {
895         ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => {
896                 match (handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment), $err) {
897                         (e, ChannelMonitorUpdateErr::PermanentFailure) => {
898                                 break e;
899                         },
900                         (_, ChannelMonitorUpdateErr::TemporaryFailure) => { },
901                 }
902         }
903 }
904
905 macro_rules! handle_chan_restoration_locked {
906         ($self: ident, $channel_lock: expr, $channel_state: expr, $channel_entry: expr,
907          $raa: expr, $commitment_update: expr, $order: expr, $chanmon_update: expr,
908          $pending_forwards: expr, $funding_broadcastable: expr, $funding_locked: expr) => { {
909                 let mut htlc_forwards = None;
910                 let counterparty_node_id = $channel_entry.get().get_counterparty_node_id();
911
912                 let chanmon_update: Option<ChannelMonitorUpdate> = $chanmon_update; // Force type-checking to resolve
913                 let chanmon_update_is_none = chanmon_update.is_none();
914                 let res = loop {
915                         let forwards: Vec<(PendingHTLCInfo, u64)> = $pending_forwards; // Force type-checking to resolve
916                         if !forwards.is_empty() {
917                                 htlc_forwards = Some(($channel_entry.get().get_short_channel_id().expect("We can't have pending forwards before funding confirmation"),
918                                         $channel_entry.get().get_funding_txo().unwrap(), forwards));
919                         }
920
921                         if chanmon_update.is_some() {
922                                 // On reconnect, we, by definition, only resend a funding_locked if there have been
923                                 // no commitment updates, so the only channel monitor update which could also be
924                                 // associated with a funding_locked would be the funding_created/funding_signed
925                                 // monitor update. That monitor update failing implies that we won't send
926                                 // funding_locked until it's been updated, so we can't have a funding_locked and a
927                                 // monitor update here (so we don't bother to handle it correctly below).
928                                 assert!($funding_locked.is_none());
929                                 // A channel monitor update makes no sense without either a funding_locked or a
930                                 // commitment update to process after it. Since we can't have a funding_locked, we
931                                 // only bother to handle the monitor-update + commitment_update case below.
932                                 assert!($commitment_update.is_some());
933                         }
934
935                         if let Some(msg) = $funding_locked {
936                                 // Similar to the above, this implies that we're letting the funding_locked fly
937                                 // before it should be allowed to.
938                                 assert!(chanmon_update.is_none());
939                                 $channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingLocked {
940                                         node_id: counterparty_node_id,
941                                         msg,
942                                 });
943                                 if let Some(announcement_sigs) = $self.get_announcement_sigs($channel_entry.get()) {
944                                         $channel_state.pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
945                                                 node_id: counterparty_node_id,
946                                                 msg: announcement_sigs,
947                                         });
948                                 }
949                                 $channel_state.short_to_id.insert($channel_entry.get().get_short_channel_id().unwrap(), $channel_entry.get().channel_id());
950                         }
951
952                         let funding_broadcastable: Option<Transaction> = $funding_broadcastable; // Force type-checking to resolve
953                         if let Some(monitor_update) = chanmon_update {
954                                 // We only ever broadcast a funding transaction in response to a funding_signed
955                                 // message and the resulting monitor update. Thus, on channel_reestablish
956                                 // message handling we can't have a funding transaction to broadcast. When
957                                 // processing a monitor update finishing resulting in a funding broadcast, we
958                                 // cannot have a second monitor update, thus this case would indicate a bug.
959                                 assert!(funding_broadcastable.is_none());
960                                 // Given we were just reconnected or finished updating a channel monitor, the
961                                 // only case where we can get a new ChannelMonitorUpdate would be if we also
962                                 // have some commitment updates to send as well.
963                                 assert!($commitment_update.is_some());
964                                 if let Err(e) = $self.chain_monitor.update_channel($channel_entry.get().get_funding_txo().unwrap(), monitor_update) {
965                                         // channel_reestablish doesn't guarantee the order it returns is sensical
966                                         // for the messages it returns, but if we're setting what messages to
967                                         // re-transmit on monitor update success, we need to make sure it is sane.
968                                         let mut order = $order;
969                                         if $raa.is_none() {
970                                                 order = RAACommitmentOrder::CommitmentFirst;
971                                         }
972                                         break handle_monitor_err!($self, e, $channel_state, $channel_entry, order, $raa.is_some(), true);
973                                 }
974                         }
975
976                         macro_rules! handle_cs { () => {
977                                 if let Some(update) = $commitment_update {
978                                         $channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
979                                                 node_id: counterparty_node_id,
980                                                 updates: update,
981                                         });
982                                 }
983                         } }
984                         macro_rules! handle_raa { () => {
985                                 if let Some(revoke_and_ack) = $raa {
986                                         $channel_state.pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
987                                                 node_id: counterparty_node_id,
988                                                 msg: revoke_and_ack,
989                                         });
990                                 }
991                         } }
992                         match $order {
993                                 RAACommitmentOrder::CommitmentFirst => {
994                                         handle_cs!();
995                                         handle_raa!();
996                                 },
997                                 RAACommitmentOrder::RevokeAndACKFirst => {
998                                         handle_raa!();
999                                         handle_cs!();
1000                                 },
1001                         }
1002                         if let Some(tx) = funding_broadcastable {
1003                                 log_info!($self.logger, "Broadcasting funding transaction with txid {}", tx.txid());
1004                                 $self.tx_broadcaster.broadcast_transaction(&tx);
1005                         }
1006                         break Ok(());
1007                 };
1008
1009                 if chanmon_update_is_none {
1010                         // If there was no ChannelMonitorUpdate, we should never generate an Err in the res loop
1011                         // above. Doing so would imply calling handle_err!() from channel_monitor_updated() which
1012                         // should *never* end up calling back to `chain_monitor.update_channel()`.
1013                         assert!(res.is_ok());
1014                 }
1015
1016                 (htlc_forwards, res, counterparty_node_id)
1017         } }
1018 }
1019
1020 macro_rules! post_handle_chan_restoration {
1021         ($self: ident, $locked_res: expr) => { {
1022                 let (htlc_forwards, res, counterparty_node_id) = $locked_res;
1023
1024                 let _ = handle_error!($self, res, counterparty_node_id);
1025
1026                 if let Some(forwards) = htlc_forwards {
1027                         $self.forward_htlcs(&mut [forwards][..]);
1028                 }
1029         } }
1030 }
1031
1032 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> ChannelManager<Signer, M, T, K, F, L>
1033         where M::Target: chain::Watch<Signer>,
1034         T::Target: BroadcasterInterface,
1035         K::Target: KeysInterface<Signer = Signer>,
1036         F::Target: FeeEstimator,
1037         L::Target: Logger,
1038 {
1039         /// Constructs a new ChannelManager to hold several channels and route between them.
1040         ///
1041         /// This is the main "logic hub" for all channel-related actions, and implements
1042         /// ChannelMessageHandler.
1043         ///
1044         /// Non-proportional fees are fixed according to our risk using the provided fee estimator.
1045         ///
1046         /// panics if channel_value_satoshis is >= `MAX_FUNDING_SATOSHIS`!
1047         ///
1048         /// Users need to notify the new ChannelManager when a new block is connected or
1049         /// disconnected using its `block_connected` and `block_disconnected` methods, starting
1050         /// from after `params.latest_hash`.
1051         pub fn new(fee_est: F, chain_monitor: M, tx_broadcaster: T, logger: L, keys_manager: K, config: UserConfig, params: ChainParameters) -> Self {
1052                 let mut secp_ctx = Secp256k1::new();
1053                 secp_ctx.seeded_randomize(&keys_manager.get_secure_random_bytes());
1054
1055                 ChannelManager {
1056                         default_configuration: config.clone(),
1057                         genesis_hash: genesis_block(params.network).header.block_hash(),
1058                         fee_estimator: fee_est,
1059                         chain_monitor,
1060                         tx_broadcaster,
1061
1062                         best_block: RwLock::new(params.best_block),
1063
1064                         channel_state: Mutex::new(ChannelHolder{
1065                                 by_id: HashMap::new(),
1066                                 short_to_id: HashMap::new(),
1067                                 forward_htlcs: HashMap::new(),
1068                                 claimable_htlcs: HashMap::new(),
1069                                 pending_msg_events: Vec::new(),
1070                         }),
1071                         pending_inbound_payments: Mutex::new(HashMap::new()),
1072                         pending_outbound_payments: Mutex::new(HashSet::new()),
1073
1074                         our_network_key: keys_manager.get_node_secret(),
1075                         our_network_pubkey: PublicKey::from_secret_key(&secp_ctx, &keys_manager.get_node_secret()),
1076                         secp_ctx,
1077
1078                         last_node_announcement_serial: AtomicUsize::new(0),
1079                         highest_seen_timestamp: AtomicUsize::new(0),
1080
1081                         per_peer_state: RwLock::new(HashMap::new()),
1082
1083                         pending_events: Mutex::new(Vec::new()),
1084                         pending_background_events: Mutex::new(Vec::new()),
1085                         total_consistency_lock: RwLock::new(()),
1086                         persistence_notifier: PersistenceNotifier::new(),
1087
1088                         keys_manager,
1089
1090                         logger,
1091                 }
1092         }
1093
1094         /// Gets the current configuration applied to all new channels,  as
1095         pub fn get_current_default_configuration(&self) -> &UserConfig {
1096                 &self.default_configuration
1097         }
1098
1099         /// Creates a new outbound channel to the given remote node and with the given value.
1100         ///
1101         /// user_id will be provided back as user_channel_id in FundingGenerationReady events to allow
1102         /// tracking of which events correspond with which create_channel call. Note that the
1103         /// user_channel_id defaults to 0 for inbound channels, so you may wish to avoid using 0 for
1104         /// user_id here. user_id has no meaning inside of LDK, it is simply copied to events and
1105         /// otherwise ignored.
1106         ///
1107         /// If successful, will generate a SendOpenChannel message event, so you should probably poll
1108         /// PeerManager::process_events afterwards.
1109         ///
1110         /// Raises APIError::APIMisuseError when channel_value_satoshis > 2**24 or push_msat is
1111         /// greater than channel_value_satoshis * 1k or channel_value_satoshis is < 1000.
1112         pub fn create_channel(&self, their_network_key: PublicKey, channel_value_satoshis: u64, push_msat: u64, user_id: u64, override_config: Option<UserConfig>) -> Result<(), APIError> {
1113                 if channel_value_satoshis < 1000 {
1114                         return Err(APIError::APIMisuseError { err: format!("Channel value must be at least 1000 satoshis. It was {}", channel_value_satoshis) });
1115                 }
1116
1117                 let config = if override_config.is_some() { override_config.as_ref().unwrap() } else { &self.default_configuration };
1118                 let channel = Channel::new_outbound(&self.fee_estimator, &self.keys_manager, their_network_key, channel_value_satoshis, push_msat, user_id, config)?;
1119                 let res = channel.get_open_channel(self.genesis_hash.clone());
1120
1121                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1122                 // We want to make sure the lock is actually acquired by PersistenceNotifierGuard.
1123                 debug_assert!(&self.total_consistency_lock.try_write().is_err());
1124
1125                 let mut channel_state = self.channel_state.lock().unwrap();
1126                 match channel_state.by_id.entry(channel.channel_id()) {
1127                         hash_map::Entry::Occupied(_) => {
1128                                 if cfg!(feature = "fuzztarget") {
1129                                         return Err(APIError::APIMisuseError { err: "Fuzzy bad RNG".to_owned() });
1130                                 } else {
1131                                         panic!("RNG is bad???");
1132                                 }
1133                         },
1134                         hash_map::Entry::Vacant(entry) => { entry.insert(channel); }
1135                 }
1136                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
1137                         node_id: their_network_key,
1138                         msg: res,
1139                 });
1140                 Ok(())
1141         }
1142
1143         fn list_channels_with_filter<Fn: FnMut(&(&[u8; 32], &Channel<Signer>)) -> bool>(&self, f: Fn) -> Vec<ChannelDetails> {
1144                 let mut res = Vec::new();
1145                 {
1146                         let channel_state = self.channel_state.lock().unwrap();
1147                         res.reserve(channel_state.by_id.len());
1148                         for (channel_id, channel) in channel_state.by_id.iter().filter(f) {
1149                                 let (inbound_capacity_msat, outbound_capacity_msat) = channel.get_inbound_outbound_available_balance_msat();
1150                                 res.push(ChannelDetails {
1151                                         channel_id: (*channel_id).clone(),
1152                                         funding_txo: channel.get_funding_txo(),
1153                                         short_channel_id: channel.get_short_channel_id(),
1154                                         remote_network_id: channel.get_counterparty_node_id(),
1155                                         counterparty_features: InitFeatures::empty(),
1156                                         channel_value_satoshis: channel.get_value_satoshis(),
1157                                         inbound_capacity_msat,
1158                                         outbound_capacity_msat,
1159                                         user_id: channel.get_user_id(),
1160                                         is_outbound: channel.is_outbound(),
1161                                         is_funding_locked: channel.is_usable(),
1162                                         is_usable: channel.is_live(),
1163                                         is_public: channel.should_announce(),
1164                                         counterparty_forwarding_info: channel.counterparty_forwarding_info(),
1165                                 });
1166                         }
1167                 }
1168                 let per_peer_state = self.per_peer_state.read().unwrap();
1169                 for chan in res.iter_mut() {
1170                         if let Some(peer_state) = per_peer_state.get(&chan.remote_network_id) {
1171                                 chan.counterparty_features = peer_state.lock().unwrap().latest_features.clone();
1172                         }
1173                 }
1174                 res
1175         }
1176
1177         /// Gets the list of open channels, in random order. See ChannelDetail field documentation for
1178         /// more information.
1179         pub fn list_channels(&self) -> Vec<ChannelDetails> {
1180                 self.list_channels_with_filter(|_| true)
1181         }
1182
1183         /// Gets the list of usable channels, in random order. Useful as an argument to
1184         /// get_route to ensure non-announced channels are used.
1185         ///
1186         /// These are guaranteed to have their [`ChannelDetails::is_usable`] value set to true, see the
1187         /// documentation for [`ChannelDetails::is_usable`] for more info on exactly what the criteria
1188         /// are.
1189         pub fn list_usable_channels(&self) -> Vec<ChannelDetails> {
1190                 // Note we use is_live here instead of usable which leads to somewhat confused
1191                 // internal/external nomenclature, but that's ok cause that's probably what the user
1192                 // really wanted anyway.
1193                 self.list_channels_with_filter(|&(_, ref channel)| channel.is_live())
1194         }
1195
1196         /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
1197         /// will be accepted on the given channel, and after additional timeout/the closing of all
1198         /// pending HTLCs, the channel will be closed on chain.
1199         ///
1200         /// May generate a SendShutdown message event on success, which should be relayed.
1201         pub fn close_channel(&self, channel_id: &[u8; 32]) -> Result<(), APIError> {
1202                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1203
1204                 let (mut failed_htlcs, chan_option) = {
1205                         let mut channel_state_lock = self.channel_state.lock().unwrap();
1206                         let channel_state = &mut *channel_state_lock;
1207                         match channel_state.by_id.entry(channel_id.clone()) {
1208                                 hash_map::Entry::Occupied(mut chan_entry) => {
1209                                         let (shutdown_msg, failed_htlcs) = chan_entry.get_mut().get_shutdown()?;
1210                                         channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
1211                                                 node_id: chan_entry.get().get_counterparty_node_id(),
1212                                                 msg: shutdown_msg
1213                                         });
1214                                         if chan_entry.get().is_shutdown() {
1215                                                 if let Some(short_id) = chan_entry.get().get_short_channel_id() {
1216                                                         channel_state.short_to_id.remove(&short_id);
1217                                                 }
1218                                                 (failed_htlcs, Some(chan_entry.remove_entry().1))
1219                                         } else { (failed_htlcs, None) }
1220                                 },
1221                                 hash_map::Entry::Vacant(_) => return Err(APIError::ChannelUnavailable{err: "No such channel".to_owned()})
1222                         }
1223                 };
1224                 for htlc_source in failed_htlcs.drain(..) {
1225                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
1226                 }
1227                 let chan_update = if let Some(chan) = chan_option {
1228                         if let Ok(update) = self.get_channel_update(&chan) {
1229                                 Some(update)
1230                         } else { None }
1231                 } else { None };
1232
1233                 if let Some(update) = chan_update {
1234                         let mut channel_state = self.channel_state.lock().unwrap();
1235                         channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
1236                                 msg: update
1237                         });
1238                 }
1239
1240                 Ok(())
1241         }
1242
1243         #[inline]
1244         fn finish_force_close_channel(&self, shutdown_res: ShutdownResult) {
1245                 let (monitor_update_option, mut failed_htlcs) = shutdown_res;
1246                 log_trace!(self.logger, "Finishing force-closure of channel {} HTLCs to fail", failed_htlcs.len());
1247                 for htlc_source in failed_htlcs.drain(..) {
1248                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
1249                 }
1250                 if let Some((funding_txo, monitor_update)) = monitor_update_option {
1251                         // There isn't anything we can do if we get an update failure - we're already
1252                         // force-closing. The monitor update on the required in-memory copy should broadcast
1253                         // the latest local state, which is the best we can do anyway. Thus, it is safe to
1254                         // ignore the result here.
1255                         let _ = self.chain_monitor.update_channel(funding_txo, monitor_update);
1256                 }
1257         }
1258
1259         fn force_close_channel_with_peer(&self, channel_id: &[u8; 32], peer_node_id: Option<&PublicKey>) -> Result<PublicKey, APIError> {
1260                 let mut chan = {
1261                         let mut channel_state_lock = self.channel_state.lock().unwrap();
1262                         let channel_state = &mut *channel_state_lock;
1263                         if let hash_map::Entry::Occupied(chan) = channel_state.by_id.entry(channel_id.clone()) {
1264                                 if let Some(node_id) = peer_node_id {
1265                                         if chan.get().get_counterparty_node_id() != *node_id {
1266                                                 return Err(APIError::ChannelUnavailable{err: "No such channel".to_owned()});
1267                                         }
1268                                 }
1269                                 if let Some(short_id) = chan.get().get_short_channel_id() {
1270                                         channel_state.short_to_id.remove(&short_id);
1271                                 }
1272                                 chan.remove_entry().1
1273                         } else {
1274                                 return Err(APIError::ChannelUnavailable{err: "No such channel".to_owned()});
1275                         }
1276                 };
1277                 log_trace!(self.logger, "Force-closing channel {}", log_bytes!(channel_id[..]));
1278                 self.finish_force_close_channel(chan.force_shutdown(true));
1279                 if let Ok(update) = self.get_channel_update(&chan) {
1280                         let mut channel_state = self.channel_state.lock().unwrap();
1281                         channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
1282                                 msg: update
1283                         });
1284                 }
1285
1286                 Ok(chan.get_counterparty_node_id())
1287         }
1288
1289         /// Force closes a channel, immediately broadcasting the latest local commitment transaction to
1290         /// the chain and rejecting new HTLCs on the given channel. Fails if channel_id is unknown to the manager.
1291         pub fn force_close_channel(&self, channel_id: &[u8; 32]) -> Result<(), APIError> {
1292                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1293                 match self.force_close_channel_with_peer(channel_id, None) {
1294                         Ok(counterparty_node_id) => {
1295                                 self.channel_state.lock().unwrap().pending_msg_events.push(
1296                                         events::MessageSendEvent::HandleError {
1297                                                 node_id: counterparty_node_id,
1298                                                 action: msgs::ErrorAction::SendErrorMessage {
1299                                                         msg: msgs::ErrorMessage { channel_id: *channel_id, data: "Channel force-closed".to_owned() }
1300                                                 },
1301                                         }
1302                                 );
1303                                 Ok(())
1304                         },
1305                         Err(e) => Err(e)
1306                 }
1307         }
1308
1309         /// Force close all channels, immediately broadcasting the latest local commitment transaction
1310         /// for each to the chain and rejecting new HTLCs on each.
1311         pub fn force_close_all_channels(&self) {
1312                 for chan in self.list_channels() {
1313                         let _ = self.force_close_channel(&chan.channel_id);
1314                 }
1315         }
1316
1317         fn decode_update_add_htlc_onion(&self, msg: &msgs::UpdateAddHTLC) -> (PendingHTLCStatus, MutexGuard<ChannelHolder<Signer>>) {
1318                 macro_rules! return_malformed_err {
1319                         ($msg: expr, $err_code: expr) => {
1320                                 {
1321                                         log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
1322                                         return (PendingHTLCStatus::Fail(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
1323                                                 channel_id: msg.channel_id,
1324                                                 htlc_id: msg.htlc_id,
1325                                                 sha256_of_onion: Sha256::hash(&msg.onion_routing_packet.hop_data).into_inner(),
1326                                                 failure_code: $err_code,
1327                                         })), self.channel_state.lock().unwrap());
1328                                 }
1329                         }
1330                 }
1331
1332                 if let Err(_) = msg.onion_routing_packet.public_key {
1333                         return_malformed_err!("invalid ephemeral pubkey", 0x8000 | 0x4000 | 6);
1334                 }
1335
1336                 let shared_secret = {
1337                         let mut arr = [0; 32];
1338                         arr.copy_from_slice(&SharedSecret::new(&msg.onion_routing_packet.public_key.unwrap(), &self.our_network_key)[..]);
1339                         arr
1340                 };
1341                 let (rho, mu) = onion_utils::gen_rho_mu_from_shared_secret(&shared_secret);
1342
1343                 if msg.onion_routing_packet.version != 0 {
1344                         //TODO: Spec doesn't indicate if we should only hash hop_data here (and in other
1345                         //sha256_of_onion error data packets), or the entire onion_routing_packet. Either way,
1346                         //the hash doesn't really serve any purpose - in the case of hashing all data, the
1347                         //receiving node would have to brute force to figure out which version was put in the
1348                         //packet by the node that send us the message, in the case of hashing the hop_data, the
1349                         //node knows the HMAC matched, so they already know what is there...
1350                         return_malformed_err!("Unknown onion packet version", 0x8000 | 0x4000 | 4);
1351                 }
1352
1353                 let mut hmac = HmacEngine::<Sha256>::new(&mu);
1354                 hmac.input(&msg.onion_routing_packet.hop_data);
1355                 hmac.input(&msg.payment_hash.0[..]);
1356                 if !fixed_time_eq(&Hmac::from_engine(hmac).into_inner(), &msg.onion_routing_packet.hmac) {
1357                         return_malformed_err!("HMAC Check failed", 0x8000 | 0x4000 | 5);
1358                 }
1359
1360                 let mut channel_state = None;
1361                 macro_rules! return_err {
1362                         ($msg: expr, $err_code: expr, $data: expr) => {
1363                                 {
1364                                         log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
1365                                         if channel_state.is_none() {
1366                                                 channel_state = Some(self.channel_state.lock().unwrap());
1367                                         }
1368                                         return (PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
1369                                                 channel_id: msg.channel_id,
1370                                                 htlc_id: msg.htlc_id,
1371                                                 reason: onion_utils::build_first_hop_failure_packet(&shared_secret, $err_code, $data),
1372                                         })), channel_state.unwrap());
1373                                 }
1374                         }
1375                 }
1376
1377                 let mut chacha = ChaCha20::new(&rho, &[0u8; 8]);
1378                 let mut chacha_stream = ChaChaReader { chacha: &mut chacha, read: Cursor::new(&msg.onion_routing_packet.hop_data[..]) };
1379                 let (next_hop_data, next_hop_hmac) = {
1380                         match msgs::OnionHopData::read(&mut chacha_stream) {
1381                                 Err(err) => {
1382                                         let error_code = match err {
1383                                                 msgs::DecodeError::UnknownVersion => 0x4000 | 1, // unknown realm byte
1384                                                 msgs::DecodeError::UnknownRequiredFeature|
1385                                                 msgs::DecodeError::InvalidValue|
1386                                                 msgs::DecodeError::ShortRead => 0x4000 | 22, // invalid_onion_payload
1387                                                 _ => 0x2000 | 2, // Should never happen
1388                                         };
1389                                         return_err!("Unable to decode our hop data", error_code, &[0;0]);
1390                                 },
1391                                 Ok(msg) => {
1392                                         let mut hmac = [0; 32];
1393                                         if let Err(_) = chacha_stream.read_exact(&mut hmac[..]) {
1394                                                 return_err!("Unable to decode hop data", 0x4000 | 22, &[0;0]);
1395                                         }
1396                                         (msg, hmac)
1397                                 },
1398                         }
1399                 };
1400
1401                 let pending_forward_info = if next_hop_hmac == [0; 32] {
1402                                 #[cfg(test)]
1403                                 {
1404                                         // In tests, make sure that the initial onion pcket data is, at least, non-0.
1405                                         // We could do some fancy randomness test here, but, ehh, whatever.
1406                                         // This checks for the issue where you can calculate the path length given the
1407                                         // onion data as all the path entries that the originator sent will be here
1408                                         // as-is (and were originally 0s).
1409                                         // Of course reverse path calculation is still pretty easy given naive routing
1410                                         // algorithms, but this fixes the most-obvious case.
1411                                         let mut next_bytes = [0; 32];
1412                                         chacha_stream.read_exact(&mut next_bytes).unwrap();
1413                                         assert_ne!(next_bytes[..], [0; 32][..]);
1414                                         chacha_stream.read_exact(&mut next_bytes).unwrap();
1415                                         assert_ne!(next_bytes[..], [0; 32][..]);
1416                                 }
1417
1418                                 // OUR PAYMENT!
1419                                 // final_expiry_too_soon
1420                                 // We have to have some headroom to broadcast on chain if we have the preimage, so make sure we have at least
1421                                 // HTLC_FAIL_BACK_BUFFER blocks to go.
1422                                 // Also, ensure that, in the case of an unknown payment hash, our payment logic has enough time to fail the HTLC backward
1423                                 // before our onchain logic triggers a channel closure (see HTLC_FAIL_BACK_BUFFER rational).
1424                                 if (msg.cltv_expiry as u64) <= self.best_block.read().unwrap().height() as u64 + HTLC_FAIL_BACK_BUFFER as u64 + 1 {
1425                                         return_err!("The final CLTV expiry is too soon to handle", 17, &[0;0]);
1426                                 }
1427                                 // final_incorrect_htlc_amount
1428                                 if next_hop_data.amt_to_forward > msg.amount_msat {
1429                                         return_err!("Upstream node sent less than we were supposed to receive in payment", 19, &byte_utils::be64_to_array(msg.amount_msat));
1430                                 }
1431                                 // final_incorrect_cltv_expiry
1432                                 if next_hop_data.outgoing_cltv_value != msg.cltv_expiry {
1433                                         return_err!("Upstream node set CLTV to the wrong value", 18, &byte_utils::be32_to_array(msg.cltv_expiry));
1434                                 }
1435
1436                                 let payment_data = match next_hop_data.format {
1437                                         msgs::OnionHopDataFormat::Legacy { .. } => None,
1438                                         msgs::OnionHopDataFormat::NonFinalNode { .. } => return_err!("Got non final data with an HMAC of 0", 0x4000 | 22, &[0;0]),
1439                                         msgs::OnionHopDataFormat::FinalNode { payment_data } => payment_data,
1440                                 };
1441
1442                                 if payment_data.is_none() {
1443                                         return_err!("We require payment_secrets", 0x4000|0x2000|3, &[0;0]);
1444                                 }
1445
1446                                 // Note that we could obviously respond immediately with an update_fulfill_htlc
1447                                 // message, however that would leak that we are the recipient of this payment, so
1448                                 // instead we stay symmetric with the forwarding case, only responding (after a
1449                                 // delay) once they've send us a commitment_signed!
1450
1451                                 PendingHTLCStatus::Forward(PendingHTLCInfo {
1452                                         routing: PendingHTLCRouting::Receive {
1453                                                 payment_data: payment_data.unwrap(),
1454                                                 incoming_cltv_expiry: msg.cltv_expiry,
1455                                         },
1456                                         payment_hash: msg.payment_hash.clone(),
1457                                         incoming_shared_secret: shared_secret,
1458                                         amt_to_forward: next_hop_data.amt_to_forward,
1459                                         outgoing_cltv_value: next_hop_data.outgoing_cltv_value,
1460                                 })
1461                         } else {
1462                                 let mut new_packet_data = [0; 20*65];
1463                                 let read_pos = chacha_stream.read(&mut new_packet_data).unwrap();
1464                                 #[cfg(debug_assertions)]
1465                                 {
1466                                         // Check two things:
1467                                         // a) that the behavior of our stream here will return Ok(0) even if the TLV
1468                                         //    read above emptied out our buffer and the unwrap() wont needlessly panic
1469                                         // b) that we didn't somehow magically end up with extra data.
1470                                         let mut t = [0; 1];
1471                                         debug_assert!(chacha_stream.read(&mut t).unwrap() == 0);
1472                                 }
1473                                 // Once we've emptied the set of bytes our peer gave us, encrypt 0 bytes until we
1474                                 // fill the onion hop data we'll forward to our next-hop peer.
1475                                 chacha_stream.chacha.process_in_place(&mut new_packet_data[read_pos..]);
1476
1477                                 let mut new_pubkey = msg.onion_routing_packet.public_key.unwrap();
1478
1479                                 let blinding_factor = {
1480                                         let mut sha = Sha256::engine();
1481                                         sha.input(&new_pubkey.serialize()[..]);
1482                                         sha.input(&shared_secret);
1483                                         Sha256::from_engine(sha).into_inner()
1484                                 };
1485
1486                                 let public_key = if let Err(e) = new_pubkey.mul_assign(&self.secp_ctx, &blinding_factor[..]) {
1487                                         Err(e)
1488                                 } else { Ok(new_pubkey) };
1489
1490                                 let outgoing_packet = msgs::OnionPacket {
1491                                         version: 0,
1492                                         public_key,
1493                                         hop_data: new_packet_data,
1494                                         hmac: next_hop_hmac.clone(),
1495                                 };
1496
1497                                 let short_channel_id = match next_hop_data.format {
1498                                         msgs::OnionHopDataFormat::Legacy { short_channel_id } => short_channel_id,
1499                                         msgs::OnionHopDataFormat::NonFinalNode { short_channel_id } => short_channel_id,
1500                                         msgs::OnionHopDataFormat::FinalNode { .. } => {
1501                                                 return_err!("Final Node OnionHopData provided for us as an intermediary node", 0x4000 | 22, &[0;0]);
1502                                         },
1503                                 };
1504
1505                                 PendingHTLCStatus::Forward(PendingHTLCInfo {
1506                                         routing: PendingHTLCRouting::Forward {
1507                                                 onion_packet: outgoing_packet,
1508                                                 short_channel_id,
1509                                         },
1510                                         payment_hash: msg.payment_hash.clone(),
1511                                         incoming_shared_secret: shared_secret,
1512                                         amt_to_forward: next_hop_data.amt_to_forward,
1513                                         outgoing_cltv_value: next_hop_data.outgoing_cltv_value,
1514                                 })
1515                         };
1516
1517                 channel_state = Some(self.channel_state.lock().unwrap());
1518                 if let &PendingHTLCStatus::Forward(PendingHTLCInfo { ref routing, ref amt_to_forward, ref outgoing_cltv_value, .. }) = &pending_forward_info {
1519                         // If short_channel_id is 0 here, we'll reject the HTLC as there cannot be a channel
1520                         // with a short_channel_id of 0. This is important as various things later assume
1521                         // short_channel_id is non-0 in any ::Forward.
1522                         if let &PendingHTLCRouting::Forward { ref short_channel_id, .. } = routing {
1523                                 let id_option = channel_state.as_ref().unwrap().short_to_id.get(&short_channel_id).cloned();
1524                                 let forwarding_id = match id_option {
1525                                         None => { // unknown_next_peer
1526                                                 return_err!("Don't have available channel for forwarding as requested.", 0x4000 | 10, &[0;0]);
1527                                         },
1528                                         Some(id) => id.clone(),
1529                                 };
1530                                 if let Some((err, code, chan_update)) = loop {
1531                                         let chan = channel_state.as_mut().unwrap().by_id.get_mut(&forwarding_id).unwrap();
1532
1533                                         // Note that we could technically not return an error yet here and just hope
1534                                         // that the connection is reestablished or monitor updated by the time we get
1535                                         // around to doing the actual forward, but better to fail early if we can and
1536                                         // hopefully an attacker trying to path-trace payments cannot make this occur
1537                                         // on a small/per-node/per-channel scale.
1538                                         if !chan.is_live() { // channel_disabled
1539                                                 break Some(("Forwarding channel is not in a ready state.", 0x1000 | 20, Some(self.get_channel_update(chan).unwrap())));
1540                                         }
1541                                         if *amt_to_forward < chan.get_counterparty_htlc_minimum_msat() { // amount_below_minimum
1542                                                 break Some(("HTLC amount was below the htlc_minimum_msat", 0x1000 | 11, Some(self.get_channel_update(chan).unwrap())));
1543                                         }
1544                                         let fee = amt_to_forward.checked_mul(chan.get_fee_proportional_millionths() as u64).and_then(|prop_fee| { (prop_fee / 1000000).checked_add(chan.get_holder_fee_base_msat(&self.fee_estimator) as u64) });
1545                                         if fee.is_none() || msg.amount_msat < fee.unwrap() || (msg.amount_msat - fee.unwrap()) < *amt_to_forward { // fee_insufficient
1546                                                 break Some(("Prior hop has deviated from specified fees parameters or origin node has obsolete ones", 0x1000 | 12, Some(self.get_channel_update(chan).unwrap())));
1547                                         }
1548                                         if (msg.cltv_expiry as u64) < (*outgoing_cltv_value) as u64 + chan.get_cltv_expiry_delta() as u64 { // incorrect_cltv_expiry
1549                                                 break Some(("Forwarding node has tampered with the intended HTLC values or origin node has an obsolete cltv_expiry_delta", 0x1000 | 13, Some(self.get_channel_update(chan).unwrap())));
1550                                         }
1551                                         let cur_height = self.best_block.read().unwrap().height() + 1;
1552                                         // Theoretically, channel counterparty shouldn't send us a HTLC expiring now, but we want to be robust wrt to counterparty
1553                                         // packet sanitization (see HTLC_FAIL_BACK_BUFFER rational)
1554                                         if msg.cltv_expiry <= cur_height + HTLC_FAIL_BACK_BUFFER as u32 { // expiry_too_soon
1555                                                 break Some(("CLTV expiry is too close", 0x1000 | 14, Some(self.get_channel_update(chan).unwrap())));
1556                                         }
1557                                         if msg.cltv_expiry > cur_height + CLTV_FAR_FAR_AWAY as u32 { // expiry_too_far
1558                                                 break Some(("CLTV expiry is too far in the future", 21, None));
1559                                         }
1560                                         // In theory, we would be safe against unitentional channel-closure, if we only required a margin of LATENCY_GRACE_PERIOD_BLOCKS.
1561                                         // But, to be safe against policy reception, we use a longuer delay.
1562                                         if (*outgoing_cltv_value) as u64 <= (cur_height + HTLC_FAIL_BACK_BUFFER) as u64 {
1563                                                 break Some(("Outgoing CLTV value is too soon", 0x1000 | 14, Some(self.get_channel_update(chan).unwrap())));
1564                                         }
1565
1566                                         break None;
1567                                 }
1568                                 {
1569                                         let mut res = Vec::with_capacity(8 + 128);
1570                                         if let Some(chan_update) = chan_update {
1571                                                 if code == 0x1000 | 11 || code == 0x1000 | 12 {
1572                                                         res.extend_from_slice(&byte_utils::be64_to_array(msg.amount_msat));
1573                                                 }
1574                                                 else if code == 0x1000 | 13 {
1575                                                         res.extend_from_slice(&byte_utils::be32_to_array(msg.cltv_expiry));
1576                                                 }
1577                                                 else if code == 0x1000 | 20 {
1578                                                         // TODO: underspecified, follow https://github.com/lightningnetwork/lightning-rfc/issues/791
1579                                                         res.extend_from_slice(&byte_utils::be16_to_array(0));
1580                                                 }
1581                                                 res.extend_from_slice(&chan_update.encode_with_len()[..]);
1582                                         }
1583                                         return_err!(err, code, &res[..]);
1584                                 }
1585                         }
1586                 }
1587
1588                 (pending_forward_info, channel_state.unwrap())
1589         }
1590
1591         /// only fails if the channel does not yet have an assigned short_id
1592         /// May be called with channel_state already locked!
1593         fn get_channel_update(&self, chan: &Channel<Signer>) -> Result<msgs::ChannelUpdate, LightningError> {
1594                 let short_channel_id = match chan.get_short_channel_id() {
1595                         None => return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError}),
1596                         Some(id) => id,
1597                 };
1598
1599                 let were_node_one = PublicKey::from_secret_key(&self.secp_ctx, &self.our_network_key).serialize()[..] < chan.get_counterparty_node_id().serialize()[..];
1600
1601                 let unsigned = msgs::UnsignedChannelUpdate {
1602                         chain_hash: self.genesis_hash,
1603                         short_channel_id,
1604                         timestamp: chan.get_update_time_counter(),
1605                         flags: (!were_node_one) as u8 | ((!chan.is_live() as u8) << 1),
1606                         cltv_expiry_delta: chan.get_cltv_expiry_delta(),
1607                         htlc_minimum_msat: chan.get_counterparty_htlc_minimum_msat(),
1608                         htlc_maximum_msat: OptionalField::Present(chan.get_announced_htlc_max_msat()),
1609                         fee_base_msat: chan.get_holder_fee_base_msat(&self.fee_estimator),
1610                         fee_proportional_millionths: chan.get_fee_proportional_millionths(),
1611                         excess_data: Vec::new(),
1612                 };
1613
1614                 let msg_hash = Sha256dHash::hash(&unsigned.encode()[..]);
1615                 let sig = self.secp_ctx.sign(&hash_to_message!(&msg_hash[..]), &self.our_network_key);
1616
1617                 Ok(msgs::ChannelUpdate {
1618                         signature: sig,
1619                         contents: unsigned
1620                 })
1621         }
1622
1623         // Only public for testing, this should otherwise never be called direcly
1624         pub(crate) fn send_payment_along_path(&self, path: &Vec<RouteHop>, payment_hash: &PaymentHash, payment_secret: &Option<PaymentSecret>, total_value: u64, cur_height: u32) -> Result<(), APIError> {
1625                 log_trace!(self.logger, "Attempting to send payment for path with next hop {}", path.first().unwrap().short_channel_id);
1626                 let prng_seed = self.keys_manager.get_secure_random_bytes();
1627                 let session_priv_bytes = self.keys_manager.get_secure_random_bytes();
1628                 let session_priv = SecretKey::from_slice(&session_priv_bytes[..]).expect("RNG is busted");
1629
1630                 let onion_keys = onion_utils::construct_onion_keys(&self.secp_ctx, &path, &session_priv)
1631                         .map_err(|_| APIError::RouteError{err: "Pubkey along hop was maliciously selected"})?;
1632                 let (onion_payloads, htlc_msat, htlc_cltv) = onion_utils::build_onion_payloads(path, total_value, payment_secret, cur_height)?;
1633                 if onion_utils::route_size_insane(&onion_payloads) {
1634                         return Err(APIError::RouteError{err: "Route size too large considering onion data"});
1635                 }
1636                 let onion_packet = onion_utils::construct_onion_packet(onion_payloads, onion_keys, prng_seed, payment_hash);
1637
1638                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1639                 assert!(self.pending_outbound_payments.lock().unwrap().insert(session_priv_bytes));
1640
1641                 let err: Result<(), _> = loop {
1642                         let mut channel_lock = self.channel_state.lock().unwrap();
1643                         let id = match channel_lock.short_to_id.get(&path.first().unwrap().short_channel_id) {
1644                                 None => return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()}),
1645                                 Some(id) => id.clone(),
1646                         };
1647
1648                         let channel_state = &mut *channel_lock;
1649                         if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(id) {
1650                                 match {
1651                                         if chan.get().get_counterparty_node_id() != path.first().unwrap().pubkey {
1652                                                 return Err(APIError::RouteError{err: "Node ID mismatch on first hop!"});
1653                                         }
1654                                         if !chan.get().is_live() {
1655                                                 return Err(APIError::ChannelUnavailable{err: "Peer for first hop currently disconnected/pending monitor update!".to_owned()});
1656                                         }
1657                                         break_chan_entry!(self, chan.get_mut().send_htlc_and_commit(htlc_msat, payment_hash.clone(), htlc_cltv, HTLCSource::OutboundRoute {
1658                                                 path: path.clone(),
1659                                                 session_priv: session_priv.clone(),
1660                                                 first_hop_htlc_msat: htlc_msat,
1661                                         }, onion_packet, &self.logger), channel_state, chan)
1662                                 } {
1663                                         Some((update_add, commitment_signed, monitor_update)) => {
1664                                                 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
1665                                                         maybe_break_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, true);
1666                                                         // Note that MonitorUpdateFailed here indicates (per function docs)
1667                                                         // that we will resend the commitment update once monitor updating
1668                                                         // is restored. Therefore, we must return an error indicating that
1669                                                         // it is unsafe to retry the payment wholesale, which we do in the
1670                                                         // send_payment check for MonitorUpdateFailed, below.
1671                                                         return Err(APIError::MonitorUpdateFailed);
1672                                                 }
1673
1674                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
1675                                                         node_id: path.first().unwrap().pubkey,
1676                                                         updates: msgs::CommitmentUpdate {
1677                                                                 update_add_htlcs: vec![update_add],
1678                                                                 update_fulfill_htlcs: Vec::new(),
1679                                                                 update_fail_htlcs: Vec::new(),
1680                                                                 update_fail_malformed_htlcs: Vec::new(),
1681                                                                 update_fee: None,
1682                                                                 commitment_signed,
1683                                                         },
1684                                                 });
1685                                         },
1686                                         None => {},
1687                                 }
1688                         } else { unreachable!(); }
1689                         return Ok(());
1690                 };
1691
1692                 match handle_error!(self, err, path.first().unwrap().pubkey) {
1693                         Ok(_) => unreachable!(),
1694                         Err(e) => {
1695                                 Err(APIError::ChannelUnavailable { err: e.err })
1696                         },
1697                 }
1698         }
1699
1700         /// Sends a payment along a given route.
1701         ///
1702         /// Value parameters are provided via the last hop in route, see documentation for RouteHop
1703         /// fields for more info.
1704         ///
1705         /// Note that if the payment_hash already exists elsewhere (eg you're sending a duplicative
1706         /// payment), we don't do anything to stop you! We always try to ensure that if the provided
1707         /// next hop knows the preimage to payment_hash they can claim an additional amount as
1708         /// specified in the last hop in the route! Thus, you should probably do your own
1709         /// payment_preimage tracking (which you should already be doing as they represent "proof of
1710         /// payment") and prevent double-sends yourself.
1711         ///
1712         /// May generate SendHTLCs message(s) event on success, which should be relayed.
1713         ///
1714         /// Each path may have a different return value, and PaymentSendValue may return a Vec with
1715         /// each entry matching the corresponding-index entry in the route paths, see
1716         /// PaymentSendFailure for more info.
1717         ///
1718         /// In general, a path may raise:
1719         ///  * APIError::RouteError when an invalid route or forwarding parameter (cltv_delta, fee,
1720         ///    node public key) is specified.
1721         ///  * APIError::ChannelUnavailable if the next-hop channel is not available for updates
1722         ///    (including due to previous monitor update failure or new permanent monitor update
1723         ///    failure).
1724         ///  * APIError::MonitorUpdateFailed if a new monitor update failure prevented sending the
1725         ///    relevant updates.
1726         ///
1727         /// Note that depending on the type of the PaymentSendFailure the HTLC may have been
1728         /// irrevocably committed to on our end. In such a case, do NOT retry the payment with a
1729         /// different route unless you intend to pay twice!
1730         ///
1731         /// payment_secret is unrelated to payment_hash (or PaymentPreimage) and exists to authenticate
1732         /// the sender to the recipient and prevent payment-probing (deanonymization) attacks. For
1733         /// newer nodes, it will be provided to you in the invoice. If you do not have one, the Route
1734         /// must not contain multiple paths as multi-path payments require a recipient-provided
1735         /// payment_secret.
1736         /// If a payment_secret *is* provided, we assume that the invoice had the payment_secret feature
1737         /// bit set (either as required or as available). If multiple paths are present in the Route,
1738         /// we assume the invoice had the basic_mpp feature set.
1739         pub fn send_payment(&self, route: &Route, payment_hash: PaymentHash, payment_secret: &Option<PaymentSecret>) -> Result<(), PaymentSendFailure> {
1740                 if route.paths.len() < 1 {
1741                         return Err(PaymentSendFailure::ParameterError(APIError::RouteError{err: "There must be at least one path to send over"}));
1742                 }
1743                 if route.paths.len() > 10 {
1744                         // This limit is completely arbitrary - there aren't any real fundamental path-count
1745                         // limits. After we support retrying individual paths we should likely bump this, but
1746                         // for now more than 10 paths likely carries too much one-path failure.
1747                         return Err(PaymentSendFailure::ParameterError(APIError::RouteError{err: "Sending over more than 10 paths is not currently supported"}));
1748                 }
1749                 let mut total_value = 0;
1750                 let our_node_id = self.get_our_node_id();
1751                 let mut path_errs = Vec::with_capacity(route.paths.len());
1752                 'path_check: for path in route.paths.iter() {
1753                         if path.len() < 1 || path.len() > 20 {
1754                                 path_errs.push(Err(APIError::RouteError{err: "Path didn't go anywhere/had bogus size"}));
1755                                 continue 'path_check;
1756                         }
1757                         for (idx, hop) in path.iter().enumerate() {
1758                                 if idx != path.len() - 1 && hop.pubkey == our_node_id {
1759                                         path_errs.push(Err(APIError::RouteError{err: "Path went through us but wasn't a simple rebalance loop to us"}));
1760                                         continue 'path_check;
1761                                 }
1762                         }
1763                         total_value += path.last().unwrap().fee_msat;
1764                         path_errs.push(Ok(()));
1765                 }
1766                 if path_errs.iter().any(|e| e.is_err()) {
1767                         return Err(PaymentSendFailure::PathParameterError(path_errs));
1768                 }
1769
1770                 let cur_height = self.best_block.read().unwrap().height() + 1;
1771                 let mut results = Vec::new();
1772                 for path in route.paths.iter() {
1773                         results.push(self.send_payment_along_path(&path, &payment_hash, payment_secret, total_value, cur_height));
1774                 }
1775                 let mut has_ok = false;
1776                 let mut has_err = false;
1777                 for res in results.iter() {
1778                         if res.is_ok() { has_ok = true; }
1779                         if res.is_err() { has_err = true; }
1780                         if let &Err(APIError::MonitorUpdateFailed) = res {
1781                                 // MonitorUpdateFailed is inherently unsafe to retry, so we call it a
1782                                 // PartialFailure.
1783                                 has_err = true;
1784                                 has_ok = true;
1785                                 break;
1786                         }
1787                 }
1788                 if has_err && has_ok {
1789                         Err(PaymentSendFailure::PartialFailure(results))
1790                 } else if has_err {
1791                         Err(PaymentSendFailure::AllFailedRetrySafe(results.drain(..).map(|r| r.unwrap_err()).collect()))
1792                 } else {
1793                         Ok(())
1794                 }
1795         }
1796
1797         /// Handles the generation of a funding transaction, optionally (for tests) with a function
1798         /// which checks the correctness of the funding transaction given the associated channel.
1799         fn funding_transaction_generated_intern<FundingOutput: Fn(&Channel<Signer>, &Transaction) -> Result<OutPoint, APIError>>
1800                         (&self, temporary_channel_id: &[u8; 32], funding_transaction: Transaction, find_funding_output: FundingOutput) -> Result<(), APIError> {
1801                 let (chan, msg) = {
1802                         let (res, chan) = match self.channel_state.lock().unwrap().by_id.remove(temporary_channel_id) {
1803                                 Some(mut chan) => {
1804                                         let funding_txo = find_funding_output(&chan, &funding_transaction)?;
1805
1806                                         (chan.get_outbound_funding_created(funding_transaction, funding_txo, &self.logger)
1807                                                 .map_err(|e| if let ChannelError::Close(msg) = e {
1808                                                         MsgHandleErrInternal::from_finish_shutdown(msg, chan.channel_id(), chan.force_shutdown(true), None)
1809                                                 } else { unreachable!(); })
1810                                         , chan)
1811                                 },
1812                                 None => { return Err(APIError::ChannelUnavailable { err: "No such channel".to_owned() }) },
1813                         };
1814                         match handle_error!(self, res, chan.get_counterparty_node_id()) {
1815                                 Ok(funding_msg) => {
1816                                         (chan, funding_msg)
1817                                 },
1818                                 Err(_) => { return Err(APIError::ChannelUnavailable {
1819                                         err: "Error deriving keys or signing initial commitment transactions - either our RNG or our counterparty's RNG is broken or the Signer refused to sign".to_owned()
1820                                 }) },
1821                         }
1822                 };
1823
1824                 let mut channel_state = self.channel_state.lock().unwrap();
1825                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingCreated {
1826                         node_id: chan.get_counterparty_node_id(),
1827                         msg,
1828                 });
1829                 match channel_state.by_id.entry(chan.channel_id()) {
1830                         hash_map::Entry::Occupied(_) => {
1831                                 panic!("Generated duplicate funding txid?");
1832                         },
1833                         hash_map::Entry::Vacant(e) => {
1834                                 e.insert(chan);
1835                         }
1836                 }
1837                 Ok(())
1838         }
1839
1840         #[cfg(test)]
1841         pub(crate) fn funding_transaction_generated_unchecked(&self, temporary_channel_id: &[u8; 32], funding_transaction: Transaction, output_index: u16) -> Result<(), APIError> {
1842                 self.funding_transaction_generated_intern(temporary_channel_id, funding_transaction, |_, tx| {
1843                         Ok(OutPoint { txid: tx.txid(), index: output_index })
1844                 })
1845         }
1846
1847         /// Call this upon creation of a funding transaction for the given channel.
1848         ///
1849         /// Returns an [`APIError::APIMisuseError`] if the funding_transaction spent non-SegWit outputs
1850         /// or if no output was found which matches the parameters in [`Event::FundingGenerationReady`].
1851         ///
1852         /// Panics if a funding transaction has already been provided for this channel.
1853         ///
1854         /// May panic if the output found in the funding transaction is duplicative with some other
1855         /// channel (note that this should be trivially prevented by using unique funding transaction
1856         /// keys per-channel).
1857         ///
1858         /// Do NOT broadcast the funding transaction yourself. When we have safely received our
1859         /// counterparty's signature the funding transaction will automatically be broadcast via the
1860         /// [`BroadcasterInterface`] provided when this `ChannelManager` was constructed.
1861         ///
1862         /// Note that this includes RBF or similar transaction replacement strategies - lightning does
1863         /// not currently support replacing a funding transaction on an existing channel. Instead,
1864         /// create a new channel with a conflicting funding transaction.
1865         ///
1866         /// [`Event::FundingGenerationReady`]: crate::util::events::Event::FundingGenerationReady
1867         pub fn funding_transaction_generated(&self, temporary_channel_id: &[u8; 32], funding_transaction: Transaction) -> Result<(), APIError> {
1868                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1869
1870                 for inp in funding_transaction.input.iter() {
1871                         if inp.witness.is_empty() {
1872                                 return Err(APIError::APIMisuseError {
1873                                         err: "Funding transaction must be fully signed and spend Segwit outputs".to_owned()
1874                                 });
1875                         }
1876                 }
1877                 self.funding_transaction_generated_intern(temporary_channel_id, funding_transaction, |chan, tx| {
1878                         let mut output_index = None;
1879                         let expected_spk = chan.get_funding_redeemscript().to_v0_p2wsh();
1880                         for (idx, outp) in tx.output.iter().enumerate() {
1881                                 if outp.script_pubkey == expected_spk && outp.value == chan.get_value_satoshis() {
1882                                         if output_index.is_some() {
1883                                                 return Err(APIError::APIMisuseError {
1884                                                         err: "Multiple outputs matched the expected script and value".to_owned()
1885                                                 });
1886                                         }
1887                                         if idx > u16::max_value() as usize {
1888                                                 return Err(APIError::APIMisuseError {
1889                                                         err: "Transaction had more than 2^16 outputs, which is not supported".to_owned()
1890                                                 });
1891                                         }
1892                                         output_index = Some(idx as u16);
1893                                 }
1894                         }
1895                         if output_index.is_none() {
1896                                 return Err(APIError::APIMisuseError {
1897                                         err: "No output matched the script_pubkey and value in the FundingGenerationReady event".to_owned()
1898                                 });
1899                         }
1900                         Ok(OutPoint { txid: tx.txid(), index: output_index.unwrap() })
1901                 })
1902         }
1903
1904         fn get_announcement_sigs(&self, chan: &Channel<Signer>) -> Option<msgs::AnnouncementSignatures> {
1905                 if !chan.should_announce() {
1906                         log_trace!(self.logger, "Can't send announcement_signatures for private channel {}", log_bytes!(chan.channel_id()));
1907                         return None
1908                 }
1909
1910                 let (announcement, our_bitcoin_sig) = match chan.get_channel_announcement(self.get_our_node_id(), self.genesis_hash.clone()) {
1911                         Ok(res) => res,
1912                         Err(_) => return None, // Only in case of state precondition violations eg channel is closing
1913                 };
1914                 let msghash = hash_to_message!(&Sha256dHash::hash(&announcement.encode()[..])[..]);
1915                 let our_node_sig = self.secp_ctx.sign(&msghash, &self.our_network_key);
1916
1917                 Some(msgs::AnnouncementSignatures {
1918                         channel_id: chan.channel_id(),
1919                         short_channel_id: chan.get_short_channel_id().unwrap(),
1920                         node_signature: our_node_sig,
1921                         bitcoin_signature: our_bitcoin_sig,
1922                 })
1923         }
1924
1925         #[allow(dead_code)]
1926         // Messages of up to 64KB should never end up more than half full with addresses, as that would
1927         // be absurd. We ensure this by checking that at least 500 (our stated public contract on when
1928         // broadcast_node_announcement panics) of the maximum-length addresses would fit in a 64KB
1929         // message...
1930         const HALF_MESSAGE_IS_ADDRS: u32 = ::core::u16::MAX as u32 / (NetAddress::MAX_LEN as u32 + 1) / 2;
1931         #[deny(const_err)]
1932         #[allow(dead_code)]
1933         // ...by failing to compile if the number of addresses that would be half of a message is
1934         // smaller than 500:
1935         const STATIC_ASSERT: u32 = Self::HALF_MESSAGE_IS_ADDRS - 500;
1936
1937         /// Regenerates channel_announcements and generates a signed node_announcement from the given
1938         /// arguments, providing them in corresponding events via
1939         /// [`get_and_clear_pending_msg_events`], if at least one public channel has been confirmed
1940         /// on-chain. This effectively re-broadcasts all channel announcements and sends our node
1941         /// announcement to ensure that the lightning P2P network is aware of the channels we have and
1942         /// our network addresses.
1943         ///
1944         /// `rgb` is a node "color" and `alias` is a printable human-readable string to describe this
1945         /// node to humans. They carry no in-protocol meaning.
1946         ///
1947         /// `addresses` represent the set (possibly empty) of socket addresses on which this node
1948         /// accepts incoming connections. These will be included in the node_announcement, publicly
1949         /// tying these addresses together and to this node. If you wish to preserve user privacy,
1950         /// addresses should likely contain only Tor Onion addresses.
1951         ///
1952         /// Panics if `addresses` is absurdly large (more than 500).
1953         ///
1954         /// [`get_and_clear_pending_msg_events`]: MessageSendEventsProvider::get_and_clear_pending_msg_events
1955         pub fn broadcast_node_announcement(&self, rgb: [u8; 3], alias: [u8; 32], mut addresses: Vec<NetAddress>) {
1956                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1957
1958                 if addresses.len() > 500 {
1959                         panic!("More than half the message size was taken up by public addresses!");
1960                 }
1961
1962                 // While all existing nodes handle unsorted addresses just fine, the spec requires that
1963                 // addresses be sorted for future compatibility.
1964                 addresses.sort_by_key(|addr| addr.get_id());
1965
1966                 let announcement = msgs::UnsignedNodeAnnouncement {
1967                         features: NodeFeatures::known(),
1968                         timestamp: self.last_node_announcement_serial.fetch_add(1, Ordering::AcqRel) as u32,
1969                         node_id: self.get_our_node_id(),
1970                         rgb, alias, addresses,
1971                         excess_address_data: Vec::new(),
1972                         excess_data: Vec::new(),
1973                 };
1974                 let msghash = hash_to_message!(&Sha256dHash::hash(&announcement.encode()[..])[..]);
1975                 let node_announce_sig = self.secp_ctx.sign(&msghash, &self.our_network_key);
1976
1977                 let mut channel_state_lock = self.channel_state.lock().unwrap();
1978                 let channel_state = &mut *channel_state_lock;
1979
1980                 let mut announced_chans = false;
1981                 for (_, chan) in channel_state.by_id.iter() {
1982                         if let Some(msg) = chan.get_signed_channel_announcement(&self.our_network_key, self.get_our_node_id(), self.genesis_hash.clone()) {
1983                                 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
1984                                         msg,
1985                                         update_msg: match self.get_channel_update(chan) {
1986                                                 Ok(msg) => msg,
1987                                                 Err(_) => continue,
1988                                         },
1989                                 });
1990                                 announced_chans = true;
1991                         } else {
1992                                 // If the channel is not public or has not yet reached funding_locked, check the
1993                                 // next channel. If we don't yet have any public channels, we'll skip the broadcast
1994                                 // below as peers may not accept it without channels on chain first.
1995                         }
1996                 }
1997
1998                 if announced_chans {
1999                         channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastNodeAnnouncement {
2000                                 msg: msgs::NodeAnnouncement {
2001                                         signature: node_announce_sig,
2002                                         contents: announcement
2003                                 },
2004                         });
2005                 }
2006         }
2007
2008         /// Processes HTLCs which are pending waiting on random forward delay.
2009         ///
2010         /// Should only really ever be called in response to a PendingHTLCsForwardable event.
2011         /// Will likely generate further events.
2012         pub fn process_pending_htlc_forwards(&self) {
2013                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2014
2015                 let mut new_events = Vec::new();
2016                 let mut failed_forwards = Vec::new();
2017                 let mut handle_errors = Vec::new();
2018                 {
2019                         let mut channel_state_lock = self.channel_state.lock().unwrap();
2020                         let channel_state = &mut *channel_state_lock;
2021
2022                         for (short_chan_id, mut pending_forwards) in channel_state.forward_htlcs.drain() {
2023                                 if short_chan_id != 0 {
2024                                         let forward_chan_id = match channel_state.short_to_id.get(&short_chan_id) {
2025                                                 Some(chan_id) => chan_id.clone(),
2026                                                 None => {
2027                                                         failed_forwards.reserve(pending_forwards.len());
2028                                                         for forward_info in pending_forwards.drain(..) {
2029                                                                 match forward_info {
2030                                                                         HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info,
2031                                                                                                    prev_funding_outpoint } => {
2032                                                                                 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
2033                                                                                         short_channel_id: prev_short_channel_id,
2034                                                                                         outpoint: prev_funding_outpoint,
2035                                                                                         htlc_id: prev_htlc_id,
2036                                                                                         incoming_packet_shared_secret: forward_info.incoming_shared_secret,
2037                                                                                 });
2038                                                                                 failed_forwards.push((htlc_source, forward_info.payment_hash,
2039                                                                                         HTLCFailReason::Reason { failure_code: 0x4000 | 10, data: Vec::new() }
2040                                                                                 ));
2041                                                                         },
2042                                                                         HTLCForwardInfo::FailHTLC { .. } => {
2043                                                                                 // Channel went away before we could fail it. This implies
2044                                                                                 // the channel is now on chain and our counterparty is
2045                                                                                 // trying to broadcast the HTLC-Timeout, but that's their
2046                                                                                 // problem, not ours.
2047                                                                         }
2048                                                                 }
2049                                                         }
2050                                                         continue;
2051                                                 }
2052                                         };
2053                                         if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(forward_chan_id) {
2054                                                 let mut add_htlc_msgs = Vec::new();
2055                                                 let mut fail_htlc_msgs = Vec::new();
2056                                                 for forward_info in pending_forwards.drain(..) {
2057                                                         match forward_info {
2058                                                                 HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info: PendingHTLCInfo {
2059                                                                                 routing: PendingHTLCRouting::Forward {
2060                                                                                         onion_packet, ..
2061                                                                                 }, incoming_shared_secret, payment_hash, amt_to_forward, outgoing_cltv_value },
2062                                                                                 prev_funding_outpoint } => {
2063                                                                         log_trace!(self.logger, "Adding HTLC from short id {} with payment_hash {} to channel with short id {} after delay", log_bytes!(payment_hash.0), prev_short_channel_id, short_chan_id);
2064                                                                         let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
2065                                                                                 short_channel_id: prev_short_channel_id,
2066                                                                                 outpoint: prev_funding_outpoint,
2067                                                                                 htlc_id: prev_htlc_id,
2068                                                                                 incoming_packet_shared_secret: incoming_shared_secret,
2069                                                                         });
2070                                                                         match chan.get_mut().send_htlc(amt_to_forward, payment_hash, outgoing_cltv_value, htlc_source.clone(), onion_packet) {
2071                                                                                 Err(e) => {
2072                                                                                         if let ChannelError::Ignore(msg) = e {
2073                                                                                                 log_trace!(self.logger, "Failed to forward HTLC with payment_hash {}: {}", log_bytes!(payment_hash.0), msg);
2074                                                                                         } else {
2075                                                                                                 panic!("Stated return value requirements in send_htlc() were not met");
2076                                                                                         }
2077                                                                                         let chan_update = self.get_channel_update(chan.get()).unwrap();
2078                                                                                         failed_forwards.push((htlc_source, payment_hash,
2079                                                                                                 HTLCFailReason::Reason { failure_code: 0x1000 | 7, data: chan_update.encode_with_len() }
2080                                                                                         ));
2081                                                                                         continue;
2082                                                                                 },
2083                                                                                 Ok(update_add) => {
2084                                                                                         match update_add {
2085                                                                                                 Some(msg) => { add_htlc_msgs.push(msg); },
2086                                                                                                 None => {
2087                                                                                                         // Nothing to do here...we're waiting on a remote
2088                                                                                                         // revoke_and_ack before we can add anymore HTLCs. The Channel
2089                                                                                                         // will automatically handle building the update_add_htlc and
2090                                                                                                         // commitment_signed messages when we can.
2091                                                                                                         // TODO: Do some kind of timer to set the channel as !is_live()
2092                                                                                                         // as we don't really want others relying on us relaying through
2093                                                                                                         // this channel currently :/.
2094                                                                                                 }
2095                                                                                         }
2096                                                                                 }
2097                                                                         }
2098                                                                 },
2099                                                                 HTLCForwardInfo::AddHTLC { .. } => {
2100                                                                         panic!("short_channel_id != 0 should imply any pending_forward entries are of type Forward");
2101                                                                 },
2102                                                                 HTLCForwardInfo::FailHTLC { htlc_id, err_packet } => {
2103                                                                         log_trace!(self.logger, "Failing HTLC back to channel with short id {} after delay", short_chan_id);
2104                                                                         match chan.get_mut().get_update_fail_htlc(htlc_id, err_packet, &self.logger) {
2105                                                                                 Err(e) => {
2106                                                                                         if let ChannelError::Ignore(msg) = e {
2107                                                                                                 log_trace!(self.logger, "Failed to fail backwards to short_id {}: {}", short_chan_id, msg);
2108                                                                                         } else {
2109                                                                                                 panic!("Stated return value requirements in get_update_fail_htlc() were not met");
2110                                                                                         }
2111                                                                                         // fail-backs are best-effort, we probably already have one
2112                                                                                         // pending, and if not that's OK, if not, the channel is on
2113                                                                                         // the chain and sending the HTLC-Timeout is their problem.
2114                                                                                         continue;
2115                                                                                 },
2116                                                                                 Ok(Some(msg)) => { fail_htlc_msgs.push(msg); },
2117                                                                                 Ok(None) => {
2118                                                                                         // Nothing to do here...we're waiting on a remote
2119                                                                                         // revoke_and_ack before we can update the commitment
2120                                                                                         // transaction. The Channel will automatically handle
2121                                                                                         // building the update_fail_htlc and commitment_signed
2122                                                                                         // messages when we can.
2123                                                                                         // We don't need any kind of timer here as they should fail
2124                                                                                         // the channel onto the chain if they can't get our
2125                                                                                         // update_fail_htlc in time, it's not our problem.
2126                                                                                 }
2127                                                                         }
2128                                                                 },
2129                                                         }
2130                                                 }
2131
2132                                                 if !add_htlc_msgs.is_empty() || !fail_htlc_msgs.is_empty() {
2133                                                         let (commitment_msg, monitor_update) = match chan.get_mut().send_commitment(&self.logger) {
2134                                                                 Ok(res) => res,
2135                                                                 Err(e) => {
2136                                                                         // We surely failed send_commitment due to bad keys, in that case
2137                                                                         // close channel and then send error message to peer.
2138                                                                         let counterparty_node_id = chan.get().get_counterparty_node_id();
2139                                                                         let err: Result<(), _>  = match e {
2140                                                                                 ChannelError::Ignore(_) => {
2141                                                                                         panic!("Stated return value requirements in send_commitment() were not met");
2142                                                                                 },
2143                                                                                 ChannelError::Close(msg) => {
2144                                                                                         log_trace!(self.logger, "Closing channel {} due to Close-required error: {}", log_bytes!(chan.key()[..]), msg);
2145                                                                                         let (channel_id, mut channel) = chan.remove_entry();
2146                                                                                         if let Some(short_id) = channel.get_short_channel_id() {
2147                                                                                                 channel_state.short_to_id.remove(&short_id);
2148                                                                                         }
2149                                                                                         Err(MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, channel.force_shutdown(true), self.get_channel_update(&channel).ok()))
2150                                                                                 },
2151                                                                                 ChannelError::CloseDelayBroadcast(_) => { panic!("Wait is only generated on receipt of channel_reestablish, which is handled by try_chan_entry, we don't bother to support it here"); }
2152                                                                         };
2153                                                                         handle_errors.push((counterparty_node_id, err));
2154                                                                         continue;
2155                                                                 }
2156                                                         };
2157                                                         if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
2158                                                                 handle_errors.push((chan.get().get_counterparty_node_id(), handle_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, true)));
2159                                                                 continue;
2160                                                         }
2161                                                         channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
2162                                                                 node_id: chan.get().get_counterparty_node_id(),
2163                                                                 updates: msgs::CommitmentUpdate {
2164                                                                         update_add_htlcs: add_htlc_msgs,
2165                                                                         update_fulfill_htlcs: Vec::new(),
2166                                                                         update_fail_htlcs: fail_htlc_msgs,
2167                                                                         update_fail_malformed_htlcs: Vec::new(),
2168                                                                         update_fee: None,
2169                                                                         commitment_signed: commitment_msg,
2170                                                                 },
2171                                                         });
2172                                                 }
2173                                         } else {
2174                                                 unreachable!();
2175                                         }
2176                                 } else {
2177                                         for forward_info in pending_forwards.drain(..) {
2178                                                 match forward_info {
2179                                                         HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info: PendingHTLCInfo {
2180                                                                         routing: PendingHTLCRouting::Receive { payment_data, incoming_cltv_expiry },
2181                                                                         incoming_shared_secret, payment_hash, amt_to_forward, .. },
2182                                                                         prev_funding_outpoint } => {
2183                                                                 let claimable_htlc = ClaimableHTLC {
2184                                                                         prev_hop: HTLCPreviousHopData {
2185                                                                                 short_channel_id: prev_short_channel_id,
2186                                                                                 outpoint: prev_funding_outpoint,
2187                                                                                 htlc_id: prev_htlc_id,
2188                                                                                 incoming_packet_shared_secret: incoming_shared_secret,
2189                                                                         },
2190                                                                         value: amt_to_forward,
2191                                                                         payment_data: payment_data.clone(),
2192                                                                         cltv_expiry: incoming_cltv_expiry,
2193                                                                 };
2194
2195                                                                 macro_rules! fail_htlc {
2196                                                                         ($htlc: expr) => {
2197                                                                                 let mut htlc_msat_height_data = byte_utils::be64_to_array($htlc.value).to_vec();
2198                                                                                 htlc_msat_height_data.extend_from_slice(
2199                                                                                         &byte_utils::be32_to_array(self.best_block.read().unwrap().height()),
2200                                                                                 );
2201                                                                                 failed_forwards.push((HTLCSource::PreviousHopData(HTLCPreviousHopData {
2202                                                                                                 short_channel_id: $htlc.prev_hop.short_channel_id,
2203                                                                                                 outpoint: prev_funding_outpoint,
2204                                                                                                 htlc_id: $htlc.prev_hop.htlc_id,
2205                                                                                                 incoming_packet_shared_secret: $htlc.prev_hop.incoming_packet_shared_secret,
2206                                                                                         }), payment_hash,
2207                                                                                         HTLCFailReason::Reason { failure_code: 0x4000 | 15, data: htlc_msat_height_data }
2208                                                                                 ));
2209                                                                         }
2210                                                                 }
2211
2212                                                                 // Check that the payment hash and secret are known. Note that we
2213                                                                 // MUST take care to handle the "unknown payment hash" and
2214                                                                 // "incorrect payment secret" cases here identically or we'd expose
2215                                                                 // that we are the ultimate recipient of the given payment hash.
2216                                                                 // Further, we must not expose whether we have any other HTLCs
2217                                                                 // associated with the same payment_hash pending or not.
2218                                                                 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
2219                                                                 match payment_secrets.entry(payment_hash) {
2220                                                                         hash_map::Entry::Vacant(_) => {
2221                                                                                 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as we didn't have a corresponding inbound payment.", log_bytes!(payment_hash.0));
2222                                                                                 fail_htlc!(claimable_htlc);
2223                                                                         },
2224                                                                         hash_map::Entry::Occupied(inbound_payment) => {
2225                                                                                 if inbound_payment.get().payment_secret != payment_data.payment_secret {
2226                                                                                         log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our expected payment secret.", log_bytes!(payment_hash.0));
2227                                                                                         fail_htlc!(claimable_htlc);
2228                                                                                 } else if inbound_payment.get().min_value_msat.is_some() && payment_data.total_msat < inbound_payment.get().min_value_msat.unwrap() {
2229                                                                                         log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our minimum value (had {}, needed {}).",
2230                                                                                                 log_bytes!(payment_hash.0), payment_data.total_msat, inbound_payment.get().min_value_msat.unwrap());
2231                                                                                         fail_htlc!(claimable_htlc);
2232                                                                                 } else {
2233                                                                                         let mut total_value = 0;
2234                                                                                         let htlcs = channel_state.claimable_htlcs.entry(payment_hash)
2235                                                                                                 .or_insert(Vec::new());
2236                                                                                         htlcs.push(claimable_htlc);
2237                                                                                         for htlc in htlcs.iter() {
2238                                                                                                 total_value += htlc.value;
2239                                                                                                 if htlc.payment_data.total_msat != payment_data.total_msat {
2240                                                                                                         log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the HTLCs had inconsistent total values (eg {} and {})",
2241                                                                                                                 log_bytes!(payment_hash.0), payment_data.total_msat, htlc.payment_data.total_msat);
2242                                                                                                         total_value = msgs::MAX_VALUE_MSAT;
2243                                                                                                 }
2244                                                                                                 if total_value >= msgs::MAX_VALUE_MSAT { break; }
2245                                                                                         }
2246                                                                                         if total_value >= msgs::MAX_VALUE_MSAT || total_value > payment_data.total_msat {
2247                                                                                                 log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the total value {} ran over expected value {} (or HTLCs were inconsistent)",
2248                                                                                                         log_bytes!(payment_hash.0), total_value, payment_data.total_msat);
2249                                                                                                 for htlc in htlcs.iter() {
2250                                                                                                         fail_htlc!(htlc);
2251                                                                                                 }
2252                                                                                         } else if total_value == payment_data.total_msat {
2253                                                                                                 new_events.push(events::Event::PaymentReceived {
2254                                                                                                         payment_hash,
2255                                                                                                         payment_preimage: inbound_payment.get().payment_preimage,
2256                                                                                                         payment_secret: payment_data.payment_secret,
2257                                                                                                         amt: total_value,
2258                                                                                                         user_payment_id: inbound_payment.get().user_payment_id,
2259                                                                                                 });
2260                                                                                                 // Only ever generate at most one PaymentReceived
2261                                                                                                 // per registered payment_hash, even if it isn't
2262                                                                                                 // claimed.
2263                                                                                                 inbound_payment.remove_entry();
2264                                                                                         } else {
2265                                                                                                 // Nothing to do - we haven't reached the total
2266                                                                                                 // payment value yet, wait until we receive more
2267                                                                                                 // MPP parts.
2268                                                                                         }
2269                                                                                 }
2270                                                                         },
2271                                                                 };
2272                                                         },
2273                                                         HTLCForwardInfo::AddHTLC { .. } => {
2274                                                                 panic!("short_channel_id == 0 should imply any pending_forward entries are of type Receive");
2275                                                         },
2276                                                         HTLCForwardInfo::FailHTLC { .. } => {
2277                                                                 panic!("Got pending fail of our own HTLC");
2278                                                         }
2279                                                 }
2280                                         }
2281                                 }
2282                         }
2283                 }
2284
2285                 for (htlc_source, payment_hash, failure_reason) in failed_forwards.drain(..) {
2286                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source, &payment_hash, failure_reason);
2287                 }
2288
2289                 for (counterparty_node_id, err) in handle_errors.drain(..) {
2290                         let _ = handle_error!(self, err, counterparty_node_id);
2291                 }
2292
2293                 if new_events.is_empty() { return }
2294                 let mut events = self.pending_events.lock().unwrap();
2295                 events.append(&mut new_events);
2296         }
2297
2298         /// Free the background events, generally called from timer_tick_occurred.
2299         ///
2300         /// Exposed for testing to allow us to process events quickly without generating accidental
2301         /// BroadcastChannelUpdate events in timer_tick_occurred.
2302         ///
2303         /// Expects the caller to have a total_consistency_lock read lock.
2304         fn process_background_events(&self) -> bool {
2305                 let mut background_events = Vec::new();
2306                 mem::swap(&mut *self.pending_background_events.lock().unwrap(), &mut background_events);
2307                 if background_events.is_empty() {
2308                         return false;
2309                 }
2310
2311                 for event in background_events.drain(..) {
2312                         match event {
2313                                 BackgroundEvent::ClosingMonitorUpdate((funding_txo, update)) => {
2314                                         // The channel has already been closed, so no use bothering to care about the
2315                                         // monitor updating completing.
2316                                         let _ = self.chain_monitor.update_channel(funding_txo, update);
2317                                 },
2318                         }
2319                 }
2320                 true
2321         }
2322
2323         #[cfg(any(test, feature = "_test_utils"))]
2324         /// Process background events, for functional testing
2325         pub fn test_process_background_events(&self) {
2326                 self.process_background_events();
2327         }
2328
2329         /// If a peer is disconnected we mark any channels with that peer as 'disabled'.
2330         /// After some time, if channels are still disabled we need to broadcast a ChannelUpdate
2331         /// to inform the network about the uselessness of these channels.
2332         ///
2333         /// This method handles all the details, and must be called roughly once per minute.
2334         ///
2335         /// Note that in some rare cases this may generate a `chain::Watch::update_channel` call.
2336         pub fn timer_tick_occurred(&self) {
2337                 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
2338                         let mut should_persist = NotifyOption::SkipPersist;
2339                         if self.process_background_events() { should_persist = NotifyOption::DoPersist; }
2340
2341                         let mut channel_state_lock = self.channel_state.lock().unwrap();
2342                         let channel_state = &mut *channel_state_lock;
2343                         for (_, chan) in channel_state.by_id.iter_mut() {
2344                                 match chan.channel_update_status() {
2345                                         ChannelUpdateStatus::Enabled if !chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::DisabledStaged),
2346                                         ChannelUpdateStatus::Disabled if chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::EnabledStaged),
2347                                         ChannelUpdateStatus::DisabledStaged if chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::Enabled),
2348                                         ChannelUpdateStatus::EnabledStaged if !chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::Disabled),
2349                                         ChannelUpdateStatus::DisabledStaged if !chan.is_live() => {
2350                                                 if let Ok(update) = self.get_channel_update(&chan) {
2351                                                         channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2352                                                                 msg: update
2353                                                         });
2354                                                 }
2355                                                 should_persist = NotifyOption::DoPersist;
2356                                                 chan.set_channel_update_status(ChannelUpdateStatus::Disabled);
2357                                         },
2358                                         ChannelUpdateStatus::EnabledStaged if chan.is_live() => {
2359                                                 if let Ok(update) = self.get_channel_update(&chan) {
2360                                                         channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2361                                                                 msg: update
2362                                                         });
2363                                                 }
2364                                                 should_persist = NotifyOption::DoPersist;
2365                                                 chan.set_channel_update_status(ChannelUpdateStatus::Enabled);
2366                                         },
2367                                         _ => {},
2368                                 }
2369                         }
2370
2371                         should_persist
2372                 });
2373         }
2374
2375         /// Indicates that the preimage for payment_hash is unknown or the received amount is incorrect
2376         /// after a PaymentReceived event, failing the HTLC back to its origin and freeing resources
2377         /// along the path (including in our own channel on which we received it).
2378         /// Returns false if no payment was found to fail backwards, true if the process of failing the
2379         /// HTLC backwards has been started.
2380         pub fn fail_htlc_backwards(&self, payment_hash: &PaymentHash) -> bool {
2381                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2382
2383                 let mut channel_state = Some(self.channel_state.lock().unwrap());
2384                 let removed_source = channel_state.as_mut().unwrap().claimable_htlcs.remove(payment_hash);
2385                 if let Some(mut sources) = removed_source {
2386                         for htlc in sources.drain(..) {
2387                                 if channel_state.is_none() { channel_state = Some(self.channel_state.lock().unwrap()); }
2388                                 let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec();
2389                                 htlc_msat_height_data.extend_from_slice(&byte_utils::be32_to_array(
2390                                                 self.best_block.read().unwrap().height()));
2391                                 self.fail_htlc_backwards_internal(channel_state.take().unwrap(),
2392                                                 HTLCSource::PreviousHopData(htlc.prev_hop), payment_hash,
2393                                                 HTLCFailReason::Reason { failure_code: 0x4000 | 15, data: htlc_msat_height_data });
2394                         }
2395                         true
2396                 } else { false }
2397         }
2398
2399         // Fail a list of HTLCs that were just freed from the holding cell. The HTLCs need to be
2400         // failed backwards or, if they were one of our outgoing HTLCs, then their failure needs to
2401         // be surfaced to the user.
2402         fn fail_holding_cell_htlcs(&self, mut htlcs_to_fail: Vec<(HTLCSource, PaymentHash)>, channel_id: [u8; 32]) {
2403                 for (htlc_src, payment_hash) in htlcs_to_fail.drain(..) {
2404                         match htlc_src {
2405                                 HTLCSource::PreviousHopData(HTLCPreviousHopData { .. }) => {
2406                                         let (failure_code, onion_failure_data) =
2407                                                 match self.channel_state.lock().unwrap().by_id.entry(channel_id) {
2408                                                         hash_map::Entry::Occupied(chan_entry) => {
2409                                                                 if let Ok(upd) = self.get_channel_update(&chan_entry.get()) {
2410                                                                         (0x1000|7, upd.encode_with_len())
2411                                                                 } else {
2412                                                                         (0x4000|10, Vec::new())
2413                                                                 }
2414                                                         },
2415                                                         hash_map::Entry::Vacant(_) => (0x4000|10, Vec::new())
2416                                                 };
2417                                         let channel_state = self.channel_state.lock().unwrap();
2418                                         self.fail_htlc_backwards_internal(channel_state,
2419                                                 htlc_src, &payment_hash, HTLCFailReason::Reason { failure_code, data: onion_failure_data});
2420                                 },
2421                                 HTLCSource::OutboundRoute { session_priv, .. } => {
2422                                         if {
2423                                                 let mut session_priv_bytes = [0; 32];
2424                                                 session_priv_bytes.copy_from_slice(&session_priv[..]);
2425                                                 self.pending_outbound_payments.lock().unwrap().remove(&session_priv_bytes)
2426                                         } {
2427                                                 self.pending_events.lock().unwrap().push(
2428                                                         events::Event::PaymentFailed {
2429                                                                 payment_hash,
2430                                                                 rejected_by_dest: false,
2431 #[cfg(test)]
2432                                                                 error_code: None,
2433 #[cfg(test)]
2434                                                                 error_data: None,
2435                                                         }
2436                                                 )
2437                                         } else {
2438                                                 log_trace!(self.logger, "Received duplicative fail for HTLC with payment_hash {}", log_bytes!(payment_hash.0));
2439                                         }
2440                                 },
2441                         };
2442                 }
2443         }
2444
2445         /// Fails an HTLC backwards to the sender of it to us.
2446         /// Note that while we take a channel_state lock as input, we do *not* assume consistency here.
2447         /// There are several callsites that do stupid things like loop over a list of payment_hashes
2448         /// to fail and take the channel_state lock for each iteration (as we take ownership and may
2449         /// drop it). In other words, no assumptions are made that entries in claimable_htlcs point to
2450         /// still-available channels.
2451         fn fail_htlc_backwards_internal(&self, mut channel_state_lock: MutexGuard<ChannelHolder<Signer>>, source: HTLCSource, payment_hash: &PaymentHash, onion_error: HTLCFailReason) {
2452                 //TODO: There is a timing attack here where if a node fails an HTLC back to us they can
2453                 //identify whether we sent it or not based on the (I presume) very different runtime
2454                 //between the branches here. We should make this async and move it into the forward HTLCs
2455                 //timer handling.
2456
2457                 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
2458                 // from block_connected which may run during initialization prior to the chain_monitor
2459                 // being fully configured. See the docs for `ChannelManagerReadArgs` for more.
2460                 match source {
2461                         HTLCSource::OutboundRoute { ref path, session_priv, .. } => {
2462                                 if {
2463                                         let mut session_priv_bytes = [0; 32];
2464                                         session_priv_bytes.copy_from_slice(&session_priv[..]);
2465                                         !self.pending_outbound_payments.lock().unwrap().remove(&session_priv_bytes)
2466                                 } {
2467                                         log_trace!(self.logger, "Received duplicative fail for HTLC with payment_hash {}", log_bytes!(payment_hash.0));
2468                                         return;
2469                                 }
2470                                 log_trace!(self.logger, "Failing outbound payment HTLC with payment_hash {}", log_bytes!(payment_hash.0));
2471                                 mem::drop(channel_state_lock);
2472                                 match &onion_error {
2473                                         &HTLCFailReason::LightningError { ref err } => {
2474 #[cfg(test)]
2475                                                 let (channel_update, payment_retryable, onion_error_code, onion_error_data) = onion_utils::process_onion_failure(&self.secp_ctx, &self.logger, &source, err.data.clone());
2476 #[cfg(not(test))]
2477                                                 let (channel_update, payment_retryable, _, _) = onion_utils::process_onion_failure(&self.secp_ctx, &self.logger, &source, err.data.clone());
2478                                                 // TODO: If we decided to blame ourselves (or one of our channels) in
2479                                                 // process_onion_failure we should close that channel as it implies our
2480                                                 // next-hop is needlessly blaming us!
2481                                                 if let Some(update) = channel_update {
2482                                                         self.channel_state.lock().unwrap().pending_msg_events.push(
2483                                                                 events::MessageSendEvent::PaymentFailureNetworkUpdate {
2484                                                                         update,
2485                                                                 }
2486                                                         );
2487                                                 }
2488                                                 self.pending_events.lock().unwrap().push(
2489                                                         events::Event::PaymentFailed {
2490                                                                 payment_hash: payment_hash.clone(),
2491                                                                 rejected_by_dest: !payment_retryable,
2492 #[cfg(test)]
2493                                                                 error_code: onion_error_code,
2494 #[cfg(test)]
2495                                                                 error_data: onion_error_data
2496                                                         }
2497                                                 );
2498                                         },
2499                                         &HTLCFailReason::Reason {
2500 #[cfg(test)]
2501                                                         ref failure_code,
2502 #[cfg(test)]
2503                                                         ref data,
2504                                                         .. } => {
2505                                                 // we get a fail_malformed_htlc from the first hop
2506                                                 // TODO: We'd like to generate a PaymentFailureNetworkUpdate for temporary
2507                                                 // failures here, but that would be insufficient as get_route
2508                                                 // generally ignores its view of our own channels as we provide them via
2509                                                 // ChannelDetails.
2510                                                 // TODO: For non-temporary failures, we really should be closing the
2511                                                 // channel here as we apparently can't relay through them anyway.
2512                                                 self.pending_events.lock().unwrap().push(
2513                                                         events::Event::PaymentFailed {
2514                                                                 payment_hash: payment_hash.clone(),
2515                                                                 rejected_by_dest: path.len() == 1,
2516 #[cfg(test)]
2517                                                                 error_code: Some(*failure_code),
2518 #[cfg(test)]
2519                                                                 error_data: Some(data.clone()),
2520                                                         }
2521                                                 );
2522                                         }
2523                                 }
2524                         },
2525                         HTLCSource::PreviousHopData(HTLCPreviousHopData { short_channel_id, htlc_id, incoming_packet_shared_secret, .. }) => {
2526                                 let err_packet = match onion_error {
2527                                         HTLCFailReason::Reason { failure_code, data } => {
2528                                                 log_trace!(self.logger, "Failing HTLC with payment_hash {} backwards from us with code {}", log_bytes!(payment_hash.0), failure_code);
2529                                                 let packet = onion_utils::build_failure_packet(&incoming_packet_shared_secret, failure_code, &data[..]).encode();
2530                                                 onion_utils::encrypt_failure_packet(&incoming_packet_shared_secret, &packet)
2531                                         },
2532                                         HTLCFailReason::LightningError { err } => {
2533                                                 log_trace!(self.logger, "Failing HTLC with payment_hash {} backwards with pre-built LightningError", log_bytes!(payment_hash.0));
2534                                                 onion_utils::encrypt_failure_packet(&incoming_packet_shared_secret, &err.data)
2535                                         }
2536                                 };
2537
2538                                 let mut forward_event = None;
2539                                 if channel_state_lock.forward_htlcs.is_empty() {
2540                                         forward_event = Some(Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS));
2541                                 }
2542                                 match channel_state_lock.forward_htlcs.entry(short_channel_id) {
2543                                         hash_map::Entry::Occupied(mut entry) => {
2544                                                 entry.get_mut().push(HTLCForwardInfo::FailHTLC { htlc_id, err_packet });
2545                                         },
2546                                         hash_map::Entry::Vacant(entry) => {
2547                                                 entry.insert(vec!(HTLCForwardInfo::FailHTLC { htlc_id, err_packet }));
2548                                         }
2549                                 }
2550                                 mem::drop(channel_state_lock);
2551                                 if let Some(time) = forward_event {
2552                                         let mut pending_events = self.pending_events.lock().unwrap();
2553                                         pending_events.push(events::Event::PendingHTLCsForwardable {
2554                                                 time_forwardable: time
2555                                         });
2556                                 }
2557                         },
2558                 }
2559         }
2560
2561         /// Provides a payment preimage in response to a PaymentReceived event, returning true and
2562         /// generating message events for the net layer to claim the payment, if possible. Thus, you
2563         /// should probably kick the net layer to go send messages if this returns true!
2564         ///
2565         /// Note that if you did not set an `amount_msat` when calling [`create_inbound_payment`] or
2566         /// [`create_inbound_payment_for_hash`] you must check that the amount in the `PaymentReceived`
2567         /// event matches your expectation. If you fail to do so and call this method, you may provide
2568         /// the sender "proof-of-payment" when they did not fulfill the full expected payment.
2569         ///
2570         /// May panic if called except in response to a PaymentReceived event.
2571         ///
2572         /// [`create_inbound_payment`]: Self::create_inbound_payment
2573         /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
2574         pub fn claim_funds(&self, payment_preimage: PaymentPreimage) -> bool {
2575                 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
2576
2577                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2578
2579                 let mut channel_state = Some(self.channel_state.lock().unwrap());
2580                 let removed_source = channel_state.as_mut().unwrap().claimable_htlcs.remove(&payment_hash);
2581                 if let Some(mut sources) = removed_source {
2582                         assert!(!sources.is_empty());
2583
2584                         // If we are claiming an MPP payment, we have to take special care to ensure that each
2585                         // channel exists before claiming all of the payments (inside one lock).
2586                         // Note that channel existance is sufficient as we should always get a monitor update
2587                         // which will take care of the real HTLC claim enforcement.
2588                         //
2589                         // If we find an HTLC which we would need to claim but for which we do not have a
2590                         // channel, we will fail all parts of the MPP payment. While we could wait and see if
2591                         // the sender retries the already-failed path(s), it should be a pretty rare case where
2592                         // we got all the HTLCs and then a channel closed while we were waiting for the user to
2593                         // provide the preimage, so worrying too much about the optimal handling isn't worth
2594                         // it.
2595                         let mut valid_mpp = true;
2596                         for htlc in sources.iter() {
2597                                 if let None = channel_state.as_ref().unwrap().short_to_id.get(&htlc.prev_hop.short_channel_id) {
2598                                         valid_mpp = false;
2599                                         break;
2600                                 }
2601                         }
2602
2603                         let mut errs = Vec::new();
2604                         let mut claimed_any_htlcs = false;
2605                         for htlc in sources.drain(..) {
2606                                 if !valid_mpp {
2607                                         if channel_state.is_none() { channel_state = Some(self.channel_state.lock().unwrap()); }
2608                                         let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec();
2609                                         htlc_msat_height_data.extend_from_slice(&byte_utils::be32_to_array(
2610                                                         self.best_block.read().unwrap().height()));
2611                                         self.fail_htlc_backwards_internal(channel_state.take().unwrap(),
2612                                                                          HTLCSource::PreviousHopData(htlc.prev_hop), &payment_hash,
2613                                                                          HTLCFailReason::Reason { failure_code: 0x4000|15, data: htlc_msat_height_data });
2614                                 } else {
2615                                         match self.claim_funds_from_hop(channel_state.as_mut().unwrap(), htlc.prev_hop, payment_preimage) {
2616                                                 Err(Some(e)) => {
2617                                                         if let msgs::ErrorAction::IgnoreError = e.1.err.action {
2618                                                                 // We got a temporary failure updating monitor, but will claim the
2619                                                                 // HTLC when the monitor updating is restored (or on chain).
2620                                                                 log_error!(self.logger, "Temporary failure claiming HTLC, treating as success: {}", e.1.err.err);
2621                                                                 claimed_any_htlcs = true;
2622                                                         } else { errs.push(e); }
2623                                                 },
2624                                                 Err(None) => unreachable!("We already checked for channel existence, we can't fail here!"),
2625                                                 Ok(()) => claimed_any_htlcs = true,
2626                                         }
2627                                 }
2628                         }
2629
2630                         // Now that we've done the entire above loop in one lock, we can handle any errors
2631                         // which were generated.
2632                         channel_state.take();
2633
2634                         for (counterparty_node_id, err) in errs.drain(..) {
2635                                 let res: Result<(), _> = Err(err);
2636                                 let _ = handle_error!(self, res, counterparty_node_id);
2637                         }
2638
2639                         claimed_any_htlcs
2640                 } else { false }
2641         }
2642
2643         fn claim_funds_from_hop(&self, channel_state_lock: &mut MutexGuard<ChannelHolder<Signer>>, prev_hop: HTLCPreviousHopData, payment_preimage: PaymentPreimage) -> Result<(), Option<(PublicKey, MsgHandleErrInternal)>> {
2644                 //TODO: Delay the claimed_funds relaying just like we do outbound relay!
2645                 let channel_state = &mut **channel_state_lock;
2646                 let chan_id = match channel_state.short_to_id.get(&prev_hop.short_channel_id) {
2647                         Some(chan_id) => chan_id.clone(),
2648                         None => {
2649                                 return Err(None)
2650                         }
2651                 };
2652
2653                 if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(chan_id) {
2654                         let was_frozen_for_monitor = chan.get().is_awaiting_monitor_update();
2655                         match chan.get_mut().get_update_fulfill_htlc_and_commit(prev_hop.htlc_id, payment_preimage, &self.logger) {
2656                                 Ok((msgs, monitor_option)) => {
2657                                         if let Some(monitor_update) = monitor_option {
2658                                                 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
2659                                                         if was_frozen_for_monitor {
2660                                                                 assert!(msgs.is_none());
2661                                                         } else {
2662                                                                 return Err(Some((chan.get().get_counterparty_node_id(), handle_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, msgs.is_some()).unwrap_err())));
2663                                                         }
2664                                                 }
2665                                         }
2666                                         if let Some((msg, commitment_signed)) = msgs {
2667                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
2668                                                         node_id: chan.get().get_counterparty_node_id(),
2669                                                         updates: msgs::CommitmentUpdate {
2670                                                                 update_add_htlcs: Vec::new(),
2671                                                                 update_fulfill_htlcs: vec![msg],
2672                                                                 update_fail_htlcs: Vec::new(),
2673                                                                 update_fail_malformed_htlcs: Vec::new(),
2674                                                                 update_fee: None,
2675                                                                 commitment_signed,
2676                                                         }
2677                                                 });
2678                                         }
2679                                         return Ok(())
2680                                 },
2681                                 Err(e) => {
2682                                         // TODO: Do something with e?
2683                                         // This should only occur if we are claiming an HTLC at the same time as the
2684                                         // HTLC is being failed (eg because a block is being connected and this caused
2685                                         // an HTLC to time out). This should, of course, only occur if the user is the
2686                                         // one doing the claiming (as it being a part of a peer claim would imply we're
2687                                         // about to lose funds) and only if the lock in claim_funds was dropped as a
2688                                         // previous HTLC was failed (thus not for an MPP payment).
2689                                         debug_assert!(false, "This shouldn't be reachable except in absurdly rare cases between monitor updates and HTLC timeouts: {:?}", e);
2690                                         return Err(None)
2691                                 },
2692                         }
2693                 } else { unreachable!(); }
2694         }
2695
2696         fn claim_funds_internal(&self, mut channel_state_lock: MutexGuard<ChannelHolder<Signer>>, source: HTLCSource, payment_preimage: PaymentPreimage) {
2697                 match source {
2698                         HTLCSource::OutboundRoute { session_priv, .. } => {
2699                                 mem::drop(channel_state_lock);
2700                                 if {
2701                                         let mut session_priv_bytes = [0; 32];
2702                                         session_priv_bytes.copy_from_slice(&session_priv[..]);
2703                                         self.pending_outbound_payments.lock().unwrap().remove(&session_priv_bytes)
2704                                 } {
2705                                         let mut pending_events = self.pending_events.lock().unwrap();
2706                                         pending_events.push(events::Event::PaymentSent {
2707                                                 payment_preimage
2708                                         });
2709                                 } else {
2710                                         log_trace!(self.logger, "Received duplicative fulfill for HTLC with payment_preimage {}", log_bytes!(payment_preimage.0));
2711                                 }
2712                         },
2713                         HTLCSource::PreviousHopData(hop_data) => {
2714                                 let prev_outpoint = hop_data.outpoint;
2715                                 if let Err((counterparty_node_id, err)) = match self.claim_funds_from_hop(&mut channel_state_lock, hop_data, payment_preimage) {
2716                                         Ok(()) => Ok(()),
2717                                         Err(None) => {
2718                                                 let preimage_update = ChannelMonitorUpdate {
2719                                                         update_id: CLOSED_CHANNEL_UPDATE_ID,
2720                                                         updates: vec![ChannelMonitorUpdateStep::PaymentPreimage {
2721                                                                 payment_preimage: payment_preimage.clone(),
2722                                                         }],
2723                                                 };
2724                                                 // We update the ChannelMonitor on the backward link, after
2725                                                 // receiving an offchain preimage event from the forward link (the
2726                                                 // event being update_fulfill_htlc).
2727                                                 if let Err(e) = self.chain_monitor.update_channel(prev_outpoint, preimage_update) {
2728                                                         log_error!(self.logger, "Critical error: failed to update channel monitor with preimage {:?}: {:?}",
2729                                                                    payment_preimage, e);
2730                                                 }
2731                                                 Ok(())
2732                                         },
2733                                         Err(Some(res)) => Err(res),
2734                                 } {
2735                                         mem::drop(channel_state_lock);
2736                                         let res: Result<(), _> = Err(err);
2737                                         let _ = handle_error!(self, res, counterparty_node_id);
2738                                 }
2739                         },
2740                 }
2741         }
2742
2743         /// Gets the node_id held by this ChannelManager
2744         pub fn get_our_node_id(&self) -> PublicKey {
2745                 self.our_network_pubkey.clone()
2746         }
2747
2748         /// Restores a single, given channel to normal operation after a
2749         /// ChannelMonitorUpdateErr::TemporaryFailure was returned from a channel monitor update
2750         /// operation.
2751         ///
2752         /// All ChannelMonitor updates up to and including highest_applied_update_id must have been
2753         /// fully committed in every copy of the given channels' ChannelMonitors.
2754         ///
2755         /// Note that there is no effect to calling with a highest_applied_update_id other than the
2756         /// current latest ChannelMonitorUpdate and one call to this function after multiple
2757         /// ChannelMonitorUpdateErr::TemporaryFailures is fine. The highest_applied_update_id field
2758         /// exists largely only to prevent races between this and concurrent update_monitor calls.
2759         ///
2760         /// Thus, the anticipated use is, at a high level:
2761         ///  1) You register a chain::Watch with this ChannelManager,
2762         ///  2) it stores each update to disk, and begins updating any remote (eg watchtower) copies of
2763         ///     said ChannelMonitors as it can, returning ChannelMonitorUpdateErr::TemporaryFailures
2764         ///     any time it cannot do so instantly,
2765         ///  3) update(s) are applied to each remote copy of a ChannelMonitor,
2766         ///  4) once all remote copies are updated, you call this function with the update_id that
2767         ///     completed, and once it is the latest the Channel will be re-enabled.
2768         pub fn channel_monitor_updated(&self, funding_txo: &OutPoint, highest_applied_update_id: u64) {
2769                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2770
2771                 let (mut pending_failures, chan_restoration_res) = {
2772                         let mut channel_lock = self.channel_state.lock().unwrap();
2773                         let channel_state = &mut *channel_lock;
2774                         let mut channel = match channel_state.by_id.entry(funding_txo.to_channel_id()) {
2775                                 hash_map::Entry::Occupied(chan) => chan,
2776                                 hash_map::Entry::Vacant(_) => return,
2777                         };
2778                         if !channel.get().is_awaiting_monitor_update() || channel.get().get_latest_monitor_update_id() != highest_applied_update_id {
2779                                 return;
2780                         }
2781
2782                         let (raa, commitment_update, order, pending_forwards, pending_failures, funding_broadcastable, funding_locked) = channel.get_mut().monitor_updating_restored(&self.logger);
2783                         (pending_failures, handle_chan_restoration_locked!(self, channel_lock, channel_state, channel, raa, commitment_update, order, None, pending_forwards, funding_broadcastable, funding_locked))
2784                 };
2785                 post_handle_chan_restoration!(self, chan_restoration_res);
2786                 for failure in pending_failures.drain(..) {
2787                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), failure.0, &failure.1, failure.2);
2788                 }
2789         }
2790
2791         fn internal_open_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::OpenChannel) -> Result<(), MsgHandleErrInternal> {
2792                 if msg.chain_hash != self.genesis_hash {
2793                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Unknown genesis block hash".to_owned(), msg.temporary_channel_id.clone()));
2794                 }
2795
2796                 let channel = Channel::new_from_req(&self.fee_estimator, &self.keys_manager, counterparty_node_id.clone(), their_features, msg, 0, &self.default_configuration)
2797                         .map_err(|e| MsgHandleErrInternal::from_chan_no_close(e, msg.temporary_channel_id))?;
2798                 let mut channel_state_lock = self.channel_state.lock().unwrap();
2799                 let channel_state = &mut *channel_state_lock;
2800                 match channel_state.by_id.entry(channel.channel_id()) {
2801                         hash_map::Entry::Occupied(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("temporary_channel_id collision!".to_owned(), msg.temporary_channel_id.clone())),
2802                         hash_map::Entry::Vacant(entry) => {
2803                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
2804                                         node_id: counterparty_node_id.clone(),
2805                                         msg: channel.get_accept_channel(),
2806                                 });
2807                                 entry.insert(channel);
2808                         }
2809                 }
2810                 Ok(())
2811         }
2812
2813         fn internal_accept_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::AcceptChannel) -> Result<(), MsgHandleErrInternal> {
2814                 let (value, output_script, user_id) = {
2815                         let mut channel_lock = self.channel_state.lock().unwrap();
2816                         let channel_state = &mut *channel_lock;
2817                         match channel_state.by_id.entry(msg.temporary_channel_id) {
2818                                 hash_map::Entry::Occupied(mut chan) => {
2819                                         if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2820                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.temporary_channel_id));
2821                                         }
2822                                         try_chan_entry!(self, chan.get_mut().accept_channel(&msg, &self.default_configuration, their_features), channel_state, chan);
2823                                         (chan.get().get_value_satoshis(), chan.get().get_funding_redeemscript().to_v0_p2wsh(), chan.get().get_user_id())
2824                                 },
2825                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.temporary_channel_id))
2826                         }
2827                 };
2828                 let mut pending_events = self.pending_events.lock().unwrap();
2829                 pending_events.push(events::Event::FundingGenerationReady {
2830                         temporary_channel_id: msg.temporary_channel_id,
2831                         channel_value_satoshis: value,
2832                         output_script,
2833                         user_channel_id: user_id,
2834                 });
2835                 Ok(())
2836         }
2837
2838         fn internal_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) -> Result<(), MsgHandleErrInternal> {
2839                 let ((funding_msg, monitor), mut chan) = {
2840                         let best_block = *self.best_block.read().unwrap();
2841                         let mut channel_lock = self.channel_state.lock().unwrap();
2842                         let channel_state = &mut *channel_lock;
2843                         match channel_state.by_id.entry(msg.temporary_channel_id.clone()) {
2844                                 hash_map::Entry::Occupied(mut chan) => {
2845                                         if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2846                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.temporary_channel_id));
2847                                         }
2848                                         (try_chan_entry!(self, chan.get_mut().funding_created(msg, best_block, &self.logger), channel_state, chan), chan.remove())
2849                                 },
2850                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.temporary_channel_id))
2851                         }
2852                 };
2853                 // Because we have exclusive ownership of the channel here we can release the channel_state
2854                 // lock before watch_channel
2855                 if let Err(e) = self.chain_monitor.watch_channel(monitor.get_funding_txo().0, monitor) {
2856                         match e {
2857                                 ChannelMonitorUpdateErr::PermanentFailure => {
2858                                         // Note that we reply with the new channel_id in error messages if we gave up on the
2859                                         // channel, not the temporary_channel_id. This is compatible with ourselves, but the
2860                                         // spec is somewhat ambiguous here. Not a huge deal since we'll send error messages for
2861                                         // any messages referencing a previously-closed channel anyway.
2862                                         // We do not do a force-close here as that would generate a monitor update for
2863                                         // a monitor that we didn't manage to store (and that we don't care about - we
2864                                         // don't respond with the funding_signed so the channel can never go on chain).
2865                                         let (_monitor_update, failed_htlcs) = chan.force_shutdown(true);
2866                                         assert!(failed_htlcs.is_empty());
2867                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("ChannelMonitor storage failure".to_owned(), funding_msg.channel_id));
2868                                 },
2869                                 ChannelMonitorUpdateErr::TemporaryFailure => {
2870                                         // There's no problem signing a counterparty's funding transaction if our monitor
2871                                         // hasn't persisted to disk yet - we can't lose money on a transaction that we haven't
2872                                         // accepted payment from yet. We do, however, need to wait to send our funding_locked
2873                                         // until we have persisted our monitor.
2874                                         chan.monitor_update_failed(false, false, Vec::new(), Vec::new());
2875                                 },
2876                         }
2877                 }
2878                 let mut channel_state_lock = self.channel_state.lock().unwrap();
2879                 let channel_state = &mut *channel_state_lock;
2880                 match channel_state.by_id.entry(funding_msg.channel_id) {
2881                         hash_map::Entry::Occupied(_) => {
2882                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Already had channel with the new channel_id".to_owned(), funding_msg.channel_id))
2883                         },
2884                         hash_map::Entry::Vacant(e) => {
2885                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingSigned {
2886                                         node_id: counterparty_node_id.clone(),
2887                                         msg: funding_msg,
2888                                 });
2889                                 e.insert(chan);
2890                         }
2891                 }
2892                 Ok(())
2893         }
2894
2895         fn internal_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) -> Result<(), MsgHandleErrInternal> {
2896                 let funding_tx = {
2897                         let best_block = *self.best_block.read().unwrap();
2898                         let mut channel_lock = self.channel_state.lock().unwrap();
2899                         let channel_state = &mut *channel_lock;
2900                         match channel_state.by_id.entry(msg.channel_id) {
2901                                 hash_map::Entry::Occupied(mut chan) => {
2902                                         if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2903                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2904                                         }
2905                                         let (monitor, funding_tx) = match chan.get_mut().funding_signed(&msg, best_block, &self.logger) {
2906                                                 Ok(update) => update,
2907                                                 Err(e) => try_chan_entry!(self, Err(e), channel_state, chan),
2908                                         };
2909                                         if let Err(e) = self.chain_monitor.watch_channel(chan.get().get_funding_txo().unwrap(), monitor) {
2910                                                 return_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::RevokeAndACKFirst, false, false);
2911                                         }
2912                                         funding_tx
2913                                 },
2914                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2915                         }
2916                 };
2917                 log_info!(self.logger, "Broadcasting funding transaction with txid {}", funding_tx.txid());
2918                 self.tx_broadcaster.broadcast_transaction(&funding_tx);
2919                 Ok(())
2920         }
2921
2922         fn internal_funding_locked(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingLocked) -> Result<(), MsgHandleErrInternal> {
2923                 let mut channel_state_lock = self.channel_state.lock().unwrap();
2924                 let channel_state = &mut *channel_state_lock;
2925                 match channel_state.by_id.entry(msg.channel_id) {
2926                         hash_map::Entry::Occupied(mut chan) => {
2927                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2928                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2929                                 }
2930                                 try_chan_entry!(self, chan.get_mut().funding_locked(&msg), channel_state, chan);
2931                                 if let Some(announcement_sigs) = self.get_announcement_sigs(chan.get()) {
2932                                         log_trace!(self.logger, "Sending announcement_signatures for {} in response to funding_locked", log_bytes!(chan.get().channel_id()));
2933                                         // If we see locking block before receiving remote funding_locked, we broadcast our
2934                                         // announcement_sigs at remote funding_locked reception. If we receive remote
2935                                         // funding_locked before seeing locking block, we broadcast our announcement_sigs at locking
2936                                         // block connection. We should guanrantee to broadcast announcement_sigs to our peer whatever
2937                                         // the order of the events but our peer may not receive it due to disconnection. The specs
2938                                         // lacking an acknowledgement for announcement_sigs we may have to re-send them at peer
2939                                         // connection in the future if simultaneous misses by both peers due to network/hardware
2940                                         // failures is an issue. Note, to achieve its goal, only one of the announcement_sigs needs
2941                                         // to be received, from then sigs are going to be flood to the whole network.
2942                                         channel_state.pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
2943                                                 node_id: counterparty_node_id.clone(),
2944                                                 msg: announcement_sigs,
2945                                         });
2946                                 }
2947                                 Ok(())
2948                         },
2949                         hash_map::Entry::Vacant(_) => Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2950                 }
2951         }
2952
2953         fn internal_shutdown(&self, counterparty_node_id: &PublicKey, their_features: &InitFeatures, msg: &msgs::Shutdown) -> Result<(), MsgHandleErrInternal> {
2954                 let (mut dropped_htlcs, chan_option) = {
2955                         let mut channel_state_lock = self.channel_state.lock().unwrap();
2956                         let channel_state = &mut *channel_state_lock;
2957
2958                         match channel_state.by_id.entry(msg.channel_id.clone()) {
2959                                 hash_map::Entry::Occupied(mut chan_entry) => {
2960                                         if chan_entry.get().get_counterparty_node_id() != *counterparty_node_id {
2961                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2962                                         }
2963                                         let (shutdown, closing_signed, dropped_htlcs) = try_chan_entry!(self, chan_entry.get_mut().shutdown(&self.fee_estimator, &their_features, &msg), channel_state, chan_entry);
2964                                         if let Some(msg) = shutdown {
2965                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
2966                                                         node_id: counterparty_node_id.clone(),
2967                                                         msg,
2968                                                 });
2969                                         }
2970                                         if let Some(msg) = closing_signed {
2971                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
2972                                                         node_id: counterparty_node_id.clone(),
2973                                                         msg,
2974                                                 });
2975                                         }
2976                                         if chan_entry.get().is_shutdown() {
2977                                                 if let Some(short_id) = chan_entry.get().get_short_channel_id() {
2978                                                         channel_state.short_to_id.remove(&short_id);
2979                                                 }
2980                                                 (dropped_htlcs, Some(chan_entry.remove_entry().1))
2981                                         } else { (dropped_htlcs, None) }
2982                                 },
2983                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2984                         }
2985                 };
2986                 for htlc_source in dropped_htlcs.drain(..) {
2987                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
2988                 }
2989                 if let Some(chan) = chan_option {
2990                         if let Ok(update) = self.get_channel_update(&chan) {
2991                                 let mut channel_state = self.channel_state.lock().unwrap();
2992                                 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2993                                         msg: update
2994                                 });
2995                         }
2996                 }
2997                 Ok(())
2998         }
2999
3000         fn internal_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) -> Result<(), MsgHandleErrInternal> {
3001                 let (tx, chan_option) = {
3002                         let mut channel_state_lock = self.channel_state.lock().unwrap();
3003                         let channel_state = &mut *channel_state_lock;
3004                         match channel_state.by_id.entry(msg.channel_id.clone()) {
3005                                 hash_map::Entry::Occupied(mut chan_entry) => {
3006                                         if chan_entry.get().get_counterparty_node_id() != *counterparty_node_id {
3007                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3008                                         }
3009                                         let (closing_signed, tx) = try_chan_entry!(self, chan_entry.get_mut().closing_signed(&self.fee_estimator, &msg), channel_state, chan_entry);
3010                                         if let Some(msg) = closing_signed {
3011                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
3012                                                         node_id: counterparty_node_id.clone(),
3013                                                         msg,
3014                                                 });
3015                                         }
3016                                         if tx.is_some() {
3017                                                 // We're done with this channel, we've got a signed closing transaction and
3018                                                 // will send the closing_signed back to the remote peer upon return. This
3019                                                 // also implies there are no pending HTLCs left on the channel, so we can
3020                                                 // fully delete it from tracking (the channel monitor is still around to
3021                                                 // watch for old state broadcasts)!
3022                                                 if let Some(short_id) = chan_entry.get().get_short_channel_id() {
3023                                                         channel_state.short_to_id.remove(&short_id);
3024                                                 }
3025                                                 (tx, Some(chan_entry.remove_entry().1))
3026                                         } else { (tx, None) }
3027                                 },
3028                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3029                         }
3030                 };
3031                 if let Some(broadcast_tx) = tx {
3032                         log_info!(self.logger, "Broadcasting {}", log_tx!(broadcast_tx));
3033                         self.tx_broadcaster.broadcast_transaction(&broadcast_tx);
3034                 }
3035                 if let Some(chan) = chan_option {
3036                         if let Ok(update) = self.get_channel_update(&chan) {
3037                                 let mut channel_state = self.channel_state.lock().unwrap();
3038                                 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
3039                                         msg: update
3040                                 });
3041                         }
3042                 }
3043                 Ok(())
3044         }
3045
3046         fn internal_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) -> Result<(), MsgHandleErrInternal> {
3047                 //TODO: BOLT 4 points out a specific attack where a peer may re-send an onion packet and
3048                 //determine the state of the payment based on our response/if we forward anything/the time
3049                 //we take to respond. We should take care to avoid allowing such an attack.
3050                 //
3051                 //TODO: There exists a further attack where a node may garble the onion data, forward it to
3052                 //us repeatedly garbled in different ways, and compare our error messages, which are
3053                 //encrypted with the same key. It's not immediately obvious how to usefully exploit that,
3054                 //but we should prevent it anyway.
3055
3056                 let (pending_forward_info, mut channel_state_lock) = self.decode_update_add_htlc_onion(msg);
3057                 let channel_state = &mut *channel_state_lock;
3058
3059                 match channel_state.by_id.entry(msg.channel_id) {
3060                         hash_map::Entry::Occupied(mut chan) => {
3061                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3062                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3063                                 }
3064
3065                                 let create_pending_htlc_status = |chan: &Channel<Signer>, pending_forward_info: PendingHTLCStatus, error_code: u16| {
3066                                         // Ensure error_code has the UPDATE flag set, since by default we send a
3067                                         // channel update along as part of failing the HTLC.
3068                                         assert!((error_code & 0x1000) != 0);
3069                                         // If the update_add is completely bogus, the call will Err and we will close,
3070                                         // but if we've sent a shutdown and they haven't acknowledged it yet, we just
3071                                         // want to reject the new HTLC and fail it backwards instead of forwarding.
3072                                         match pending_forward_info {
3073                                                 PendingHTLCStatus::Forward(PendingHTLCInfo { ref incoming_shared_secret, .. }) => {
3074                                                         let reason = if let Ok(upd) = self.get_channel_update(chan) {
3075                                                                 onion_utils::build_first_hop_failure_packet(incoming_shared_secret, error_code, &{
3076                                                                         let mut res = Vec::with_capacity(8 + 128);
3077                                                                         // TODO: underspecified, follow https://github.com/lightningnetwork/lightning-rfc/issues/791
3078                                                                         res.extend_from_slice(&byte_utils::be16_to_array(0));
3079                                                                         res.extend_from_slice(&upd.encode_with_len()[..]);
3080                                                                         res
3081                                                                 }[..])
3082                                                         } else {
3083                                                                 // The only case where we'd be unable to
3084                                                                 // successfully get a channel update is if the
3085                                                                 // channel isn't in the fully-funded state yet,
3086                                                                 // implying our counterparty is trying to route
3087                                                                 // payments over the channel back to themselves
3088                                                                 // (cause no one else should know the short_id
3089                                                                 // is a lightning channel yet). We should have
3090                                                                 // no problem just calling this
3091                                                                 // unknown_next_peer (0x4000|10).
3092                                                                 onion_utils::build_first_hop_failure_packet(incoming_shared_secret, 0x4000|10, &[])
3093                                                         };
3094                                                         let msg = msgs::UpdateFailHTLC {
3095                                                                 channel_id: msg.channel_id,
3096                                                                 htlc_id: msg.htlc_id,
3097                                                                 reason
3098                                                         };
3099                                                         PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msg))
3100                                                 },
3101                                                 _ => pending_forward_info
3102                                         }
3103                                 };
3104                                 try_chan_entry!(self, chan.get_mut().update_add_htlc(&msg, pending_forward_info, create_pending_htlc_status, &self.logger), channel_state, chan);
3105                         },
3106                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3107                 }
3108                 Ok(())
3109         }
3110
3111         fn internal_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) -> Result<(), MsgHandleErrInternal> {
3112                 let mut channel_lock = self.channel_state.lock().unwrap();
3113                 let htlc_source = {
3114                         let channel_state = &mut *channel_lock;
3115                         match channel_state.by_id.entry(msg.channel_id) {
3116                                 hash_map::Entry::Occupied(mut chan) => {
3117                                         if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3118                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3119                                         }
3120                                         try_chan_entry!(self, chan.get_mut().update_fulfill_htlc(&msg), channel_state, chan)
3121                                 },
3122                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3123                         }
3124                 };
3125                 self.claim_funds_internal(channel_lock, htlc_source, msg.payment_preimage.clone());
3126                 Ok(())
3127         }
3128
3129         fn internal_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) -> Result<(), MsgHandleErrInternal> {
3130                 let mut channel_lock = self.channel_state.lock().unwrap();
3131                 let channel_state = &mut *channel_lock;
3132                 match channel_state.by_id.entry(msg.channel_id) {
3133                         hash_map::Entry::Occupied(mut chan) => {
3134                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3135                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3136                                 }
3137                                 try_chan_entry!(self, chan.get_mut().update_fail_htlc(&msg, HTLCFailReason::LightningError { err: msg.reason.clone() }), channel_state, chan);
3138                         },
3139                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3140                 }
3141                 Ok(())
3142         }
3143
3144         fn internal_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) -> Result<(), MsgHandleErrInternal> {
3145                 let mut channel_lock = self.channel_state.lock().unwrap();
3146                 let channel_state = &mut *channel_lock;
3147                 match channel_state.by_id.entry(msg.channel_id) {
3148                         hash_map::Entry::Occupied(mut chan) => {
3149                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3150                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3151                                 }
3152                                 if (msg.failure_code & 0x8000) == 0 {
3153                                         let chan_err: ChannelError = ChannelError::Close("Got update_fail_malformed_htlc with BADONION not set".to_owned());
3154                                         try_chan_entry!(self, Err(chan_err), channel_state, chan);
3155                                 }
3156                                 try_chan_entry!(self, chan.get_mut().update_fail_malformed_htlc(&msg, HTLCFailReason::Reason { failure_code: msg.failure_code, data: Vec::new() }), channel_state, chan);
3157                                 Ok(())
3158                         },
3159                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3160                 }
3161         }
3162
3163         fn internal_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) -> Result<(), MsgHandleErrInternal> {
3164                 let mut channel_state_lock = self.channel_state.lock().unwrap();
3165                 let channel_state = &mut *channel_state_lock;
3166                 match channel_state.by_id.entry(msg.channel_id) {
3167                         hash_map::Entry::Occupied(mut chan) => {
3168                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3169                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3170                                 }
3171                                 let (revoke_and_ack, commitment_signed, closing_signed, monitor_update) =
3172                                         match chan.get_mut().commitment_signed(&msg, &self.fee_estimator, &self.logger) {
3173                                                 Err((None, e)) => try_chan_entry!(self, Err(e), channel_state, chan),
3174                                                 Err((Some(update), e)) => {
3175                                                         assert!(chan.get().is_awaiting_monitor_update());
3176                                                         let _ = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), update);
3177                                                         try_chan_entry!(self, Err(e), channel_state, chan);
3178                                                         unreachable!();
3179                                                 },
3180                                                 Ok(res) => res
3181                                         };
3182                                 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
3183                                         return_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::RevokeAndACKFirst, true, commitment_signed.is_some());
3184                                         //TODO: Rebroadcast closing_signed if present on monitor update restoration
3185                                 }
3186                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
3187                                         node_id: counterparty_node_id.clone(),
3188                                         msg: revoke_and_ack,
3189                                 });
3190                                 if let Some(msg) = commitment_signed {
3191                                         channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
3192                                                 node_id: counterparty_node_id.clone(),
3193                                                 updates: msgs::CommitmentUpdate {
3194                                                         update_add_htlcs: Vec::new(),
3195                                                         update_fulfill_htlcs: Vec::new(),
3196                                                         update_fail_htlcs: Vec::new(),
3197                                                         update_fail_malformed_htlcs: Vec::new(),
3198                                                         update_fee: None,
3199                                                         commitment_signed: msg,
3200                                                 },
3201                                         });
3202                                 }
3203                                 if let Some(msg) = closing_signed {
3204                                         channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
3205                                                 node_id: counterparty_node_id.clone(),
3206                                                 msg,
3207                                         });
3208                                 }
3209                                 Ok(())
3210                         },
3211                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3212                 }
3213         }
3214
3215         #[inline]
3216         fn forward_htlcs(&self, per_source_pending_forwards: &mut [(u64, OutPoint, Vec<(PendingHTLCInfo, u64)>)]) {
3217                 for &mut (prev_short_channel_id, prev_funding_outpoint, ref mut pending_forwards) in per_source_pending_forwards {
3218                         let mut forward_event = None;
3219                         if !pending_forwards.is_empty() {
3220                                 let mut channel_state = self.channel_state.lock().unwrap();
3221                                 if channel_state.forward_htlcs.is_empty() {
3222                                         forward_event = Some(Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS))
3223                                 }
3224                                 for (forward_info, prev_htlc_id) in pending_forwards.drain(..) {
3225                                         match channel_state.forward_htlcs.entry(match forward_info.routing {
3226                                                         PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
3227                                                         PendingHTLCRouting::Receive { .. } => 0,
3228                                         }) {
3229                                                 hash_map::Entry::Occupied(mut entry) => {
3230                                                         entry.get_mut().push(HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_funding_outpoint,
3231                                                                                                         prev_htlc_id, forward_info });
3232                                                 },
3233                                                 hash_map::Entry::Vacant(entry) => {
3234                                                         entry.insert(vec!(HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_funding_outpoint,
3235                                                                                                      prev_htlc_id, forward_info }));
3236                                                 }
3237                                         }
3238                                 }
3239                         }
3240                         match forward_event {
3241                                 Some(time) => {
3242                                         let mut pending_events = self.pending_events.lock().unwrap();
3243                                         pending_events.push(events::Event::PendingHTLCsForwardable {
3244                                                 time_forwardable: time
3245                                         });
3246                                 }
3247                                 None => {},
3248                         }
3249                 }
3250         }
3251
3252         fn internal_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) -> Result<(), MsgHandleErrInternal> {
3253                 let mut htlcs_to_fail = Vec::new();
3254                 let res = loop {
3255                         let mut channel_state_lock = self.channel_state.lock().unwrap();
3256                         let channel_state = &mut *channel_state_lock;
3257                         match channel_state.by_id.entry(msg.channel_id) {
3258                                 hash_map::Entry::Occupied(mut chan) => {
3259                                         if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3260                                                 break Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3261                                         }
3262                                         let was_frozen_for_monitor = chan.get().is_awaiting_monitor_update();
3263                                         let (commitment_update, pending_forwards, pending_failures, closing_signed, monitor_update, htlcs_to_fail_in) =
3264                                                 break_chan_entry!(self, chan.get_mut().revoke_and_ack(&msg, &self.fee_estimator, &self.logger), channel_state, chan);
3265                                         htlcs_to_fail = htlcs_to_fail_in;
3266                                         if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
3267                                                 if was_frozen_for_monitor {
3268                                                         assert!(commitment_update.is_none() && closing_signed.is_none() && pending_forwards.is_empty() && pending_failures.is_empty());
3269                                                         break Err(MsgHandleErrInternal::ignore_no_close("Previous monitor update failure prevented responses to RAA".to_owned()));
3270                                                 } else {
3271                                                         if let Err(e) = handle_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, commitment_update.is_some(), pending_forwards, pending_failures) {
3272                                                                 break Err(e);
3273                                                         } else { unreachable!(); }
3274                                                 }
3275                                         }
3276                                         if let Some(updates) = commitment_update {
3277                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
3278                                                         node_id: counterparty_node_id.clone(),
3279                                                         updates,
3280                                                 });
3281                                         }
3282                                         if let Some(msg) = closing_signed {
3283                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
3284                                                         node_id: counterparty_node_id.clone(),
3285                                                         msg,
3286                                                 });
3287                                         }
3288                                         break Ok((pending_forwards, pending_failures, chan.get().get_short_channel_id().expect("RAA should only work on a short-id-available channel"), chan.get().get_funding_txo().unwrap()))
3289                                 },
3290                                 hash_map::Entry::Vacant(_) => break Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3291                         }
3292                 };
3293                 self.fail_holding_cell_htlcs(htlcs_to_fail, msg.channel_id);
3294                 match res {
3295                         Ok((pending_forwards, mut pending_failures, short_channel_id, channel_outpoint)) => {
3296                                 for failure in pending_failures.drain(..) {
3297                                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), failure.0, &failure.1, failure.2);
3298                                 }
3299                                 self.forward_htlcs(&mut [(short_channel_id, channel_outpoint, pending_forwards)]);
3300                                 Ok(())
3301                         },
3302                         Err(e) => Err(e)
3303                 }
3304         }
3305
3306         fn internal_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) -> Result<(), MsgHandleErrInternal> {
3307                 let mut channel_lock = self.channel_state.lock().unwrap();
3308                 let channel_state = &mut *channel_lock;
3309                 match channel_state.by_id.entry(msg.channel_id) {
3310                         hash_map::Entry::Occupied(mut chan) => {
3311                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3312                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3313                                 }
3314                                 try_chan_entry!(self, chan.get_mut().update_fee(&self.fee_estimator, &msg), channel_state, chan);
3315                         },
3316                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3317                 }
3318                 Ok(())
3319         }
3320
3321         fn internal_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) -> Result<(), MsgHandleErrInternal> {
3322                 let mut channel_state_lock = self.channel_state.lock().unwrap();
3323                 let channel_state = &mut *channel_state_lock;
3324
3325                 match channel_state.by_id.entry(msg.channel_id) {
3326                         hash_map::Entry::Occupied(mut chan) => {
3327                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3328                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3329                                 }
3330                                 if !chan.get().is_usable() {
3331                                         return Err(MsgHandleErrInternal::from_no_close(LightningError{err: "Got an announcement_signatures before we were ready for it".to_owned(), action: msgs::ErrorAction::IgnoreError}));
3332                                 }
3333
3334                                 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
3335                                         msg: try_chan_entry!(self, chan.get_mut().announcement_signatures(&self.our_network_key, self.get_our_node_id(), self.genesis_hash.clone(), msg), channel_state, chan),
3336                                         update_msg: self.get_channel_update(chan.get()).unwrap(), // can only fail if we're not in a ready state
3337                                 });
3338                         },
3339                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3340                 }
3341                 Ok(())
3342         }
3343
3344         fn internal_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) -> Result<(), MsgHandleErrInternal> {
3345                 let mut channel_state_lock = self.channel_state.lock().unwrap();
3346                 let channel_state = &mut *channel_state_lock;
3347                 let chan_id = match channel_state.short_to_id.get(&msg.contents.short_channel_id) {
3348                         Some(chan_id) => chan_id.clone(),
3349                         None => {
3350                                 // It's not a local channel
3351                                 return Ok(())
3352                         }
3353                 };
3354                 match channel_state.by_id.entry(chan_id) {
3355                         hash_map::Entry::Occupied(mut chan) => {
3356                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3357                                         // TODO: see issue #153, need a consistent behavior on obnoxious behavior from random node
3358                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), chan_id));
3359                                 }
3360                                 try_chan_entry!(self, chan.get_mut().channel_update(&msg), channel_state, chan);
3361                         },
3362                         hash_map::Entry::Vacant(_) => unreachable!()
3363                 }
3364                 Ok(())
3365         }
3366
3367         fn internal_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) -> Result<(), MsgHandleErrInternal> {
3368                 let (htlcs_failed_forward, chan_restoration_res) = {
3369                         let mut channel_state_lock = self.channel_state.lock().unwrap();
3370                         let channel_state = &mut *channel_state_lock;
3371
3372                         match channel_state.by_id.entry(msg.channel_id) {
3373                                 hash_map::Entry::Occupied(mut chan) => {
3374                                         if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3375                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3376                                         }
3377                                         // Currently, we expect all holding cell update_adds to be dropped on peer
3378                                         // disconnect, so Channel's reestablish will never hand us any holding cell
3379                                         // freed HTLCs to fail backwards. If in the future we no longer drop pending
3380                                         // add-HTLCs on disconnect, we may be handed HTLCs to fail backwards here.
3381                                         let (funding_locked, revoke_and_ack, commitment_update, monitor_update_opt, order, htlcs_failed_forward, shutdown) =
3382                                                 try_chan_entry!(self, chan.get_mut().channel_reestablish(msg, &self.logger), channel_state, chan);
3383                                         if let Some(msg) = shutdown {
3384                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
3385                                                         node_id: counterparty_node_id.clone(),
3386                                                         msg,
3387                                                 });
3388                                         }
3389                                         (htlcs_failed_forward, handle_chan_restoration_locked!(self, channel_state_lock, channel_state, chan, revoke_and_ack, commitment_update, order, monitor_update_opt, Vec::new(), None, funding_locked))
3390                                 },
3391                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3392                         }
3393                 };
3394                 post_handle_chan_restoration!(self, chan_restoration_res);
3395                 self.fail_holding_cell_htlcs(htlcs_failed_forward, msg.channel_id);
3396                 Ok(())
3397         }
3398
3399         /// Begin Update fee process. Allowed only on an outbound channel.
3400         /// If successful, will generate a UpdateHTLCs event, so you should probably poll
3401         /// PeerManager::process_events afterwards.
3402         /// Note: This API is likely to change!
3403         /// (C-not exported) Cause its doc(hidden) anyway
3404         #[doc(hidden)]
3405         pub fn update_fee(&self, channel_id: [u8;32], feerate_per_kw: u32) -> Result<(), APIError> {
3406                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3407                 let counterparty_node_id;
3408                 let err: Result<(), _> = loop {
3409                         let mut channel_state_lock = self.channel_state.lock().unwrap();
3410                         let channel_state = &mut *channel_state_lock;
3411
3412                         match channel_state.by_id.entry(channel_id) {
3413                                 hash_map::Entry::Vacant(_) => return Err(APIError::APIMisuseError{err: format!("Failed to find corresponding channel for id {}", channel_id.to_hex())}),
3414                                 hash_map::Entry::Occupied(mut chan) => {
3415                                         if !chan.get().is_outbound() {
3416                                                 return Err(APIError::APIMisuseError{err: "update_fee cannot be sent for an inbound channel".to_owned()});
3417                                         }
3418                                         if chan.get().is_awaiting_monitor_update() {
3419                                                 return Err(APIError::MonitorUpdateFailed);
3420                                         }
3421                                         if !chan.get().is_live() {
3422                                                 return Err(APIError::ChannelUnavailable{err: "Channel is either not yet fully established or peer is currently disconnected".to_owned()});
3423                                         }
3424                                         counterparty_node_id = chan.get().get_counterparty_node_id();
3425                                         if let Some((update_fee, commitment_signed, monitor_update)) =
3426                                                         break_chan_entry!(self, chan.get_mut().send_update_fee_and_commit(feerate_per_kw, &self.logger), channel_state, chan)
3427                                         {
3428                                                 if let Err(_e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
3429                                                         unimplemented!();
3430                                                 }
3431                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
3432                                                         node_id: chan.get().get_counterparty_node_id(),
3433                                                         updates: msgs::CommitmentUpdate {
3434                                                                 update_add_htlcs: Vec::new(),
3435                                                                 update_fulfill_htlcs: Vec::new(),
3436                                                                 update_fail_htlcs: Vec::new(),
3437                                                                 update_fail_malformed_htlcs: Vec::new(),
3438                                                                 update_fee: Some(update_fee),
3439                                                                 commitment_signed,
3440                                                         },
3441                                                 });
3442                                         }
3443                                 },
3444                         }
3445                         return Ok(())
3446                 };
3447
3448                 match handle_error!(self, err, counterparty_node_id) {
3449                         Ok(_) => unreachable!(),
3450                         Err(e) => { Err(APIError::APIMisuseError { err: e.err })}
3451                 }
3452         }
3453
3454         /// Process pending events from the `chain::Watch`, returning whether any events were processed.
3455         fn process_pending_monitor_events(&self) -> bool {
3456                 let mut failed_channels = Vec::new();
3457                 let pending_monitor_events = self.chain_monitor.release_pending_monitor_events();
3458                 let has_pending_monitor_events = !pending_monitor_events.is_empty();
3459                 for monitor_event in pending_monitor_events {
3460                         match monitor_event {
3461                                 MonitorEvent::HTLCEvent(htlc_update) => {
3462                                         if let Some(preimage) = htlc_update.payment_preimage {
3463                                                 log_trace!(self.logger, "Claiming HTLC with preimage {} from our monitor", log_bytes!(preimage.0));
3464                                                 self.claim_funds_internal(self.channel_state.lock().unwrap(), htlc_update.source, preimage);
3465                                         } else {
3466                                                 log_trace!(self.logger, "Failing HTLC with hash {} from our monitor", log_bytes!(htlc_update.payment_hash.0));
3467                                                 self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_update.source, &htlc_update.payment_hash, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
3468                                         }
3469                                 },
3470                                 MonitorEvent::CommitmentTxBroadcasted(funding_outpoint) => {
3471                                         let mut channel_lock = self.channel_state.lock().unwrap();
3472                                         let channel_state = &mut *channel_lock;
3473                                         let by_id = &mut channel_state.by_id;
3474                                         let short_to_id = &mut channel_state.short_to_id;
3475                                         let pending_msg_events = &mut channel_state.pending_msg_events;
3476                                         if let Some(mut chan) = by_id.remove(&funding_outpoint.to_channel_id()) {
3477                                                 if let Some(short_id) = chan.get_short_channel_id() {
3478                                                         short_to_id.remove(&short_id);
3479                                                 }
3480                                                 failed_channels.push(chan.force_shutdown(false));
3481                                                 if let Ok(update) = self.get_channel_update(&chan) {
3482                                                         pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
3483                                                                 msg: update
3484                                                         });
3485                                                 }
3486                                                 pending_msg_events.push(events::MessageSendEvent::HandleError {
3487                                                         node_id: chan.get_counterparty_node_id(),
3488                                                         action: msgs::ErrorAction::SendErrorMessage {
3489                                                                 msg: msgs::ErrorMessage { channel_id: chan.channel_id(), data: "Channel force-closed".to_owned() }
3490                                                         },
3491                                                 });
3492                                         }
3493                                 },
3494                         }
3495                 }
3496
3497                 for failure in failed_channels.drain(..) {
3498                         self.finish_force_close_channel(failure);
3499                 }
3500
3501                 has_pending_monitor_events
3502         }
3503
3504         /// Check the holding cell in each channel and free any pending HTLCs in them if possible.
3505         /// Returns whether there were any updates such as if pending HTLCs were freed or a monitor
3506         /// update was applied.
3507         ///
3508         /// This should only apply to HTLCs which were added to the holding cell because we were
3509         /// waiting on a monitor update to finish. In that case, we don't want to free the holding cell
3510         /// directly in `channel_monitor_updated` as it may introduce deadlocks calling back into user
3511         /// code to inform them of a channel monitor update.
3512         fn check_free_holding_cells(&self) -> bool {
3513                 let mut has_monitor_update = false;
3514                 let mut failed_htlcs = Vec::new();
3515                 let mut handle_errors = Vec::new();
3516                 {
3517                         let mut channel_state_lock = self.channel_state.lock().unwrap();
3518                         let channel_state = &mut *channel_state_lock;
3519                         let by_id = &mut channel_state.by_id;
3520                         let short_to_id = &mut channel_state.short_to_id;
3521                         let pending_msg_events = &mut channel_state.pending_msg_events;
3522
3523                         by_id.retain(|channel_id, chan| {
3524                                 match chan.maybe_free_holding_cell_htlcs(&self.logger) {
3525                                         Ok((commitment_opt, holding_cell_failed_htlcs)) => {
3526                                                 if !holding_cell_failed_htlcs.is_empty() {
3527                                                         failed_htlcs.push((holding_cell_failed_htlcs, *channel_id));
3528                                                 }
3529                                                 if let Some((commitment_update, monitor_update)) = commitment_opt {
3530                                                         if let Err(e) = self.chain_monitor.update_channel(chan.get_funding_txo().unwrap(), monitor_update) {
3531                                                                 has_monitor_update = true;
3532                                                                 let (res, close_channel) = handle_monitor_err!(self, e, short_to_id, chan, RAACommitmentOrder::CommitmentFirst, false, true, Vec::new(), Vec::new(), channel_id);
3533                                                                 handle_errors.push((chan.get_counterparty_node_id(), res));
3534                                                                 if close_channel { return false; }
3535                                                         } else {
3536                                                                 pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
3537                                                                         node_id: chan.get_counterparty_node_id(),
3538                                                                         updates: commitment_update,
3539                                                                 });
3540                                                         }
3541                                                 }
3542                                                 true
3543                                         },
3544                                         Err(e) => {
3545                                                 let (close_channel, res) = convert_chan_err!(self, e, short_to_id, chan, channel_id);
3546                                                 handle_errors.push((chan.get_counterparty_node_id(), Err(res)));
3547                                                 !close_channel
3548                                         }
3549                                 }
3550                         });
3551                 }
3552
3553                 let has_update = has_monitor_update || !failed_htlcs.is_empty();
3554                 for (failures, channel_id) in failed_htlcs.drain(..) {
3555                         self.fail_holding_cell_htlcs(failures, channel_id);
3556                 }
3557
3558                 for (counterparty_node_id, err) in handle_errors.drain(..) {
3559                         let _ = handle_error!(self, err, counterparty_node_id);
3560                 }
3561
3562                 has_update
3563         }
3564
3565         /// Handle a list of channel failures during a block_connected or block_disconnected call,
3566         /// pushing the channel monitor update (if any) to the background events queue and removing the
3567         /// Channel object.
3568         fn handle_init_event_channel_failures(&self, mut failed_channels: Vec<ShutdownResult>) {
3569                 for mut failure in failed_channels.drain(..) {
3570                         // Either a commitment transactions has been confirmed on-chain or
3571                         // Channel::block_disconnected detected that the funding transaction has been
3572                         // reorganized out of the main chain.
3573                         // We cannot broadcast our latest local state via monitor update (as
3574                         // Channel::force_shutdown tries to make us do) as we may still be in initialization,
3575                         // so we track the update internally and handle it when the user next calls
3576                         // timer_tick_occurred, guaranteeing we're running normally.
3577                         if let Some((funding_txo, update)) = failure.0.take() {
3578                                 assert_eq!(update.updates.len(), 1);
3579                                 if let ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast } = update.updates[0] {
3580                                         assert!(should_broadcast);
3581                                 } else { unreachable!(); }
3582                                 self.pending_background_events.lock().unwrap().push(BackgroundEvent::ClosingMonitorUpdate((funding_txo, update)));
3583                         }
3584                         self.finish_force_close_channel(failure);
3585                 }
3586         }
3587
3588         fn set_payment_hash_secret_map(&self, payment_hash: PaymentHash, payment_preimage: Option<PaymentPreimage>, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32, user_payment_id: u64) -> Result<PaymentSecret, APIError> {
3589                 assert!(invoice_expiry_delta_secs <= 60*60*24*365); // Sadly bitcoin timestamps are u32s, so panic before 2106
3590
3591                 let payment_secret = PaymentSecret(self.keys_manager.get_secure_random_bytes());
3592
3593                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3594                 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
3595                 match payment_secrets.entry(payment_hash) {
3596                         hash_map::Entry::Vacant(e) => {
3597                                 e.insert(PendingInboundPayment {
3598                                         payment_secret, min_value_msat, user_payment_id, payment_preimage,
3599                                         // We assume that highest_seen_timestamp is pretty close to the current time -
3600                                         // its updated when we receive a new block with the maximum time we've seen in
3601                                         // a header. It should never be more than two hours in the future.
3602                                         // Thus, we add two hours here as a buffer to ensure we absolutely
3603                                         // never fail a payment too early.
3604                                         // Note that we assume that received blocks have reasonably up-to-date
3605                                         // timestamps.
3606                                         expiry_time: self.highest_seen_timestamp.load(Ordering::Acquire) as u64 + invoice_expiry_delta_secs as u64 + 7200,
3607                                 });
3608                         },
3609                         hash_map::Entry::Occupied(_) => return Err(APIError::APIMisuseError { err: "Duplicate payment hash".to_owned() }),
3610                 }
3611                 Ok(payment_secret)
3612         }
3613
3614         /// Gets a payment secret and payment hash for use in an invoice given to a third party wishing
3615         /// to pay us.
3616         ///
3617         /// This differs from [`create_inbound_payment_for_hash`] only in that it generates the
3618         /// [`PaymentHash`] and [`PaymentPreimage`] for you, returning the first and storing the second.
3619         ///
3620         /// The [`PaymentPreimage`] will ultimately be returned to you in the [`PaymentReceived`], which
3621         /// will have the [`PaymentReceived::payment_preimage`] field filled in. That should then be
3622         /// passed directly to [`claim_funds`].
3623         ///
3624         /// See [`create_inbound_payment_for_hash`] for detailed documentation on behavior and requirements.
3625         ///
3626         /// [`claim_funds`]: Self::claim_funds
3627         /// [`PaymentReceived`]: events::Event::PaymentReceived
3628         /// [`PaymentReceived::payment_preimage`]: events::Event::PaymentReceived::payment_preimage
3629         /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
3630         pub fn create_inbound_payment(&self, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32, user_payment_id: u64) -> (PaymentHash, PaymentSecret) {
3631                 let payment_preimage = PaymentPreimage(self.keys_manager.get_secure_random_bytes());
3632                 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
3633
3634                 (payment_hash,
3635                         self.set_payment_hash_secret_map(payment_hash, Some(payment_preimage), min_value_msat, invoice_expiry_delta_secs, user_payment_id)
3636                                 .expect("RNG Generated Duplicate PaymentHash"))
3637         }
3638
3639         /// Gets a [`PaymentSecret`] for a given [`PaymentHash`], for which the payment preimage is
3640         /// stored external to LDK.
3641         ///
3642         /// A [`PaymentReceived`] event will only be generated if the [`PaymentSecret`] matches a
3643         /// payment secret fetched via this method or [`create_inbound_payment`], and which is at least
3644         /// the `min_value_msat` provided here, if one is provided.
3645         ///
3646         /// The [`PaymentHash`] (and corresponding [`PaymentPreimage`]) must be globally unique. This
3647         /// method may return an Err if another payment with the same payment_hash is still pending.
3648         ///
3649         /// `user_payment_id` will be provided back in [`PaymentReceived::user_payment_id`] events to
3650         /// allow tracking of which events correspond with which calls to this and
3651         /// [`create_inbound_payment`]. `user_payment_id` has no meaning inside of LDK, it is simply
3652         /// copied to events and otherwise ignored. It may be used to correlate PaymentReceived events
3653         /// with invoice metadata stored elsewhere.
3654         ///
3655         /// `min_value_msat` should be set if the invoice being generated contains a value. Any payment
3656         /// received for the returned [`PaymentHash`] will be required to be at least `min_value_msat`
3657         /// before a [`PaymentReceived`] event will be generated, ensuring that we do not provide the
3658         /// sender "proof-of-payment" unless they have paid the required amount.
3659         ///
3660         /// `invoice_expiry_delta_secs` describes the number of seconds that the invoice is valid for
3661         /// in excess of the current time. This should roughly match the expiry time set in the invoice.
3662         /// After this many seconds, we will remove the inbound payment, resulting in any attempts to
3663         /// pay the invoice failing. The BOLT spec suggests 3,600 secs as a default validity time for
3664         /// invoices when no timeout is set.
3665         ///
3666         /// Note that we use block header time to time-out pending inbound payments (with some margin
3667         /// to compensate for the inaccuracy of block header timestamps). Thus, in practice we will
3668         /// accept a payment and generate a [`PaymentReceived`] event for some time after the expiry.
3669         /// If you need exact expiry semantics, you should enforce them upon receipt of
3670         /// [`PaymentReceived`].
3671         ///
3672         /// Pending inbound payments are stored in memory and in serialized versions of this
3673         /// [`ChannelManager`]. If potentially unbounded numbers of inbound payments may exist and
3674         /// space is limited, you may wish to rate-limit inbound payment creation.
3675         ///
3676         /// May panic if `invoice_expiry_delta_secs` is greater than one year.
3677         ///
3678         /// Note that invoices generated for inbound payments should have their `min_final_cltv_expiry`
3679         /// set to at least [`MIN_FINAL_CLTV_EXPIRY`].
3680         ///
3681         /// [`create_inbound_payment`]: Self::create_inbound_payment
3682         /// [`PaymentReceived`]: events::Event::PaymentReceived
3683         /// [`PaymentReceived::user_payment_id`]: events::Event::PaymentReceived::user_payment_id
3684         pub fn create_inbound_payment_for_hash(&self, payment_hash: PaymentHash, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32, user_payment_id: u64) -> Result<PaymentSecret, APIError> {
3685                 self.set_payment_hash_secret_map(payment_hash, None, min_value_msat, invoice_expiry_delta_secs, user_payment_id)
3686         }
3687
3688         #[cfg(any(test, feature = "fuzztarget", feature = "_test_utils"))]
3689         pub fn get_and_clear_pending_events(&self) -> Vec<events::Event> {
3690                 let events = core::cell::RefCell::new(Vec::new());
3691                 let event_handler = |event| events.borrow_mut().push(event);
3692                 self.process_pending_events(&event_handler);
3693                 events.into_inner()
3694         }
3695 }
3696
3697 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> MessageSendEventsProvider for ChannelManager<Signer, M, T, K, F, L>
3698         where M::Target: chain::Watch<Signer>,
3699         T::Target: BroadcasterInterface,
3700         K::Target: KeysInterface<Signer = Signer>,
3701         F::Target: FeeEstimator,
3702                                 L::Target: Logger,
3703 {
3704         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
3705                 let events = RefCell::new(Vec::new());
3706                 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
3707                         let mut result = NotifyOption::SkipPersist;
3708
3709                         // TODO: This behavior should be documented. It's unintuitive that we query
3710                         // ChannelMonitors when clearing other events.
3711                         if self.process_pending_monitor_events() {
3712                                 result = NotifyOption::DoPersist;
3713                         }
3714
3715                         if self.check_free_holding_cells() {
3716                                 result = NotifyOption::DoPersist;
3717                         }
3718
3719                         let mut pending_events = Vec::new();
3720                         let mut channel_state = self.channel_state.lock().unwrap();
3721                         mem::swap(&mut pending_events, &mut channel_state.pending_msg_events);
3722
3723                         if !pending_events.is_empty() {
3724                                 events.replace(pending_events);
3725                         }
3726
3727                         result
3728                 });
3729                 events.into_inner()
3730         }
3731 }
3732
3733 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> EventsProvider for ChannelManager<Signer, M, T, K, F, L>
3734 where
3735         M::Target: chain::Watch<Signer>,
3736         T::Target: BroadcasterInterface,
3737         K::Target: KeysInterface<Signer = Signer>,
3738         F::Target: FeeEstimator,
3739         L::Target: Logger,
3740 {
3741         /// Processes events that must be periodically handled.
3742         ///
3743         /// An [`EventHandler`] may safely call back to the provider in order to handle an event.
3744         /// However, it must not call [`Writeable::write`] as doing so would result in a deadlock.
3745         ///
3746         /// Pending events are persisted as part of [`ChannelManager`]. While these events are cleared
3747         /// when processed, an [`EventHandler`] must be able to handle previously seen events when
3748         /// restarting from an old state.
3749         fn process_pending_events<H: Deref>(&self, handler: H) where H::Target: EventHandler {
3750                 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
3751                         let mut result = NotifyOption::SkipPersist;
3752
3753                         // TODO: This behavior should be documented. It's unintuitive that we query
3754                         // ChannelMonitors when clearing other events.
3755                         if self.process_pending_monitor_events() {
3756                                 result = NotifyOption::DoPersist;
3757                         }
3758
3759                         let mut pending_events = std::mem::replace(&mut *self.pending_events.lock().unwrap(), vec![]);
3760                         if !pending_events.is_empty() {
3761                                 result = NotifyOption::DoPersist;
3762                         }
3763
3764                         for event in pending_events.drain(..) {
3765                                 handler.handle_event(event);
3766                         }
3767
3768                         result
3769                 });
3770         }
3771 }
3772
3773 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> chain::Listen for ChannelManager<Signer, M, T, K, F, L>
3774 where
3775         M::Target: chain::Watch<Signer>,
3776         T::Target: BroadcasterInterface,
3777         K::Target: KeysInterface<Signer = Signer>,
3778         F::Target: FeeEstimator,
3779         L::Target: Logger,
3780 {
3781         fn block_connected(&self, block: &Block, height: u32) {
3782                 {
3783                         let best_block = self.best_block.read().unwrap();
3784                         assert_eq!(best_block.block_hash(), block.header.prev_blockhash,
3785                                 "Blocks must be connected in chain-order - the connected header must build on the last connected header");
3786                         assert_eq!(best_block.height(), height - 1,
3787                                 "Blocks must be connected in chain-order - the connected block height must be one greater than the previous height");
3788                 }
3789
3790                 let txdata: Vec<_> = block.txdata.iter().enumerate().collect();
3791                 self.transactions_confirmed(&block.header, &txdata, height);
3792                 self.best_block_updated(&block.header, height);
3793         }
3794
3795         fn block_disconnected(&self, header: &BlockHeader, height: u32) {
3796                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3797                 let new_height = height - 1;
3798                 {
3799                         let mut best_block = self.best_block.write().unwrap();
3800                         assert_eq!(best_block.block_hash(), header.block_hash(),
3801                                 "Blocks must be disconnected in chain-order - the disconnected header must be the last connected header");
3802                         assert_eq!(best_block.height(), height,
3803                                 "Blocks must be disconnected in chain-order - the disconnected block must have the correct height");
3804                         *best_block = BestBlock::new(header.prev_blockhash, new_height)
3805                 }
3806
3807                 self.do_chain_event(Some(new_height), |channel| channel.best_block_updated(new_height, header.time));
3808         }
3809 }
3810
3811 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> chain::Confirm for ChannelManager<Signer, M, T, K, F, L>
3812 where
3813         M::Target: chain::Watch<Signer>,
3814         T::Target: BroadcasterInterface,
3815         K::Target: KeysInterface<Signer = Signer>,
3816         F::Target: FeeEstimator,
3817         L::Target: Logger,
3818 {
3819         fn transactions_confirmed(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
3820                 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
3821                 // during initialization prior to the chain_monitor being fully configured in some cases.
3822                 // See the docs for `ChannelManagerReadArgs` for more.
3823
3824                 let block_hash = header.block_hash();
3825                 log_trace!(self.logger, "{} transactions included in block {} at height {} provided", txdata.len(), block_hash, height);
3826
3827                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3828                 self.do_chain_event(Some(height), |channel| channel.transactions_confirmed(&block_hash, height, txdata, &self.logger).map(|a| (a, Vec::new())));
3829         }
3830
3831         fn best_block_updated(&self, header: &BlockHeader, height: u32) {
3832                 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
3833                 // during initialization prior to the chain_monitor being fully configured in some cases.
3834                 // See the docs for `ChannelManagerReadArgs` for more.
3835
3836                 let block_hash = header.block_hash();
3837                 log_trace!(self.logger, "New best block: {} at height {}", block_hash, height);
3838
3839                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3840
3841                 *self.best_block.write().unwrap() = BestBlock::new(block_hash, height);
3842
3843                 self.do_chain_event(Some(height), |channel| channel.best_block_updated(height, header.time));
3844
3845                 macro_rules! max_time {
3846                         ($timestamp: expr) => {
3847                                 loop {
3848                                         // Update $timestamp to be the max of its current value and the block
3849                                         // timestamp. This should keep us close to the current time without relying on
3850                                         // having an explicit local time source.
3851                                         // Just in case we end up in a race, we loop until we either successfully
3852                                         // update $timestamp or decide we don't need to.
3853                                         let old_serial = $timestamp.load(Ordering::Acquire);
3854                                         if old_serial >= header.time as usize { break; }
3855                                         if $timestamp.compare_exchange(old_serial, header.time as usize, Ordering::AcqRel, Ordering::Relaxed).is_ok() {
3856                                                 break;
3857                                         }
3858                                 }
3859                         }
3860                 }
3861                 max_time!(self.last_node_announcement_serial);
3862                 max_time!(self.highest_seen_timestamp);
3863                 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
3864                 payment_secrets.retain(|_, inbound_payment| {
3865                         inbound_payment.expiry_time > header.time as u64
3866                 });
3867         }
3868
3869         fn get_relevant_txids(&self) -> Vec<Txid> {
3870                 let channel_state = self.channel_state.lock().unwrap();
3871                 let mut res = Vec::with_capacity(channel_state.short_to_id.len());
3872                 for chan in channel_state.by_id.values() {
3873                         if let Some(funding_txo) = chan.get_funding_txo() {
3874                                 res.push(funding_txo.txid);
3875                         }
3876                 }
3877                 res
3878         }
3879
3880         fn transaction_unconfirmed(&self, txid: &Txid) {
3881                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3882                 self.do_chain_event(None, |channel| {
3883                         if let Some(funding_txo) = channel.get_funding_txo() {
3884                                 if funding_txo.txid == *txid {
3885                                         channel.funding_transaction_unconfirmed().map(|_| (None, Vec::new()))
3886                                 } else { Ok((None, Vec::new())) }
3887                         } else { Ok((None, Vec::new())) }
3888                 });
3889         }
3890 }
3891
3892 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> ChannelManager<Signer, M, T, K, F, L>
3893 where
3894         M::Target: chain::Watch<Signer>,
3895         T::Target: BroadcasterInterface,
3896         K::Target: KeysInterface<Signer = Signer>,
3897         F::Target: FeeEstimator,
3898         L::Target: Logger,
3899 {
3900         /// Calls a function which handles an on-chain event (blocks dis/connected, transactions
3901         /// un/confirmed, etc) on each channel, handling any resulting errors or messages generated by
3902         /// the function.
3903         fn do_chain_event<FN: Fn(&mut Channel<Signer>) -> Result<(Option<msgs::FundingLocked>, Vec<(HTLCSource, PaymentHash)>), msgs::ErrorMessage>>
3904                         (&self, height_opt: Option<u32>, f: FN) {
3905                 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
3906                 // during initialization prior to the chain_monitor being fully configured in some cases.
3907                 // See the docs for `ChannelManagerReadArgs` for more.
3908
3909                 let mut failed_channels = Vec::new();
3910                 let mut timed_out_htlcs = Vec::new();
3911                 {
3912                         let mut channel_lock = self.channel_state.lock().unwrap();
3913                         let channel_state = &mut *channel_lock;
3914                         let short_to_id = &mut channel_state.short_to_id;
3915                         let pending_msg_events = &mut channel_state.pending_msg_events;
3916                         channel_state.by_id.retain(|_, channel| {
3917                                 let res = f(channel);
3918                                 if let Ok((chan_res, mut timed_out_pending_htlcs)) = res {
3919                                         for (source, payment_hash) in timed_out_pending_htlcs.drain(..) {
3920                                                 let chan_update = self.get_channel_update(&channel).map(|u| u.encode_with_len()).unwrap(); // Cannot add/recv HTLCs before we have a short_id so unwrap is safe
3921                                                 timed_out_htlcs.push((source, payment_hash,  HTLCFailReason::Reason {
3922                                                         failure_code: 0x1000 | 14, // expiry_too_soon, or at least it is now
3923                                                         data: chan_update,
3924                                                 }));
3925                                         }
3926                                         if let Some(funding_locked) = chan_res {
3927                                                 pending_msg_events.push(events::MessageSendEvent::SendFundingLocked {
3928                                                         node_id: channel.get_counterparty_node_id(),
3929                                                         msg: funding_locked,
3930                                                 });
3931                                                 if let Some(announcement_sigs) = self.get_announcement_sigs(channel) {
3932                                                         log_trace!(self.logger, "Sending funding_locked and announcement_signatures for {}", log_bytes!(channel.channel_id()));
3933                                                         pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
3934                                                                 node_id: channel.get_counterparty_node_id(),
3935                                                                 msg: announcement_sigs,
3936                                                         });
3937                                                 } else {
3938                                                         log_trace!(self.logger, "Sending funding_locked WITHOUT announcement_signatures for {}", log_bytes!(channel.channel_id()));
3939                                                 }
3940                                                 short_to_id.insert(channel.get_short_channel_id().unwrap(), channel.channel_id());
3941                                         }
3942                                 } else if let Err(e) = res {
3943                                         if let Some(short_id) = channel.get_short_channel_id() {
3944                                                 short_to_id.remove(&short_id);
3945                                         }
3946                                         // It looks like our counterparty went on-chain or funding transaction was
3947                                         // reorged out of the main chain. Close the channel.
3948                                         failed_channels.push(channel.force_shutdown(true));
3949                                         if let Ok(update) = self.get_channel_update(&channel) {
3950                                                 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
3951                                                         msg: update
3952                                                 });
3953                                         }
3954                                         pending_msg_events.push(events::MessageSendEvent::HandleError {
3955                                                 node_id: channel.get_counterparty_node_id(),
3956                                                 action: msgs::ErrorAction::SendErrorMessage { msg: e },
3957                                         });
3958                                         return false;
3959                                 }
3960                                 true
3961                         });
3962
3963                         if let Some(height) = height_opt {
3964                                 channel_state.claimable_htlcs.retain(|payment_hash, htlcs| {
3965                                         htlcs.retain(|htlc| {
3966                                                 // If height is approaching the number of blocks we think it takes us to get
3967                                                 // our commitment transaction confirmed before the HTLC expires, plus the
3968                                                 // number of blocks we generally consider it to take to do a commitment update,
3969                                                 // just give up on it and fail the HTLC.
3970                                                 if height >= htlc.cltv_expiry - HTLC_FAIL_BACK_BUFFER {
3971                                                         let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec();
3972                                                         htlc_msat_height_data.extend_from_slice(&byte_utils::be32_to_array(height));
3973                                                         timed_out_htlcs.push((HTLCSource::PreviousHopData(htlc.prev_hop.clone()), payment_hash.clone(), HTLCFailReason::Reason {
3974                                                                 failure_code: 0x4000 | 15,
3975                                                                 data: htlc_msat_height_data
3976                                                         }));
3977                                                         false
3978                                                 } else { true }
3979                                         });
3980                                         !htlcs.is_empty() // Only retain this entry if htlcs has at least one entry.
3981                                 });
3982                         }
3983                 }
3984
3985                 self.handle_init_event_channel_failures(failed_channels);
3986
3987                 for (source, payment_hash, reason) in timed_out_htlcs.drain(..) {
3988                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), source, &payment_hash, reason);
3989                 }
3990         }
3991
3992         /// Blocks until ChannelManager needs to be persisted or a timeout is reached. It returns a bool
3993         /// indicating whether persistence is necessary. Only one listener on
3994         /// `await_persistable_update` or `await_persistable_update_timeout` is guaranteed to be woken
3995         /// up.
3996         /// Note that the feature `allow_wallclock_use` must be enabled to use this function.
3997         #[cfg(any(test, feature = "allow_wallclock_use"))]
3998         pub fn await_persistable_update_timeout(&self, max_wait: Duration) -> bool {
3999                 self.persistence_notifier.wait_timeout(max_wait)
4000         }
4001
4002         /// Blocks until ChannelManager needs to be persisted. Only one listener on
4003         /// `await_persistable_update` or `await_persistable_update_timeout` is guaranteed to be woken
4004         /// up.
4005         pub fn await_persistable_update(&self) {
4006                 self.persistence_notifier.wait()
4007         }
4008
4009         #[cfg(any(test, feature = "_test_utils"))]
4010         pub fn get_persistence_condvar_value(&self) -> bool {
4011                 let mutcond = &self.persistence_notifier.persistence_lock;
4012                 let &(ref mtx, _) = mutcond;
4013                 let guard = mtx.lock().unwrap();
4014                 *guard
4015         }
4016 }
4017
4018 impl<Signer: Sign, M: Deref , T: Deref , K: Deref , F: Deref , L: Deref >
4019         ChannelMessageHandler for ChannelManager<Signer, M, T, K, F, L>
4020         where M::Target: chain::Watch<Signer>,
4021         T::Target: BroadcasterInterface,
4022         K::Target: KeysInterface<Signer = Signer>,
4023         F::Target: FeeEstimator,
4024         L::Target: Logger,
4025 {
4026         fn handle_open_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::OpenChannel) {
4027                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4028                 let _ = handle_error!(self, self.internal_open_channel(counterparty_node_id, their_features, msg), *counterparty_node_id);
4029         }
4030
4031         fn handle_accept_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::AcceptChannel) {
4032                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4033                 let _ = handle_error!(self, self.internal_accept_channel(counterparty_node_id, their_features, msg), *counterparty_node_id);
4034         }
4035
4036         fn handle_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) {
4037                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4038                 let _ = handle_error!(self, self.internal_funding_created(counterparty_node_id, msg), *counterparty_node_id);
4039         }
4040
4041         fn handle_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) {
4042                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4043                 let _ = handle_error!(self, self.internal_funding_signed(counterparty_node_id, msg), *counterparty_node_id);
4044         }
4045
4046         fn handle_funding_locked(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingLocked) {
4047                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4048                 let _ = handle_error!(self, self.internal_funding_locked(counterparty_node_id, msg), *counterparty_node_id);
4049         }
4050
4051         fn handle_shutdown(&self, counterparty_node_id: &PublicKey, their_features: &InitFeatures, msg: &msgs::Shutdown) {
4052                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4053                 let _ = handle_error!(self, self.internal_shutdown(counterparty_node_id, their_features, msg), *counterparty_node_id);
4054         }
4055
4056         fn handle_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
4057                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4058                 let _ = handle_error!(self, self.internal_closing_signed(counterparty_node_id, msg), *counterparty_node_id);
4059         }
4060
4061         fn handle_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
4062                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4063                 let _ = handle_error!(self, self.internal_update_add_htlc(counterparty_node_id, msg), *counterparty_node_id);
4064         }
4065
4066         fn handle_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
4067                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4068                 let _ = handle_error!(self, self.internal_update_fulfill_htlc(counterparty_node_id, msg), *counterparty_node_id);
4069         }
4070
4071         fn handle_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
4072                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4073                 let _ = handle_error!(self, self.internal_update_fail_htlc(counterparty_node_id, msg), *counterparty_node_id);
4074         }
4075
4076         fn handle_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
4077                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4078                 let _ = handle_error!(self, self.internal_update_fail_malformed_htlc(counterparty_node_id, msg), *counterparty_node_id);
4079         }
4080
4081         fn handle_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
4082                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4083                 let _ = handle_error!(self, self.internal_commitment_signed(counterparty_node_id, msg), *counterparty_node_id);
4084         }
4085
4086         fn handle_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
4087                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4088                 let _ = handle_error!(self, self.internal_revoke_and_ack(counterparty_node_id, msg), *counterparty_node_id);
4089         }
4090
4091         fn handle_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) {
4092                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4093                 let _ = handle_error!(self, self.internal_update_fee(counterparty_node_id, msg), *counterparty_node_id);
4094         }
4095
4096         fn handle_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
4097                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4098                 let _ = handle_error!(self, self.internal_announcement_signatures(counterparty_node_id, msg), *counterparty_node_id);
4099         }
4100
4101         fn handle_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) {
4102                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4103                 let _ = handle_error!(self, self.internal_channel_update(counterparty_node_id, msg), *counterparty_node_id);
4104         }
4105
4106         fn handle_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
4107                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4108                 let _ = handle_error!(self, self.internal_channel_reestablish(counterparty_node_id, msg), *counterparty_node_id);
4109         }
4110
4111         fn peer_disconnected(&self, counterparty_node_id: &PublicKey, no_connection_possible: bool) {
4112                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4113                 let mut failed_channels = Vec::new();
4114                 let mut no_channels_remain = true;
4115                 {
4116                         let mut channel_state_lock = self.channel_state.lock().unwrap();
4117                         let channel_state = &mut *channel_state_lock;
4118                         let short_to_id = &mut channel_state.short_to_id;
4119                         let pending_msg_events = &mut channel_state.pending_msg_events;
4120                         if no_connection_possible {
4121                                 log_debug!(self.logger, "Failing all channels with {} due to no_connection_possible", log_pubkey!(counterparty_node_id));
4122                                 channel_state.by_id.retain(|_, chan| {
4123                                         if chan.get_counterparty_node_id() == *counterparty_node_id {
4124                                                 if let Some(short_id) = chan.get_short_channel_id() {
4125                                                         short_to_id.remove(&short_id);
4126                                                 }
4127                                                 failed_channels.push(chan.force_shutdown(true));
4128                                                 if let Ok(update) = self.get_channel_update(&chan) {
4129                                                         pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
4130                                                                 msg: update
4131                                                         });
4132                                                 }
4133                                                 false
4134                                         } else {
4135                                                 true
4136                                         }
4137                                 });
4138                         } else {
4139                                 log_debug!(self.logger, "Marking channels with {} disconnected and generating channel_updates", log_pubkey!(counterparty_node_id));
4140                                 channel_state.by_id.retain(|_, chan| {
4141                                         if chan.get_counterparty_node_id() == *counterparty_node_id {
4142                                                 chan.remove_uncommitted_htlcs_and_mark_paused(&self.logger);
4143                                                 if chan.is_shutdown() {
4144                                                         if let Some(short_id) = chan.get_short_channel_id() {
4145                                                                 short_to_id.remove(&short_id);
4146                                                         }
4147                                                         return false;
4148                                                 } else {
4149                                                         no_channels_remain = false;
4150                                                 }
4151                                         }
4152                                         true
4153                                 })
4154                         }
4155                         pending_msg_events.retain(|msg| {
4156                                 match msg {
4157                                         &events::MessageSendEvent::SendAcceptChannel { ref node_id, .. } => node_id != counterparty_node_id,
4158                                         &events::MessageSendEvent::SendOpenChannel { ref node_id, .. } => node_id != counterparty_node_id,
4159                                         &events::MessageSendEvent::SendFundingCreated { ref node_id, .. } => node_id != counterparty_node_id,
4160                                         &events::MessageSendEvent::SendFundingSigned { ref node_id, .. } => node_id != counterparty_node_id,
4161                                         &events::MessageSendEvent::SendFundingLocked { ref node_id, .. } => node_id != counterparty_node_id,
4162                                         &events::MessageSendEvent::SendAnnouncementSignatures { ref node_id, .. } => node_id != counterparty_node_id,
4163                                         &events::MessageSendEvent::UpdateHTLCs { ref node_id, .. } => node_id != counterparty_node_id,
4164                                         &events::MessageSendEvent::SendRevokeAndACK { ref node_id, .. } => node_id != counterparty_node_id,
4165                                         &events::MessageSendEvent::SendClosingSigned { ref node_id, .. } => node_id != counterparty_node_id,
4166                                         &events::MessageSendEvent::SendShutdown { ref node_id, .. } => node_id != counterparty_node_id,
4167                                         &events::MessageSendEvent::SendChannelReestablish { ref node_id, .. } => node_id != counterparty_node_id,
4168                                         &events::MessageSendEvent::BroadcastChannelAnnouncement { .. } => true,
4169                                         &events::MessageSendEvent::BroadcastNodeAnnouncement { .. } => true,
4170                                         &events::MessageSendEvent::BroadcastChannelUpdate { .. } => true,
4171                                         &events::MessageSendEvent::HandleError { ref node_id, .. } => node_id != counterparty_node_id,
4172                                         &events::MessageSendEvent::PaymentFailureNetworkUpdate { .. } => true,
4173                                         &events::MessageSendEvent::SendChannelRangeQuery { .. } => false,
4174                                         &events::MessageSendEvent::SendShortIdsQuery { .. } => false,
4175                                         &events::MessageSendEvent::SendReplyChannelRange { .. } => false,
4176                                 }
4177                         });
4178                 }
4179                 if no_channels_remain {
4180                         self.per_peer_state.write().unwrap().remove(counterparty_node_id);
4181                 }
4182
4183                 for failure in failed_channels.drain(..) {
4184                         self.finish_force_close_channel(failure);
4185                 }
4186         }
4187
4188         fn peer_connected(&self, counterparty_node_id: &PublicKey, init_msg: &msgs::Init) {
4189                 log_debug!(self.logger, "Generating channel_reestablish events for {}", log_pubkey!(counterparty_node_id));
4190
4191                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4192
4193                 {
4194                         let mut peer_state_lock = self.per_peer_state.write().unwrap();
4195                         match peer_state_lock.entry(counterparty_node_id.clone()) {
4196                                 hash_map::Entry::Vacant(e) => {
4197                                         e.insert(Mutex::new(PeerState {
4198                                                 latest_features: init_msg.features.clone(),
4199                                         }));
4200                                 },
4201                                 hash_map::Entry::Occupied(e) => {
4202                                         e.get().lock().unwrap().latest_features = init_msg.features.clone();
4203                                 },
4204                         }
4205                 }
4206
4207                 let mut channel_state_lock = self.channel_state.lock().unwrap();
4208                 let channel_state = &mut *channel_state_lock;
4209                 let pending_msg_events = &mut channel_state.pending_msg_events;
4210                 channel_state.by_id.retain(|_, chan| {
4211                         if chan.get_counterparty_node_id() == *counterparty_node_id {
4212                                 if !chan.have_received_message() {
4213                                         // If we created this (outbound) channel while we were disconnected from the
4214                                         // peer we probably failed to send the open_channel message, which is now
4215                                         // lost. We can't have had anything pending related to this channel, so we just
4216                                         // drop it.
4217                                         false
4218                                 } else {
4219                                         pending_msg_events.push(events::MessageSendEvent::SendChannelReestablish {
4220                                                 node_id: chan.get_counterparty_node_id(),
4221                                                 msg: chan.get_channel_reestablish(&self.logger),
4222                                         });
4223                                         true
4224                                 }
4225                         } else { true }
4226                 });
4227                 //TODO: Also re-broadcast announcement_signatures
4228         }
4229
4230         fn handle_error(&self, counterparty_node_id: &PublicKey, msg: &msgs::ErrorMessage) {
4231                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4232
4233                 if msg.channel_id == [0; 32] {
4234                         for chan in self.list_channels() {
4235                                 if chan.remote_network_id == *counterparty_node_id {
4236                                         // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
4237                                         let _ = self.force_close_channel_with_peer(&chan.channel_id, Some(counterparty_node_id));
4238                                 }
4239                         }
4240                 } else {
4241                         // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
4242                         let _ = self.force_close_channel_with_peer(&msg.channel_id, Some(counterparty_node_id));
4243                 }
4244         }
4245 }
4246
4247 /// Used to signal to the ChannelManager persister that the manager needs to be re-persisted to
4248 /// disk/backups, through `await_persistable_update_timeout` and `await_persistable_update`.
4249 struct PersistenceNotifier {
4250         /// Users won't access the persistence_lock directly, but rather wait on its bool using
4251         /// `wait_timeout` and `wait`.
4252         persistence_lock: (Mutex<bool>, Condvar),
4253 }
4254
4255 impl PersistenceNotifier {
4256         fn new() -> Self {
4257                 Self {
4258                         persistence_lock: (Mutex::new(false), Condvar::new()),
4259                 }
4260         }
4261
4262         fn wait(&self) {
4263                 loop {
4264                         let &(ref mtx, ref cvar) = &self.persistence_lock;
4265                         let mut guard = mtx.lock().unwrap();
4266                         if *guard {
4267                                 *guard = false;
4268                                 return;
4269                         }
4270                         guard = cvar.wait(guard).unwrap();
4271                         let result = *guard;
4272                         if result {
4273                                 *guard = false;
4274                                 return
4275                         }
4276                 }
4277         }
4278
4279         #[cfg(any(test, feature = "allow_wallclock_use"))]
4280         fn wait_timeout(&self, max_wait: Duration) -> bool {
4281                 let current_time = Instant::now();
4282                 loop {
4283                         let &(ref mtx, ref cvar) = &self.persistence_lock;
4284                         let mut guard = mtx.lock().unwrap();
4285                         if *guard {
4286                                 *guard = false;
4287                                 return true;
4288                         }
4289                         guard = cvar.wait_timeout(guard, max_wait).unwrap().0;
4290                         // Due to spurious wakeups that can happen on `wait_timeout`, here we need to check if the
4291                         // desired wait time has actually passed, and if not then restart the loop with a reduced wait
4292                         // time. Note that this logic can be highly simplified through the use of
4293                         // `Condvar::wait_while` and `Condvar::wait_timeout_while`, if and when our MSRV is raised to
4294                         // 1.42.0.
4295                         let elapsed = current_time.elapsed();
4296                         let result = *guard;
4297                         if result || elapsed >= max_wait {
4298                                 *guard = false;
4299                                 return result;
4300                         }
4301                         match max_wait.checked_sub(elapsed) {
4302                                 None => return result,
4303                                 Some(_) => continue
4304                         }
4305                 }
4306         }
4307
4308         // Signal to the ChannelManager persister that there are updates necessitating persisting to disk.
4309         fn notify(&self) {
4310                 let &(ref persist_mtx, ref cnd) = &self.persistence_lock;
4311                 let mut persistence_lock = persist_mtx.lock().unwrap();
4312                 *persistence_lock = true;
4313                 mem::drop(persistence_lock);
4314                 cnd.notify_all();
4315         }
4316 }
4317
4318 const SERIALIZATION_VERSION: u8 = 1;
4319 const MIN_SERIALIZATION_VERSION: u8 = 1;
4320
4321 impl_writeable_tlv_based_enum!(PendingHTLCRouting,
4322         (0, Forward) => {
4323                 (0, onion_packet),
4324                 (2, short_channel_id),
4325         }, {}, {},
4326         (1, Receive) => {
4327                 (0, payment_data),
4328                 (2, incoming_cltv_expiry),
4329         }, {}, {}
4330 ;);
4331
4332 impl_writeable_tlv_based!(PendingHTLCInfo, {
4333         (0, routing),
4334         (2, incoming_shared_secret),
4335         (4, payment_hash),
4336         (6, amt_to_forward),
4337         (8, outgoing_cltv_value)
4338 }, {}, {});
4339
4340 impl_writeable_tlv_based_enum!(HTLCFailureMsg, ;
4341         (0, Relay),
4342         (1, Malformed),
4343 );
4344 impl_writeable_tlv_based_enum!(PendingHTLCStatus, ;
4345         (0, Forward),
4346         (1, Fail),
4347 );
4348
4349 impl_writeable_tlv_based!(HTLCPreviousHopData, {
4350         (0, short_channel_id),
4351         (2, outpoint),
4352         (4, htlc_id),
4353         (6, incoming_packet_shared_secret)
4354 }, {}, {});
4355
4356 impl_writeable_tlv_based!(ClaimableHTLC, {
4357         (0, prev_hop),
4358         (2, value),
4359         (4, payment_data),
4360         (6, cltv_expiry),
4361 }, {}, {});
4362
4363 impl_writeable_tlv_based_enum!(HTLCSource,
4364         (0, OutboundRoute) => {
4365                 (0, session_priv),
4366                 (2, first_hop_htlc_msat),
4367         }, {}, {
4368                 (4, path),
4369         };
4370         (1, PreviousHopData)
4371 );
4372
4373 impl_writeable_tlv_based_enum!(HTLCFailReason,
4374         (0, LightningError) => {
4375                 (0, err),
4376         }, {}, {},
4377         (1, Reason) => {
4378                 (0, failure_code),
4379         }, {}, {
4380                 (2, data),
4381         },
4382 ;);
4383
4384 impl_writeable_tlv_based_enum!(HTLCForwardInfo,
4385         (0, AddHTLC) => {
4386                 (0, forward_info),
4387                 (2, prev_short_channel_id),
4388                 (4, prev_htlc_id),
4389                 (6, prev_funding_outpoint),
4390         }, {}, {},
4391         (1, FailHTLC) => {
4392                 (0, htlc_id),
4393                 (2, err_packet),
4394         }, {}, {},
4395 ;);
4396
4397 impl_writeable_tlv_based!(PendingInboundPayment, {
4398         (0, payment_secret),
4399         (2, expiry_time),
4400         (4, user_payment_id),
4401         (6, payment_preimage),
4402         (8, min_value_msat),
4403 }, {}, {});
4404
4405 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> Writeable for ChannelManager<Signer, M, T, K, F, L>
4406         where M::Target: chain::Watch<Signer>,
4407         T::Target: BroadcasterInterface,
4408         K::Target: KeysInterface<Signer = Signer>,
4409         F::Target: FeeEstimator,
4410         L::Target: Logger,
4411 {
4412         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
4413                 let _consistency_lock = self.total_consistency_lock.write().unwrap();
4414
4415                 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
4416
4417                 self.genesis_hash.write(writer)?;
4418                 {
4419                         let best_block = self.best_block.read().unwrap();
4420                         best_block.height().write(writer)?;
4421                         best_block.block_hash().write(writer)?;
4422                 }
4423
4424                 let channel_state = self.channel_state.lock().unwrap();
4425                 let mut unfunded_channels = 0;
4426                 for (_, channel) in channel_state.by_id.iter() {
4427                         if !channel.is_funding_initiated() {
4428                                 unfunded_channels += 1;
4429                         }
4430                 }
4431                 ((channel_state.by_id.len() - unfunded_channels) as u64).write(writer)?;
4432                 for (_, channel) in channel_state.by_id.iter() {
4433                         if channel.is_funding_initiated() {
4434                                 channel.write(writer)?;
4435                         }
4436                 }
4437
4438                 (channel_state.forward_htlcs.len() as u64).write(writer)?;
4439                 for (short_channel_id, pending_forwards) in channel_state.forward_htlcs.iter() {
4440                         short_channel_id.write(writer)?;
4441                         (pending_forwards.len() as u64).write(writer)?;
4442                         for forward in pending_forwards {
4443                                 forward.write(writer)?;
4444                         }
4445                 }
4446
4447                 (channel_state.claimable_htlcs.len() as u64).write(writer)?;
4448                 for (payment_hash, previous_hops) in channel_state.claimable_htlcs.iter() {
4449                         payment_hash.write(writer)?;
4450                         (previous_hops.len() as u64).write(writer)?;
4451                         for htlc in previous_hops.iter() {
4452                                 htlc.write(writer)?;
4453                         }
4454                 }
4455
4456                 let per_peer_state = self.per_peer_state.write().unwrap();
4457                 (per_peer_state.len() as u64).write(writer)?;
4458                 for (peer_pubkey, peer_state_mutex) in per_peer_state.iter() {
4459                         peer_pubkey.write(writer)?;
4460                         let peer_state = peer_state_mutex.lock().unwrap();
4461                         peer_state.latest_features.write(writer)?;
4462                 }
4463
4464                 let events = self.pending_events.lock().unwrap();
4465                 (events.len() as u64).write(writer)?;
4466                 for event in events.iter() {
4467                         event.write(writer)?;
4468                 }
4469
4470                 let background_events = self.pending_background_events.lock().unwrap();
4471                 (background_events.len() as u64).write(writer)?;
4472                 for event in background_events.iter() {
4473                         match event {
4474                                 BackgroundEvent::ClosingMonitorUpdate((funding_txo, monitor_update)) => {
4475                                         0u8.write(writer)?;
4476                                         funding_txo.write(writer)?;
4477                                         monitor_update.write(writer)?;
4478                                 },
4479                         }
4480                 }
4481
4482                 (self.last_node_announcement_serial.load(Ordering::Acquire) as u32).write(writer)?;
4483                 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
4484
4485                 let pending_inbound_payments = self.pending_inbound_payments.lock().unwrap();
4486                 (pending_inbound_payments.len() as u64).write(writer)?;
4487                 for (hash, pending_payment) in pending_inbound_payments.iter() {
4488                         hash.write(writer)?;
4489                         pending_payment.write(writer)?;
4490                 }
4491
4492                 let pending_outbound_payments = self.pending_outbound_payments.lock().unwrap();
4493                 (pending_outbound_payments.len() as u64).write(writer)?;
4494                 for session_priv in pending_outbound_payments.iter() {
4495                         session_priv.write(writer)?;
4496                 }
4497
4498                 write_tlv_fields!(writer, {}, {});
4499
4500                 Ok(())
4501         }
4502 }
4503
4504 /// Arguments for the creation of a ChannelManager that are not deserialized.
4505 ///
4506 /// At a high-level, the process for deserializing a ChannelManager and resuming normal operation
4507 /// is:
4508 /// 1) Deserialize all stored ChannelMonitors.
4509 /// 2) Deserialize the ChannelManager by filling in this struct and calling:
4510 ///    <(BlockHash, ChannelManager)>::read(reader, args)
4511 ///    This may result in closing some Channels if the ChannelMonitor is newer than the stored
4512 ///    ChannelManager state to ensure no loss of funds. Thus, transactions may be broadcasted.
4513 /// 3) If you are not fetching full blocks, register all relevant ChannelMonitor outpoints the same
4514 ///    way you would handle a `chain::Filter` call using ChannelMonitor::get_outputs_to_watch() and
4515 ///    ChannelMonitor::get_funding_txo().
4516 /// 4) Reconnect blocks on your ChannelMonitors.
4517 /// 5) Disconnect/connect blocks on the ChannelManager.
4518 /// 6) Move the ChannelMonitors into your local chain::Watch.
4519 ///
4520 /// Note that the ordering of #4-6 is not of importance, however all three must occur before you
4521 /// call any other methods on the newly-deserialized ChannelManager.
4522 ///
4523 /// Note that because some channels may be closed during deserialization, it is critical that you
4524 /// always deserialize only the latest version of a ChannelManager and ChannelMonitors available to
4525 /// you. If you deserialize an old ChannelManager (during which force-closure transactions may be
4526 /// broadcast), and then later deserialize a newer version of the same ChannelManager (which will
4527 /// not force-close the same channels but consider them live), you may end up revoking a state for
4528 /// which you've already broadcasted the transaction.
4529 pub struct ChannelManagerReadArgs<'a, Signer: 'a + Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
4530         where M::Target: chain::Watch<Signer>,
4531         T::Target: BroadcasterInterface,
4532         K::Target: KeysInterface<Signer = Signer>,
4533         F::Target: FeeEstimator,
4534         L::Target: Logger,
4535 {
4536         /// The keys provider which will give us relevant keys. Some keys will be loaded during
4537         /// deserialization and KeysInterface::read_chan_signer will be used to read per-Channel
4538         /// signing data.
4539         pub keys_manager: K,
4540
4541         /// The fee_estimator for use in the ChannelManager in the future.
4542         ///
4543         /// No calls to the FeeEstimator will be made during deserialization.
4544         pub fee_estimator: F,
4545         /// The chain::Watch for use in the ChannelManager in the future.
4546         ///
4547         /// No calls to the chain::Watch will be made during deserialization. It is assumed that
4548         /// you have deserialized ChannelMonitors separately and will add them to your
4549         /// chain::Watch after deserializing this ChannelManager.
4550         pub chain_monitor: M,
4551
4552         /// The BroadcasterInterface which will be used in the ChannelManager in the future and may be
4553         /// used to broadcast the latest local commitment transactions of channels which must be
4554         /// force-closed during deserialization.
4555         pub tx_broadcaster: T,
4556         /// The Logger for use in the ChannelManager and which may be used to log information during
4557         /// deserialization.
4558         pub logger: L,
4559         /// Default settings used for new channels. Any existing channels will continue to use the
4560         /// runtime settings which were stored when the ChannelManager was serialized.
4561         pub default_config: UserConfig,
4562
4563         /// A map from channel funding outpoints to ChannelMonitors for those channels (ie
4564         /// value.get_funding_txo() should be the key).
4565         ///
4566         /// If a monitor is inconsistent with the channel state during deserialization the channel will
4567         /// be force-closed using the data in the ChannelMonitor and the channel will be dropped. This
4568         /// is true for missing channels as well. If there is a monitor missing for which we find
4569         /// channel data Err(DecodeError::InvalidValue) will be returned.
4570         ///
4571         /// In such cases the latest local transactions will be sent to the tx_broadcaster included in
4572         /// this struct.
4573         ///
4574         /// (C-not exported) because we have no HashMap bindings
4575         pub channel_monitors: HashMap<OutPoint, &'a mut ChannelMonitor<Signer>>,
4576 }
4577
4578 impl<'a, Signer: 'a + Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
4579                 ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>
4580         where M::Target: chain::Watch<Signer>,
4581                 T::Target: BroadcasterInterface,
4582                 K::Target: KeysInterface<Signer = Signer>,
4583                 F::Target: FeeEstimator,
4584                 L::Target: Logger,
4585         {
4586         /// Simple utility function to create a ChannelManagerReadArgs which creates the monitor
4587         /// HashMap for you. This is primarily useful for C bindings where it is not practical to
4588         /// populate a HashMap directly from C.
4589         pub fn new(keys_manager: K, fee_estimator: F, chain_monitor: M, tx_broadcaster: T, logger: L, default_config: UserConfig,
4590                         mut channel_monitors: Vec<&'a mut ChannelMonitor<Signer>>) -> Self {
4591                 Self {
4592                         keys_manager, fee_estimator, chain_monitor, tx_broadcaster, logger, default_config,
4593                         channel_monitors: channel_monitors.drain(..).map(|monitor| { (monitor.get_funding_txo().0, monitor) }).collect()
4594                 }
4595         }
4596 }
4597
4598 // Implement ReadableArgs for an Arc'd ChannelManager to make it a bit easier to work with the
4599 // SipmleArcChannelManager type:
4600 impl<'a, Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
4601         ReadableArgs<ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>> for (BlockHash, Arc<ChannelManager<Signer, M, T, K, F, L>>)
4602         where M::Target: chain::Watch<Signer>,
4603         T::Target: BroadcasterInterface,
4604         K::Target: KeysInterface<Signer = Signer>,
4605         F::Target: FeeEstimator,
4606         L::Target: Logger,
4607 {
4608         fn read<R: ::std::io::Read>(reader: &mut R, args: ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>) -> Result<Self, DecodeError> {
4609                 let (blockhash, chan_manager) = <(BlockHash, ChannelManager<Signer, M, T, K, F, L>)>::read(reader, args)?;
4610                 Ok((blockhash, Arc::new(chan_manager)))
4611         }
4612 }
4613
4614 impl<'a, Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
4615         ReadableArgs<ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>> for (BlockHash, ChannelManager<Signer, M, T, K, F, L>)
4616         where M::Target: chain::Watch<Signer>,
4617         T::Target: BroadcasterInterface,
4618         K::Target: KeysInterface<Signer = Signer>,
4619         F::Target: FeeEstimator,
4620         L::Target: Logger,
4621 {
4622         fn read<R: ::std::io::Read>(reader: &mut R, mut args: ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>) -> Result<Self, DecodeError> {
4623                 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
4624
4625                 let genesis_hash: BlockHash = Readable::read(reader)?;
4626                 let best_block_height: u32 = Readable::read(reader)?;
4627                 let best_block_hash: BlockHash = Readable::read(reader)?;
4628
4629                 let mut failed_htlcs = Vec::new();
4630
4631                 let channel_count: u64 = Readable::read(reader)?;
4632                 let mut funding_txo_set = HashSet::with_capacity(cmp::min(channel_count as usize, 128));
4633                 let mut by_id = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
4634                 let mut short_to_id = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
4635                 for _ in 0..channel_count {
4636                         let mut channel: Channel<Signer> = Channel::read(reader, &args.keys_manager)?;
4637                         let funding_txo = channel.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
4638                         funding_txo_set.insert(funding_txo.clone());
4639                         if let Some(ref mut monitor) = args.channel_monitors.get_mut(&funding_txo) {
4640                                 if channel.get_cur_holder_commitment_transaction_number() < monitor.get_cur_holder_commitment_number() ||
4641                                                 channel.get_revoked_counterparty_commitment_transaction_number() < monitor.get_min_seen_secret() ||
4642                                                 channel.get_cur_counterparty_commitment_transaction_number() < monitor.get_cur_counterparty_commitment_number() ||
4643                                                 channel.get_latest_monitor_update_id() > monitor.get_latest_update_id() {
4644                                         // If the channel is ahead of the monitor, return InvalidValue:
4645                                         return Err(DecodeError::InvalidValue);
4646                                 } else if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() ||
4647                                                 channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() ||
4648                                                 channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() ||
4649                                                 channel.get_latest_monitor_update_id() < monitor.get_latest_update_id() {
4650                                         // But if the channel is behind of the monitor, close the channel:
4651                                         let (_, mut new_failed_htlcs) = channel.force_shutdown(true);
4652                                         failed_htlcs.append(&mut new_failed_htlcs);
4653                                         monitor.broadcast_latest_holder_commitment_txn(&args.tx_broadcaster, &args.logger);
4654                                 } else {
4655                                         if let Some(short_channel_id) = channel.get_short_channel_id() {
4656                                                 short_to_id.insert(short_channel_id, channel.channel_id());
4657                                         }
4658                                         by_id.insert(channel.channel_id(), channel);
4659                                 }
4660                         } else {
4661                                 return Err(DecodeError::InvalidValue);
4662                         }
4663                 }
4664
4665                 for (ref funding_txo, ref mut monitor) in args.channel_monitors.iter_mut() {
4666                         if !funding_txo_set.contains(funding_txo) {
4667                                 monitor.broadcast_latest_holder_commitment_txn(&args.tx_broadcaster, &args.logger);
4668                         }
4669                 }
4670
4671                 const MAX_ALLOC_SIZE: usize = 1024 * 64;
4672                 let forward_htlcs_count: u64 = Readable::read(reader)?;
4673                 let mut forward_htlcs = HashMap::with_capacity(cmp::min(forward_htlcs_count as usize, 128));
4674                 for _ in 0..forward_htlcs_count {
4675                         let short_channel_id = Readable::read(reader)?;
4676                         let pending_forwards_count: u64 = Readable::read(reader)?;
4677                         let mut pending_forwards = Vec::with_capacity(cmp::min(pending_forwards_count as usize, MAX_ALLOC_SIZE/mem::size_of::<HTLCForwardInfo>()));
4678                         for _ in 0..pending_forwards_count {
4679                                 pending_forwards.push(Readable::read(reader)?);
4680                         }
4681                         forward_htlcs.insert(short_channel_id, pending_forwards);
4682                 }
4683
4684                 let claimable_htlcs_count: u64 = Readable::read(reader)?;
4685                 let mut claimable_htlcs = HashMap::with_capacity(cmp::min(claimable_htlcs_count as usize, 128));
4686                 for _ in 0..claimable_htlcs_count {
4687                         let payment_hash = Readable::read(reader)?;
4688                         let previous_hops_len: u64 = Readable::read(reader)?;
4689                         let mut previous_hops = Vec::with_capacity(cmp::min(previous_hops_len as usize, MAX_ALLOC_SIZE/mem::size_of::<ClaimableHTLC>()));
4690                         for _ in 0..previous_hops_len {
4691                                 previous_hops.push(Readable::read(reader)?);
4692                         }
4693                         claimable_htlcs.insert(payment_hash, previous_hops);
4694                 }
4695
4696                 let peer_count: u64 = Readable::read(reader)?;
4697                 let mut per_peer_state = HashMap::with_capacity(cmp::min(peer_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(PublicKey, Mutex<PeerState>)>()));
4698                 for _ in 0..peer_count {
4699                         let peer_pubkey = Readable::read(reader)?;
4700                         let peer_state = PeerState {
4701                                 latest_features: Readable::read(reader)?,
4702                         };
4703                         per_peer_state.insert(peer_pubkey, Mutex::new(peer_state));
4704                 }
4705
4706                 let event_count: u64 = Readable::read(reader)?;
4707                 let mut pending_events_read: Vec<events::Event> = Vec::with_capacity(cmp::min(event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<events::Event>()));
4708                 for _ in 0..event_count {
4709                         match MaybeReadable::read(reader)? {
4710                                 Some(event) => pending_events_read.push(event),
4711                                 None => continue,
4712                         }
4713                 }
4714
4715                 let background_event_count: u64 = Readable::read(reader)?;
4716                 let mut pending_background_events_read: Vec<BackgroundEvent> = Vec::with_capacity(cmp::min(background_event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<BackgroundEvent>()));
4717                 for _ in 0..background_event_count {
4718                         match <u8 as Readable>::read(reader)? {
4719                                 0 => pending_background_events_read.push(BackgroundEvent::ClosingMonitorUpdate((Readable::read(reader)?, Readable::read(reader)?))),
4720                                 _ => return Err(DecodeError::InvalidValue),
4721                         }
4722                 }
4723
4724                 let last_node_announcement_serial: u32 = Readable::read(reader)?;
4725                 let highest_seen_timestamp: u32 = Readable::read(reader)?;
4726
4727                 let pending_inbound_payment_count: u64 = Readable::read(reader)?;
4728                 let mut pending_inbound_payments: HashMap<PaymentHash, PendingInboundPayment> = HashMap::with_capacity(cmp::min(pending_inbound_payment_count as usize, MAX_ALLOC_SIZE/(3*32)));
4729                 for _ in 0..pending_inbound_payment_count {
4730                         if pending_inbound_payments.insert(Readable::read(reader)?, Readable::read(reader)?).is_some() {
4731                                 return Err(DecodeError::InvalidValue);
4732                         }
4733                 }
4734
4735                 let pending_outbound_payments_count: u64 = Readable::read(reader)?;
4736                 let mut pending_outbound_payments: HashSet<[u8; 32]> = HashSet::with_capacity(cmp::min(pending_outbound_payments_count as usize, MAX_ALLOC_SIZE/32));
4737                 for _ in 0..pending_outbound_payments_count {
4738                         if !pending_outbound_payments.insert(Readable::read(reader)?) {
4739                                 return Err(DecodeError::InvalidValue);
4740                         }
4741                 }
4742
4743                 read_tlv_fields!(reader, {}, {});
4744
4745                 let mut secp_ctx = Secp256k1::new();
4746                 secp_ctx.seeded_randomize(&args.keys_manager.get_secure_random_bytes());
4747
4748                 let channel_manager = ChannelManager {
4749                         genesis_hash,
4750                         fee_estimator: args.fee_estimator,
4751                         chain_monitor: args.chain_monitor,
4752                         tx_broadcaster: args.tx_broadcaster,
4753
4754                         best_block: RwLock::new(BestBlock::new(best_block_hash, best_block_height)),
4755
4756                         channel_state: Mutex::new(ChannelHolder {
4757                                 by_id,
4758                                 short_to_id,
4759                                 forward_htlcs,
4760                                 claimable_htlcs,
4761                                 pending_msg_events: Vec::new(),
4762                         }),
4763                         pending_inbound_payments: Mutex::new(pending_inbound_payments),
4764                         pending_outbound_payments: Mutex::new(pending_outbound_payments),
4765
4766                         our_network_key: args.keys_manager.get_node_secret(),
4767                         our_network_pubkey: PublicKey::from_secret_key(&secp_ctx, &args.keys_manager.get_node_secret()),
4768                         secp_ctx,
4769
4770                         last_node_announcement_serial: AtomicUsize::new(last_node_announcement_serial as usize),
4771                         highest_seen_timestamp: AtomicUsize::new(highest_seen_timestamp as usize),
4772
4773                         per_peer_state: RwLock::new(per_peer_state),
4774
4775                         pending_events: Mutex::new(pending_events_read),
4776                         pending_background_events: Mutex::new(pending_background_events_read),
4777                         total_consistency_lock: RwLock::new(()),
4778                         persistence_notifier: PersistenceNotifier::new(),
4779
4780                         keys_manager: args.keys_manager,
4781                         logger: args.logger,
4782                         default_configuration: args.default_config,
4783                 };
4784
4785                 for htlc_source in failed_htlcs.drain(..) {
4786                         channel_manager.fail_htlc_backwards_internal(channel_manager.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
4787                 }
4788
4789                 //TODO: Broadcast channel update for closed channels, but only after we've made a
4790                 //connection or two.
4791
4792                 Ok((best_block_hash.clone(), channel_manager))
4793         }
4794 }
4795
4796 #[cfg(test)]
4797 mod tests {
4798         use ln::channelmanager::PersistenceNotifier;
4799         use std::sync::Arc;
4800         use core::sync::atomic::{AtomicBool, Ordering};
4801         use std::thread;
4802         use core::time::Duration;
4803
4804         #[test]
4805         fn test_wait_timeout() {
4806                 let persistence_notifier = Arc::new(PersistenceNotifier::new());
4807                 let thread_notifier = Arc::clone(&persistence_notifier);
4808
4809                 let exit_thread = Arc::new(AtomicBool::new(false));
4810                 let exit_thread_clone = exit_thread.clone();
4811                 thread::spawn(move || {
4812                         loop {
4813                                 let &(ref persist_mtx, ref cnd) = &thread_notifier.persistence_lock;
4814                                 let mut persistence_lock = persist_mtx.lock().unwrap();
4815                                 *persistence_lock = true;
4816                                 cnd.notify_all();
4817
4818                                 if exit_thread_clone.load(Ordering::SeqCst) {
4819                                         break
4820                                 }
4821                         }
4822                 });
4823
4824                 // Check that we can block indefinitely until updates are available.
4825                 let _ = persistence_notifier.wait();
4826
4827                 // Check that the PersistenceNotifier will return after the given duration if updates are
4828                 // available.
4829                 loop {
4830                         if persistence_notifier.wait_timeout(Duration::from_millis(100)) {
4831                                 break
4832                         }
4833                 }
4834
4835                 exit_thread.store(true, Ordering::SeqCst);
4836
4837                 // Check that the PersistenceNotifier will return after the given duration even if no updates
4838                 // are available.
4839                 loop {
4840                         if !persistence_notifier.wait_timeout(Duration::from_millis(100)) {
4841                                 break
4842                         }
4843                 }
4844         }
4845 }
4846
4847 #[cfg(all(any(test, feature = "_test_utils"), feature = "unstable"))]
4848 pub mod bench {
4849         use chain::Listen;
4850         use chain::chainmonitor::ChainMonitor;
4851         use chain::channelmonitor::Persist;
4852         use chain::keysinterface::{KeysManager, InMemorySigner};
4853         use ln::channelmanager::{BestBlock, ChainParameters, ChannelManager, PaymentHash, PaymentPreimage};
4854         use ln::features::{InitFeatures, InvoiceFeatures};
4855         use ln::functional_test_utils::*;
4856         use ln::msgs::ChannelMessageHandler;
4857         use routing::network_graph::NetworkGraph;
4858         use routing::router::get_route;
4859         use util::test_utils;
4860         use util::config::UserConfig;
4861         use util::events::{Event, MessageSendEvent, MessageSendEventsProvider};
4862
4863         use bitcoin::hashes::Hash;
4864         use bitcoin::hashes::sha256::Hash as Sha256;
4865         use bitcoin::{Block, BlockHeader, Transaction, TxOut};
4866
4867         use std::sync::{Arc, Mutex};
4868
4869         use test::Bencher;
4870
4871         struct NodeHolder<'a, P: Persist<InMemorySigner>> {
4872                 node: &'a ChannelManager<InMemorySigner,
4873                         &'a ChainMonitor<InMemorySigner, &'a test_utils::TestChainSource,
4874                                 &'a test_utils::TestBroadcaster, &'a test_utils::TestFeeEstimator,
4875                                 &'a test_utils::TestLogger, &'a P>,
4876                         &'a test_utils::TestBroadcaster, &'a KeysManager,
4877                         &'a test_utils::TestFeeEstimator, &'a test_utils::TestLogger>
4878         }
4879
4880         #[cfg(test)]
4881         #[bench]
4882         fn bench_sends(bench: &mut Bencher) {
4883                 bench_two_sends(bench, test_utils::TestPersister::new(), test_utils::TestPersister::new());
4884         }
4885
4886         pub fn bench_two_sends<P: Persist<InMemorySigner>>(bench: &mut Bencher, persister_a: P, persister_b: P) {
4887                 // Do a simple benchmark of sending a payment back and forth between two nodes.
4888                 // Note that this is unrealistic as each payment send will require at least two fsync
4889                 // calls per node.
4890                 let network = bitcoin::Network::Testnet;
4891                 let genesis_hash = bitcoin::blockdata::constants::genesis_block(network).header.block_hash();
4892
4893                 let tx_broadcaster = test_utils::TestBroadcaster{txn_broadcasted: Mutex::new(Vec::new()), blocks: Arc::new(Mutex::new(Vec::new()))};
4894                 let fee_estimator = test_utils::TestFeeEstimator { sat_per_kw: 253 };
4895
4896                 let mut config: UserConfig = Default::default();
4897                 config.own_channel_config.minimum_depth = 1;
4898
4899                 let logger_a = test_utils::TestLogger::with_id("node a".to_owned());
4900                 let chain_monitor_a = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_a);
4901                 let seed_a = [1u8; 32];
4902                 let keys_manager_a = KeysManager::new(&seed_a, 42, 42);
4903                 let node_a = ChannelManager::new(&fee_estimator, &chain_monitor_a, &tx_broadcaster, &logger_a, &keys_manager_a, config.clone(), ChainParameters {
4904                         network,
4905                         best_block: BestBlock::from_genesis(network),
4906                 });
4907                 let node_a_holder = NodeHolder { node: &node_a };
4908
4909                 let logger_b = test_utils::TestLogger::with_id("node a".to_owned());
4910                 let chain_monitor_b = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_b);
4911                 let seed_b = [2u8; 32];
4912                 let keys_manager_b = KeysManager::new(&seed_b, 42, 42);
4913                 let node_b = ChannelManager::new(&fee_estimator, &chain_monitor_b, &tx_broadcaster, &logger_b, &keys_manager_b, config.clone(), ChainParameters {
4914                         network,
4915                         best_block: BestBlock::from_genesis(network),
4916                 });
4917                 let node_b_holder = NodeHolder { node: &node_b };
4918
4919                 node_a.create_channel(node_b.get_our_node_id(), 8_000_000, 100_000_000, 42, None).unwrap();
4920                 node_b.handle_open_channel(&node_a.get_our_node_id(), InitFeatures::known(), &get_event_msg!(node_a_holder, MessageSendEvent::SendOpenChannel, node_b.get_our_node_id()));
4921                 node_a.handle_accept_channel(&node_b.get_our_node_id(), InitFeatures::known(), &get_event_msg!(node_b_holder, MessageSendEvent::SendAcceptChannel, node_a.get_our_node_id()));
4922
4923                 let tx;
4924                 if let Event::FundingGenerationReady { temporary_channel_id, output_script, .. } = get_event!(node_a_holder, Event::FundingGenerationReady) {
4925                         tx = Transaction { version: 2, lock_time: 0, input: Vec::new(), output: vec![TxOut {
4926                                 value: 8_000_000, script_pubkey: output_script,
4927                         }]};
4928                         node_a.funding_transaction_generated(&temporary_channel_id, tx.clone()).unwrap();
4929                 } else { panic!(); }
4930
4931                 node_b.handle_funding_created(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendFundingCreated, node_b.get_our_node_id()));
4932                 node_a.handle_funding_signed(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendFundingSigned, node_a.get_our_node_id()));
4933
4934                 assert_eq!(&tx_broadcaster.txn_broadcasted.lock().unwrap()[..], &[tx.clone()]);
4935
4936                 let block = Block {
4937                         header: BlockHeader { version: 0x20000000, prev_blockhash: genesis_hash, merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 },
4938                         txdata: vec![tx],
4939                 };
4940                 Listen::block_connected(&node_a, &block, 1);
4941                 Listen::block_connected(&node_b, &block, 1);
4942
4943                 node_a.handle_funding_locked(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendFundingLocked, node_a.get_our_node_id()));
4944                 node_b.handle_funding_locked(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendFundingLocked, node_b.get_our_node_id()));
4945
4946                 let dummy_graph = NetworkGraph::new(genesis_hash);
4947
4948                 let mut payment_count: u64 = 0;
4949                 macro_rules! send_payment {
4950                         ($node_a: expr, $node_b: expr) => {
4951                                 let usable_channels = $node_a.list_usable_channels();
4952                                 let route = get_route(&$node_a.get_our_node_id(), &dummy_graph, &$node_b.get_our_node_id(), Some(InvoiceFeatures::known()),
4953                                         Some(&usable_channels.iter().map(|r| r).collect::<Vec<_>>()), &[], 10_000, TEST_FINAL_CLTV, &logger_a).unwrap();
4954
4955                                 let mut payment_preimage = PaymentPreimage([0; 32]);
4956                                 payment_preimage.0[0..8].copy_from_slice(&payment_count.to_le_bytes());
4957                                 payment_count += 1;
4958                                 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0[..]).into_inner());
4959                                 let payment_secret = $node_b.create_inbound_payment_for_hash(payment_hash, None, 7200, 0).unwrap();
4960
4961                                 $node_a.send_payment(&route, payment_hash, &Some(payment_secret)).unwrap();
4962                                 let payment_event = SendEvent::from_event($node_a.get_and_clear_pending_msg_events().pop().unwrap());
4963                                 $node_b.handle_update_add_htlc(&$node_a.get_our_node_id(), &payment_event.msgs[0]);
4964                                 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &payment_event.commitment_msg);
4965                                 let (raa, cs) = get_revoke_commit_msgs!(NodeHolder { node: &$node_b }, $node_a.get_our_node_id());
4966                                 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &raa);
4967                                 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &cs);
4968                                 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &get_event_msg!(NodeHolder { node: &$node_a }, MessageSendEvent::SendRevokeAndACK, $node_b.get_our_node_id()));
4969
4970                                 expect_pending_htlcs_forwardable!(NodeHolder { node: &$node_b });
4971                                 expect_payment_received!(NodeHolder { node: &$node_b }, payment_hash, payment_secret, 10_000);
4972                                 assert!($node_b.claim_funds(payment_preimage));
4973
4974                                 match $node_b.get_and_clear_pending_msg_events().pop().unwrap() {
4975                                         MessageSendEvent::UpdateHTLCs { node_id, updates } => {
4976                                                 assert_eq!(node_id, $node_a.get_our_node_id());
4977                                                 $node_a.handle_update_fulfill_htlc(&$node_b.get_our_node_id(), &updates.update_fulfill_htlcs[0]);
4978                                                 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &updates.commitment_signed);
4979                                         },
4980                                         _ => panic!("Failed to generate claim event"),
4981                                 }
4982
4983                                 let (raa, cs) = get_revoke_commit_msgs!(NodeHolder { node: &$node_a }, $node_b.get_our_node_id());
4984                                 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &raa);
4985                                 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &cs);
4986                                 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &get_event_msg!(NodeHolder { node: &$node_b }, MessageSendEvent::SendRevokeAndACK, $node_a.get_our_node_id()));
4987
4988                                 expect_payment_sent!(NodeHolder { node: &$node_a }, payment_preimage);
4989                         }
4990                 }
4991
4992                 bench.iter(|| {
4993                         send_payment!(node_a, node_b);
4994                         send_payment!(node_b, node_a);
4995                 });
4996         }
4997 }