51920a4f2ebc969d213b531502f7471f09785ff0
[rust-lightning] / lightning / src / ln / channelmanager.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! The top-level channel management and payment tracking stuff lives here.
11 //!
12 //! The ChannelManager is the main chunk of logic implementing the lightning protocol and is
13 //! responsible for tracking which channels are open, HTLCs are in flight and reestablishing those
14 //! upon reconnect to the relevant peer(s).
15 //!
16 //! It does not manage routing logic (see routing::router::get_route for that) nor does it manage constructing
17 //! on-chain transactions (it only monitors the chain to watch for any force-closes that might
18 //! imply it needs to fail HTLCs/payments/channels it manages).
19 //!
20
21 use bitcoin::blockdata::block::{Block, BlockHeader};
22 use bitcoin::blockdata::constants::genesis_block;
23 use bitcoin::network::constants::Network;
24
25 use bitcoin::hashes::{Hash, HashEngine};
26 use bitcoin::hashes::hmac::{Hmac, HmacEngine};
27 use bitcoin::hashes::sha256::Hash as Sha256;
28 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
29 use bitcoin::hashes::cmp::fixed_time_eq;
30 use bitcoin::hash_types::BlockHash;
31
32 use bitcoin::secp256k1::key::{SecretKey,PublicKey};
33 use bitcoin::secp256k1::Secp256k1;
34 use bitcoin::secp256k1::ecdh::SharedSecret;
35 use bitcoin::secp256k1;
36
37 use chain;
38 use chain::Watch;
39 use chain::chaininterface::{BroadcasterInterface, FeeEstimator};
40 use chain::channelmonitor::{ChannelMonitor, ChannelMonitorUpdate, ChannelMonitorUpdateStep, ChannelMonitorUpdateErr, HTLC_FAIL_BACK_BUFFER, CLTV_CLAIM_BUFFER, LATENCY_GRACE_PERIOD_BLOCKS, ANTI_REORG_DELAY, MonitorEvent, CLOSED_CHANNEL_UPDATE_ID};
41 use chain::transaction::{OutPoint, TransactionData};
42 use ln::channel::{Channel, ChannelError};
43 use ln::features::{InitFeatures, NodeFeatures};
44 use routing::router::{Route, RouteHop};
45 use ln::msgs;
46 use ln::msgs::NetAddress;
47 use ln::onion_utils;
48 use ln::msgs::{ChannelMessageHandler, DecodeError, LightningError, OptionalField};
49 use chain::keysinterface::{Sign, KeysInterface, KeysManager, InMemorySigner};
50 use util::config::UserConfig;
51 use util::events::{Event, EventsProvider, MessageSendEvent, MessageSendEventsProvider};
52 use util::{byte_utils, events};
53 use util::ser::{Readable, ReadableArgs, MaybeReadable, Writeable, Writer};
54 use util::chacha20::{ChaCha20, ChaChaReader};
55 use util::logger::Logger;
56 use util::errors::APIError;
57
58 use std::{cmp, mem};
59 use std::collections::{HashMap, hash_map, HashSet};
60 use std::io::{Cursor, Read};
61 use std::sync::{Arc, Condvar, Mutex, MutexGuard, RwLock, RwLockReadGuard};
62 use std::sync::atomic::{AtomicUsize, Ordering};
63 use std::time::Duration;
64 #[cfg(any(test, feature = "allow_wallclock_use"))]
65 use std::time::Instant;
66 use std::marker::{Sync, Send};
67 use std::ops::Deref;
68 use bitcoin::hashes::hex::ToHex;
69
70 // We hold various information about HTLC relay in the HTLC objects in Channel itself:
71 //
72 // Upon receipt of an HTLC from a peer, we'll give it a PendingHTLCStatus indicating if it should
73 // forward the HTLC with information it will give back to us when it does so, or if it should Fail
74 // the HTLC with the relevant message for the Channel to handle giving to the remote peer.
75 //
76 // Once said HTLC is committed in the Channel, if the PendingHTLCStatus indicated Forward, the
77 // Channel will return the PendingHTLCInfo back to us, and we will create an HTLCForwardInfo
78 // with it to track where it came from (in case of onwards-forward error), waiting a random delay
79 // before we forward it.
80 //
81 // We will then use HTLCForwardInfo's PendingHTLCInfo to construct an outbound HTLC, with a
82 // relevant HTLCSource::PreviousHopData filled in to indicate where it came from (which we can use
83 // to either fail-backwards or fulfill the HTLC backwards along the relevant path).
84 // Alternatively, we can fill an outbound HTLC with a HTLCSource::OutboundRoute indicating this is
85 // our payment, which we can use to decode errors or inform the user that the payment was sent.
86
87 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
88 enum PendingHTLCRouting {
89         Forward {
90                 onion_packet: msgs::OnionPacket,
91                 short_channel_id: u64, // This should be NonZero<u64> eventually when we bump MSRV
92         },
93         Receive {
94                 payment_data: Option<msgs::FinalOnionHopData>,
95                 incoming_cltv_expiry: u32, // Used to track when we should expire pending HTLCs that go unclaimed
96         },
97 }
98
99 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
100 pub(super) struct PendingHTLCInfo {
101         routing: PendingHTLCRouting,
102         incoming_shared_secret: [u8; 32],
103         payment_hash: PaymentHash,
104         pub(super) amt_to_forward: u64,
105         pub(super) outgoing_cltv_value: u32,
106 }
107
108 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
109 pub(super) enum HTLCFailureMsg {
110         Relay(msgs::UpdateFailHTLC),
111         Malformed(msgs::UpdateFailMalformedHTLC),
112 }
113
114 /// Stores whether we can't forward an HTLC or relevant forwarding info
115 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
116 pub(super) enum PendingHTLCStatus {
117         Forward(PendingHTLCInfo),
118         Fail(HTLCFailureMsg),
119 }
120
121 pub(super) enum HTLCForwardInfo {
122         AddHTLC {
123                 forward_info: PendingHTLCInfo,
124
125                 // These fields are produced in `forward_htlcs()` and consumed in
126                 // `process_pending_htlc_forwards()` for constructing the
127                 // `HTLCSource::PreviousHopData` for failed and forwarded
128                 // HTLCs.
129                 prev_short_channel_id: u64,
130                 prev_htlc_id: u64,
131                 prev_funding_outpoint: OutPoint,
132         },
133         FailHTLC {
134                 htlc_id: u64,
135                 err_packet: msgs::OnionErrorPacket,
136         },
137 }
138
139 /// Tracks the inbound corresponding to an outbound HTLC
140 #[derive(Clone, PartialEq)]
141 pub(crate) struct HTLCPreviousHopData {
142         short_channel_id: u64,
143         htlc_id: u64,
144         incoming_packet_shared_secret: [u8; 32],
145
146         // This field is consumed by `claim_funds_from_hop()` when updating a force-closed backwards
147         // channel with a preimage provided by the forward channel.
148         outpoint: OutPoint,
149 }
150
151 struct ClaimableHTLC {
152         prev_hop: HTLCPreviousHopData,
153         value: u64,
154         /// Filled in when the HTLC was received with a payment_secret packet, which contains a
155         /// total_msat (which may differ from value if this is a Multi-Path Payment) and a
156         /// payment_secret which prevents path-probing attacks and can associate different HTLCs which
157         /// are part of the same payment.
158         payment_data: Option<msgs::FinalOnionHopData>,
159         cltv_expiry: u32,
160 }
161
162 /// Tracks the inbound corresponding to an outbound HTLC
163 #[derive(Clone, PartialEq)]
164 pub(crate) enum HTLCSource {
165         PreviousHopData(HTLCPreviousHopData),
166         OutboundRoute {
167                 path: Vec<RouteHop>,
168                 session_priv: SecretKey,
169                 /// Technically we can recalculate this from the route, but we cache it here to avoid
170                 /// doing a double-pass on route when we get a failure back
171                 first_hop_htlc_msat: u64,
172         },
173 }
174 #[cfg(test)]
175 impl HTLCSource {
176         pub fn dummy() -> Self {
177                 HTLCSource::OutboundRoute {
178                         path: Vec::new(),
179                         session_priv: SecretKey::from_slice(&[1; 32]).unwrap(),
180                         first_hop_htlc_msat: 0,
181                 }
182         }
183 }
184
185 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
186 pub(super) enum HTLCFailReason {
187         LightningError {
188                 err: msgs::OnionErrorPacket,
189         },
190         Reason {
191                 failure_code: u16,
192                 data: Vec<u8>,
193         }
194 }
195
196 /// payment_hash type, use to cross-lock hop
197 /// (C-not exported) as we just use [u8; 32] directly
198 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
199 pub struct PaymentHash(pub [u8;32]);
200 /// payment_preimage type, use to route payment between hop
201 /// (C-not exported) as we just use [u8; 32] directly
202 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
203 pub struct PaymentPreimage(pub [u8;32]);
204 /// payment_secret type, use to authenticate sender to the receiver and tie MPP HTLCs together
205 /// (C-not exported) as we just use [u8; 32] directly
206 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
207 pub struct PaymentSecret(pub [u8;32]);
208
209 type ShutdownResult = (Option<(OutPoint, ChannelMonitorUpdate)>, Vec<(HTLCSource, PaymentHash)>);
210
211 /// Error type returned across the channel_state mutex boundary. When an Err is generated for a
212 /// Channel, we generally end up with a ChannelError::Close for which we have to close the channel
213 /// immediately (ie with no further calls on it made). Thus, this step happens inside a
214 /// channel_state lock. We then return the set of things that need to be done outside the lock in
215 /// this struct and call handle_error!() on it.
216
217 struct MsgHandleErrInternal {
218         err: msgs::LightningError,
219         shutdown_finish: Option<(ShutdownResult, Option<msgs::ChannelUpdate>)>,
220 }
221 impl MsgHandleErrInternal {
222         #[inline]
223         fn send_err_msg_no_close(err: String, channel_id: [u8; 32]) -> Self {
224                 Self {
225                         err: LightningError {
226                                 err: err.clone(),
227                                 action: msgs::ErrorAction::SendErrorMessage {
228                                         msg: msgs::ErrorMessage {
229                                                 channel_id,
230                                                 data: err
231                                         },
232                                 },
233                         },
234                         shutdown_finish: None,
235                 }
236         }
237         #[inline]
238         fn ignore_no_close(err: String) -> Self {
239                 Self {
240                         err: LightningError {
241                                 err,
242                                 action: msgs::ErrorAction::IgnoreError,
243                         },
244                         shutdown_finish: None,
245                 }
246         }
247         #[inline]
248         fn from_no_close(err: msgs::LightningError) -> Self {
249                 Self { err, shutdown_finish: None }
250         }
251         #[inline]
252         fn from_finish_shutdown(err: String, channel_id: [u8; 32], shutdown_res: ShutdownResult, channel_update: Option<msgs::ChannelUpdate>) -> Self {
253                 Self {
254                         err: LightningError {
255                                 err: err.clone(),
256                                 action: msgs::ErrorAction::SendErrorMessage {
257                                         msg: msgs::ErrorMessage {
258                                                 channel_id,
259                                                 data: err
260                                         },
261                                 },
262                         },
263                         shutdown_finish: Some((shutdown_res, channel_update)),
264                 }
265         }
266         #[inline]
267         fn from_chan_no_close(err: ChannelError, channel_id: [u8; 32]) -> Self {
268                 Self {
269                         err: match err {
270                                 ChannelError::Ignore(msg) => LightningError {
271                                         err: msg,
272                                         action: msgs::ErrorAction::IgnoreError,
273                                 },
274                                 ChannelError::Close(msg) => LightningError {
275                                         err: msg.clone(),
276                                         action: msgs::ErrorAction::SendErrorMessage {
277                                                 msg: msgs::ErrorMessage {
278                                                         channel_id,
279                                                         data: msg
280                                                 },
281                                         },
282                                 },
283                                 ChannelError::CloseDelayBroadcast(msg) => LightningError {
284                                         err: msg.clone(),
285                                         action: msgs::ErrorAction::SendErrorMessage {
286                                                 msg: msgs::ErrorMessage {
287                                                         channel_id,
288                                                         data: msg
289                                                 },
290                                         },
291                                 },
292                         },
293                         shutdown_finish: None,
294                 }
295         }
296 }
297
298 /// We hold back HTLCs we intend to relay for a random interval greater than this (see
299 /// Event::PendingHTLCsForwardable for the API guidelines indicating how long should be waited).
300 /// This provides some limited amount of privacy. Ideally this would range from somewhere like one
301 /// second to 30 seconds, but people expect lightning to be, you know, kinda fast, sadly.
302 const MIN_HTLC_RELAY_HOLDING_CELL_MILLIS: u64 = 100;
303
304 /// For events which result in both a RevokeAndACK and a CommitmentUpdate, by default they should
305 /// be sent in the order they appear in the return value, however sometimes the order needs to be
306 /// variable at runtime (eg Channel::channel_reestablish needs to re-send messages in the order
307 /// they were originally sent). In those cases, this enum is also returned.
308 #[derive(Clone, PartialEq)]
309 pub(super) enum RAACommitmentOrder {
310         /// Send the CommitmentUpdate messages first
311         CommitmentFirst,
312         /// Send the RevokeAndACK message first
313         RevokeAndACKFirst,
314 }
315
316 // Note this is only exposed in cfg(test):
317 pub(super) struct ChannelHolder<Signer: Sign> {
318         pub(super) by_id: HashMap<[u8; 32], Channel<Signer>>,
319         pub(super) short_to_id: HashMap<u64, [u8; 32]>,
320         /// short channel id -> forward infos. Key of 0 means payments received
321         /// Note that while this is held in the same mutex as the channels themselves, no consistency
322         /// guarantees are made about the existence of a channel with the short id here, nor the short
323         /// ids in the PendingHTLCInfo!
324         pub(super) forward_htlcs: HashMap<u64, Vec<HTLCForwardInfo>>,
325         /// (payment_hash, payment_secret) -> Vec<HTLCs> for tracking HTLCs that
326         /// were to us and can be failed/claimed by the user
327         /// Note that while this is held in the same mutex as the channels themselves, no consistency
328         /// guarantees are made about the channels given here actually existing anymore by the time you
329         /// go to read them!
330         claimable_htlcs: HashMap<(PaymentHash, Option<PaymentSecret>), Vec<ClaimableHTLC>>,
331         /// Messages to send to peers - pushed to in the same lock that they are generated in (except
332         /// for broadcast messages, where ordering isn't as strict).
333         pub(super) pending_msg_events: Vec<MessageSendEvent>,
334 }
335
336 /// Events which we process internally but cannot be procsesed immediately at the generation site
337 /// for some reason. They are handled in timer_chan_freshness_every_min, so may be processed with
338 /// quite some time lag.
339 enum BackgroundEvent {
340         /// Handle a ChannelMonitorUpdate that closes a channel, broadcasting its current latest holder
341         /// commitment transaction.
342         ClosingMonitorUpdate((OutPoint, ChannelMonitorUpdate)),
343 }
344
345 /// State we hold per-peer. In the future we should put channels in here, but for now we only hold
346 /// the latest Init features we heard from the peer.
347 struct PeerState {
348         latest_features: InitFeatures,
349 }
350
351 #[cfg(not(any(target_pointer_width = "32", target_pointer_width = "64")))]
352 const ERR: () = "You need at least 32 bit pointers (well, usize, but we'll assume they're the same) for ChannelManager::latest_block_height";
353
354 /// SimpleArcChannelManager is useful when you need a ChannelManager with a static lifetime, e.g.
355 /// when you're using lightning-net-tokio (since tokio::spawn requires parameters with static
356 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
357 /// SimpleRefChannelManager is the more appropriate type. Defining these type aliases prevents
358 /// issues such as overly long function definitions. Note that the ChannelManager can take any
359 /// type that implements KeysInterface for its keys manager, but this type alias chooses the
360 /// concrete type of the KeysManager.
361 pub type SimpleArcChannelManager<M, T, F, L> = ChannelManager<InMemorySigner, Arc<M>, Arc<T>, Arc<KeysManager>, Arc<F>, Arc<L>>;
362
363 /// SimpleRefChannelManager is a type alias for a ChannelManager reference, and is the reference
364 /// counterpart to the SimpleArcChannelManager type alias. Use this type by default when you don't
365 /// need a ChannelManager with a static lifetime. You'll need a static lifetime in cases such as
366 /// usage of lightning-net-tokio (since tokio::spawn requires parameters with static lifetimes).
367 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
368 /// helps with issues such as long function definitions. Note that the ChannelManager can take any
369 /// type that implements KeysInterface for its keys manager, but this type alias chooses the
370 /// concrete type of the KeysManager.
371 pub type SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, M, T, F, L> = ChannelManager<InMemorySigner, &'a M, &'b T, &'c KeysManager, &'d F, &'e L>;
372
373 /// Manager which keeps track of a number of channels and sends messages to the appropriate
374 /// channel, also tracking HTLC preimages and forwarding onion packets appropriately.
375 ///
376 /// Implements ChannelMessageHandler, handling the multi-channel parts and passing things through
377 /// to individual Channels.
378 ///
379 /// Implements Writeable to write out all channel state to disk. Implies peer_disconnected() for
380 /// all peers during write/read (though does not modify this instance, only the instance being
381 /// serialized). This will result in any channels which have not yet exchanged funding_created (ie
382 /// called funding_transaction_generated for outbound channels).
383 ///
384 /// Note that you can be a bit lazier about writing out ChannelManager than you can be with
385 /// ChannelMonitors. With ChannelMonitors you MUST write each monitor update out to disk before
386 /// returning from chain::Watch::watch_/update_channel, with ChannelManagers, writing updates
387 /// happens out-of-band (and will prevent any other ChannelManager operations from occurring during
388 /// the serialization process). If the deserialized version is out-of-date compared to the
389 /// ChannelMonitors passed by reference to read(), those channels will be force-closed based on the
390 /// ChannelMonitor state and no funds will be lost (mod on-chain transaction fees).
391 ///
392 /// Note that the deserializer is only implemented for (Option<BlockHash>, ChannelManager), which
393 /// tells you the last block hash which was block_connect()ed. You MUST rescan any blocks along
394 /// the "reorg path" (ie call block_disconnected() until you get to a common block and then call
395 /// block_connected() to step towards your best block) upon deserialization before using the
396 /// object!
397 ///
398 /// Note that ChannelManager is responsible for tracking liveness of its channels and generating
399 /// ChannelUpdate messages informing peers that the channel is temporarily disabled. To avoid
400 /// spam due to quick disconnection/reconnection, updates are not sent until the channel has been
401 /// offline for a full minute. In order to track this, you must call
402 /// timer_chan_freshness_every_min roughly once per minute, though it doesn't have to be perfect.
403 ///
404 /// Rather than using a plain ChannelManager, it is preferable to use either a SimpleArcChannelManager
405 /// a SimpleRefChannelManager, for conciseness. See their documentation for more details, but
406 /// essentially you should default to using a SimpleRefChannelManager, and use a
407 /// SimpleArcChannelManager when you require a ChannelManager with a static lifetime, such as when
408 /// you're using lightning-net-tokio.
409 pub struct ChannelManager<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
410         where M::Target: chain::Watch<Signer>,
411         T::Target: BroadcasterInterface,
412         K::Target: KeysInterface<Signer = Signer>,
413         F::Target: FeeEstimator,
414                                 L::Target: Logger,
415 {
416         default_configuration: UserConfig,
417         genesis_hash: BlockHash,
418         fee_estimator: F,
419         chain_monitor: M,
420         tx_broadcaster: T,
421
422         #[cfg(test)]
423         pub(super) latest_block_height: AtomicUsize,
424         #[cfg(not(test))]
425         latest_block_height: AtomicUsize,
426         last_block_hash: Mutex<BlockHash>,
427         secp_ctx: Secp256k1<secp256k1::All>,
428
429         #[cfg(any(test, feature = "_test_utils"))]
430         pub(super) channel_state: Mutex<ChannelHolder<Signer>>,
431         #[cfg(not(any(test, feature = "_test_utils")))]
432         channel_state: Mutex<ChannelHolder<Signer>>,
433         our_network_key: SecretKey,
434
435         /// Used to track the last value sent in a node_announcement "timestamp" field. We ensure this
436         /// value increases strictly since we don't assume access to a time source.
437         last_node_announcement_serial: AtomicUsize,
438
439         /// The bulk of our storage will eventually be here (channels and message queues and the like).
440         /// If we are connected to a peer we always at least have an entry here, even if no channels
441         /// are currently open with that peer.
442         /// Because adding or removing an entry is rare, we usually take an outer read lock and then
443         /// operate on the inner value freely. Sadly, this prevents parallel operation when opening a
444         /// new channel.
445         per_peer_state: RwLock<HashMap<PublicKey, Mutex<PeerState>>>,
446
447         pending_events: Mutex<Vec<events::Event>>,
448         pending_background_events: Mutex<Vec<BackgroundEvent>>,
449         /// Used when we have to take a BIG lock to make sure everything is self-consistent.
450         /// Essentially just when we're serializing ourselves out.
451         /// Taken first everywhere where we are making changes before any other locks.
452         /// When acquiring this lock in read mode, rather than acquiring it directly, call
453         /// `PersistenceNotifierGuard::new(..)` and pass the lock to it, to ensure the PersistenceNotifier
454         /// the lock contains sends out a notification when the lock is released.
455         total_consistency_lock: RwLock<()>,
456
457         persistence_notifier: PersistenceNotifier,
458
459         keys_manager: K,
460
461         logger: L,
462 }
463
464 /// Whenever we release the `ChannelManager`'s `total_consistency_lock`, from read mode, it is
465 /// desirable to notify any listeners on `wait_timeout`/`wait` that new updates are available for
466 /// persistence. Therefore, this struct is responsible for locking the total consistency lock and,
467 /// upon going out of scope, sending the aforementioned notification (since the lock being released
468 /// indicates that the updates are ready for persistence).
469 struct PersistenceNotifierGuard<'a> {
470         persistence_notifier: &'a PersistenceNotifier,
471         // We hold onto this result so the lock doesn't get released immediately.
472         _read_guard: RwLockReadGuard<'a, ()>,
473 }
474
475 impl<'a> PersistenceNotifierGuard<'a> {
476         fn new(lock: &'a RwLock<()>, notifier: &'a PersistenceNotifier) -> Self {
477                 let read_guard = lock.read().unwrap();
478
479                 Self {
480                         persistence_notifier: notifier,
481                         _read_guard: read_guard,
482                 }
483         }
484 }
485
486 impl<'a> Drop for PersistenceNotifierGuard<'a> {
487         fn drop(&mut self) {
488                 self.persistence_notifier.notify();
489         }
490 }
491
492 /// The amount of time we require our counterparty wait to claim their money (ie time between when
493 /// we, or our watchtower, must check for them having broadcast a theft transaction).
494 pub(crate) const BREAKDOWN_TIMEOUT: u16 = 6 * 24;
495 /// The amount of time we're willing to wait to claim money back to us
496 pub(crate) const MAX_LOCAL_BREAKDOWN_TIMEOUT: u16 = 6 * 24 * 7;
497
498 /// The minimum number of blocks between an inbound HTLC's CLTV and the corresponding outbound
499 /// HTLC's CLTV. This should always be a few blocks greater than channelmonitor::CLTV_CLAIM_BUFFER,
500 /// ie the node we forwarded the payment on to should always have enough room to reliably time out
501 /// the HTLC via a full update_fail_htlc/commitment_signed dance before we hit the
502 /// CLTV_CLAIM_BUFFER point (we static assert that it's at least 3 blocks more).
503 const CLTV_EXPIRY_DELTA: u16 = 6 * 12; //TODO?
504 pub(super) const CLTV_FAR_FAR_AWAY: u32 = 6 * 24 * 7; //TODO?
505
506 // Check that our CLTV_EXPIRY is at least CLTV_CLAIM_BUFFER + ANTI_REORG_DELAY + LATENCY_GRACE_PERIOD_BLOCKS,
507 // ie that if the next-hop peer fails the HTLC within
508 // LATENCY_GRACE_PERIOD_BLOCKS then we'll still have CLTV_CLAIM_BUFFER left to timeout it onchain,
509 // then waiting ANTI_REORG_DELAY to be reorg-safe on the outbound HLTC and
510 // failing the corresponding htlc backward, and us now seeing the last block of ANTI_REORG_DELAY before
511 // LATENCY_GRACE_PERIOD_BLOCKS.
512 #[deny(const_err)]
513 #[allow(dead_code)]
514 const CHECK_CLTV_EXPIRY_SANITY: u32 = CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - CLTV_CLAIM_BUFFER - ANTI_REORG_DELAY - LATENCY_GRACE_PERIOD_BLOCKS;
515
516 // Check for ability of an attacker to make us fail on-chain by delaying inbound claim. See
517 // ChannelMontior::would_broadcast_at_height for a description of why this is needed.
518 #[deny(const_err)]
519 #[allow(dead_code)]
520 const CHECK_CLTV_EXPIRY_SANITY_2: u32 = CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - 2*CLTV_CLAIM_BUFFER;
521
522 /// Details of a channel, as returned by ChannelManager::list_channels and ChannelManager::list_usable_channels
523 #[derive(Clone)]
524 pub struct ChannelDetails {
525         /// The channel's ID (prior to funding transaction generation, this is a random 32 bytes,
526         /// thereafter this is the txid of the funding transaction xor the funding transaction output).
527         /// Note that this means this value is *not* persistent - it can change once during the
528         /// lifetime of the channel.
529         pub channel_id: [u8; 32],
530         /// The position of the funding transaction in the chain. None if the funding transaction has
531         /// not yet been confirmed and the channel fully opened.
532         pub short_channel_id: Option<u64>,
533         /// The node_id of our counterparty
534         pub remote_network_id: PublicKey,
535         /// The Features the channel counterparty provided upon last connection.
536         /// Useful for routing as it is the most up-to-date copy of the counterparty's features and
537         /// many routing-relevant features are present in the init context.
538         pub counterparty_features: InitFeatures,
539         /// The value, in satoshis, of this channel as appears in the funding output
540         pub channel_value_satoshis: u64,
541         /// The user_id passed in to create_channel, or 0 if the channel was inbound.
542         pub user_id: u64,
543         /// The available outbound capacity for sending HTLCs to the remote peer. This does not include
544         /// any pending HTLCs which are not yet fully resolved (and, thus, who's balance is not
545         /// available for inclusion in new outbound HTLCs). This further does not include any pending
546         /// outgoing HTLCs which are awaiting some other resolution to be sent.
547         pub outbound_capacity_msat: u64,
548         /// The available inbound capacity for the remote peer to send HTLCs to us. This does not
549         /// include any pending HTLCs which are not yet fully resolved (and, thus, who's balance is not
550         /// available for inclusion in new inbound HTLCs).
551         /// Note that there are some corner cases not fully handled here, so the actual available
552         /// inbound capacity may be slightly higher than this.
553         pub inbound_capacity_msat: u64,
554         /// True if the channel is (a) confirmed and funding_locked messages have been exchanged, (b)
555         /// the peer is connected, and (c) no monitor update failure is pending resolution.
556         pub is_live: bool,
557 }
558
559 /// If a payment fails to send, it can be in one of several states. This enum is returned as the
560 /// Err() type describing which state the payment is in, see the description of individual enum
561 /// states for more.
562 #[derive(Clone, Debug)]
563 pub enum PaymentSendFailure {
564         /// A parameter which was passed to send_payment was invalid, preventing us from attempting to
565         /// send the payment at all. No channel state has been changed or messages sent to peers, and
566         /// once you've changed the parameter at error, you can freely retry the payment in full.
567         ParameterError(APIError),
568         /// A parameter in a single path which was passed to send_payment was invalid, preventing us
569         /// from attempting to send the payment at all. No channel state has been changed or messages
570         /// sent to peers, and once you've changed the parameter at error, you can freely retry the
571         /// payment in full.
572         ///
573         /// The results here are ordered the same as the paths in the route object which was passed to
574         /// send_payment.
575         PathParameterError(Vec<Result<(), APIError>>),
576         /// All paths which were attempted failed to send, with no channel state change taking place.
577         /// You can freely retry the payment in full (though you probably want to do so over different
578         /// paths than the ones selected).
579         AllFailedRetrySafe(Vec<APIError>),
580         /// Some paths which were attempted failed to send, though possibly not all. At least some
581         /// paths have irrevocably committed to the HTLC and retrying the payment in full would result
582         /// in over-/re-payment.
583         ///
584         /// The results here are ordered the same as the paths in the route object which was passed to
585         /// send_payment, and any Errs which are not APIError::MonitorUpdateFailed can be safely
586         /// retried (though there is currently no API with which to do so).
587         ///
588         /// Any entries which contain Err(APIError::MonitorUpdateFailed) or Ok(()) MUST NOT be retried
589         /// as they will result in over-/re-payment. These HTLCs all either successfully sent (in the
590         /// case of Ok(())) or will send once channel_monitor_updated is called on the next-hop channel
591         /// with the latest update_id.
592         PartialFailure(Vec<Result<(), APIError>>),
593 }
594
595 macro_rules! handle_error {
596         ($self: ident, $internal: expr, $counterparty_node_id: expr) => {
597                 match $internal {
598                         Ok(msg) => Ok(msg),
599                         Err(MsgHandleErrInternal { err, shutdown_finish }) => {
600                                 #[cfg(debug_assertions)]
601                                 {
602                                         // In testing, ensure there are no deadlocks where the lock is already held upon
603                                         // entering the macro.
604                                         assert!($self.channel_state.try_lock().is_ok());
605                                 }
606
607                                 let mut msg_events = Vec::with_capacity(2);
608
609                                 if let Some((shutdown_res, update_option)) = shutdown_finish {
610                                         $self.finish_force_close_channel(shutdown_res);
611                                         if let Some(update) = update_option {
612                                                 msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
613                                                         msg: update
614                                                 });
615                                         }
616                                 }
617
618                                 log_error!($self.logger, "{}", err.err);
619                                 if let msgs::ErrorAction::IgnoreError = err.action {
620                                 } else {
621                                         msg_events.push(events::MessageSendEvent::HandleError {
622                                                 node_id: $counterparty_node_id,
623                                                 action: err.action.clone()
624                                         });
625                                 }
626
627                                 if !msg_events.is_empty() {
628                                         $self.channel_state.lock().unwrap().pending_msg_events.append(&mut msg_events);
629                                 }
630
631                                 // Return error in case higher-API need one
632                                 Err(err)
633                         },
634                 }
635         }
636 }
637
638 macro_rules! break_chan_entry {
639         ($self: ident, $res: expr, $channel_state: expr, $entry: expr) => {
640                 match $res {
641                         Ok(res) => res,
642                         Err(ChannelError::Ignore(msg)) => {
643                                 break Err(MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore(msg), $entry.key().clone()))
644                         },
645                         Err(ChannelError::Close(msg)) => {
646                                 log_trace!($self.logger, "Closing channel {} due to Close-required error: {}", log_bytes!($entry.key()[..]), msg);
647                                 let (channel_id, mut chan) = $entry.remove_entry();
648                                 if let Some(short_id) = chan.get_short_channel_id() {
649                                         $channel_state.short_to_id.remove(&short_id);
650                                 }
651                                 break Err(MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, chan.force_shutdown(true), $self.get_channel_update(&chan).ok()))
652                         },
653                         Err(ChannelError::CloseDelayBroadcast(_)) => { panic!("Wait is only generated on receipt of channel_reestablish, which is handled by try_chan_entry, we don't bother to support it here"); }
654                 }
655         }
656 }
657
658 macro_rules! try_chan_entry {
659         ($self: ident, $res: expr, $channel_state: expr, $entry: expr) => {
660                 match $res {
661                         Ok(res) => res,
662                         Err(ChannelError::Ignore(msg)) => {
663                                 return Err(MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore(msg), $entry.key().clone()))
664                         },
665                         Err(ChannelError::Close(msg)) => {
666                                 log_trace!($self.logger, "Closing channel {} due to Close-required error: {}", log_bytes!($entry.key()[..]), msg);
667                                 let (channel_id, mut chan) = $entry.remove_entry();
668                                 if let Some(short_id) = chan.get_short_channel_id() {
669                                         $channel_state.short_to_id.remove(&short_id);
670                                 }
671                                 return Err(MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, chan.force_shutdown(true), $self.get_channel_update(&chan).ok()))
672                         },
673                         Err(ChannelError::CloseDelayBroadcast(msg)) => {
674                                 log_error!($self.logger, "Channel {} need to be shutdown but closing transactions not broadcast due to {}", log_bytes!($entry.key()[..]), msg);
675                                 let (channel_id, mut chan) = $entry.remove_entry();
676                                 if let Some(short_id) = chan.get_short_channel_id() {
677                                         $channel_state.short_to_id.remove(&short_id);
678                                 }
679                                 let shutdown_res = chan.force_shutdown(false);
680                                 return Err(MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, shutdown_res, $self.get_channel_update(&chan).ok()))
681                         }
682                 }
683         }
684 }
685
686 macro_rules! handle_monitor_err {
687         ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => {
688                 handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment, Vec::new(), Vec::new())
689         };
690         ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr, $failed_forwards: expr, $failed_fails: expr) => {
691                 match $err {
692                         ChannelMonitorUpdateErr::PermanentFailure => {
693                                 log_error!($self.logger, "Closing channel {} due to monitor update PermanentFailure", log_bytes!($entry.key()[..]));
694                                 let (channel_id, mut chan) = $entry.remove_entry();
695                                 if let Some(short_id) = chan.get_short_channel_id() {
696                                         $channel_state.short_to_id.remove(&short_id);
697                                 }
698                                 // TODO: $failed_fails is dropped here, which will cause other channels to hit the
699                                 // chain in a confused state! We need to move them into the ChannelMonitor which
700                                 // will be responsible for failing backwards once things confirm on-chain.
701                                 // It's ok that we drop $failed_forwards here - at this point we'd rather they
702                                 // broadcast HTLC-Timeout and pay the associated fees to get their funds back than
703                                 // us bother trying to claim it just to forward on to another peer. If we're
704                                 // splitting hairs we'd prefer to claim payments that were to us, but we haven't
705                                 // given up the preimage yet, so might as well just wait until the payment is
706                                 // retried, avoiding the on-chain fees.
707                                 let res: Result<(), _> = Err(MsgHandleErrInternal::from_finish_shutdown("ChannelMonitor storage failure".to_owned(), channel_id, chan.force_shutdown(true), $self.get_channel_update(&chan).ok()));
708                                 res
709                         },
710                         ChannelMonitorUpdateErr::TemporaryFailure => {
711                                 log_info!($self.logger, "Disabling channel {} due to monitor update TemporaryFailure. On restore will send {} and process {} forwards and {} fails",
712                                                 log_bytes!($entry.key()[..]),
713                                                 if $resend_commitment && $resend_raa {
714                                                                 match $action_type {
715                                                                         RAACommitmentOrder::CommitmentFirst => { "commitment then RAA" },
716                                                                         RAACommitmentOrder::RevokeAndACKFirst => { "RAA then commitment" },
717                                                                 }
718                                                         } else if $resend_commitment { "commitment" }
719                                                         else if $resend_raa { "RAA" }
720                                                         else { "nothing" },
721                                                 (&$failed_forwards as &Vec<(PendingHTLCInfo, u64)>).len(),
722                                                 (&$failed_fails as &Vec<(HTLCSource, PaymentHash, HTLCFailReason)>).len());
723                                 if !$resend_commitment {
724                                         debug_assert!($action_type == RAACommitmentOrder::RevokeAndACKFirst || !$resend_raa);
725                                 }
726                                 if !$resend_raa {
727                                         debug_assert!($action_type == RAACommitmentOrder::CommitmentFirst || !$resend_commitment);
728                                 }
729                                 $entry.get_mut().monitor_update_failed($resend_raa, $resend_commitment, $failed_forwards, $failed_fails);
730                                 Err(MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore("Failed to update ChannelMonitor".to_owned()), *$entry.key()))
731                         },
732                 }
733         }
734 }
735
736 macro_rules! return_monitor_err {
737         ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => {
738                 return handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment);
739         };
740         ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr, $failed_forwards: expr, $failed_fails: expr) => {
741                 return handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment, $failed_forwards, $failed_fails);
742         }
743 }
744
745 // Does not break in case of TemporaryFailure!
746 macro_rules! maybe_break_monitor_err {
747         ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => {
748                 match (handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment), $err) {
749                         (e, ChannelMonitorUpdateErr::PermanentFailure) => {
750                                 break e;
751                         },
752                         (_, ChannelMonitorUpdateErr::TemporaryFailure) => { },
753                 }
754         }
755 }
756
757 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> ChannelManager<Signer, M, T, K, F, L>
758         where M::Target: chain::Watch<Signer>,
759         T::Target: BroadcasterInterface,
760         K::Target: KeysInterface<Signer = Signer>,
761         F::Target: FeeEstimator,
762         L::Target: Logger,
763 {
764         /// Constructs a new ChannelManager to hold several channels and route between them.
765         ///
766         /// This is the main "logic hub" for all channel-related actions, and implements
767         /// ChannelMessageHandler.
768         ///
769         /// Non-proportional fees are fixed according to our risk using the provided fee estimator.
770         ///
771         /// panics if channel_value_satoshis is >= `MAX_FUNDING_SATOSHIS`!
772         ///
773         /// Users must provide the current blockchain height from which to track onchain channel
774         /// funding outpoints and send payments with reliable timelocks.
775         ///
776         /// Users need to notify the new ChannelManager when a new block is connected or
777         /// disconnected using its `block_connected` and `block_disconnected` methods.
778         pub fn new(network: Network, fee_est: F, chain_monitor: M, tx_broadcaster: T, logger: L, keys_manager: K, config: UserConfig, current_blockchain_height: usize) -> Self {
779                 let mut secp_ctx = Secp256k1::new();
780                 secp_ctx.seeded_randomize(&keys_manager.get_secure_random_bytes());
781
782                 ChannelManager {
783                         default_configuration: config.clone(),
784                         genesis_hash: genesis_block(network).header.block_hash(),
785                         fee_estimator: fee_est,
786                         chain_monitor,
787                         tx_broadcaster,
788
789                         latest_block_height: AtomicUsize::new(current_blockchain_height),
790                         last_block_hash: Mutex::new(Default::default()),
791                         secp_ctx,
792
793                         channel_state: Mutex::new(ChannelHolder{
794                                 by_id: HashMap::new(),
795                                 short_to_id: HashMap::new(),
796                                 forward_htlcs: HashMap::new(),
797                                 claimable_htlcs: HashMap::new(),
798                                 pending_msg_events: Vec::new(),
799                         }),
800                         our_network_key: keys_manager.get_node_secret(),
801
802                         last_node_announcement_serial: AtomicUsize::new(0),
803
804                         per_peer_state: RwLock::new(HashMap::new()),
805
806                         pending_events: Mutex::new(Vec::new()),
807                         pending_background_events: Mutex::new(Vec::new()),
808                         total_consistency_lock: RwLock::new(()),
809                         persistence_notifier: PersistenceNotifier::new(),
810
811                         keys_manager,
812
813                         logger,
814                 }
815         }
816
817         /// Creates a new outbound channel to the given remote node and with the given value.
818         ///
819         /// user_id will be provided back as user_channel_id in FundingGenerationReady and
820         /// FundingBroadcastSafe events to allow tracking of which events correspond with which
821         /// create_channel call. Note that user_channel_id defaults to 0 for inbound channels, so you
822         /// may wish to avoid using 0 for user_id here.
823         ///
824         /// If successful, will generate a SendOpenChannel message event, so you should probably poll
825         /// PeerManager::process_events afterwards.
826         ///
827         /// Raises APIError::APIMisuseError when channel_value_satoshis > 2**24 or push_msat is
828         /// greater than channel_value_satoshis * 1k or channel_value_satoshis is < 1000.
829         pub fn create_channel(&self, their_network_key: PublicKey, channel_value_satoshis: u64, push_msat: u64, user_id: u64, override_config: Option<UserConfig>) -> Result<(), APIError> {
830                 if channel_value_satoshis < 1000 {
831                         return Err(APIError::APIMisuseError { err: format!("Channel value must be at least 1000 satoshis. It was {}", channel_value_satoshis) });
832                 }
833
834                 let config = if override_config.is_some() { override_config.as_ref().unwrap() } else { &self.default_configuration };
835                 let channel = Channel::new_outbound(&self.fee_estimator, &self.keys_manager, their_network_key, channel_value_satoshis, push_msat, user_id, config)?;
836                 let res = channel.get_open_channel(self.genesis_hash.clone());
837
838                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
839                 // We want to make sure the lock is actually acquired by PersistenceNotifierGuard.
840                 debug_assert!(&self.total_consistency_lock.try_write().is_err());
841
842                 let mut channel_state = self.channel_state.lock().unwrap();
843                 match channel_state.by_id.entry(channel.channel_id()) {
844                         hash_map::Entry::Occupied(_) => {
845                                 if cfg!(feature = "fuzztarget") {
846                                         return Err(APIError::APIMisuseError { err: "Fuzzy bad RNG".to_owned() });
847                                 } else {
848                                         panic!("RNG is bad???");
849                                 }
850                         },
851                         hash_map::Entry::Vacant(entry) => { entry.insert(channel); }
852                 }
853                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
854                         node_id: their_network_key,
855                         msg: res,
856                 });
857                 Ok(())
858         }
859
860         fn list_channels_with_filter<Fn: FnMut(&(&[u8; 32], &Channel<Signer>)) -> bool>(&self, f: Fn) -> Vec<ChannelDetails> {
861                 let mut res = Vec::new();
862                 {
863                         let channel_state = self.channel_state.lock().unwrap();
864                         res.reserve(channel_state.by_id.len());
865                         for (channel_id, channel) in channel_state.by_id.iter().filter(f) {
866                                 let (inbound_capacity_msat, outbound_capacity_msat) = channel.get_inbound_outbound_available_balance_msat();
867                                 res.push(ChannelDetails {
868                                         channel_id: (*channel_id).clone(),
869                                         short_channel_id: channel.get_short_channel_id(),
870                                         remote_network_id: channel.get_counterparty_node_id(),
871                                         counterparty_features: InitFeatures::empty(),
872                                         channel_value_satoshis: channel.get_value_satoshis(),
873                                         inbound_capacity_msat,
874                                         outbound_capacity_msat,
875                                         user_id: channel.get_user_id(),
876                                         is_live: channel.is_live(),
877                                 });
878                         }
879                 }
880                 let per_peer_state = self.per_peer_state.read().unwrap();
881                 for chan in res.iter_mut() {
882                         if let Some(peer_state) = per_peer_state.get(&chan.remote_network_id) {
883                                 chan.counterparty_features = peer_state.lock().unwrap().latest_features.clone();
884                         }
885                 }
886                 res
887         }
888
889         /// Gets the list of open channels, in random order. See ChannelDetail field documentation for
890         /// more information.
891         pub fn list_channels(&self) -> Vec<ChannelDetails> {
892                 self.list_channels_with_filter(|_| true)
893         }
894
895         /// Gets the list of usable channels, in random order. Useful as an argument to
896         /// get_route to ensure non-announced channels are used.
897         ///
898         /// These are guaranteed to have their is_live value set to true, see the documentation for
899         /// ChannelDetails::is_live for more info on exactly what the criteria are.
900         pub fn list_usable_channels(&self) -> Vec<ChannelDetails> {
901                 // Note we use is_live here instead of usable which leads to somewhat confused
902                 // internal/external nomenclature, but that's ok cause that's probably what the user
903                 // really wanted anyway.
904                 self.list_channels_with_filter(|&(_, ref channel)| channel.is_live())
905         }
906
907         /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
908         /// will be accepted on the given channel, and after additional timeout/the closing of all
909         /// pending HTLCs, the channel will be closed on chain.
910         ///
911         /// May generate a SendShutdown message event on success, which should be relayed.
912         pub fn close_channel(&self, channel_id: &[u8; 32]) -> Result<(), APIError> {
913                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
914
915                 let (mut failed_htlcs, chan_option) = {
916                         let mut channel_state_lock = self.channel_state.lock().unwrap();
917                         let channel_state = &mut *channel_state_lock;
918                         match channel_state.by_id.entry(channel_id.clone()) {
919                                 hash_map::Entry::Occupied(mut chan_entry) => {
920                                         let (shutdown_msg, failed_htlcs) = chan_entry.get_mut().get_shutdown()?;
921                                         channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
922                                                 node_id: chan_entry.get().get_counterparty_node_id(),
923                                                 msg: shutdown_msg
924                                         });
925                                         if chan_entry.get().is_shutdown() {
926                                                 if let Some(short_id) = chan_entry.get().get_short_channel_id() {
927                                                         channel_state.short_to_id.remove(&short_id);
928                                                 }
929                                                 (failed_htlcs, Some(chan_entry.remove_entry().1))
930                                         } else { (failed_htlcs, None) }
931                                 },
932                                 hash_map::Entry::Vacant(_) => return Err(APIError::ChannelUnavailable{err: "No such channel".to_owned()})
933                         }
934                 };
935                 for htlc_source in failed_htlcs.drain(..) {
936                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
937                 }
938                 let chan_update = if let Some(chan) = chan_option {
939                         if let Ok(update) = self.get_channel_update(&chan) {
940                                 Some(update)
941                         } else { None }
942                 } else { None };
943
944                 if let Some(update) = chan_update {
945                         let mut channel_state = self.channel_state.lock().unwrap();
946                         channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
947                                 msg: update
948                         });
949                 }
950
951                 Ok(())
952         }
953
954         #[inline]
955         fn finish_force_close_channel(&self, shutdown_res: ShutdownResult) {
956                 let (monitor_update_option, mut failed_htlcs) = shutdown_res;
957                 log_trace!(self.logger, "Finishing force-closure of channel {} HTLCs to fail", failed_htlcs.len());
958                 for htlc_source in failed_htlcs.drain(..) {
959                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
960                 }
961                 if let Some((funding_txo, monitor_update)) = monitor_update_option {
962                         // There isn't anything we can do if we get an update failure - we're already
963                         // force-closing. The monitor update on the required in-memory copy should broadcast
964                         // the latest local state, which is the best we can do anyway. Thus, it is safe to
965                         // ignore the result here.
966                         let _ = self.chain_monitor.update_channel(funding_txo, monitor_update);
967                 }
968         }
969
970         fn force_close_channel_with_peer(&self, channel_id: &[u8; 32], peer_node_id: Option<&PublicKey>) -> Result<(), APIError> {
971                 let mut chan = {
972                         let mut channel_state_lock = self.channel_state.lock().unwrap();
973                         let channel_state = &mut *channel_state_lock;
974                         if let hash_map::Entry::Occupied(chan) = channel_state.by_id.entry(channel_id.clone()) {
975                                 if let Some(node_id) = peer_node_id {
976                                         if chan.get().get_counterparty_node_id() != *node_id {
977                                                 // Error or Ok here doesn't matter - the result is only exposed publicly
978                                                 // when peer_node_id is None anyway.
979                                                 return Ok(());
980                                         }
981                                 }
982                                 if let Some(short_id) = chan.get().get_short_channel_id() {
983                                         channel_state.short_to_id.remove(&short_id);
984                                 }
985                                 chan.remove_entry().1
986                         } else {
987                                 return Err(APIError::ChannelUnavailable{err: "No such channel".to_owned()});
988                         }
989                 };
990                 log_trace!(self.logger, "Force-closing channel {}", log_bytes!(channel_id[..]));
991                 self.finish_force_close_channel(chan.force_shutdown(true));
992                 if let Ok(update) = self.get_channel_update(&chan) {
993                         let mut channel_state = self.channel_state.lock().unwrap();
994                         channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
995                                 msg: update
996                         });
997                 }
998
999                 Ok(())
1000         }
1001
1002         /// Force closes a channel, immediately broadcasting the latest local commitment transaction to
1003         /// the chain and rejecting new HTLCs on the given channel. Fails if channel_id is unknown to the manager.
1004         pub fn force_close_channel(&self, channel_id: &[u8; 32]) -> Result<(), APIError> {
1005                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
1006                 self.force_close_channel_with_peer(channel_id, None)
1007         }
1008
1009         /// Force close all channels, immediately broadcasting the latest local commitment transaction
1010         /// for each to the chain and rejecting new HTLCs on each.
1011         pub fn force_close_all_channels(&self) {
1012                 for chan in self.list_channels() {
1013                         let _ = self.force_close_channel(&chan.channel_id);
1014                 }
1015         }
1016
1017         fn decode_update_add_htlc_onion(&self, msg: &msgs::UpdateAddHTLC) -> (PendingHTLCStatus, MutexGuard<ChannelHolder<Signer>>) {
1018                 macro_rules! return_malformed_err {
1019                         ($msg: expr, $err_code: expr) => {
1020                                 {
1021                                         log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
1022                                         return (PendingHTLCStatus::Fail(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
1023                                                 channel_id: msg.channel_id,
1024                                                 htlc_id: msg.htlc_id,
1025                                                 sha256_of_onion: Sha256::hash(&msg.onion_routing_packet.hop_data).into_inner(),
1026                                                 failure_code: $err_code,
1027                                         })), self.channel_state.lock().unwrap());
1028                                 }
1029                         }
1030                 }
1031
1032                 if let Err(_) = msg.onion_routing_packet.public_key {
1033                         return_malformed_err!("invalid ephemeral pubkey", 0x8000 | 0x4000 | 6);
1034                 }
1035
1036                 let shared_secret = {
1037                         let mut arr = [0; 32];
1038                         arr.copy_from_slice(&SharedSecret::new(&msg.onion_routing_packet.public_key.unwrap(), &self.our_network_key)[..]);
1039                         arr
1040                 };
1041                 let (rho, mu) = onion_utils::gen_rho_mu_from_shared_secret(&shared_secret);
1042
1043                 if msg.onion_routing_packet.version != 0 {
1044                         //TODO: Spec doesn't indicate if we should only hash hop_data here (and in other
1045                         //sha256_of_onion error data packets), or the entire onion_routing_packet. Either way,
1046                         //the hash doesn't really serve any purpose - in the case of hashing all data, the
1047                         //receiving node would have to brute force to figure out which version was put in the
1048                         //packet by the node that send us the message, in the case of hashing the hop_data, the
1049                         //node knows the HMAC matched, so they already know what is there...
1050                         return_malformed_err!("Unknown onion packet version", 0x8000 | 0x4000 | 4);
1051                 }
1052
1053                 let mut hmac = HmacEngine::<Sha256>::new(&mu);
1054                 hmac.input(&msg.onion_routing_packet.hop_data);
1055                 hmac.input(&msg.payment_hash.0[..]);
1056                 if !fixed_time_eq(&Hmac::from_engine(hmac).into_inner(), &msg.onion_routing_packet.hmac) {
1057                         return_malformed_err!("HMAC Check failed", 0x8000 | 0x4000 | 5);
1058                 }
1059
1060                 let mut channel_state = None;
1061                 macro_rules! return_err {
1062                         ($msg: expr, $err_code: expr, $data: expr) => {
1063                                 {
1064                                         log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
1065                                         if channel_state.is_none() {
1066                                                 channel_state = Some(self.channel_state.lock().unwrap());
1067                                         }
1068                                         return (PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
1069                                                 channel_id: msg.channel_id,
1070                                                 htlc_id: msg.htlc_id,
1071                                                 reason: onion_utils::build_first_hop_failure_packet(&shared_secret, $err_code, $data),
1072                                         })), channel_state.unwrap());
1073                                 }
1074                         }
1075                 }
1076
1077                 let mut chacha = ChaCha20::new(&rho, &[0u8; 8]);
1078                 let mut chacha_stream = ChaChaReader { chacha: &mut chacha, read: Cursor::new(&msg.onion_routing_packet.hop_data[..]) };
1079                 let (next_hop_data, next_hop_hmac) = {
1080                         match msgs::OnionHopData::read(&mut chacha_stream) {
1081                                 Err(err) => {
1082                                         let error_code = match err {
1083                                                 msgs::DecodeError::UnknownVersion => 0x4000 | 1, // unknown realm byte
1084                                                 msgs::DecodeError::UnknownRequiredFeature|
1085                                                 msgs::DecodeError::InvalidValue|
1086                                                 msgs::DecodeError::ShortRead => 0x4000 | 22, // invalid_onion_payload
1087                                                 _ => 0x2000 | 2, // Should never happen
1088                                         };
1089                                         return_err!("Unable to decode our hop data", error_code, &[0;0]);
1090                                 },
1091                                 Ok(msg) => {
1092                                         let mut hmac = [0; 32];
1093                                         if let Err(_) = chacha_stream.read_exact(&mut hmac[..]) {
1094                                                 return_err!("Unable to decode hop data", 0x4000 | 22, &[0;0]);
1095                                         }
1096                                         (msg, hmac)
1097                                 },
1098                         }
1099                 };
1100
1101                 let pending_forward_info = if next_hop_hmac == [0; 32] {
1102                                 #[cfg(test)]
1103                                 {
1104                                         // In tests, make sure that the initial onion pcket data is, at least, non-0.
1105                                         // We could do some fancy randomness test here, but, ehh, whatever.
1106                                         // This checks for the issue where you can calculate the path length given the
1107                                         // onion data as all the path entries that the originator sent will be here
1108                                         // as-is (and were originally 0s).
1109                                         // Of course reverse path calculation is still pretty easy given naive routing
1110                                         // algorithms, but this fixes the most-obvious case.
1111                                         let mut next_bytes = [0; 32];
1112                                         chacha_stream.read_exact(&mut next_bytes).unwrap();
1113                                         assert_ne!(next_bytes[..], [0; 32][..]);
1114                                         chacha_stream.read_exact(&mut next_bytes).unwrap();
1115                                         assert_ne!(next_bytes[..], [0; 32][..]);
1116                                 }
1117
1118                                 // OUR PAYMENT!
1119                                 // final_expiry_too_soon
1120                                 // We have to have some headroom to broadcast on chain if we have the preimage, so make sure we have at least
1121                                 // HTLC_FAIL_BACK_BUFFER blocks to go.
1122                                 // Also, ensure that, in the case of an unknown payment hash, our payment logic has enough time to fail the HTLC backward
1123                                 // before our onchain logic triggers a channel closure (see HTLC_FAIL_BACK_BUFFER rational).
1124                                 if (msg.cltv_expiry as u64) <= self.latest_block_height.load(Ordering::Acquire) as u64 + HTLC_FAIL_BACK_BUFFER as u64 + 1 {
1125                                         return_err!("The final CLTV expiry is too soon to handle", 17, &[0;0]);
1126                                 }
1127                                 // final_incorrect_htlc_amount
1128                                 if next_hop_data.amt_to_forward > msg.amount_msat {
1129                                         return_err!("Upstream node sent less than we were supposed to receive in payment", 19, &byte_utils::be64_to_array(msg.amount_msat));
1130                                 }
1131                                 // final_incorrect_cltv_expiry
1132                                 if next_hop_data.outgoing_cltv_value != msg.cltv_expiry {
1133                                         return_err!("Upstream node set CLTV to the wrong value", 18, &byte_utils::be32_to_array(msg.cltv_expiry));
1134                                 }
1135
1136                                 let payment_data = match next_hop_data.format {
1137                                         msgs::OnionHopDataFormat::Legacy { .. } => None,
1138                                         msgs::OnionHopDataFormat::NonFinalNode { .. } => return_err!("Got non final data with an HMAC of 0", 0x4000 | 22, &[0;0]),
1139                                         msgs::OnionHopDataFormat::FinalNode { payment_data } => payment_data,
1140                                 };
1141
1142                                 // Note that we could obviously respond immediately with an update_fulfill_htlc
1143                                 // message, however that would leak that we are the recipient of this payment, so
1144                                 // instead we stay symmetric with the forwarding case, only responding (after a
1145                                 // delay) once they've send us a commitment_signed!
1146
1147                                 PendingHTLCStatus::Forward(PendingHTLCInfo {
1148                                         routing: PendingHTLCRouting::Receive {
1149                                                 payment_data,
1150                                                 incoming_cltv_expiry: msg.cltv_expiry,
1151                                         },
1152                                         payment_hash: msg.payment_hash.clone(),
1153                                         incoming_shared_secret: shared_secret,
1154                                         amt_to_forward: next_hop_data.amt_to_forward,
1155                                         outgoing_cltv_value: next_hop_data.outgoing_cltv_value,
1156                                 })
1157                         } else {
1158                                 let mut new_packet_data = [0; 20*65];
1159                                 let read_pos = chacha_stream.read(&mut new_packet_data).unwrap();
1160                                 #[cfg(debug_assertions)]
1161                                 {
1162                                         // Check two things:
1163                                         // a) that the behavior of our stream here will return Ok(0) even if the TLV
1164                                         //    read above emptied out our buffer and the unwrap() wont needlessly panic
1165                                         // b) that we didn't somehow magically end up with extra data.
1166                                         let mut t = [0; 1];
1167                                         debug_assert!(chacha_stream.read(&mut t).unwrap() == 0);
1168                                 }
1169                                 // Once we've emptied the set of bytes our peer gave us, encrypt 0 bytes until we
1170                                 // fill the onion hop data we'll forward to our next-hop peer.
1171                                 chacha_stream.chacha.process_in_place(&mut new_packet_data[read_pos..]);
1172
1173                                 let mut new_pubkey = msg.onion_routing_packet.public_key.unwrap();
1174
1175                                 let blinding_factor = {
1176                                         let mut sha = Sha256::engine();
1177                                         sha.input(&new_pubkey.serialize()[..]);
1178                                         sha.input(&shared_secret);
1179                                         Sha256::from_engine(sha).into_inner()
1180                                 };
1181
1182                                 let public_key = if let Err(e) = new_pubkey.mul_assign(&self.secp_ctx, &blinding_factor[..]) {
1183                                         Err(e)
1184                                 } else { Ok(new_pubkey) };
1185
1186                                 let outgoing_packet = msgs::OnionPacket {
1187                                         version: 0,
1188                                         public_key,
1189                                         hop_data: new_packet_data,
1190                                         hmac: next_hop_hmac.clone(),
1191                                 };
1192
1193                                 let short_channel_id = match next_hop_data.format {
1194                                         msgs::OnionHopDataFormat::Legacy { short_channel_id } => short_channel_id,
1195                                         msgs::OnionHopDataFormat::NonFinalNode { short_channel_id } => short_channel_id,
1196                                         msgs::OnionHopDataFormat::FinalNode { .. } => {
1197                                                 return_err!("Final Node OnionHopData provided for us as an intermediary node", 0x4000 | 22, &[0;0]);
1198                                         },
1199                                 };
1200
1201                                 PendingHTLCStatus::Forward(PendingHTLCInfo {
1202                                         routing: PendingHTLCRouting::Forward {
1203                                                 onion_packet: outgoing_packet,
1204                                                 short_channel_id,
1205                                         },
1206                                         payment_hash: msg.payment_hash.clone(),
1207                                         incoming_shared_secret: shared_secret,
1208                                         amt_to_forward: next_hop_data.amt_to_forward,
1209                                         outgoing_cltv_value: next_hop_data.outgoing_cltv_value,
1210                                 })
1211                         };
1212
1213                 channel_state = Some(self.channel_state.lock().unwrap());
1214                 if let &PendingHTLCStatus::Forward(PendingHTLCInfo { ref routing, ref amt_to_forward, ref outgoing_cltv_value, .. }) = &pending_forward_info {
1215                         // If short_channel_id is 0 here, we'll reject the HTLC as there cannot be a channel
1216                         // with a short_channel_id of 0. This is important as various things later assume
1217                         // short_channel_id is non-0 in any ::Forward.
1218                         if let &PendingHTLCRouting::Forward { ref short_channel_id, .. } = routing {
1219                                 let id_option = channel_state.as_ref().unwrap().short_to_id.get(&short_channel_id).cloned();
1220                                 let forwarding_id = match id_option {
1221                                         None => { // unknown_next_peer
1222                                                 return_err!("Don't have available channel for forwarding as requested.", 0x4000 | 10, &[0;0]);
1223                                         },
1224                                         Some(id) => id.clone(),
1225                                 };
1226                                 if let Some((err, code, chan_update)) = loop {
1227                                         let chan = channel_state.as_mut().unwrap().by_id.get_mut(&forwarding_id).unwrap();
1228
1229                                         // Note that we could technically not return an error yet here and just hope
1230                                         // that the connection is reestablished or monitor updated by the time we get
1231                                         // around to doing the actual forward, but better to fail early if we can and
1232                                         // hopefully an attacker trying to path-trace payments cannot make this occur
1233                                         // on a small/per-node/per-channel scale.
1234                                         if !chan.is_live() { // channel_disabled
1235                                                 break Some(("Forwarding channel is not in a ready state.", 0x1000 | 20, Some(self.get_channel_update(chan).unwrap())));
1236                                         }
1237                                         if *amt_to_forward < chan.get_counterparty_htlc_minimum_msat() { // amount_below_minimum
1238                                                 break Some(("HTLC amount was below the htlc_minimum_msat", 0x1000 | 11, Some(self.get_channel_update(chan).unwrap())));
1239                                         }
1240                                         let fee = amt_to_forward.checked_mul(chan.get_fee_proportional_millionths() as u64).and_then(|prop_fee| { (prop_fee / 1000000).checked_add(chan.get_holder_fee_base_msat(&self.fee_estimator) as u64) });
1241                                         if fee.is_none() || msg.amount_msat < fee.unwrap() || (msg.amount_msat - fee.unwrap()) < *amt_to_forward { // fee_insufficient
1242                                                 break Some(("Prior hop has deviated from specified fees parameters or origin node has obsolete ones", 0x1000 | 12, Some(self.get_channel_update(chan).unwrap())));
1243                                         }
1244                                         if (msg.cltv_expiry as u64) < (*outgoing_cltv_value) as u64 + CLTV_EXPIRY_DELTA as u64 { // incorrect_cltv_expiry
1245                                                 break Some(("Forwarding node has tampered with the intended HTLC values or origin node has an obsolete cltv_expiry_delta", 0x1000 | 13, Some(self.get_channel_update(chan).unwrap())));
1246                                         }
1247                                         let cur_height = self.latest_block_height.load(Ordering::Acquire) as u32 + 1;
1248                                         // Theoretically, channel counterparty shouldn't send us a HTLC expiring now, but we want to be robust wrt to counterparty
1249                                         // packet sanitization (see HTLC_FAIL_BACK_BUFFER rational)
1250                                         if msg.cltv_expiry <= cur_height + HTLC_FAIL_BACK_BUFFER as u32 { // expiry_too_soon
1251                                                 break Some(("CLTV expiry is too close", 0x1000 | 14, Some(self.get_channel_update(chan).unwrap())));
1252                                         }
1253                                         if msg.cltv_expiry > cur_height + CLTV_FAR_FAR_AWAY as u32 { // expiry_too_far
1254                                                 break Some(("CLTV expiry is too far in the future", 21, None));
1255                                         }
1256                                         // In theory, we would be safe against unitentional channel-closure, if we only required a margin of LATENCY_GRACE_PERIOD_BLOCKS.
1257                                         // But, to be safe against policy reception, we use a longuer delay.
1258                                         if (*outgoing_cltv_value) as u64 <= (cur_height + HTLC_FAIL_BACK_BUFFER) as u64 {
1259                                                 break Some(("Outgoing CLTV value is too soon", 0x1000 | 14, Some(self.get_channel_update(chan).unwrap())));
1260                                         }
1261
1262                                         break None;
1263                                 }
1264                                 {
1265                                         let mut res = Vec::with_capacity(8 + 128);
1266                                         if let Some(chan_update) = chan_update {
1267                                                 if code == 0x1000 | 11 || code == 0x1000 | 12 {
1268                                                         res.extend_from_slice(&byte_utils::be64_to_array(msg.amount_msat));
1269                                                 }
1270                                                 else if code == 0x1000 | 13 {
1271                                                         res.extend_from_slice(&byte_utils::be32_to_array(msg.cltv_expiry));
1272                                                 }
1273                                                 else if code == 0x1000 | 20 {
1274                                                         // TODO: underspecified, follow https://github.com/lightningnetwork/lightning-rfc/issues/791
1275                                                         res.extend_from_slice(&byte_utils::be16_to_array(0));
1276                                                 }
1277                                                 res.extend_from_slice(&chan_update.encode_with_len()[..]);
1278                                         }
1279                                         return_err!(err, code, &res[..]);
1280                                 }
1281                         }
1282                 }
1283
1284                 (pending_forward_info, channel_state.unwrap())
1285         }
1286
1287         /// only fails if the channel does not yet have an assigned short_id
1288         /// May be called with channel_state already locked!
1289         fn get_channel_update(&self, chan: &Channel<Signer>) -> Result<msgs::ChannelUpdate, LightningError> {
1290                 let short_channel_id = match chan.get_short_channel_id() {
1291                         None => return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError}),
1292                         Some(id) => id,
1293                 };
1294
1295                 let were_node_one = PublicKey::from_secret_key(&self.secp_ctx, &self.our_network_key).serialize()[..] < chan.get_counterparty_node_id().serialize()[..];
1296
1297                 let unsigned = msgs::UnsignedChannelUpdate {
1298                         chain_hash: self.genesis_hash,
1299                         short_channel_id,
1300                         timestamp: chan.get_update_time_counter(),
1301                         flags: (!were_node_one) as u8 | ((!chan.is_live() as u8) << 1),
1302                         cltv_expiry_delta: CLTV_EXPIRY_DELTA,
1303                         htlc_minimum_msat: chan.get_counterparty_htlc_minimum_msat(),
1304                         htlc_maximum_msat: OptionalField::Present(chan.get_announced_htlc_max_msat()),
1305                         fee_base_msat: chan.get_holder_fee_base_msat(&self.fee_estimator),
1306                         fee_proportional_millionths: chan.get_fee_proportional_millionths(),
1307                         excess_data: Vec::new(),
1308                 };
1309
1310                 let msg_hash = Sha256dHash::hash(&unsigned.encode()[..]);
1311                 let sig = self.secp_ctx.sign(&hash_to_message!(&msg_hash[..]), &self.our_network_key);
1312
1313                 Ok(msgs::ChannelUpdate {
1314                         signature: sig,
1315                         contents: unsigned
1316                 })
1317         }
1318
1319         // Only public for testing, this should otherwise never be called direcly
1320         pub(crate) fn send_payment_along_path(&self, path: &Vec<RouteHop>, payment_hash: &PaymentHash, payment_secret: &Option<PaymentSecret>, total_value: u64, cur_height: u32) -> Result<(), APIError> {
1321                 log_trace!(self.logger, "Attempting to send payment for path with next hop {}", path.first().unwrap().short_channel_id);
1322                 let prng_seed = self.keys_manager.get_secure_random_bytes();
1323                 let session_priv = SecretKey::from_slice(&self.keys_manager.get_secure_random_bytes()[..]).expect("RNG is busted");
1324
1325                 let onion_keys = onion_utils::construct_onion_keys(&self.secp_ctx, &path, &session_priv)
1326                         .map_err(|_| APIError::RouteError{err: "Pubkey along hop was maliciously selected"})?;
1327                 let (onion_payloads, htlc_msat, htlc_cltv) = onion_utils::build_onion_payloads(path, total_value, payment_secret, cur_height)?;
1328                 if onion_utils::route_size_insane(&onion_payloads) {
1329                         return Err(APIError::RouteError{err: "Route size too large considering onion data"});
1330                 }
1331                 let onion_packet = onion_utils::construct_onion_packet(onion_payloads, onion_keys, prng_seed, payment_hash);
1332
1333                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
1334
1335                 let err: Result<(), _> = loop {
1336                         let mut channel_lock = self.channel_state.lock().unwrap();
1337                         let id = match channel_lock.short_to_id.get(&path.first().unwrap().short_channel_id) {
1338                                 None => return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()}),
1339                                 Some(id) => id.clone(),
1340                         };
1341
1342                         let channel_state = &mut *channel_lock;
1343                         if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(id) {
1344                                 match {
1345                                         if chan.get().get_counterparty_node_id() != path.first().unwrap().pubkey {
1346                                                 return Err(APIError::RouteError{err: "Node ID mismatch on first hop!"});
1347                                         }
1348                                         if !chan.get().is_live() {
1349                                                 return Err(APIError::ChannelUnavailable{err: "Peer for first hop currently disconnected/pending monitor update!".to_owned()});
1350                                         }
1351                                         break_chan_entry!(self, chan.get_mut().send_htlc_and_commit(htlc_msat, payment_hash.clone(), htlc_cltv, HTLCSource::OutboundRoute {
1352                                                 path: path.clone(),
1353                                                 session_priv: session_priv.clone(),
1354                                                 first_hop_htlc_msat: htlc_msat,
1355                                         }, onion_packet, &self.logger), channel_state, chan)
1356                                 } {
1357                                         Some((update_add, commitment_signed, monitor_update)) => {
1358                                                 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
1359                                                         maybe_break_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, true);
1360                                                         // Note that MonitorUpdateFailed here indicates (per function docs)
1361                                                         // that we will resend the commitment update once monitor updating
1362                                                         // is restored. Therefore, we must return an error indicating that
1363                                                         // it is unsafe to retry the payment wholesale, which we do in the
1364                                                         // send_payment check for MonitorUpdateFailed, below.
1365                                                         return Err(APIError::MonitorUpdateFailed);
1366                                                 }
1367
1368                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
1369                                                         node_id: path.first().unwrap().pubkey,
1370                                                         updates: msgs::CommitmentUpdate {
1371                                                                 update_add_htlcs: vec![update_add],
1372                                                                 update_fulfill_htlcs: Vec::new(),
1373                                                                 update_fail_htlcs: Vec::new(),
1374                                                                 update_fail_malformed_htlcs: Vec::new(),
1375                                                                 update_fee: None,
1376                                                                 commitment_signed,
1377                                                         },
1378                                                 });
1379                                         },
1380                                         None => {},
1381                                 }
1382                         } else { unreachable!(); }
1383                         return Ok(());
1384                 };
1385
1386                 match handle_error!(self, err, path.first().unwrap().pubkey) {
1387                         Ok(_) => unreachable!(),
1388                         Err(e) => {
1389                                 Err(APIError::ChannelUnavailable { err: e.err })
1390                         },
1391                 }
1392         }
1393
1394         /// Sends a payment along a given route.
1395         ///
1396         /// Value parameters are provided via the last hop in route, see documentation for RouteHop
1397         /// fields for more info.
1398         ///
1399         /// Note that if the payment_hash already exists elsewhere (eg you're sending a duplicative
1400         /// payment), we don't do anything to stop you! We always try to ensure that if the provided
1401         /// next hop knows the preimage to payment_hash they can claim an additional amount as
1402         /// specified in the last hop in the route! Thus, you should probably do your own
1403         /// payment_preimage tracking (which you should already be doing as they represent "proof of
1404         /// payment") and prevent double-sends yourself.
1405         ///
1406         /// May generate SendHTLCs message(s) event on success, which should be relayed.
1407         ///
1408         /// Each path may have a different return value, and PaymentSendValue may return a Vec with
1409         /// each entry matching the corresponding-index entry in the route paths, see
1410         /// PaymentSendFailure for more info.
1411         ///
1412         /// In general, a path may raise:
1413         ///  * APIError::RouteError when an invalid route or forwarding parameter (cltv_delta, fee,
1414         ///    node public key) is specified.
1415         ///  * APIError::ChannelUnavailable if the next-hop channel is not available for updates
1416         ///    (including due to previous monitor update failure or new permanent monitor update
1417         ///    failure).
1418         ///  * APIError::MonitorUpdateFailed if a new monitor update failure prevented sending the
1419         ///    relevant updates.
1420         ///
1421         /// Note that depending on the type of the PaymentSendFailure the HTLC may have been
1422         /// irrevocably committed to on our end. In such a case, do NOT retry the payment with a
1423         /// different route unless you intend to pay twice!
1424         ///
1425         /// payment_secret is unrelated to payment_hash (or PaymentPreimage) and exists to authenticate
1426         /// the sender to the recipient and prevent payment-probing (deanonymization) attacks. For
1427         /// newer nodes, it will be provided to you in the invoice. If you do not have one, the Route
1428         /// must not contain multiple paths as multi-path payments require a recipient-provided
1429         /// payment_secret.
1430         /// If a payment_secret *is* provided, we assume that the invoice had the payment_secret feature
1431         /// bit set (either as required or as available). If multiple paths are present in the Route,
1432         /// we assume the invoice had the basic_mpp feature set.
1433         pub fn send_payment(&self, route: &Route, payment_hash: PaymentHash, payment_secret: &Option<PaymentSecret>) -> Result<(), PaymentSendFailure> {
1434                 if route.paths.len() < 1 {
1435                         return Err(PaymentSendFailure::ParameterError(APIError::RouteError{err: "There must be at least one path to send over"}));
1436                 }
1437                 if route.paths.len() > 10 {
1438                         // This limit is completely arbitrary - there aren't any real fundamental path-count
1439                         // limits. After we support retrying individual paths we should likely bump this, but
1440                         // for now more than 10 paths likely carries too much one-path failure.
1441                         return Err(PaymentSendFailure::ParameterError(APIError::RouteError{err: "Sending over more than 10 paths is not currently supported"}));
1442                 }
1443                 let mut total_value = 0;
1444                 let our_node_id = self.get_our_node_id();
1445                 let mut path_errs = Vec::with_capacity(route.paths.len());
1446                 'path_check: for path in route.paths.iter() {
1447                         if path.len() < 1 || path.len() > 20 {
1448                                 path_errs.push(Err(APIError::RouteError{err: "Path didn't go anywhere/had bogus size"}));
1449                                 continue 'path_check;
1450                         }
1451                         for (idx, hop) in path.iter().enumerate() {
1452                                 if idx != path.len() - 1 && hop.pubkey == our_node_id {
1453                                         path_errs.push(Err(APIError::RouteError{err: "Path went through us but wasn't a simple rebalance loop to us"}));
1454                                         continue 'path_check;
1455                                 }
1456                         }
1457                         total_value += path.last().unwrap().fee_msat;
1458                         path_errs.push(Ok(()));
1459                 }
1460                 if path_errs.iter().any(|e| e.is_err()) {
1461                         return Err(PaymentSendFailure::PathParameterError(path_errs));
1462                 }
1463
1464                 let cur_height = self.latest_block_height.load(Ordering::Acquire) as u32 + 1;
1465                 let mut results = Vec::new();
1466                 for path in route.paths.iter() {
1467                         results.push(self.send_payment_along_path(&path, &payment_hash, payment_secret, total_value, cur_height));
1468                 }
1469                 let mut has_ok = false;
1470                 let mut has_err = false;
1471                 for res in results.iter() {
1472                         if res.is_ok() { has_ok = true; }
1473                         if res.is_err() { has_err = true; }
1474                         if let &Err(APIError::MonitorUpdateFailed) = res {
1475                                 // MonitorUpdateFailed is inherently unsafe to retry, so we call it a
1476                                 // PartialFailure.
1477                                 has_err = true;
1478                                 has_ok = true;
1479                                 break;
1480                         }
1481                 }
1482                 if has_err && has_ok {
1483                         Err(PaymentSendFailure::PartialFailure(results))
1484                 } else if has_err {
1485                         Err(PaymentSendFailure::AllFailedRetrySafe(results.drain(..).map(|r| r.unwrap_err()).collect()))
1486                 } else {
1487                         Ok(())
1488                 }
1489         }
1490
1491         /// Call this upon creation of a funding transaction for the given channel.
1492         ///
1493         /// Note that ALL inputs in the transaction pointed to by funding_txo MUST spend SegWit outputs
1494         /// or your counterparty can steal your funds!
1495         ///
1496         /// Panics if a funding transaction has already been provided for this channel.
1497         ///
1498         /// May panic if the funding_txo is duplicative with some other channel (note that this should
1499         /// be trivially prevented by using unique funding transaction keys per-channel).
1500         pub fn funding_transaction_generated(&self, temporary_channel_id: &[u8; 32], funding_txo: OutPoint) {
1501                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
1502
1503                 let (chan, msg) = {
1504                         let (res, chan) = match self.channel_state.lock().unwrap().by_id.remove(temporary_channel_id) {
1505                                 Some(mut chan) => {
1506                                         (chan.get_outbound_funding_created(funding_txo, &self.logger)
1507                                                 .map_err(|e| if let ChannelError::Close(msg) = e {
1508                                                         MsgHandleErrInternal::from_finish_shutdown(msg, chan.channel_id(), chan.force_shutdown(true), None)
1509                                                 } else { unreachable!(); })
1510                                         , chan)
1511                                 },
1512                                 None => return
1513                         };
1514                         match handle_error!(self, res, chan.get_counterparty_node_id()) {
1515                                 Ok(funding_msg) => {
1516                                         (chan, funding_msg)
1517                                 },
1518                                 Err(_) => { return; }
1519                         }
1520                 };
1521
1522                 let mut channel_state = self.channel_state.lock().unwrap();
1523                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingCreated {
1524                         node_id: chan.get_counterparty_node_id(),
1525                         msg,
1526                 });
1527                 match channel_state.by_id.entry(chan.channel_id()) {
1528                         hash_map::Entry::Occupied(_) => {
1529                                 panic!("Generated duplicate funding txid?");
1530                         },
1531                         hash_map::Entry::Vacant(e) => {
1532                                 e.insert(chan);
1533                         }
1534                 }
1535         }
1536
1537         fn get_announcement_sigs(&self, chan: &Channel<Signer>) -> Option<msgs::AnnouncementSignatures> {
1538                 if !chan.should_announce() {
1539                         log_trace!(self.logger, "Can't send announcement_signatures for private channel {}", log_bytes!(chan.channel_id()));
1540                         return None
1541                 }
1542
1543                 let (announcement, our_bitcoin_sig) = match chan.get_channel_announcement(self.get_our_node_id(), self.genesis_hash.clone()) {
1544                         Ok(res) => res,
1545                         Err(_) => return None, // Only in case of state precondition violations eg channel is closing
1546                 };
1547                 let msghash = hash_to_message!(&Sha256dHash::hash(&announcement.encode()[..])[..]);
1548                 let our_node_sig = self.secp_ctx.sign(&msghash, &self.our_network_key);
1549
1550                 Some(msgs::AnnouncementSignatures {
1551                         channel_id: chan.channel_id(),
1552                         short_channel_id: chan.get_short_channel_id().unwrap(),
1553                         node_signature: our_node_sig,
1554                         bitcoin_signature: our_bitcoin_sig,
1555                 })
1556         }
1557
1558         #[allow(dead_code)]
1559         // Messages of up to 64KB should never end up more than half full with addresses, as that would
1560         // be absurd. We ensure this by checking that at least 500 (our stated public contract on when
1561         // broadcast_node_announcement panics) of the maximum-length addresses would fit in a 64KB
1562         // message...
1563         const HALF_MESSAGE_IS_ADDRS: u32 = ::std::u16::MAX as u32 / (NetAddress::MAX_LEN as u32 + 1) / 2;
1564         #[deny(const_err)]
1565         #[allow(dead_code)]
1566         // ...by failing to compile if the number of addresses that would be half of a message is
1567         // smaller than 500:
1568         const STATIC_ASSERT: u32 = Self::HALF_MESSAGE_IS_ADDRS - 500;
1569
1570         /// Generates a signed node_announcement from the given arguments and creates a
1571         /// BroadcastNodeAnnouncement event. Note that such messages will be ignored unless peers have
1572         /// seen a channel_announcement from us (ie unless we have public channels open).
1573         ///
1574         /// RGB is a node "color" and alias is a printable human-readable string to describe this node
1575         /// to humans. They carry no in-protocol meaning.
1576         ///
1577         /// addresses represent the set (possibly empty) of socket addresses on which this node accepts
1578         /// incoming connections. These will be broadcast to the network, publicly tying these
1579         /// addresses together. If you wish to preserve user privacy, addresses should likely contain
1580         /// only Tor Onion addresses.
1581         ///
1582         /// Panics if addresses is absurdly large (more than 500).
1583         pub fn broadcast_node_announcement(&self, rgb: [u8; 3], alias: [u8; 32], addresses: Vec<NetAddress>) {
1584                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
1585
1586                 if addresses.len() > 500 {
1587                         panic!("More than half the message size was taken up by public addresses!");
1588                 }
1589
1590                 let announcement = msgs::UnsignedNodeAnnouncement {
1591                         features: NodeFeatures::known(),
1592                         timestamp: self.last_node_announcement_serial.fetch_add(1, Ordering::AcqRel) as u32,
1593                         node_id: self.get_our_node_id(),
1594                         rgb, alias, addresses,
1595                         excess_address_data: Vec::new(),
1596                         excess_data: Vec::new(),
1597                 };
1598                 let msghash = hash_to_message!(&Sha256dHash::hash(&announcement.encode()[..])[..]);
1599
1600                 let mut channel_state = self.channel_state.lock().unwrap();
1601                 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastNodeAnnouncement {
1602                         msg: msgs::NodeAnnouncement {
1603                                 signature: self.secp_ctx.sign(&msghash, &self.our_network_key),
1604                                 contents: announcement
1605                         },
1606                 });
1607         }
1608
1609         /// Processes HTLCs which are pending waiting on random forward delay.
1610         ///
1611         /// Should only really ever be called in response to a PendingHTLCsForwardable event.
1612         /// Will likely generate further events.
1613         pub fn process_pending_htlc_forwards(&self) {
1614                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
1615
1616                 let mut new_events = Vec::new();
1617                 let mut failed_forwards = Vec::new();
1618                 let mut handle_errors = Vec::new();
1619                 {
1620                         let mut channel_state_lock = self.channel_state.lock().unwrap();
1621                         let channel_state = &mut *channel_state_lock;
1622
1623                         for (short_chan_id, mut pending_forwards) in channel_state.forward_htlcs.drain() {
1624                                 if short_chan_id != 0 {
1625                                         let forward_chan_id = match channel_state.short_to_id.get(&short_chan_id) {
1626                                                 Some(chan_id) => chan_id.clone(),
1627                                                 None => {
1628                                                         failed_forwards.reserve(pending_forwards.len());
1629                                                         for forward_info in pending_forwards.drain(..) {
1630                                                                 match forward_info {
1631                                                                         HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info,
1632                                                                                                    prev_funding_outpoint } => {
1633                                                                                 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
1634                                                                                         short_channel_id: prev_short_channel_id,
1635                                                                                         outpoint: prev_funding_outpoint,
1636                                                                                         htlc_id: prev_htlc_id,
1637                                                                                         incoming_packet_shared_secret: forward_info.incoming_shared_secret,
1638                                                                                 });
1639                                                                                 failed_forwards.push((htlc_source, forward_info.payment_hash,
1640                                                                                         HTLCFailReason::Reason { failure_code: 0x4000 | 10, data: Vec::new() }
1641                                                                                 ));
1642                                                                         },
1643                                                                         HTLCForwardInfo::FailHTLC { .. } => {
1644                                                                                 // Channel went away before we could fail it. This implies
1645                                                                                 // the channel is now on chain and our counterparty is
1646                                                                                 // trying to broadcast the HTLC-Timeout, but that's their
1647                                                                                 // problem, not ours.
1648                                                                         }
1649                                                                 }
1650                                                         }
1651                                                         continue;
1652                                                 }
1653                                         };
1654                                         if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(forward_chan_id) {
1655                                                 let mut add_htlc_msgs = Vec::new();
1656                                                 let mut fail_htlc_msgs = Vec::new();
1657                                                 for forward_info in pending_forwards.drain(..) {
1658                                                         match forward_info {
1659                                                                 HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info: PendingHTLCInfo {
1660                                                                                 routing: PendingHTLCRouting::Forward {
1661                                                                                         onion_packet, ..
1662                                                                                 }, incoming_shared_secret, payment_hash, amt_to_forward, outgoing_cltv_value },
1663                                                                                 prev_funding_outpoint } => {
1664                                                                         log_trace!(self.logger, "Adding HTLC from short id {} with payment_hash {} to channel with short id {} after delay", log_bytes!(payment_hash.0), prev_short_channel_id, short_chan_id);
1665                                                                         let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
1666                                                                                 short_channel_id: prev_short_channel_id,
1667                                                                                 outpoint: prev_funding_outpoint,
1668                                                                                 htlc_id: prev_htlc_id,
1669                                                                                 incoming_packet_shared_secret: incoming_shared_secret,
1670                                                                         });
1671                                                                         match chan.get_mut().send_htlc(amt_to_forward, payment_hash, outgoing_cltv_value, htlc_source.clone(), onion_packet) {
1672                                                                                 Err(e) => {
1673                                                                                         if let ChannelError::Ignore(msg) = e {
1674                                                                                                 log_trace!(self.logger, "Failed to forward HTLC with payment_hash {}: {}", log_bytes!(payment_hash.0), msg);
1675                                                                                         } else {
1676                                                                                                 panic!("Stated return value requirements in send_htlc() were not met");
1677                                                                                         }
1678                                                                                         let chan_update = self.get_channel_update(chan.get()).unwrap();
1679                                                                                         failed_forwards.push((htlc_source, payment_hash,
1680                                                                                                 HTLCFailReason::Reason { failure_code: 0x1000 | 7, data: chan_update.encode_with_len() }
1681                                                                                         ));
1682                                                                                         continue;
1683                                                                                 },
1684                                                                                 Ok(update_add) => {
1685                                                                                         match update_add {
1686                                                                                                 Some(msg) => { add_htlc_msgs.push(msg); },
1687                                                                                                 None => {
1688                                                                                                         // Nothing to do here...we're waiting on a remote
1689                                                                                                         // revoke_and_ack before we can add anymore HTLCs. The Channel
1690                                                                                                         // will automatically handle building the update_add_htlc and
1691                                                                                                         // commitment_signed messages when we can.
1692                                                                                                         // TODO: Do some kind of timer to set the channel as !is_live()
1693                                                                                                         // as we don't really want others relying on us relaying through
1694                                                                                                         // this channel currently :/.
1695                                                                                                 }
1696                                                                                         }
1697                                                                                 }
1698                                                                         }
1699                                                                 },
1700                                                                 HTLCForwardInfo::AddHTLC { .. } => {
1701                                                                         panic!("short_channel_id != 0 should imply any pending_forward entries are of type Forward");
1702                                                                 },
1703                                                                 HTLCForwardInfo::FailHTLC { htlc_id, err_packet } => {
1704                                                                         log_trace!(self.logger, "Failing HTLC back to channel with short id {} after delay", short_chan_id);
1705                                                                         match chan.get_mut().get_update_fail_htlc(htlc_id, err_packet) {
1706                                                                                 Err(e) => {
1707                                                                                         if let ChannelError::Ignore(msg) = e {
1708                                                                                                 log_trace!(self.logger, "Failed to fail backwards to short_id {}: {}", short_chan_id, msg);
1709                                                                                         } else {
1710                                                                                                 panic!("Stated return value requirements in get_update_fail_htlc() were not met");
1711                                                                                         }
1712                                                                                         // fail-backs are best-effort, we probably already have one
1713                                                                                         // pending, and if not that's OK, if not, the channel is on
1714                                                                                         // the chain and sending the HTLC-Timeout is their problem.
1715                                                                                         continue;
1716                                                                                 },
1717                                                                                 Ok(Some(msg)) => { fail_htlc_msgs.push(msg); },
1718                                                                                 Ok(None) => {
1719                                                                                         // Nothing to do here...we're waiting on a remote
1720                                                                                         // revoke_and_ack before we can update the commitment
1721                                                                                         // transaction. The Channel will automatically handle
1722                                                                                         // building the update_fail_htlc and commitment_signed
1723                                                                                         // messages when we can.
1724                                                                                         // We don't need any kind of timer here as they should fail
1725                                                                                         // the channel onto the chain if they can't get our
1726                                                                                         // update_fail_htlc in time, it's not our problem.
1727                                                                                 }
1728                                                                         }
1729                                                                 },
1730                                                         }
1731                                                 }
1732
1733                                                 if !add_htlc_msgs.is_empty() || !fail_htlc_msgs.is_empty() {
1734                                                         let (commitment_msg, monitor_update) = match chan.get_mut().send_commitment(&self.logger) {
1735                                                                 Ok(res) => res,
1736                                                                 Err(e) => {
1737                                                                         // We surely failed send_commitment due to bad keys, in that case
1738                                                                         // close channel and then send error message to peer.
1739                                                                         let counterparty_node_id = chan.get().get_counterparty_node_id();
1740                                                                         let err: Result<(), _>  = match e {
1741                                                                                 ChannelError::Ignore(_) => {
1742                                                                                         panic!("Stated return value requirements in send_commitment() were not met");
1743                                                                                 },
1744                                                                                 ChannelError::Close(msg) => {
1745                                                                                         log_trace!(self.logger, "Closing channel {} due to Close-required error: {}", log_bytes!(chan.key()[..]), msg);
1746                                                                                         let (channel_id, mut channel) = chan.remove_entry();
1747                                                                                         if let Some(short_id) = channel.get_short_channel_id() {
1748                                                                                                 channel_state.short_to_id.remove(&short_id);
1749                                                                                         }
1750                                                                                         Err(MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, channel.force_shutdown(true), self.get_channel_update(&channel).ok()))
1751                                                                                 },
1752                                                                                 ChannelError::CloseDelayBroadcast(_) => { panic!("Wait is only generated on receipt of channel_reestablish, which is handled by try_chan_entry, we don't bother to support it here"); }
1753                                                                         };
1754                                                                         handle_errors.push((counterparty_node_id, err));
1755                                                                         continue;
1756                                                                 }
1757                                                         };
1758                                                         if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
1759                                                                 handle_errors.push((chan.get().get_counterparty_node_id(), handle_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, true)));
1760                                                                 continue;
1761                                                         }
1762                                                         channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
1763                                                                 node_id: chan.get().get_counterparty_node_id(),
1764                                                                 updates: msgs::CommitmentUpdate {
1765                                                                         update_add_htlcs: add_htlc_msgs,
1766                                                                         update_fulfill_htlcs: Vec::new(),
1767                                                                         update_fail_htlcs: fail_htlc_msgs,
1768                                                                         update_fail_malformed_htlcs: Vec::new(),
1769                                                                         update_fee: None,
1770                                                                         commitment_signed: commitment_msg,
1771                                                                 },
1772                                                         });
1773                                                 }
1774                                         } else {
1775                                                 unreachable!();
1776                                         }
1777                                 } else {
1778                                         for forward_info in pending_forwards.drain(..) {
1779                                                 match forward_info {
1780                                                         HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info: PendingHTLCInfo {
1781                                                                         routing: PendingHTLCRouting::Receive { payment_data, incoming_cltv_expiry },
1782                                                                         incoming_shared_secret, payment_hash, amt_to_forward, .. },
1783                                                                         prev_funding_outpoint } => {
1784                                                                 let prev_hop = HTLCPreviousHopData {
1785                                                                         short_channel_id: prev_short_channel_id,
1786                                                                         outpoint: prev_funding_outpoint,
1787                                                                         htlc_id: prev_htlc_id,
1788                                                                         incoming_packet_shared_secret: incoming_shared_secret,
1789                                                                 };
1790
1791                                                                 let mut total_value = 0;
1792                                                                 let payment_secret_opt =
1793                                                                         if let &Some(ref data) = &payment_data { Some(data.payment_secret.clone()) } else { None };
1794                                                                 let htlcs = channel_state.claimable_htlcs.entry((payment_hash, payment_secret_opt))
1795                                                                         .or_insert(Vec::new());
1796                                                                 htlcs.push(ClaimableHTLC {
1797                                                                         prev_hop,
1798                                                                         value: amt_to_forward,
1799                                                                         payment_data: payment_data.clone(),
1800                                                                         cltv_expiry: incoming_cltv_expiry,
1801                                                                 });
1802                                                                 if let &Some(ref data) = &payment_data {
1803                                                                         for htlc in htlcs.iter() {
1804                                                                                 total_value += htlc.value;
1805                                                                                 if htlc.payment_data.as_ref().unwrap().total_msat != data.total_msat {
1806                                                                                         total_value = msgs::MAX_VALUE_MSAT;
1807                                                                                 }
1808                                                                                 if total_value >= msgs::MAX_VALUE_MSAT { break; }
1809                                                                         }
1810                                                                         if total_value >= msgs::MAX_VALUE_MSAT || total_value > data.total_msat  {
1811                                                                                 for htlc in htlcs.iter() {
1812                                                                                         let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec();
1813                                                                                         htlc_msat_height_data.extend_from_slice(
1814                                                                                                 &byte_utils::be32_to_array(
1815                                                                                                         self.latest_block_height.load(Ordering::Acquire)
1816                                                                                                                 as u32,
1817                                                                                                 ),
1818                                                                                         );
1819                                                                                         failed_forwards.push((HTLCSource::PreviousHopData(HTLCPreviousHopData {
1820                                                                                                         short_channel_id: htlc.prev_hop.short_channel_id,
1821                                                                                                         outpoint: prev_funding_outpoint,
1822                                                                                                         htlc_id: htlc.prev_hop.htlc_id,
1823                                                                                                         incoming_packet_shared_secret: htlc.prev_hop.incoming_packet_shared_secret,
1824                                                                                                 }), payment_hash,
1825                                                                                                 HTLCFailReason::Reason { failure_code: 0x4000 | 15, data: htlc_msat_height_data }
1826                                                                                         ));
1827                                                                                 }
1828                                                                         } else if total_value == data.total_msat {
1829                                                                                 new_events.push(events::Event::PaymentReceived {
1830                                                                                         payment_hash,
1831                                                                                         payment_secret: Some(data.payment_secret),
1832                                                                                         amt: total_value,
1833                                                                                 });
1834                                                                         }
1835                                                                 } else {
1836                                                                         new_events.push(events::Event::PaymentReceived {
1837                                                                                 payment_hash,
1838                                                                                 payment_secret: None,
1839                                                                                 amt: amt_to_forward,
1840                                                                         });
1841                                                                 }
1842                                                         },
1843                                                         HTLCForwardInfo::AddHTLC { .. } => {
1844                                                                 panic!("short_channel_id == 0 should imply any pending_forward entries are of type Receive");
1845                                                         },
1846                                                         HTLCForwardInfo::FailHTLC { .. } => {
1847                                                                 panic!("Got pending fail of our own HTLC");
1848                                                         }
1849                                                 }
1850                                         }
1851                                 }
1852                         }
1853                 }
1854
1855                 for (htlc_source, payment_hash, failure_reason) in failed_forwards.drain(..) {
1856                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source, &payment_hash, failure_reason);
1857                 }
1858
1859                 for (counterparty_node_id, err) in handle_errors.drain(..) {
1860                         let _ = handle_error!(self, err, counterparty_node_id);
1861                 }
1862
1863                 if new_events.is_empty() { return }
1864                 let mut events = self.pending_events.lock().unwrap();
1865                 events.append(&mut new_events);
1866         }
1867
1868         /// Free the background events, generally called from timer_chan_freshness_every_min.
1869         ///
1870         /// Exposed for testing to allow us to process events quickly without generating accidental
1871         /// BroadcastChannelUpdate events in timer_chan_freshness_every_min.
1872         ///
1873         /// Expects the caller to have a total_consistency_lock read lock.
1874         fn process_background_events(&self) {
1875                 let mut background_events = Vec::new();
1876                 mem::swap(&mut *self.pending_background_events.lock().unwrap(), &mut background_events);
1877                 for event in background_events.drain(..) {
1878                         match event {
1879                                 BackgroundEvent::ClosingMonitorUpdate((funding_txo, update)) => {
1880                                         // The channel has already been closed, so no use bothering to care about the
1881                                         // monitor updating completing.
1882                                         let _ = self.chain_monitor.update_channel(funding_txo, update);
1883                                 },
1884                         }
1885                 }
1886         }
1887
1888         #[cfg(any(test, feature = "_test_utils"))]
1889         pub(crate) fn test_process_background_events(&self) {
1890                 self.process_background_events();
1891         }
1892
1893         /// If a peer is disconnected we mark any channels with that peer as 'disabled'.
1894         /// After some time, if channels are still disabled we need to broadcast a ChannelUpdate
1895         /// to inform the network about the uselessness of these channels.
1896         ///
1897         /// This method handles all the details, and must be called roughly once per minute.
1898         ///
1899         /// Note that in some rare cases this may generate a `chain::Watch::update_channel` call.
1900         pub fn timer_chan_freshness_every_min(&self) {
1901                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
1902                 self.process_background_events();
1903
1904                 let mut channel_state_lock = self.channel_state.lock().unwrap();
1905                 let channel_state = &mut *channel_state_lock;
1906                 for (_, chan) in channel_state.by_id.iter_mut() {
1907                         if chan.is_disabled_staged() && !chan.is_live() {
1908                                 if let Ok(update) = self.get_channel_update(&chan) {
1909                                         channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
1910                                                 msg: update
1911                                         });
1912                                 }
1913                                 chan.to_fresh();
1914                         } else if chan.is_disabled_staged() && chan.is_live() {
1915                                 chan.to_fresh();
1916                         } else if chan.is_disabled_marked() {
1917                                 chan.to_disabled_staged();
1918                         }
1919                 }
1920         }
1921
1922         /// Indicates that the preimage for payment_hash is unknown or the received amount is incorrect
1923         /// after a PaymentReceived event, failing the HTLC back to its origin and freeing resources
1924         /// along the path (including in our own channel on which we received it).
1925         /// Returns false if no payment was found to fail backwards, true if the process of failing the
1926         /// HTLC backwards has been started.
1927         pub fn fail_htlc_backwards(&self, payment_hash: &PaymentHash, payment_secret: &Option<PaymentSecret>) -> bool {
1928                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
1929
1930                 let mut channel_state = Some(self.channel_state.lock().unwrap());
1931                 let removed_source = channel_state.as_mut().unwrap().claimable_htlcs.remove(&(*payment_hash, *payment_secret));
1932                 if let Some(mut sources) = removed_source {
1933                         for htlc in sources.drain(..) {
1934                                 if channel_state.is_none() { channel_state = Some(self.channel_state.lock().unwrap()); }
1935                                 let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec();
1936                                 htlc_msat_height_data.extend_from_slice(&byte_utils::be32_to_array(
1937                                         self.latest_block_height.load(Ordering::Acquire) as u32,
1938                                 ));
1939                                 self.fail_htlc_backwards_internal(channel_state.take().unwrap(),
1940                                                 HTLCSource::PreviousHopData(htlc.prev_hop), payment_hash,
1941                                                 HTLCFailReason::Reason { failure_code: 0x4000 | 15, data: htlc_msat_height_data });
1942                         }
1943                         true
1944                 } else { false }
1945         }
1946
1947         // Fail a list of HTLCs that were just freed from the holding cell. The HTLCs need to be
1948         // failed backwards or, if they were one of our outgoing HTLCs, then their failure needs to
1949         // be surfaced to the user.
1950         fn fail_holding_cell_htlcs(&self, mut htlcs_to_fail: Vec<(HTLCSource, PaymentHash)>, channel_id: [u8; 32]) {
1951                 for (htlc_src, payment_hash) in htlcs_to_fail.drain(..) {
1952                         match htlc_src {
1953                                 HTLCSource::PreviousHopData(HTLCPreviousHopData { .. }) => {
1954                                         let (failure_code, onion_failure_data) =
1955                                                 match self.channel_state.lock().unwrap().by_id.entry(channel_id) {
1956                                                         hash_map::Entry::Occupied(chan_entry) => {
1957                                                                 if let Ok(upd) = self.get_channel_update(&chan_entry.get()) {
1958                                                                         (0x1000|7, upd.encode_with_len())
1959                                                                 } else {
1960                                                                         (0x4000|10, Vec::new())
1961                                                                 }
1962                                                         },
1963                                                         hash_map::Entry::Vacant(_) => (0x4000|10, Vec::new())
1964                                                 };
1965                                         let channel_state = self.channel_state.lock().unwrap();
1966                                         self.fail_htlc_backwards_internal(channel_state,
1967                                                 htlc_src, &payment_hash, HTLCFailReason::Reason { failure_code, data: onion_failure_data});
1968                                 },
1969                                 HTLCSource::OutboundRoute { .. } => {
1970                                         self.pending_events.lock().unwrap().push(
1971                                                 events::Event::PaymentFailed {
1972                                                         payment_hash,
1973                                                         rejected_by_dest: false,
1974 #[cfg(test)]
1975                                                         error_code: None,
1976 #[cfg(test)]
1977                                                         error_data: None,
1978                                                 }
1979                                         )
1980                                 },
1981                         };
1982                 }
1983         }
1984
1985         /// Fails an HTLC backwards to the sender of it to us.
1986         /// Note that while we take a channel_state lock as input, we do *not* assume consistency here.
1987         /// There are several callsites that do stupid things like loop over a list of payment_hashes
1988         /// to fail and take the channel_state lock for each iteration (as we take ownership and may
1989         /// drop it). In other words, no assumptions are made that entries in claimable_htlcs point to
1990         /// still-available channels.
1991         fn fail_htlc_backwards_internal(&self, mut channel_state_lock: MutexGuard<ChannelHolder<Signer>>, source: HTLCSource, payment_hash: &PaymentHash, onion_error: HTLCFailReason) {
1992                 //TODO: There is a timing attack here where if a node fails an HTLC back to us they can
1993                 //identify whether we sent it or not based on the (I presume) very different runtime
1994                 //between the branches here. We should make this async and move it into the forward HTLCs
1995                 //timer handling.
1996
1997                 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
1998                 // from block_connected which may run during initialization prior to the chain_monitor
1999                 // being fully configured. See the docs for `ChannelManagerReadArgs` for more.
2000                 match source {
2001                         HTLCSource::OutboundRoute { ref path, .. } => {
2002                                 log_trace!(self.logger, "Failing outbound payment HTLC with payment_hash {}", log_bytes!(payment_hash.0));
2003                                 mem::drop(channel_state_lock);
2004                                 match &onion_error {
2005                                         &HTLCFailReason::LightningError { ref err } => {
2006 #[cfg(test)]
2007                                                 let (channel_update, payment_retryable, onion_error_code, onion_error_data) = onion_utils::process_onion_failure(&self.secp_ctx, &self.logger, &source, err.data.clone());
2008 #[cfg(not(test))]
2009                                                 let (channel_update, payment_retryable, _, _) = onion_utils::process_onion_failure(&self.secp_ctx, &self.logger, &source, err.data.clone());
2010                                                 // TODO: If we decided to blame ourselves (or one of our channels) in
2011                                                 // process_onion_failure we should close that channel as it implies our
2012                                                 // next-hop is needlessly blaming us!
2013                                                 if let Some(update) = channel_update {
2014                                                         self.channel_state.lock().unwrap().pending_msg_events.push(
2015                                                                 events::MessageSendEvent::PaymentFailureNetworkUpdate {
2016                                                                         update,
2017                                                                 }
2018                                                         );
2019                                                 }
2020                                                 self.pending_events.lock().unwrap().push(
2021                                                         events::Event::PaymentFailed {
2022                                                                 payment_hash: payment_hash.clone(),
2023                                                                 rejected_by_dest: !payment_retryable,
2024 #[cfg(test)]
2025                                                                 error_code: onion_error_code,
2026 #[cfg(test)]
2027                                                                 error_data: onion_error_data
2028                                                         }
2029                                                 );
2030                                         },
2031                                         &HTLCFailReason::Reason {
2032 #[cfg(test)]
2033                                                         ref failure_code,
2034 #[cfg(test)]
2035                                                         ref data,
2036                                                         .. } => {
2037                                                 // we get a fail_malformed_htlc from the first hop
2038                                                 // TODO: We'd like to generate a PaymentFailureNetworkUpdate for temporary
2039                                                 // failures here, but that would be insufficient as get_route
2040                                                 // generally ignores its view of our own channels as we provide them via
2041                                                 // ChannelDetails.
2042                                                 // TODO: For non-temporary failures, we really should be closing the
2043                                                 // channel here as we apparently can't relay through them anyway.
2044                                                 self.pending_events.lock().unwrap().push(
2045                                                         events::Event::PaymentFailed {
2046                                                                 payment_hash: payment_hash.clone(),
2047                                                                 rejected_by_dest: path.len() == 1,
2048 #[cfg(test)]
2049                                                                 error_code: Some(*failure_code),
2050 #[cfg(test)]
2051                                                                 error_data: Some(data.clone()),
2052                                                         }
2053                                                 );
2054                                         }
2055                                 }
2056                         },
2057                         HTLCSource::PreviousHopData(HTLCPreviousHopData { short_channel_id, htlc_id, incoming_packet_shared_secret, .. }) => {
2058                                 let err_packet = match onion_error {
2059                                         HTLCFailReason::Reason { failure_code, data } => {
2060                                                 log_trace!(self.logger, "Failing HTLC with payment_hash {} backwards from us with code {}", log_bytes!(payment_hash.0), failure_code);
2061                                                 let packet = onion_utils::build_failure_packet(&incoming_packet_shared_secret, failure_code, &data[..]).encode();
2062                                                 onion_utils::encrypt_failure_packet(&incoming_packet_shared_secret, &packet)
2063                                         },
2064                                         HTLCFailReason::LightningError { err } => {
2065                                                 log_trace!(self.logger, "Failing HTLC with payment_hash {} backwards with pre-built LightningError", log_bytes!(payment_hash.0));
2066                                                 onion_utils::encrypt_failure_packet(&incoming_packet_shared_secret, &err.data)
2067                                         }
2068                                 };
2069
2070                                 let mut forward_event = None;
2071                                 if channel_state_lock.forward_htlcs.is_empty() {
2072                                         forward_event = Some(Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS));
2073                                 }
2074                                 match channel_state_lock.forward_htlcs.entry(short_channel_id) {
2075                                         hash_map::Entry::Occupied(mut entry) => {
2076                                                 entry.get_mut().push(HTLCForwardInfo::FailHTLC { htlc_id, err_packet });
2077                                         },
2078                                         hash_map::Entry::Vacant(entry) => {
2079                                                 entry.insert(vec!(HTLCForwardInfo::FailHTLC { htlc_id, err_packet }));
2080                                         }
2081                                 }
2082                                 mem::drop(channel_state_lock);
2083                                 if let Some(time) = forward_event {
2084                                         let mut pending_events = self.pending_events.lock().unwrap();
2085                                         pending_events.push(events::Event::PendingHTLCsForwardable {
2086                                                 time_forwardable: time
2087                                         });
2088                                 }
2089                         },
2090                 }
2091         }
2092
2093         /// Provides a payment preimage in response to a PaymentReceived event, returning true and
2094         /// generating message events for the net layer to claim the payment, if possible. Thus, you
2095         /// should probably kick the net layer to go send messages if this returns true!
2096         ///
2097         /// You must specify the expected amounts for this HTLC, and we will only claim HTLCs
2098         /// available within a few percent of the expected amount. This is critical for several
2099         /// reasons : a) it avoids providing senders with `proof-of-payment` (in the form of the
2100         /// payment_preimage without having provided the full value and b) it avoids certain
2101         /// privacy-breaking recipient-probing attacks which may reveal payment activity to
2102         /// motivated attackers.
2103         ///
2104         /// Note that the privacy concerns in (b) are not relevant in payments with a payment_secret
2105         /// set. Thus, for such payments we will claim any payments which do not under-pay.
2106         ///
2107         /// May panic if called except in response to a PaymentReceived event.
2108         pub fn claim_funds(&self, payment_preimage: PaymentPreimage, payment_secret: &Option<PaymentSecret>, expected_amount: u64) -> bool {
2109                 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
2110
2111                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
2112
2113                 let mut channel_state = Some(self.channel_state.lock().unwrap());
2114                 let removed_source = channel_state.as_mut().unwrap().claimable_htlcs.remove(&(payment_hash, *payment_secret));
2115                 if let Some(mut sources) = removed_source {
2116                         assert!(!sources.is_empty());
2117
2118                         // If we are claiming an MPP payment, we have to take special care to ensure that each
2119                         // channel exists before claiming all of the payments (inside one lock).
2120                         // Note that channel existance is sufficient as we should always get a monitor update
2121                         // which will take care of the real HTLC claim enforcement.
2122                         //
2123                         // If we find an HTLC which we would need to claim but for which we do not have a
2124                         // channel, we will fail all parts of the MPP payment. While we could wait and see if
2125                         // the sender retries the already-failed path(s), it should be a pretty rare case where
2126                         // we got all the HTLCs and then a channel closed while we were waiting for the user to
2127                         // provide the preimage, so worrying too much about the optimal handling isn't worth
2128                         // it.
2129
2130                         let (is_mpp, mut valid_mpp) = if let &Some(ref data) = &sources[0].payment_data {
2131                                 assert!(payment_secret.is_some());
2132                                 (true, data.total_msat >= expected_amount)
2133                         } else {
2134                                 assert!(payment_secret.is_none());
2135                                 (false, false)
2136                         };
2137
2138                         for htlc in sources.iter() {
2139                                 if !is_mpp || !valid_mpp { break; }
2140                                 if let None = channel_state.as_ref().unwrap().short_to_id.get(&htlc.prev_hop.short_channel_id) {
2141                                         valid_mpp = false;
2142                                 }
2143                         }
2144
2145                         let mut errs = Vec::new();
2146                         let mut claimed_any_htlcs = false;
2147                         for htlc in sources.drain(..) {
2148                                 if channel_state.is_none() { channel_state = Some(self.channel_state.lock().unwrap()); }
2149                                 if (is_mpp && !valid_mpp) || (!is_mpp && (htlc.value < expected_amount || htlc.value > expected_amount * 2)) {
2150                                         let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec();
2151                                         htlc_msat_height_data.extend_from_slice(&byte_utils::be32_to_array(
2152                                                 self.latest_block_height.load(Ordering::Acquire) as u32,
2153                                         ));
2154                                         self.fail_htlc_backwards_internal(channel_state.take().unwrap(),
2155                                                                          HTLCSource::PreviousHopData(htlc.prev_hop), &payment_hash,
2156                                                                          HTLCFailReason::Reason { failure_code: 0x4000|15, data: htlc_msat_height_data });
2157                                 } else {
2158                                         match self.claim_funds_from_hop(channel_state.as_mut().unwrap(), htlc.prev_hop, payment_preimage) {
2159                                                 Err(Some(e)) => {
2160                                                         if let msgs::ErrorAction::IgnoreError = e.1.err.action {
2161                                                                 // We got a temporary failure updating monitor, but will claim the
2162                                                                 // HTLC when the monitor updating is restored (or on chain).
2163                                                                 log_error!(self.logger, "Temporary failure claiming HTLC, treating as success: {}", e.1.err.err);
2164                                                                 claimed_any_htlcs = true;
2165                                                         } else { errs.push(e); }
2166                                                 },
2167                                                 Err(None) if is_mpp => unreachable!("We already checked for channel existence, we can't fail here!"),
2168                                                 Err(None) => {
2169                                                         log_warn!(self.logger, "Channel we expected to claim an HTLC from was closed.");
2170                                                 },
2171                                                 Ok(()) => claimed_any_htlcs = true,
2172                                         }
2173                                 }
2174                         }
2175
2176                         // Now that we've done the entire above loop in one lock, we can handle any errors
2177                         // which were generated.
2178                         channel_state.take();
2179
2180                         for (counterparty_node_id, err) in errs.drain(..) {
2181                                 let res: Result<(), _> = Err(err);
2182                                 let _ = handle_error!(self, res, counterparty_node_id);
2183                         }
2184
2185                         claimed_any_htlcs
2186                 } else { false }
2187         }
2188
2189         fn claim_funds_from_hop(&self, channel_state_lock: &mut MutexGuard<ChannelHolder<Signer>>, prev_hop: HTLCPreviousHopData, payment_preimage: PaymentPreimage) -> Result<(), Option<(PublicKey, MsgHandleErrInternal)>> {
2190                 //TODO: Delay the claimed_funds relaying just like we do outbound relay!
2191                 let channel_state = &mut **channel_state_lock;
2192                 let chan_id = match channel_state.short_to_id.get(&prev_hop.short_channel_id) {
2193                         Some(chan_id) => chan_id.clone(),
2194                         None => {
2195                                 return Err(None)
2196                         }
2197                 };
2198
2199                 if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(chan_id) {
2200                         let was_frozen_for_monitor = chan.get().is_awaiting_monitor_update();
2201                         match chan.get_mut().get_update_fulfill_htlc_and_commit(prev_hop.htlc_id, payment_preimage, &self.logger) {
2202                                 Ok((msgs, monitor_option)) => {
2203                                         if let Some(monitor_update) = monitor_option {
2204                                                 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
2205                                                         if was_frozen_for_monitor {
2206                                                                 assert!(msgs.is_none());
2207                                                         } else {
2208                                                                 return Err(Some((chan.get().get_counterparty_node_id(), handle_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, msgs.is_some()).unwrap_err())));
2209                                                         }
2210                                                 }
2211                                         }
2212                                         if let Some((msg, commitment_signed)) = msgs {
2213                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
2214                                                         node_id: chan.get().get_counterparty_node_id(),
2215                                                         updates: msgs::CommitmentUpdate {
2216                                                                 update_add_htlcs: Vec::new(),
2217                                                                 update_fulfill_htlcs: vec![msg],
2218                                                                 update_fail_htlcs: Vec::new(),
2219                                                                 update_fail_malformed_htlcs: Vec::new(),
2220                                                                 update_fee: None,
2221                                                                 commitment_signed,
2222                                                         }
2223                                                 });
2224                                         }
2225                                         return Ok(())
2226                                 },
2227                                 Err(e) => {
2228                                         // TODO: Do something with e?
2229                                         // This should only occur if we are claiming an HTLC at the same time as the
2230                                         // HTLC is being failed (eg because a block is being connected and this caused
2231                                         // an HTLC to time out). This should, of course, only occur if the user is the
2232                                         // one doing the claiming (as it being a part of a peer claim would imply we're
2233                                         // about to lose funds) and only if the lock in claim_funds was dropped as a
2234                                         // previous HTLC was failed (thus not for an MPP payment).
2235                                         debug_assert!(false, "This shouldn't be reachable except in absurdly rare cases between monitor updates and HTLC timeouts: {:?}", e);
2236                                         return Err(None)
2237                                 },
2238                         }
2239                 } else { unreachable!(); }
2240         }
2241
2242         fn claim_funds_internal(&self, mut channel_state_lock: MutexGuard<ChannelHolder<Signer>>, source: HTLCSource, payment_preimage: PaymentPreimage) {
2243                 match source {
2244                         HTLCSource::OutboundRoute { .. } => {
2245                                 mem::drop(channel_state_lock);
2246                                 let mut pending_events = self.pending_events.lock().unwrap();
2247                                 pending_events.push(events::Event::PaymentSent {
2248                                         payment_preimage
2249                                 });
2250                         },
2251                         HTLCSource::PreviousHopData(hop_data) => {
2252                                 let prev_outpoint = hop_data.outpoint;
2253                                 if let Err((counterparty_node_id, err)) = match self.claim_funds_from_hop(&mut channel_state_lock, hop_data, payment_preimage) {
2254                                         Ok(()) => Ok(()),
2255                                         Err(None) => {
2256                                                 let preimage_update = ChannelMonitorUpdate {
2257                                                         update_id: CLOSED_CHANNEL_UPDATE_ID,
2258                                                         updates: vec![ChannelMonitorUpdateStep::PaymentPreimage {
2259                                                                 payment_preimage: payment_preimage.clone(),
2260                                                         }],
2261                                                 };
2262                                                 // We update the ChannelMonitor on the backward link, after
2263                                                 // receiving an offchain preimage event from the forward link (the
2264                                                 // event being update_fulfill_htlc).
2265                                                 if let Err(e) = self.chain_monitor.update_channel(prev_outpoint, preimage_update) {
2266                                                         log_error!(self.logger, "Critical error: failed to update channel monitor with preimage {:?}: {:?}",
2267                                                                    payment_preimage, e);
2268                                                 }
2269                                                 Ok(())
2270                                         },
2271                                         Err(Some(res)) => Err(res),
2272                                 } {
2273                                         mem::drop(channel_state_lock);
2274                                         let res: Result<(), _> = Err(err);
2275                                         let _ = handle_error!(self, res, counterparty_node_id);
2276                                 }
2277                         },
2278                 }
2279         }
2280
2281         /// Gets the node_id held by this ChannelManager
2282         pub fn get_our_node_id(&self) -> PublicKey {
2283                 PublicKey::from_secret_key(&self.secp_ctx, &self.our_network_key)
2284         }
2285
2286         /// Restores a single, given channel to normal operation after a
2287         /// ChannelMonitorUpdateErr::TemporaryFailure was returned from a channel monitor update
2288         /// operation.
2289         ///
2290         /// All ChannelMonitor updates up to and including highest_applied_update_id must have been
2291         /// fully committed in every copy of the given channels' ChannelMonitors.
2292         ///
2293         /// Note that there is no effect to calling with a highest_applied_update_id other than the
2294         /// current latest ChannelMonitorUpdate and one call to this function after multiple
2295         /// ChannelMonitorUpdateErr::TemporaryFailures is fine. The highest_applied_update_id field
2296         /// exists largely only to prevent races between this and concurrent update_monitor calls.
2297         ///
2298         /// Thus, the anticipated use is, at a high level:
2299         ///  1) You register a chain::Watch with this ChannelManager,
2300         ///  2) it stores each update to disk, and begins updating any remote (eg watchtower) copies of
2301         ///     said ChannelMonitors as it can, returning ChannelMonitorUpdateErr::TemporaryFailures
2302         ///     any time it cannot do so instantly,
2303         ///  3) update(s) are applied to each remote copy of a ChannelMonitor,
2304         ///  4) once all remote copies are updated, you call this function with the update_id that
2305         ///     completed, and once it is the latest the Channel will be re-enabled.
2306         pub fn channel_monitor_updated(&self, funding_txo: &OutPoint, highest_applied_update_id: u64) {
2307                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
2308
2309                 let mut close_results = Vec::new();
2310                 let mut htlc_forwards = Vec::new();
2311                 let mut htlc_failures = Vec::new();
2312                 let mut pending_events = Vec::new();
2313
2314                 {
2315                         let mut channel_lock = self.channel_state.lock().unwrap();
2316                         let channel_state = &mut *channel_lock;
2317                         let short_to_id = &mut channel_state.short_to_id;
2318                         let pending_msg_events = &mut channel_state.pending_msg_events;
2319                         let channel = match channel_state.by_id.get_mut(&funding_txo.to_channel_id()) {
2320                                 Some(chan) => chan,
2321                                 None => return,
2322                         };
2323                         if !channel.is_awaiting_monitor_update() || channel.get_latest_monitor_update_id() != highest_applied_update_id {
2324                                 return;
2325                         }
2326
2327                         let (raa, commitment_update, order, pending_forwards, mut pending_failures, needs_broadcast_safe, funding_locked) = channel.monitor_updating_restored(&self.logger);
2328                         if !pending_forwards.is_empty() {
2329                                 htlc_forwards.push((channel.get_short_channel_id().expect("We can't have pending forwards before funding confirmation"), funding_txo.clone(), pending_forwards));
2330                         }
2331                         htlc_failures.append(&mut pending_failures);
2332
2333                         macro_rules! handle_cs { () => {
2334                                 if let Some(update) = commitment_update {
2335                                         pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
2336                                                 node_id: channel.get_counterparty_node_id(),
2337                                                 updates: update,
2338                                         });
2339                                 }
2340                         } }
2341                         macro_rules! handle_raa { () => {
2342                                 if let Some(revoke_and_ack) = raa {
2343                                         pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
2344                                                 node_id: channel.get_counterparty_node_id(),
2345                                                 msg: revoke_and_ack,
2346                                         });
2347                                 }
2348                         } }
2349                         match order {
2350                                 RAACommitmentOrder::CommitmentFirst => {
2351                                         handle_cs!();
2352                                         handle_raa!();
2353                                 },
2354                                 RAACommitmentOrder::RevokeAndACKFirst => {
2355                                         handle_raa!();
2356                                         handle_cs!();
2357                                 },
2358                         }
2359                         if needs_broadcast_safe {
2360                                 pending_events.push(events::Event::FundingBroadcastSafe {
2361                                         funding_txo: channel.get_funding_txo().unwrap(),
2362                                         user_channel_id: channel.get_user_id(),
2363                                 });
2364                         }
2365                         if let Some(msg) = funding_locked {
2366                                 pending_msg_events.push(events::MessageSendEvent::SendFundingLocked {
2367                                         node_id: channel.get_counterparty_node_id(),
2368                                         msg,
2369                                 });
2370                                 if let Some(announcement_sigs) = self.get_announcement_sigs(channel) {
2371                                         pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
2372                                                 node_id: channel.get_counterparty_node_id(),
2373                                                 msg: announcement_sigs,
2374                                         });
2375                                 }
2376                                 short_to_id.insert(channel.get_short_channel_id().unwrap(), channel.channel_id());
2377                         }
2378                 }
2379
2380                 self.pending_events.lock().unwrap().append(&mut pending_events);
2381
2382                 for failure in htlc_failures.drain(..) {
2383                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), failure.0, &failure.1, failure.2);
2384                 }
2385                 self.forward_htlcs(&mut htlc_forwards[..]);
2386
2387                 for res in close_results.drain(..) {
2388                         self.finish_force_close_channel(res);
2389                 }
2390         }
2391
2392         fn internal_open_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::OpenChannel) -> Result<(), MsgHandleErrInternal> {
2393                 if msg.chain_hash != self.genesis_hash {
2394                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Unknown genesis block hash".to_owned(), msg.temporary_channel_id.clone()));
2395                 }
2396
2397                 let channel = Channel::new_from_req(&self.fee_estimator, &self.keys_manager, counterparty_node_id.clone(), their_features, msg, 0, &self.default_configuration)
2398                         .map_err(|e| MsgHandleErrInternal::from_chan_no_close(e, msg.temporary_channel_id))?;
2399                 let mut channel_state_lock = self.channel_state.lock().unwrap();
2400                 let channel_state = &mut *channel_state_lock;
2401                 match channel_state.by_id.entry(channel.channel_id()) {
2402                         hash_map::Entry::Occupied(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("temporary_channel_id collision!".to_owned(), msg.temporary_channel_id.clone())),
2403                         hash_map::Entry::Vacant(entry) => {
2404                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
2405                                         node_id: counterparty_node_id.clone(),
2406                                         msg: channel.get_accept_channel(),
2407                                 });
2408                                 entry.insert(channel);
2409                         }
2410                 }
2411                 Ok(())
2412         }
2413
2414         fn internal_accept_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::AcceptChannel) -> Result<(), MsgHandleErrInternal> {
2415                 let (value, output_script, user_id) = {
2416                         let mut channel_lock = self.channel_state.lock().unwrap();
2417                         let channel_state = &mut *channel_lock;
2418                         match channel_state.by_id.entry(msg.temporary_channel_id) {
2419                                 hash_map::Entry::Occupied(mut chan) => {
2420                                         if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2421                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.temporary_channel_id));
2422                                         }
2423                                         try_chan_entry!(self, chan.get_mut().accept_channel(&msg, &self.default_configuration, their_features), channel_state, chan);
2424                                         (chan.get().get_value_satoshis(), chan.get().get_funding_redeemscript().to_v0_p2wsh(), chan.get().get_user_id())
2425                                 },
2426                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.temporary_channel_id))
2427                         }
2428                 };
2429                 let mut pending_events = self.pending_events.lock().unwrap();
2430                 pending_events.push(events::Event::FundingGenerationReady {
2431                         temporary_channel_id: msg.temporary_channel_id,
2432                         channel_value_satoshis: value,
2433                         output_script,
2434                         user_channel_id: user_id,
2435                 });
2436                 Ok(())
2437         }
2438
2439         fn internal_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) -> Result<(), MsgHandleErrInternal> {
2440                 let ((funding_msg, monitor), mut chan) = {
2441                         let mut channel_lock = self.channel_state.lock().unwrap();
2442                         let channel_state = &mut *channel_lock;
2443                         match channel_state.by_id.entry(msg.temporary_channel_id.clone()) {
2444                                 hash_map::Entry::Occupied(mut chan) => {
2445                                         if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2446                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.temporary_channel_id));
2447                                         }
2448                                         (try_chan_entry!(self, chan.get_mut().funding_created(msg, &self.logger), channel_state, chan), chan.remove())
2449                                 },
2450                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.temporary_channel_id))
2451                         }
2452                 };
2453                 // Because we have exclusive ownership of the channel here we can release the channel_state
2454                 // lock before watch_channel
2455                 if let Err(e) = self.chain_monitor.watch_channel(monitor.get_funding_txo().0, monitor) {
2456                         match e {
2457                                 ChannelMonitorUpdateErr::PermanentFailure => {
2458                                         // Note that we reply with the new channel_id in error messages if we gave up on the
2459                                         // channel, not the temporary_channel_id. This is compatible with ourselves, but the
2460                                         // spec is somewhat ambiguous here. Not a huge deal since we'll send error messages for
2461                                         // any messages referencing a previously-closed channel anyway.
2462                                         // We do not do a force-close here as that would generate a monitor update for
2463                                         // a monitor that we didn't manage to store (and that we don't care about - we
2464                                         // don't respond with the funding_signed so the channel can never go on chain).
2465                                         let (_monitor_update, failed_htlcs) = chan.force_shutdown(true);
2466                                         assert!(failed_htlcs.is_empty());
2467                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("ChannelMonitor storage failure".to_owned(), funding_msg.channel_id));
2468                                 },
2469                                 ChannelMonitorUpdateErr::TemporaryFailure => {
2470                                         // There's no problem signing a counterparty's funding transaction if our monitor
2471                                         // hasn't persisted to disk yet - we can't lose money on a transaction that we haven't
2472                                         // accepted payment from yet. We do, however, need to wait to send our funding_locked
2473                                         // until we have persisted our monitor.
2474                                         chan.monitor_update_failed(false, false, Vec::new(), Vec::new());
2475                                 },
2476                         }
2477                 }
2478                 let mut channel_state_lock = self.channel_state.lock().unwrap();
2479                 let channel_state = &mut *channel_state_lock;
2480                 match channel_state.by_id.entry(funding_msg.channel_id) {
2481                         hash_map::Entry::Occupied(_) => {
2482                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Already had channel with the new channel_id".to_owned(), funding_msg.channel_id))
2483                         },
2484                         hash_map::Entry::Vacant(e) => {
2485                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingSigned {
2486                                         node_id: counterparty_node_id.clone(),
2487                                         msg: funding_msg,
2488                                 });
2489                                 e.insert(chan);
2490                         }
2491                 }
2492                 Ok(())
2493         }
2494
2495         fn internal_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) -> Result<(), MsgHandleErrInternal> {
2496                 let (funding_txo, user_id) = {
2497                         let mut channel_lock = self.channel_state.lock().unwrap();
2498                         let channel_state = &mut *channel_lock;
2499                         match channel_state.by_id.entry(msg.channel_id) {
2500                                 hash_map::Entry::Occupied(mut chan) => {
2501                                         if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2502                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2503                                         }
2504                                         let monitor = match chan.get_mut().funding_signed(&msg, &self.logger) {
2505                                                 Ok(update) => update,
2506                                                 Err(e) => try_chan_entry!(self, Err(e), channel_state, chan),
2507                                         };
2508                                         if let Err(e) = self.chain_monitor.watch_channel(chan.get().get_funding_txo().unwrap(), monitor) {
2509                                                 return_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::RevokeAndACKFirst, false, false);
2510                                         }
2511                                         (chan.get().get_funding_txo().unwrap(), chan.get().get_user_id())
2512                                 },
2513                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2514                         }
2515                 };
2516                 let mut pending_events = self.pending_events.lock().unwrap();
2517                 pending_events.push(events::Event::FundingBroadcastSafe {
2518                         funding_txo,
2519                         user_channel_id: user_id,
2520                 });
2521                 Ok(())
2522         }
2523
2524         fn internal_funding_locked(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingLocked) -> Result<(), MsgHandleErrInternal> {
2525                 let mut channel_state_lock = self.channel_state.lock().unwrap();
2526                 let channel_state = &mut *channel_state_lock;
2527                 match channel_state.by_id.entry(msg.channel_id) {
2528                         hash_map::Entry::Occupied(mut chan) => {
2529                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2530                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2531                                 }
2532                                 try_chan_entry!(self, chan.get_mut().funding_locked(&msg), channel_state, chan);
2533                                 if let Some(announcement_sigs) = self.get_announcement_sigs(chan.get()) {
2534                                         log_trace!(self.logger, "Sending announcement_signatures for {} in response to funding_locked", log_bytes!(chan.get().channel_id()));
2535                                         // If we see locking block before receiving remote funding_locked, we broadcast our
2536                                         // announcement_sigs at remote funding_locked reception. If we receive remote
2537                                         // funding_locked before seeing locking block, we broadcast our announcement_sigs at locking
2538                                         // block connection. We should guanrantee to broadcast announcement_sigs to our peer whatever
2539                                         // the order of the events but our peer may not receive it due to disconnection. The specs
2540                                         // lacking an acknowledgement for announcement_sigs we may have to re-send them at peer
2541                                         // connection in the future if simultaneous misses by both peers due to network/hardware
2542                                         // failures is an issue. Note, to achieve its goal, only one of the announcement_sigs needs
2543                                         // to be received, from then sigs are going to be flood to the whole network.
2544                                         channel_state.pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
2545                                                 node_id: counterparty_node_id.clone(),
2546                                                 msg: announcement_sigs,
2547                                         });
2548                                 }
2549                                 Ok(())
2550                         },
2551                         hash_map::Entry::Vacant(_) => Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2552                 }
2553         }
2554
2555         fn internal_shutdown(&self, counterparty_node_id: &PublicKey, their_features: &InitFeatures, msg: &msgs::Shutdown) -> Result<(), MsgHandleErrInternal> {
2556                 let (mut dropped_htlcs, chan_option) = {
2557                         let mut channel_state_lock = self.channel_state.lock().unwrap();
2558                         let channel_state = &mut *channel_state_lock;
2559
2560                         match channel_state.by_id.entry(msg.channel_id.clone()) {
2561                                 hash_map::Entry::Occupied(mut chan_entry) => {
2562                                         if chan_entry.get().get_counterparty_node_id() != *counterparty_node_id {
2563                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2564                                         }
2565                                         let (shutdown, closing_signed, dropped_htlcs) = try_chan_entry!(self, chan_entry.get_mut().shutdown(&self.fee_estimator, &their_features, &msg), channel_state, chan_entry);
2566                                         if let Some(msg) = shutdown {
2567                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
2568                                                         node_id: counterparty_node_id.clone(),
2569                                                         msg,
2570                                                 });
2571                                         }
2572                                         if let Some(msg) = closing_signed {
2573                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
2574                                                         node_id: counterparty_node_id.clone(),
2575                                                         msg,
2576                                                 });
2577                                         }
2578                                         if chan_entry.get().is_shutdown() {
2579                                                 if let Some(short_id) = chan_entry.get().get_short_channel_id() {
2580                                                         channel_state.short_to_id.remove(&short_id);
2581                                                 }
2582                                                 (dropped_htlcs, Some(chan_entry.remove_entry().1))
2583                                         } else { (dropped_htlcs, None) }
2584                                 },
2585                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2586                         }
2587                 };
2588                 for htlc_source in dropped_htlcs.drain(..) {
2589                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
2590                 }
2591                 if let Some(chan) = chan_option {
2592                         if let Ok(update) = self.get_channel_update(&chan) {
2593                                 let mut channel_state = self.channel_state.lock().unwrap();
2594                                 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2595                                         msg: update
2596                                 });
2597                         }
2598                 }
2599                 Ok(())
2600         }
2601
2602         fn internal_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) -> Result<(), MsgHandleErrInternal> {
2603                 let (tx, chan_option) = {
2604                         let mut channel_state_lock = self.channel_state.lock().unwrap();
2605                         let channel_state = &mut *channel_state_lock;
2606                         match channel_state.by_id.entry(msg.channel_id.clone()) {
2607                                 hash_map::Entry::Occupied(mut chan_entry) => {
2608                                         if chan_entry.get().get_counterparty_node_id() != *counterparty_node_id {
2609                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2610                                         }
2611                                         let (closing_signed, tx) = try_chan_entry!(self, chan_entry.get_mut().closing_signed(&self.fee_estimator, &msg), channel_state, chan_entry);
2612                                         if let Some(msg) = closing_signed {
2613                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
2614                                                         node_id: counterparty_node_id.clone(),
2615                                                         msg,
2616                                                 });
2617                                         }
2618                                         if tx.is_some() {
2619                                                 // We're done with this channel, we've got a signed closing transaction and
2620                                                 // will send the closing_signed back to the remote peer upon return. This
2621                                                 // also implies there are no pending HTLCs left on the channel, so we can
2622                                                 // fully delete it from tracking (the channel monitor is still around to
2623                                                 // watch for old state broadcasts)!
2624                                                 if let Some(short_id) = chan_entry.get().get_short_channel_id() {
2625                                                         channel_state.short_to_id.remove(&short_id);
2626                                                 }
2627                                                 (tx, Some(chan_entry.remove_entry().1))
2628                                         } else { (tx, None) }
2629                                 },
2630                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2631                         }
2632                 };
2633                 if let Some(broadcast_tx) = tx {
2634                         log_trace!(self.logger, "Broadcast onchain {}", log_tx!(broadcast_tx));
2635                         self.tx_broadcaster.broadcast_transaction(&broadcast_tx);
2636                 }
2637                 if let Some(chan) = chan_option {
2638                         if let Ok(update) = self.get_channel_update(&chan) {
2639                                 let mut channel_state = self.channel_state.lock().unwrap();
2640                                 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2641                                         msg: update
2642                                 });
2643                         }
2644                 }
2645                 Ok(())
2646         }
2647
2648         fn internal_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) -> Result<(), MsgHandleErrInternal> {
2649                 //TODO: BOLT 4 points out a specific attack where a peer may re-send an onion packet and
2650                 //determine the state of the payment based on our response/if we forward anything/the time
2651                 //we take to respond. We should take care to avoid allowing such an attack.
2652                 //
2653                 //TODO: There exists a further attack where a node may garble the onion data, forward it to
2654                 //us repeatedly garbled in different ways, and compare our error messages, which are
2655                 //encrypted with the same key. It's not immediately obvious how to usefully exploit that,
2656                 //but we should prevent it anyway.
2657
2658                 let (pending_forward_info, mut channel_state_lock) = self.decode_update_add_htlc_onion(msg);
2659                 let channel_state = &mut *channel_state_lock;
2660
2661                 match channel_state.by_id.entry(msg.channel_id) {
2662                         hash_map::Entry::Occupied(mut chan) => {
2663                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2664                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2665                                 }
2666
2667                                 let create_pending_htlc_status = |chan: &Channel<Signer>, pending_forward_info: PendingHTLCStatus, error_code: u16| {
2668                                         // Ensure error_code has the UPDATE flag set, since by default we send a
2669                                         // channel update along as part of failing the HTLC.
2670                                         assert!((error_code & 0x1000) != 0);
2671                                         // If the update_add is completely bogus, the call will Err and we will close,
2672                                         // but if we've sent a shutdown and they haven't acknowledged it yet, we just
2673                                         // want to reject the new HTLC and fail it backwards instead of forwarding.
2674                                         match pending_forward_info {
2675                                                 PendingHTLCStatus::Forward(PendingHTLCInfo { ref incoming_shared_secret, .. }) => {
2676                                                         let reason = if let Ok(upd) = self.get_channel_update(chan) {
2677                                                                 onion_utils::build_first_hop_failure_packet(incoming_shared_secret, error_code, &{
2678                                                                         let mut res = Vec::with_capacity(8 + 128);
2679                                                                         // TODO: underspecified, follow https://github.com/lightningnetwork/lightning-rfc/issues/791
2680                                                                         res.extend_from_slice(&byte_utils::be16_to_array(0));
2681                                                                         res.extend_from_slice(&upd.encode_with_len()[..]);
2682                                                                         res
2683                                                                 }[..])
2684                                                         } else {
2685                                                                 // The only case where we'd be unable to
2686                                                                 // successfully get a channel update is if the
2687                                                                 // channel isn't in the fully-funded state yet,
2688                                                                 // implying our counterparty is trying to route
2689                                                                 // payments over the channel back to themselves
2690                                                                 // (cause no one else should know the short_id
2691                                                                 // is a lightning channel yet). We should have
2692                                                                 // no problem just calling this
2693                                                                 // unknown_next_peer (0x4000|10).
2694                                                                 onion_utils::build_first_hop_failure_packet(incoming_shared_secret, 0x4000|10, &[])
2695                                                         };
2696                                                         let msg = msgs::UpdateFailHTLC {
2697                                                                 channel_id: msg.channel_id,
2698                                                                 htlc_id: msg.htlc_id,
2699                                                                 reason
2700                                                         };
2701                                                         PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msg))
2702                                                 },
2703                                                 _ => pending_forward_info
2704                                         }
2705                                 };
2706                                 try_chan_entry!(self, chan.get_mut().update_add_htlc(&msg, pending_forward_info, create_pending_htlc_status, &self.logger), channel_state, chan);
2707                         },
2708                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2709                 }
2710                 Ok(())
2711         }
2712
2713         fn internal_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) -> Result<(), MsgHandleErrInternal> {
2714                 let mut channel_lock = self.channel_state.lock().unwrap();
2715                 let htlc_source = {
2716                         let channel_state = &mut *channel_lock;
2717                         match channel_state.by_id.entry(msg.channel_id) {
2718                                 hash_map::Entry::Occupied(mut chan) => {
2719                                         if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2720                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2721                                         }
2722                                         try_chan_entry!(self, chan.get_mut().update_fulfill_htlc(&msg), channel_state, chan)
2723                                 },
2724                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2725                         }
2726                 };
2727                 self.claim_funds_internal(channel_lock, htlc_source, msg.payment_preimage.clone());
2728                 Ok(())
2729         }
2730
2731         fn internal_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) -> Result<(), MsgHandleErrInternal> {
2732                 let mut channel_lock = self.channel_state.lock().unwrap();
2733                 let channel_state = &mut *channel_lock;
2734                 match channel_state.by_id.entry(msg.channel_id) {
2735                         hash_map::Entry::Occupied(mut chan) => {
2736                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2737                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2738                                 }
2739                                 try_chan_entry!(self, chan.get_mut().update_fail_htlc(&msg, HTLCFailReason::LightningError { err: msg.reason.clone() }), channel_state, chan);
2740                         },
2741                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2742                 }
2743                 Ok(())
2744         }
2745
2746         fn internal_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) -> Result<(), MsgHandleErrInternal> {
2747                 let mut channel_lock = self.channel_state.lock().unwrap();
2748                 let channel_state = &mut *channel_lock;
2749                 match channel_state.by_id.entry(msg.channel_id) {
2750                         hash_map::Entry::Occupied(mut chan) => {
2751                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2752                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2753                                 }
2754                                 if (msg.failure_code & 0x8000) == 0 {
2755                                         let chan_err: ChannelError = ChannelError::Close("Got update_fail_malformed_htlc with BADONION not set".to_owned());
2756                                         try_chan_entry!(self, Err(chan_err), channel_state, chan);
2757                                 }
2758                                 try_chan_entry!(self, chan.get_mut().update_fail_malformed_htlc(&msg, HTLCFailReason::Reason { failure_code: msg.failure_code, data: Vec::new() }), channel_state, chan);
2759                                 Ok(())
2760                         },
2761                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2762                 }
2763         }
2764
2765         fn internal_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) -> Result<(), MsgHandleErrInternal> {
2766                 let mut channel_state_lock = self.channel_state.lock().unwrap();
2767                 let channel_state = &mut *channel_state_lock;
2768                 match channel_state.by_id.entry(msg.channel_id) {
2769                         hash_map::Entry::Occupied(mut chan) => {
2770                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2771                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2772                                 }
2773                                 let (revoke_and_ack, commitment_signed, closing_signed, monitor_update) =
2774                                         match chan.get_mut().commitment_signed(&msg, &self.fee_estimator, &self.logger) {
2775                                                 Err((None, e)) => try_chan_entry!(self, Err(e), channel_state, chan),
2776                                                 Err((Some(update), e)) => {
2777                                                         assert!(chan.get().is_awaiting_monitor_update());
2778                                                         let _ = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), update);
2779                                                         try_chan_entry!(self, Err(e), channel_state, chan);
2780                                                         unreachable!();
2781                                                 },
2782                                                 Ok(res) => res
2783                                         };
2784                                 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
2785                                         return_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::RevokeAndACKFirst, true, commitment_signed.is_some());
2786                                         //TODO: Rebroadcast closing_signed if present on monitor update restoration
2787                                 }
2788                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
2789                                         node_id: counterparty_node_id.clone(),
2790                                         msg: revoke_and_ack,
2791                                 });
2792                                 if let Some(msg) = commitment_signed {
2793                                         channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
2794                                                 node_id: counterparty_node_id.clone(),
2795                                                 updates: msgs::CommitmentUpdate {
2796                                                         update_add_htlcs: Vec::new(),
2797                                                         update_fulfill_htlcs: Vec::new(),
2798                                                         update_fail_htlcs: Vec::new(),
2799                                                         update_fail_malformed_htlcs: Vec::new(),
2800                                                         update_fee: None,
2801                                                         commitment_signed: msg,
2802                                                 },
2803                                         });
2804                                 }
2805                                 if let Some(msg) = closing_signed {
2806                                         channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
2807                                                 node_id: counterparty_node_id.clone(),
2808                                                 msg,
2809                                         });
2810                                 }
2811                                 Ok(())
2812                         },
2813                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2814                 }
2815         }
2816
2817         #[inline]
2818         fn forward_htlcs(&self, per_source_pending_forwards: &mut [(u64, OutPoint, Vec<(PendingHTLCInfo, u64)>)]) {
2819                 for &mut (prev_short_channel_id, prev_funding_outpoint, ref mut pending_forwards) in per_source_pending_forwards {
2820                         let mut forward_event = None;
2821                         if !pending_forwards.is_empty() {
2822                                 let mut channel_state = self.channel_state.lock().unwrap();
2823                                 if channel_state.forward_htlcs.is_empty() {
2824                                         forward_event = Some(Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS))
2825                                 }
2826                                 for (forward_info, prev_htlc_id) in pending_forwards.drain(..) {
2827                                         match channel_state.forward_htlcs.entry(match forward_info.routing {
2828                                                         PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
2829                                                         PendingHTLCRouting::Receive { .. } => 0,
2830                                         }) {
2831                                                 hash_map::Entry::Occupied(mut entry) => {
2832                                                         entry.get_mut().push(HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_funding_outpoint,
2833                                                                                                         prev_htlc_id, forward_info });
2834                                                 },
2835                                                 hash_map::Entry::Vacant(entry) => {
2836                                                         entry.insert(vec!(HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_funding_outpoint,
2837                                                                                                      prev_htlc_id, forward_info }));
2838                                                 }
2839                                         }
2840                                 }
2841                         }
2842                         match forward_event {
2843                                 Some(time) => {
2844                                         let mut pending_events = self.pending_events.lock().unwrap();
2845                                         pending_events.push(events::Event::PendingHTLCsForwardable {
2846                                                 time_forwardable: time
2847                                         });
2848                                 }
2849                                 None => {},
2850                         }
2851                 }
2852         }
2853
2854         fn internal_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) -> Result<(), MsgHandleErrInternal> {
2855                 let mut htlcs_to_fail = Vec::new();
2856                 let res = loop {
2857                         let mut channel_state_lock = self.channel_state.lock().unwrap();
2858                         let channel_state = &mut *channel_state_lock;
2859                         match channel_state.by_id.entry(msg.channel_id) {
2860                                 hash_map::Entry::Occupied(mut chan) => {
2861                                         if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2862                                                 break Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2863                                         }
2864                                         let was_frozen_for_monitor = chan.get().is_awaiting_monitor_update();
2865                                         let (commitment_update, pending_forwards, pending_failures, closing_signed, monitor_update, htlcs_to_fail_in) =
2866                                                 break_chan_entry!(self, chan.get_mut().revoke_and_ack(&msg, &self.fee_estimator, &self.logger), channel_state, chan);
2867                                         htlcs_to_fail = htlcs_to_fail_in;
2868                                         if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
2869                                                 if was_frozen_for_monitor {
2870                                                         assert!(commitment_update.is_none() && closing_signed.is_none() && pending_forwards.is_empty() && pending_failures.is_empty());
2871                                                         break Err(MsgHandleErrInternal::ignore_no_close("Previous monitor update failure prevented responses to RAA".to_owned()));
2872                                                 } else {
2873                                                         if let Err(e) = handle_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, commitment_update.is_some(), pending_forwards, pending_failures) {
2874                                                                 break Err(e);
2875                                                         } else { unreachable!(); }
2876                                                 }
2877                                         }
2878                                         if let Some(updates) = commitment_update {
2879                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
2880                                                         node_id: counterparty_node_id.clone(),
2881                                                         updates,
2882                                                 });
2883                                         }
2884                                         if let Some(msg) = closing_signed {
2885                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
2886                                                         node_id: counterparty_node_id.clone(),
2887                                                         msg,
2888                                                 });
2889                                         }
2890                                         break Ok((pending_forwards, pending_failures, chan.get().get_short_channel_id().expect("RAA should only work on a short-id-available channel"), chan.get().get_funding_txo().unwrap()))
2891                                 },
2892                                 hash_map::Entry::Vacant(_) => break Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2893                         }
2894                 };
2895                 self.fail_holding_cell_htlcs(htlcs_to_fail, msg.channel_id);
2896                 match res {
2897                         Ok((pending_forwards, mut pending_failures, short_channel_id, channel_outpoint)) => {
2898                                 for failure in pending_failures.drain(..) {
2899                                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), failure.0, &failure.1, failure.2);
2900                                 }
2901                                 self.forward_htlcs(&mut [(short_channel_id, channel_outpoint, pending_forwards)]);
2902                                 Ok(())
2903                         },
2904                         Err(e) => Err(e)
2905                 }
2906         }
2907
2908         fn internal_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) -> Result<(), MsgHandleErrInternal> {
2909                 let mut channel_lock = self.channel_state.lock().unwrap();
2910                 let channel_state = &mut *channel_lock;
2911                 match channel_state.by_id.entry(msg.channel_id) {
2912                         hash_map::Entry::Occupied(mut chan) => {
2913                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2914                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2915                                 }
2916                                 try_chan_entry!(self, chan.get_mut().update_fee(&self.fee_estimator, &msg), channel_state, chan);
2917                         },
2918                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2919                 }
2920                 Ok(())
2921         }
2922
2923         fn internal_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) -> Result<(), MsgHandleErrInternal> {
2924                 let mut channel_state_lock = self.channel_state.lock().unwrap();
2925                 let channel_state = &mut *channel_state_lock;
2926
2927                 match channel_state.by_id.entry(msg.channel_id) {
2928                         hash_map::Entry::Occupied(mut chan) => {
2929                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2930                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2931                                 }
2932                                 if !chan.get().is_usable() {
2933                                         return Err(MsgHandleErrInternal::from_no_close(LightningError{err: "Got an announcement_signatures before we were ready for it".to_owned(), action: msgs::ErrorAction::IgnoreError}));
2934                                 }
2935
2936                                 let our_node_id = self.get_our_node_id();
2937                                 let (announcement, our_bitcoin_sig) =
2938                                         try_chan_entry!(self, chan.get_mut().get_channel_announcement(our_node_id.clone(), self.genesis_hash.clone()), channel_state, chan);
2939
2940                                 let were_node_one = announcement.node_id_1 == our_node_id;
2941                                 let msghash = hash_to_message!(&Sha256dHash::hash(&announcement.encode()[..])[..]);
2942                                 {
2943                                         let their_node_key = if were_node_one { &announcement.node_id_2 } else { &announcement.node_id_1 };
2944                                         let their_bitcoin_key = if were_node_one { &announcement.bitcoin_key_2 } else { &announcement.bitcoin_key_1 };
2945                                         match (self.secp_ctx.verify(&msghash, &msg.node_signature, their_node_key),
2946                                                    self.secp_ctx.verify(&msghash, &msg.bitcoin_signature, their_bitcoin_key)) {
2947                                                 (Err(e), _) => {
2948                                                         let chan_err: ChannelError = ChannelError::Close(format!("Bad announcement_signatures. Failed to verify node_signature: {:?}. Maybe using different node_secret for transport and routing msg? UnsignedChannelAnnouncement used for verification is {:?}. their_node_key is {:?}", e, &announcement, their_node_key));
2949                                                         try_chan_entry!(self, Err(chan_err), channel_state, chan);
2950                                                 },
2951                                                 (_, Err(e)) => {
2952                                                         let chan_err: ChannelError = ChannelError::Close(format!("Bad announcement_signatures. Failed to verify bitcoin_signature: {:?}. UnsignedChannelAnnouncement used for verification is {:?}. their_bitcoin_key is ({:?})", e, &announcement, their_bitcoin_key));
2953                                                         try_chan_entry!(self, Err(chan_err), channel_state, chan);
2954                                                 },
2955                                                 _ => {}
2956                                         }
2957                                 }
2958
2959                                 let our_node_sig = self.secp_ctx.sign(&msghash, &self.our_network_key);
2960
2961                                 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
2962                                         msg: msgs::ChannelAnnouncement {
2963                                                 node_signature_1: if were_node_one { our_node_sig } else { msg.node_signature },
2964                                                 node_signature_2: if were_node_one { msg.node_signature } else { our_node_sig },
2965                                                 bitcoin_signature_1: if were_node_one { our_bitcoin_sig } else { msg.bitcoin_signature },
2966                                                 bitcoin_signature_2: if were_node_one { msg.bitcoin_signature } else { our_bitcoin_sig },
2967                                                 contents: announcement,
2968                                         },
2969                                         update_msg: self.get_channel_update(chan.get()).unwrap(), // can only fail if we're not in a ready state
2970                                 });
2971                         },
2972                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2973                 }
2974                 Ok(())
2975         }
2976
2977         fn internal_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) -> Result<(), MsgHandleErrInternal> {
2978                 let mut channel_state_lock = self.channel_state.lock().unwrap();
2979                 let channel_state = &mut *channel_state_lock;
2980
2981                 match channel_state.by_id.entry(msg.channel_id) {
2982                         hash_map::Entry::Occupied(mut chan) => {
2983                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2984                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2985                                 }
2986                                 // Currently, we expect all holding cell update_adds to be dropped on peer
2987                                 // disconnect, so Channel's reestablish will never hand us any holding cell
2988                                 // freed HTLCs to fail backwards. If in the future we no longer drop pending
2989                                 // add-HTLCs on disconnect, we may be handed HTLCs to fail backwards here.
2990                                 let (funding_locked, revoke_and_ack, commitment_update, monitor_update_opt, mut order, shutdown) =
2991                                         try_chan_entry!(self, chan.get_mut().channel_reestablish(msg, &self.logger), channel_state, chan);
2992                                 if let Some(monitor_update) = monitor_update_opt {
2993                                         if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
2994                                                 // channel_reestablish doesn't guarantee the order it returns is sensical
2995                                                 // for the messages it returns, but if we're setting what messages to
2996                                                 // re-transmit on monitor update success, we need to make sure it is sane.
2997                                                 if revoke_and_ack.is_none() {
2998                                                         order = RAACommitmentOrder::CommitmentFirst;
2999                                                 }
3000                                                 if commitment_update.is_none() {
3001                                                         order = RAACommitmentOrder::RevokeAndACKFirst;
3002                                                 }
3003                                                 return_monitor_err!(self, e, channel_state, chan, order, revoke_and_ack.is_some(), commitment_update.is_some());
3004                                                 //TODO: Resend the funding_locked if needed once we get the monitor running again
3005                                         }
3006                                 }
3007                                 if let Some(msg) = funding_locked {
3008                                         channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingLocked {
3009                                                 node_id: counterparty_node_id.clone(),
3010                                                 msg
3011                                         });
3012                                 }
3013                                 macro_rules! send_raa { () => {
3014                                         if let Some(msg) = revoke_and_ack {
3015                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
3016                                                         node_id: counterparty_node_id.clone(),
3017                                                         msg
3018                                                 });
3019                                         }
3020                                 } }
3021                                 macro_rules! send_cu { () => {
3022                                         if let Some(updates) = commitment_update {
3023                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
3024                                                         node_id: counterparty_node_id.clone(),
3025                                                         updates
3026                                                 });
3027                                         }
3028                                 } }
3029                                 match order {
3030                                         RAACommitmentOrder::RevokeAndACKFirst => {
3031                                                 send_raa!();
3032                                                 send_cu!();
3033                                         },
3034                                         RAACommitmentOrder::CommitmentFirst => {
3035                                                 send_cu!();
3036                                                 send_raa!();
3037                                         },
3038                                 }
3039                                 if let Some(msg) = shutdown {
3040                                         channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
3041                                                 node_id: counterparty_node_id.clone(),
3042                                                 msg,
3043                                         });
3044                                 }
3045                                 Ok(())
3046                         },
3047                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3048                 }
3049         }
3050
3051         /// Begin Update fee process. Allowed only on an outbound channel.
3052         /// If successful, will generate a UpdateHTLCs event, so you should probably poll
3053         /// PeerManager::process_events afterwards.
3054         /// Note: This API is likely to change!
3055         /// (C-not exported) Cause its doc(hidden) anyway
3056         #[doc(hidden)]
3057         pub fn update_fee(&self, channel_id: [u8;32], feerate_per_kw: u32) -> Result<(), APIError> {
3058                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3059                 let counterparty_node_id;
3060                 let err: Result<(), _> = loop {
3061                         let mut channel_state_lock = self.channel_state.lock().unwrap();
3062                         let channel_state = &mut *channel_state_lock;
3063
3064                         match channel_state.by_id.entry(channel_id) {
3065                                 hash_map::Entry::Vacant(_) => return Err(APIError::APIMisuseError{err: format!("Failed to find corresponding channel for id {}", channel_id.to_hex())}),
3066                                 hash_map::Entry::Occupied(mut chan) => {
3067                                         if !chan.get().is_outbound() {
3068                                                 return Err(APIError::APIMisuseError{err: "update_fee cannot be sent for an inbound channel".to_owned()});
3069                                         }
3070                                         if chan.get().is_awaiting_monitor_update() {
3071                                                 return Err(APIError::MonitorUpdateFailed);
3072                                         }
3073                                         if !chan.get().is_live() {
3074                                                 return Err(APIError::ChannelUnavailable{err: "Channel is either not yet fully established or peer is currently disconnected".to_owned()});
3075                                         }
3076                                         counterparty_node_id = chan.get().get_counterparty_node_id();
3077                                         if let Some((update_fee, commitment_signed, monitor_update)) =
3078                                                         break_chan_entry!(self, chan.get_mut().send_update_fee_and_commit(feerate_per_kw, &self.logger), channel_state, chan)
3079                                         {
3080                                                 if let Err(_e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
3081                                                         unimplemented!();
3082                                                 }
3083                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
3084                                                         node_id: chan.get().get_counterparty_node_id(),
3085                                                         updates: msgs::CommitmentUpdate {
3086                                                                 update_add_htlcs: Vec::new(),
3087                                                                 update_fulfill_htlcs: Vec::new(),
3088                                                                 update_fail_htlcs: Vec::new(),
3089                                                                 update_fail_malformed_htlcs: Vec::new(),
3090                                                                 update_fee: Some(update_fee),
3091                                                                 commitment_signed,
3092                                                         },
3093                                                 });
3094                                         }
3095                                 },
3096                         }
3097                         return Ok(())
3098                 };
3099
3100                 match handle_error!(self, err, counterparty_node_id) {
3101                         Ok(_) => unreachable!(),
3102                         Err(e) => { Err(APIError::APIMisuseError { err: e.err })}
3103                 }
3104         }
3105
3106         /// Process pending events from the `chain::Watch`.
3107         fn process_pending_monitor_events(&self) {
3108                 let mut failed_channels = Vec::new();
3109                 {
3110                         for monitor_event in self.chain_monitor.release_pending_monitor_events() {
3111                                 match monitor_event {
3112                                         MonitorEvent::HTLCEvent(htlc_update) => {
3113                                                 if let Some(preimage) = htlc_update.payment_preimage {
3114                                                         log_trace!(self.logger, "Claiming HTLC with preimage {} from our monitor", log_bytes!(preimage.0));
3115                                                         self.claim_funds_internal(self.channel_state.lock().unwrap(), htlc_update.source, preimage);
3116                                                 } else {
3117                                                         log_trace!(self.logger, "Failing HTLC with hash {} from our monitor", log_bytes!(htlc_update.payment_hash.0));
3118                                                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_update.source, &htlc_update.payment_hash, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
3119                                                 }
3120                                         },
3121                                         MonitorEvent::CommitmentTxBroadcasted(funding_outpoint) => {
3122                                                 let mut channel_lock = self.channel_state.lock().unwrap();
3123                                                 let channel_state = &mut *channel_lock;
3124                                                 let by_id = &mut channel_state.by_id;
3125                                                 let short_to_id = &mut channel_state.short_to_id;
3126                                                 let pending_msg_events = &mut channel_state.pending_msg_events;
3127                                                 if let Some(mut chan) = by_id.remove(&funding_outpoint.to_channel_id()) {
3128                                                         if let Some(short_id) = chan.get_short_channel_id() {
3129                                                                 short_to_id.remove(&short_id);
3130                                                         }
3131                                                         failed_channels.push(chan.force_shutdown(false));
3132                                                         if let Ok(update) = self.get_channel_update(&chan) {
3133                                                                 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
3134                                                                         msg: update
3135                                                                 });
3136                                                         }
3137                                                 }
3138                                         },
3139                                 }
3140                         }
3141                 }
3142
3143                 for failure in failed_channels.drain(..) {
3144                         self.finish_force_close_channel(failure);
3145                 }
3146         }
3147
3148         /// Handle a list of channel failures during a block_connected or block_disconnected call,
3149         /// pushing the channel monitor update (if any) to the background events queue and removing the
3150         /// Channel object.
3151         fn handle_init_event_channel_failures(&self, mut failed_channels: Vec<ShutdownResult>) {
3152                 for mut failure in failed_channels.drain(..) {
3153                         // Either a commitment transactions has been confirmed on-chain or
3154                         // Channel::block_disconnected detected that the funding transaction has been
3155                         // reorganized out of the main chain.
3156                         // We cannot broadcast our latest local state via monitor update (as
3157                         // Channel::force_shutdown tries to make us do) as we may still be in initialization,
3158                         // so we track the update internally and handle it when the user next calls
3159                         // timer_chan_freshness_every_min, guaranteeing we're running normally.
3160                         if let Some((funding_txo, update)) = failure.0.take() {
3161                                 assert_eq!(update.updates.len(), 1);
3162                                 if let ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast } = update.updates[0] {
3163                                         assert!(should_broadcast);
3164                                 } else { unreachable!(); }
3165                                 self.pending_background_events.lock().unwrap().push(BackgroundEvent::ClosingMonitorUpdate((funding_txo, update)));
3166                         }
3167                         self.finish_force_close_channel(failure);
3168                 }
3169         }
3170 }
3171
3172 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> MessageSendEventsProvider for ChannelManager<Signer, M, T, K, F, L>
3173         where M::Target: chain::Watch<Signer>,
3174         T::Target: BroadcasterInterface,
3175         K::Target: KeysInterface<Signer = Signer>,
3176         F::Target: FeeEstimator,
3177                                 L::Target: Logger,
3178 {
3179         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
3180                 //TODO: This behavior should be documented. It's non-intuitive that we query
3181                 // ChannelMonitors when clearing other events.
3182                 self.process_pending_monitor_events();
3183
3184                 let mut ret = Vec::new();
3185                 let mut channel_state = self.channel_state.lock().unwrap();
3186                 mem::swap(&mut ret, &mut channel_state.pending_msg_events);
3187                 ret
3188         }
3189 }
3190
3191 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> EventsProvider for ChannelManager<Signer, M, T, K, F, L>
3192         where M::Target: chain::Watch<Signer>,
3193         T::Target: BroadcasterInterface,
3194         K::Target: KeysInterface<Signer = Signer>,
3195         F::Target: FeeEstimator,
3196                                 L::Target: Logger,
3197 {
3198         fn get_and_clear_pending_events(&self) -> Vec<Event> {
3199                 //TODO: This behavior should be documented. It's non-intuitive that we query
3200                 // ChannelMonitors when clearing other events.
3201                 self.process_pending_monitor_events();
3202
3203                 let mut ret = Vec::new();
3204                 let mut pending_events = self.pending_events.lock().unwrap();
3205                 mem::swap(&mut ret, &mut *pending_events);
3206                 ret
3207         }
3208 }
3209
3210 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> chain::Listen for ChannelManager<Signer, M, T, K, F, L>
3211 where
3212         M::Target: chain::Watch<Signer>,
3213         T::Target: BroadcasterInterface,
3214         K::Target: KeysInterface<Signer = Signer>,
3215         F::Target: FeeEstimator,
3216         L::Target: Logger,
3217 {
3218         fn block_connected(&self, block: &Block, height: u32) {
3219                 let txdata: Vec<_> = block.txdata.iter().enumerate().collect();
3220                 ChannelManager::block_connected(self, &block.header, &txdata, height);
3221         }
3222
3223         fn block_disconnected(&self, header: &BlockHeader, _height: u32) {
3224                 ChannelManager::block_disconnected(self, header);
3225         }
3226 }
3227
3228 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> ChannelManager<Signer, M, T, K, F, L>
3229         where M::Target: chain::Watch<Signer>,
3230         T::Target: BroadcasterInterface,
3231         K::Target: KeysInterface<Signer = Signer>,
3232         F::Target: FeeEstimator,
3233         L::Target: Logger,
3234 {
3235         /// Updates channel state based on transactions seen in a connected block.
3236         pub fn block_connected(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
3237                 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
3238                 // during initialization prior to the chain_monitor being fully configured in some cases.
3239                 // See the docs for `ChannelManagerReadArgs` for more.
3240                 let header_hash = header.block_hash();
3241                 log_trace!(self.logger, "Block {} at height {} connected", header_hash, height);
3242                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3243                 let mut failed_channels = Vec::new();
3244                 let mut timed_out_htlcs = Vec::new();
3245                 {
3246                         let mut channel_lock = self.channel_state.lock().unwrap();
3247                         let channel_state = &mut *channel_lock;
3248                         let short_to_id = &mut channel_state.short_to_id;
3249                         let pending_msg_events = &mut channel_state.pending_msg_events;
3250                         channel_state.by_id.retain(|_, channel| {
3251                                 let res = channel.block_connected(header, txdata, height);
3252                                 if let Ok((chan_res, mut timed_out_pending_htlcs)) = res {
3253                                         for (source, payment_hash) in timed_out_pending_htlcs.drain(..) {
3254                                                 let chan_update = self.get_channel_update(&channel).map(|u| u.encode_with_len()).unwrap(); // Cannot add/recv HTLCs before we have a short_id so unwrap is safe
3255                                                 timed_out_htlcs.push((source, payment_hash,  HTLCFailReason::Reason {
3256                                                         failure_code: 0x1000 | 14, // expiry_too_soon, or at least it is now
3257                                                         data: chan_update,
3258                                                 }));
3259                                         }
3260                                         if let Some(funding_locked) = chan_res {
3261                                                 pending_msg_events.push(events::MessageSendEvent::SendFundingLocked {
3262                                                         node_id: channel.get_counterparty_node_id(),
3263                                                         msg: funding_locked,
3264                                                 });
3265                                                 if let Some(announcement_sigs) = self.get_announcement_sigs(channel) {
3266                                                         log_trace!(self.logger, "Sending funding_locked and announcement_signatures for {}", log_bytes!(channel.channel_id()));
3267                                                         pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
3268                                                                 node_id: channel.get_counterparty_node_id(),
3269                                                                 msg: announcement_sigs,
3270                                                         });
3271                                                 } else {
3272                                                         log_trace!(self.logger, "Sending funding_locked WITHOUT announcement_signatures for {}", log_bytes!(channel.channel_id()));
3273                                                 }
3274                                                 short_to_id.insert(channel.get_short_channel_id().unwrap(), channel.channel_id());
3275                                         }
3276                                 } else if let Err(e) = res {
3277                                         pending_msg_events.push(events::MessageSendEvent::HandleError {
3278                                                 node_id: channel.get_counterparty_node_id(),
3279                                                 action: msgs::ErrorAction::SendErrorMessage { msg: e },
3280                                         });
3281                                         return false;
3282                                 }
3283                                 if let Some(funding_txo) = channel.get_funding_txo() {
3284                                         for &(_, tx) in txdata.iter() {
3285                                                 for inp in tx.input.iter() {
3286                                                         if inp.previous_output == funding_txo.into_bitcoin_outpoint() {
3287                                                                 log_trace!(self.logger, "Detected channel-closing tx {} spending {}:{}, closing channel {}", tx.txid(), inp.previous_output.txid, inp.previous_output.vout, log_bytes!(channel.channel_id()));
3288                                                                 if let Some(short_id) = channel.get_short_channel_id() {
3289                                                                         short_to_id.remove(&short_id);
3290                                                                 }
3291                                                                 // It looks like our counterparty went on-chain. Close the channel.
3292                                                                 failed_channels.push(channel.force_shutdown(true));
3293                                                                 if let Ok(update) = self.get_channel_update(&channel) {
3294                                                                         pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
3295                                                                                 msg: update
3296                                                                         });
3297                                                                 }
3298                                                                 return false;
3299                                                         }
3300                                                 }
3301                                         }
3302                                 }
3303                                 true
3304                         });
3305
3306                         channel_state.claimable_htlcs.retain(|&(ref payment_hash, _), htlcs| {
3307                                 htlcs.retain(|htlc| {
3308                                         // If height is approaching the number of blocks we think it takes us to get
3309                                         // our commitment transaction confirmed before the HTLC expires, plus the
3310                                         // number of blocks we generally consider it to take to do a commitment update,
3311                                         // just give up on it and fail the HTLC.
3312                                         if height >= htlc.cltv_expiry - HTLC_FAIL_BACK_BUFFER {
3313                                                 let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec();
3314                                                 htlc_msat_height_data.extend_from_slice(&byte_utils::be32_to_array(height));
3315                                                 timed_out_htlcs.push((HTLCSource::PreviousHopData(htlc.prev_hop.clone()), payment_hash.clone(), HTLCFailReason::Reason {
3316                                                         failure_code: 0x4000 | 15,
3317                                                         data: htlc_msat_height_data
3318                                                 }));
3319                                                 false
3320                                         } else { true }
3321                                 });
3322                                 !htlcs.is_empty() // Only retain this entry if htlcs has at least one entry.
3323                         });
3324                 }
3325
3326                 self.handle_init_event_channel_failures(failed_channels);
3327
3328                 for (source, payment_hash, reason) in timed_out_htlcs.drain(..) {
3329                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), source, &payment_hash, reason);
3330                 }
3331                 self.latest_block_height.store(height as usize, Ordering::Release);
3332                 *self.last_block_hash.try_lock().expect("block_(dis)connected must not be called in parallel") = header_hash;
3333                 loop {
3334                         // Update last_node_announcement_serial to be the max of its current value and the
3335                         // block timestamp. This should keep us close to the current time without relying on
3336                         // having an explicit local time source.
3337                         // Just in case we end up in a race, we loop until we either successfully update
3338                         // last_node_announcement_serial or decide we don't need to.
3339                         let old_serial = self.last_node_announcement_serial.load(Ordering::Acquire);
3340                         if old_serial >= header.time as usize { break; }
3341                         if self.last_node_announcement_serial.compare_exchange(old_serial, header.time as usize, Ordering::AcqRel, Ordering::Relaxed).is_ok() {
3342                                 break;
3343                         }
3344                 }
3345         }
3346
3347         /// Updates channel state based on a disconnected block.
3348         ///
3349         /// If necessary, the channel may be force-closed without letting the counterparty participate
3350         /// in the shutdown.
3351         pub fn block_disconnected(&self, header: &BlockHeader) {
3352                 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
3353                 // during initialization prior to the chain_monitor being fully configured in some cases.
3354                 // See the docs for `ChannelManagerReadArgs` for more.
3355                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3356                 let mut failed_channels = Vec::new();
3357                 {
3358                         let mut channel_lock = self.channel_state.lock().unwrap();
3359                         let channel_state = &mut *channel_lock;
3360                         let short_to_id = &mut channel_state.short_to_id;
3361                         let pending_msg_events = &mut channel_state.pending_msg_events;
3362                         channel_state.by_id.retain(|_,  v| {
3363                                 if v.block_disconnected(header) {
3364                                         if let Some(short_id) = v.get_short_channel_id() {
3365                                                 short_to_id.remove(&short_id);
3366                                         }
3367                                         failed_channels.push(v.force_shutdown(true));
3368                                         if let Ok(update) = self.get_channel_update(&v) {
3369                                                 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
3370                                                         msg: update
3371                                                 });
3372                                         }
3373                                         false
3374                                 } else {
3375                                         true
3376                                 }
3377                         });
3378                 }
3379                 self.handle_init_event_channel_failures(failed_channels);
3380                 self.latest_block_height.fetch_sub(1, Ordering::AcqRel);
3381                 *self.last_block_hash.try_lock().expect("block_(dis)connected must not be called in parallel") = header.block_hash();
3382         }
3383
3384         /// Blocks until ChannelManager needs to be persisted or a timeout is reached. It returns a bool
3385         /// indicating whether persistence is necessary. Only one listener on `wait_timeout` is
3386         /// guaranteed to be woken up.
3387         /// Note that the feature `allow_wallclock_use` must be enabled to use this function.
3388         #[cfg(any(test, feature = "allow_wallclock_use"))]
3389         pub fn wait_timeout(&self, max_wait: Duration) -> bool {
3390                 self.persistence_notifier.wait_timeout(max_wait)
3391         }
3392
3393         /// Blocks until ChannelManager needs to be persisted. Only one listener on `wait` is
3394         /// guaranteed to be woken up.
3395         pub fn wait(&self) {
3396                 self.persistence_notifier.wait()
3397         }
3398
3399         #[cfg(any(test, feature = "_test_utils"))]
3400         pub fn get_persistence_condvar_value(&self) -> bool {
3401                 let mutcond = &self.persistence_notifier.persistence_lock;
3402                 let &(ref mtx, _) = mutcond;
3403                 let guard = mtx.lock().unwrap();
3404                 *guard
3405         }
3406 }
3407
3408 impl<Signer: Sign, M: Deref + Sync + Send, T: Deref + Sync + Send, K: Deref + Sync + Send, F: Deref + Sync + Send, L: Deref + Sync + Send>
3409         ChannelMessageHandler for ChannelManager<Signer, M, T, K, F, L>
3410         where M::Target: chain::Watch<Signer>,
3411         T::Target: BroadcasterInterface,
3412         K::Target: KeysInterface<Signer = Signer>,
3413         F::Target: FeeEstimator,
3414         L::Target: Logger,
3415 {
3416         fn handle_open_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::OpenChannel) {
3417                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3418                 let _ = handle_error!(self, self.internal_open_channel(counterparty_node_id, their_features, msg), *counterparty_node_id);
3419         }
3420
3421         fn handle_accept_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::AcceptChannel) {
3422                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3423                 let _ = handle_error!(self, self.internal_accept_channel(counterparty_node_id, their_features, msg), *counterparty_node_id);
3424         }
3425
3426         fn handle_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) {
3427                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3428                 let _ = handle_error!(self, self.internal_funding_created(counterparty_node_id, msg), *counterparty_node_id);
3429         }
3430
3431         fn handle_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) {
3432                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3433                 let _ = handle_error!(self, self.internal_funding_signed(counterparty_node_id, msg), *counterparty_node_id);
3434         }
3435
3436         fn handle_funding_locked(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingLocked) {
3437                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3438                 let _ = handle_error!(self, self.internal_funding_locked(counterparty_node_id, msg), *counterparty_node_id);
3439         }
3440
3441         fn handle_shutdown(&self, counterparty_node_id: &PublicKey, their_features: &InitFeatures, msg: &msgs::Shutdown) {
3442                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3443                 let _ = handle_error!(self, self.internal_shutdown(counterparty_node_id, their_features, msg), *counterparty_node_id);
3444         }
3445
3446         fn handle_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
3447                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3448                 let _ = handle_error!(self, self.internal_closing_signed(counterparty_node_id, msg), *counterparty_node_id);
3449         }
3450
3451         fn handle_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
3452                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3453                 let _ = handle_error!(self, self.internal_update_add_htlc(counterparty_node_id, msg), *counterparty_node_id);
3454         }
3455
3456         fn handle_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
3457                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3458                 let _ = handle_error!(self, self.internal_update_fulfill_htlc(counterparty_node_id, msg), *counterparty_node_id);
3459         }
3460
3461         fn handle_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
3462                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3463                 let _ = handle_error!(self, self.internal_update_fail_htlc(counterparty_node_id, msg), *counterparty_node_id);
3464         }
3465
3466         fn handle_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
3467                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3468                 let _ = handle_error!(self, self.internal_update_fail_malformed_htlc(counterparty_node_id, msg), *counterparty_node_id);
3469         }
3470
3471         fn handle_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
3472                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3473                 let _ = handle_error!(self, self.internal_commitment_signed(counterparty_node_id, msg), *counterparty_node_id);
3474         }
3475
3476         fn handle_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
3477                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3478                 let _ = handle_error!(self, self.internal_revoke_and_ack(counterparty_node_id, msg), *counterparty_node_id);
3479         }
3480
3481         fn handle_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) {
3482                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3483                 let _ = handle_error!(self, self.internal_update_fee(counterparty_node_id, msg), *counterparty_node_id);
3484         }
3485
3486         fn handle_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
3487                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3488                 let _ = handle_error!(self, self.internal_announcement_signatures(counterparty_node_id, msg), *counterparty_node_id);
3489         }
3490
3491         fn handle_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
3492                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3493                 let _ = handle_error!(self, self.internal_channel_reestablish(counterparty_node_id, msg), *counterparty_node_id);
3494         }
3495
3496         fn peer_disconnected(&self, counterparty_node_id: &PublicKey, no_connection_possible: bool) {
3497                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3498                 let mut failed_channels = Vec::new();
3499                 let mut failed_payments = Vec::new();
3500                 let mut no_channels_remain = true;
3501                 {
3502                         let mut channel_state_lock = self.channel_state.lock().unwrap();
3503                         let channel_state = &mut *channel_state_lock;
3504                         let short_to_id = &mut channel_state.short_to_id;
3505                         let pending_msg_events = &mut channel_state.pending_msg_events;
3506                         if no_connection_possible {
3507                                 log_debug!(self.logger, "Failing all channels with {} due to no_connection_possible", log_pubkey!(counterparty_node_id));
3508                                 channel_state.by_id.retain(|_, chan| {
3509                                         if chan.get_counterparty_node_id() == *counterparty_node_id {
3510                                                 if let Some(short_id) = chan.get_short_channel_id() {
3511                                                         short_to_id.remove(&short_id);
3512                                                 }
3513                                                 failed_channels.push(chan.force_shutdown(true));
3514                                                 if let Ok(update) = self.get_channel_update(&chan) {
3515                                                         pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
3516                                                                 msg: update
3517                                                         });
3518                                                 }
3519                                                 false
3520                                         } else {
3521                                                 true
3522                                         }
3523                                 });
3524                         } else {
3525                                 log_debug!(self.logger, "Marking channels with {} disconnected and generating channel_updates", log_pubkey!(counterparty_node_id));
3526                                 channel_state.by_id.retain(|_, chan| {
3527                                         if chan.get_counterparty_node_id() == *counterparty_node_id {
3528                                                 // Note that currently on channel reestablish we assert that there are no
3529                                                 // holding cell add-HTLCs, so if in the future we stop removing uncommitted HTLCs
3530                                                 // on peer disconnect here, there will need to be corresponding changes in
3531                                                 // reestablish logic.
3532                                                 let failed_adds = chan.remove_uncommitted_htlcs_and_mark_paused(&self.logger);
3533                                                 chan.to_disabled_marked();
3534                                                 if !failed_adds.is_empty() {
3535                                                         let chan_update = self.get_channel_update(&chan).map(|u| u.encode_with_len()).unwrap(); // Cannot add/recv HTLCs before we have a short_id so unwrap is safe
3536                                                         failed_payments.push((chan_update, failed_adds));
3537                                                 }
3538                                                 if chan.is_shutdown() {
3539                                                         if let Some(short_id) = chan.get_short_channel_id() {
3540                                                                 short_to_id.remove(&short_id);
3541                                                         }
3542                                                         return false;
3543                                                 } else {
3544                                                         no_channels_remain = false;
3545                                                 }
3546                                         }
3547                                         true
3548                                 })
3549                         }
3550                         pending_msg_events.retain(|msg| {
3551                                 match msg {
3552                                         &events::MessageSendEvent::SendAcceptChannel { ref node_id, .. } => node_id != counterparty_node_id,
3553                                         &events::MessageSendEvent::SendOpenChannel { ref node_id, .. } => node_id != counterparty_node_id,
3554                                         &events::MessageSendEvent::SendFundingCreated { ref node_id, .. } => node_id != counterparty_node_id,
3555                                         &events::MessageSendEvent::SendFundingSigned { ref node_id, .. } => node_id != counterparty_node_id,
3556                                         &events::MessageSendEvent::SendFundingLocked { ref node_id, .. } => node_id != counterparty_node_id,
3557                                         &events::MessageSendEvent::SendAnnouncementSignatures { ref node_id, .. } => node_id != counterparty_node_id,
3558                                         &events::MessageSendEvent::UpdateHTLCs { ref node_id, .. } => node_id != counterparty_node_id,
3559                                         &events::MessageSendEvent::SendRevokeAndACK { ref node_id, .. } => node_id != counterparty_node_id,
3560                                         &events::MessageSendEvent::SendClosingSigned { ref node_id, .. } => node_id != counterparty_node_id,
3561                                         &events::MessageSendEvent::SendShutdown { ref node_id, .. } => node_id != counterparty_node_id,
3562                                         &events::MessageSendEvent::SendChannelReestablish { ref node_id, .. } => node_id != counterparty_node_id,
3563                                         &events::MessageSendEvent::BroadcastChannelAnnouncement { .. } => true,
3564                                         &events::MessageSendEvent::BroadcastNodeAnnouncement { .. } => true,
3565                                         &events::MessageSendEvent::BroadcastChannelUpdate { .. } => true,
3566                                         &events::MessageSendEvent::HandleError { ref node_id, .. } => node_id != counterparty_node_id,
3567                                         &events::MessageSendEvent::PaymentFailureNetworkUpdate { .. } => true,
3568                                         &events::MessageSendEvent::SendChannelRangeQuery { .. } => false,
3569                                         &events::MessageSendEvent::SendShortIdsQuery { .. } => false,
3570                                 }
3571                         });
3572                 }
3573                 if no_channels_remain {
3574                         self.per_peer_state.write().unwrap().remove(counterparty_node_id);
3575                 }
3576
3577                 for failure in failed_channels.drain(..) {
3578                         self.finish_force_close_channel(failure);
3579                 }
3580                 for (chan_update, mut htlc_sources) in failed_payments {
3581                         for (htlc_source, payment_hash) in htlc_sources.drain(..) {
3582                                 self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source, &payment_hash, HTLCFailReason::Reason { failure_code: 0x1000 | 7, data: chan_update.clone() });
3583                         }
3584                 }
3585         }
3586
3587         fn peer_connected(&self, counterparty_node_id: &PublicKey, init_msg: &msgs::Init) {
3588                 log_debug!(self.logger, "Generating channel_reestablish events for {}", log_pubkey!(counterparty_node_id));
3589
3590                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3591
3592                 {
3593                         let mut peer_state_lock = self.per_peer_state.write().unwrap();
3594                         match peer_state_lock.entry(counterparty_node_id.clone()) {
3595                                 hash_map::Entry::Vacant(e) => {
3596                                         e.insert(Mutex::new(PeerState {
3597                                                 latest_features: init_msg.features.clone(),
3598                                         }));
3599                                 },
3600                                 hash_map::Entry::Occupied(e) => {
3601                                         e.get().lock().unwrap().latest_features = init_msg.features.clone();
3602                                 },
3603                         }
3604                 }
3605
3606                 let mut channel_state_lock = self.channel_state.lock().unwrap();
3607                 let channel_state = &mut *channel_state_lock;
3608                 let pending_msg_events = &mut channel_state.pending_msg_events;
3609                 channel_state.by_id.retain(|_, chan| {
3610                         if chan.get_counterparty_node_id() == *counterparty_node_id {
3611                                 if !chan.have_received_message() {
3612                                         // If we created this (outbound) channel while we were disconnected from the
3613                                         // peer we probably failed to send the open_channel message, which is now
3614                                         // lost. We can't have had anything pending related to this channel, so we just
3615                                         // drop it.
3616                                         false
3617                                 } else {
3618                                         pending_msg_events.push(events::MessageSendEvent::SendChannelReestablish {
3619                                                 node_id: chan.get_counterparty_node_id(),
3620                                                 msg: chan.get_channel_reestablish(&self.logger),
3621                                         });
3622                                         true
3623                                 }
3624                         } else { true }
3625                 });
3626                 //TODO: Also re-broadcast announcement_signatures
3627         }
3628
3629         fn handle_error(&self, counterparty_node_id: &PublicKey, msg: &msgs::ErrorMessage) {
3630                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3631
3632                 if msg.channel_id == [0; 32] {
3633                         for chan in self.list_channels() {
3634                                 if chan.remote_network_id == *counterparty_node_id {
3635                                         // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
3636                                         let _ = self.force_close_channel_with_peer(&chan.channel_id, Some(counterparty_node_id));
3637                                 }
3638                         }
3639                 } else {
3640                         // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
3641                         let _ = self.force_close_channel_with_peer(&msg.channel_id, Some(counterparty_node_id));
3642                 }
3643         }
3644 }
3645
3646 /// Used to signal to the ChannelManager persister that the manager needs to be re-persisted to
3647 /// disk/backups, through `wait_timeout` and `wait`.
3648 struct PersistenceNotifier {
3649         /// Users won't access the persistence_lock directly, but rather wait on its bool using
3650         /// `wait_timeout` and `wait`.
3651         persistence_lock: (Mutex<bool>, Condvar),
3652 }
3653
3654 impl PersistenceNotifier {
3655         fn new() -> Self {
3656                 Self {
3657                         persistence_lock: (Mutex::new(false), Condvar::new()),
3658                 }
3659         }
3660
3661         fn wait(&self) {
3662                 loop {
3663                         let &(ref mtx, ref cvar) = &self.persistence_lock;
3664                         let mut guard = mtx.lock().unwrap();
3665                         guard = cvar.wait(guard).unwrap();
3666                         let result = *guard;
3667                         if result {
3668                                 *guard = false;
3669                                 return
3670                         }
3671                 }
3672         }
3673
3674         #[cfg(any(test, feature = "allow_wallclock_use"))]
3675         fn wait_timeout(&self, max_wait: Duration) -> bool {
3676                 let current_time = Instant::now();
3677                 loop {
3678                         let &(ref mtx, ref cvar) = &self.persistence_lock;
3679                         let mut guard = mtx.lock().unwrap();
3680                         guard = cvar.wait_timeout(guard, max_wait).unwrap().0;
3681                         // Due to spurious wakeups that can happen on `wait_timeout`, here we need to check if the
3682                         // desired wait time has actually passed, and if not then restart the loop with a reduced wait
3683                         // time. Note that this logic can be highly simplified through the use of
3684                         // `Condvar::wait_while` and `Condvar::wait_timeout_while`, if and when our MSRV is raised to
3685                         // 1.42.0.
3686                         let elapsed = current_time.elapsed();
3687                         let result = *guard;
3688                         if result || elapsed >= max_wait {
3689                                 *guard = false;
3690                                 return result;
3691                         }
3692                         match max_wait.checked_sub(elapsed) {
3693                                 None => return result,
3694                                 Some(_) => continue
3695                         }
3696                 }
3697         }
3698
3699         // Signal to the ChannelManager persister that there are updates necessitating persisting to disk.
3700         fn notify(&self) {
3701                 let &(ref persist_mtx, ref cnd) = &self.persistence_lock;
3702                 let mut persistence_lock = persist_mtx.lock().unwrap();
3703                 *persistence_lock = true;
3704                 mem::drop(persistence_lock);
3705                 cnd.notify_all();
3706         }
3707 }
3708
3709 const SERIALIZATION_VERSION: u8 = 1;
3710 const MIN_SERIALIZATION_VERSION: u8 = 1;
3711
3712 impl Writeable for PendingHTLCInfo {
3713         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
3714                 match &self.routing {
3715                         &PendingHTLCRouting::Forward { ref onion_packet, ref short_channel_id } => {
3716                                 0u8.write(writer)?;
3717                                 onion_packet.write(writer)?;
3718                                 short_channel_id.write(writer)?;
3719                         },
3720                         &PendingHTLCRouting::Receive { ref payment_data, ref incoming_cltv_expiry } => {
3721                                 1u8.write(writer)?;
3722                                 payment_data.write(writer)?;
3723                                 incoming_cltv_expiry.write(writer)?;
3724                         },
3725                 }
3726                 self.incoming_shared_secret.write(writer)?;
3727                 self.payment_hash.write(writer)?;
3728                 self.amt_to_forward.write(writer)?;
3729                 self.outgoing_cltv_value.write(writer)?;
3730                 Ok(())
3731         }
3732 }
3733
3734 impl Readable for PendingHTLCInfo {
3735         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<PendingHTLCInfo, DecodeError> {
3736                 Ok(PendingHTLCInfo {
3737                         routing: match Readable::read(reader)? {
3738                                 0u8 => PendingHTLCRouting::Forward {
3739                                         onion_packet: Readable::read(reader)?,
3740                                         short_channel_id: Readable::read(reader)?,
3741                                 },
3742                                 1u8 => PendingHTLCRouting::Receive {
3743                                         payment_data: Readable::read(reader)?,
3744                                         incoming_cltv_expiry: Readable::read(reader)?,
3745                                 },
3746                                 _ => return Err(DecodeError::InvalidValue),
3747                         },
3748                         incoming_shared_secret: Readable::read(reader)?,
3749                         payment_hash: Readable::read(reader)?,
3750                         amt_to_forward: Readable::read(reader)?,
3751                         outgoing_cltv_value: Readable::read(reader)?,
3752                 })
3753         }
3754 }
3755
3756 impl Writeable for HTLCFailureMsg {
3757         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
3758                 match self {
3759                         &HTLCFailureMsg::Relay(ref fail_msg) => {
3760                                 0u8.write(writer)?;
3761                                 fail_msg.write(writer)?;
3762                         },
3763                         &HTLCFailureMsg::Malformed(ref fail_msg) => {
3764                                 1u8.write(writer)?;
3765                                 fail_msg.write(writer)?;
3766                         }
3767                 }
3768                 Ok(())
3769         }
3770 }
3771
3772 impl Readable for HTLCFailureMsg {
3773         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<HTLCFailureMsg, DecodeError> {
3774                 match <u8 as Readable>::read(reader)? {
3775                         0 => Ok(HTLCFailureMsg::Relay(Readable::read(reader)?)),
3776                         1 => Ok(HTLCFailureMsg::Malformed(Readable::read(reader)?)),
3777                         _ => Err(DecodeError::InvalidValue),
3778                 }
3779         }
3780 }
3781
3782 impl Writeable for PendingHTLCStatus {
3783         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
3784                 match self {
3785                         &PendingHTLCStatus::Forward(ref forward_info) => {
3786                                 0u8.write(writer)?;
3787                                 forward_info.write(writer)?;
3788                         },
3789                         &PendingHTLCStatus::Fail(ref fail_msg) => {
3790                                 1u8.write(writer)?;
3791                                 fail_msg.write(writer)?;
3792                         }
3793                 }
3794                 Ok(())
3795         }
3796 }
3797
3798 impl Readable for PendingHTLCStatus {
3799         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<PendingHTLCStatus, DecodeError> {
3800                 match <u8 as Readable>::read(reader)? {
3801                         0 => Ok(PendingHTLCStatus::Forward(Readable::read(reader)?)),
3802                         1 => Ok(PendingHTLCStatus::Fail(Readable::read(reader)?)),
3803                         _ => Err(DecodeError::InvalidValue),
3804                 }
3805         }
3806 }
3807
3808 impl_writeable!(HTLCPreviousHopData, 0, {
3809         short_channel_id,
3810         outpoint,
3811         htlc_id,
3812         incoming_packet_shared_secret
3813 });
3814
3815 impl_writeable!(ClaimableHTLC, 0, {
3816         prev_hop,
3817         value,
3818         payment_data,
3819         cltv_expiry
3820 });
3821
3822 impl Writeable for HTLCSource {
3823         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
3824                 match self {
3825                         &HTLCSource::PreviousHopData(ref hop_data) => {
3826                                 0u8.write(writer)?;
3827                                 hop_data.write(writer)?;
3828                         },
3829                         &HTLCSource::OutboundRoute { ref path, ref session_priv, ref first_hop_htlc_msat } => {
3830                                 1u8.write(writer)?;
3831                                 path.write(writer)?;
3832                                 session_priv.write(writer)?;
3833                                 first_hop_htlc_msat.write(writer)?;
3834                         }
3835                 }
3836                 Ok(())
3837         }
3838 }
3839
3840 impl Readable for HTLCSource {
3841         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<HTLCSource, DecodeError> {
3842                 match <u8 as Readable>::read(reader)? {
3843                         0 => Ok(HTLCSource::PreviousHopData(Readable::read(reader)?)),
3844                         1 => Ok(HTLCSource::OutboundRoute {
3845                                 path: Readable::read(reader)?,
3846                                 session_priv: Readable::read(reader)?,
3847                                 first_hop_htlc_msat: Readable::read(reader)?,
3848                         }),
3849                         _ => Err(DecodeError::InvalidValue),
3850                 }
3851         }
3852 }
3853
3854 impl Writeable for HTLCFailReason {
3855         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
3856                 match self {
3857                         &HTLCFailReason::LightningError { ref err } => {
3858                                 0u8.write(writer)?;
3859                                 err.write(writer)?;
3860                         },
3861                         &HTLCFailReason::Reason { ref failure_code, ref data } => {
3862                                 1u8.write(writer)?;
3863                                 failure_code.write(writer)?;
3864                                 data.write(writer)?;
3865                         }
3866                 }
3867                 Ok(())
3868         }
3869 }
3870
3871 impl Readable for HTLCFailReason {
3872         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<HTLCFailReason, DecodeError> {
3873                 match <u8 as Readable>::read(reader)? {
3874                         0 => Ok(HTLCFailReason::LightningError { err: Readable::read(reader)? }),
3875                         1 => Ok(HTLCFailReason::Reason {
3876                                 failure_code: Readable::read(reader)?,
3877                                 data: Readable::read(reader)?,
3878                         }),
3879                         _ => Err(DecodeError::InvalidValue),
3880                 }
3881         }
3882 }
3883
3884 impl Writeable for HTLCForwardInfo {
3885         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
3886                 match self {
3887                         &HTLCForwardInfo::AddHTLC { ref prev_short_channel_id, ref prev_funding_outpoint, ref prev_htlc_id, ref forward_info } => {
3888                                 0u8.write(writer)?;
3889                                 prev_short_channel_id.write(writer)?;
3890                                 prev_funding_outpoint.write(writer)?;
3891                                 prev_htlc_id.write(writer)?;
3892                                 forward_info.write(writer)?;
3893                         },
3894                         &HTLCForwardInfo::FailHTLC { ref htlc_id, ref err_packet } => {
3895                                 1u8.write(writer)?;
3896                                 htlc_id.write(writer)?;
3897                                 err_packet.write(writer)?;
3898                         },
3899                 }
3900                 Ok(())
3901         }
3902 }
3903
3904 impl Readable for HTLCForwardInfo {
3905         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<HTLCForwardInfo, DecodeError> {
3906                 match <u8 as Readable>::read(reader)? {
3907                         0 => Ok(HTLCForwardInfo::AddHTLC {
3908                                 prev_short_channel_id: Readable::read(reader)?,
3909                                 prev_funding_outpoint: Readable::read(reader)?,
3910                                 prev_htlc_id: Readable::read(reader)?,
3911                                 forward_info: Readable::read(reader)?,
3912                         }),
3913                         1 => Ok(HTLCForwardInfo::FailHTLC {
3914                                 htlc_id: Readable::read(reader)?,
3915                                 err_packet: Readable::read(reader)?,
3916                         }),
3917                         _ => Err(DecodeError::InvalidValue),
3918                 }
3919         }
3920 }
3921
3922 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> Writeable for ChannelManager<Signer, M, T, K, F, L>
3923         where M::Target: chain::Watch<Signer>,
3924         T::Target: BroadcasterInterface,
3925         K::Target: KeysInterface<Signer = Signer>,
3926         F::Target: FeeEstimator,
3927         L::Target: Logger,
3928 {
3929         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
3930                 let _consistency_lock = self.total_consistency_lock.write().unwrap();
3931
3932                 writer.write_all(&[SERIALIZATION_VERSION; 1])?;
3933                 writer.write_all(&[MIN_SERIALIZATION_VERSION; 1])?;
3934
3935                 self.genesis_hash.write(writer)?;
3936                 (self.latest_block_height.load(Ordering::Acquire) as u32).write(writer)?;
3937                 self.last_block_hash.lock().unwrap().write(writer)?;
3938
3939                 let channel_state = self.channel_state.lock().unwrap();
3940                 let mut unfunded_channels = 0;
3941                 for (_, channel) in channel_state.by_id.iter() {
3942                         if !channel.is_funding_initiated() {
3943                                 unfunded_channels += 1;
3944                         }
3945                 }
3946                 ((channel_state.by_id.len() - unfunded_channels) as u64).write(writer)?;
3947                 for (_, channel) in channel_state.by_id.iter() {
3948                         if channel.is_funding_initiated() {
3949                                 channel.write(writer)?;
3950                         }
3951                 }
3952
3953                 (channel_state.forward_htlcs.len() as u64).write(writer)?;
3954                 for (short_channel_id, pending_forwards) in channel_state.forward_htlcs.iter() {
3955                         short_channel_id.write(writer)?;
3956                         (pending_forwards.len() as u64).write(writer)?;
3957                         for forward in pending_forwards {
3958                                 forward.write(writer)?;
3959                         }
3960                 }
3961
3962                 (channel_state.claimable_htlcs.len() as u64).write(writer)?;
3963                 for (payment_hash, previous_hops) in channel_state.claimable_htlcs.iter() {
3964                         payment_hash.write(writer)?;
3965                         (previous_hops.len() as u64).write(writer)?;
3966                         for htlc in previous_hops.iter() {
3967                                 htlc.write(writer)?;
3968                         }
3969                 }
3970
3971                 let per_peer_state = self.per_peer_state.write().unwrap();
3972                 (per_peer_state.len() as u64).write(writer)?;
3973                 for (peer_pubkey, peer_state_mutex) in per_peer_state.iter() {
3974                         peer_pubkey.write(writer)?;
3975                         let peer_state = peer_state_mutex.lock().unwrap();
3976                         peer_state.latest_features.write(writer)?;
3977                 }
3978
3979                 let events = self.pending_events.lock().unwrap();
3980                 (events.len() as u64).write(writer)?;
3981                 for event in events.iter() {
3982                         event.write(writer)?;
3983                 }
3984
3985                 let background_events = self.pending_background_events.lock().unwrap();
3986                 (background_events.len() as u64).write(writer)?;
3987                 for event in background_events.iter() {
3988                         match event {
3989                                 BackgroundEvent::ClosingMonitorUpdate((funding_txo, monitor_update)) => {
3990                                         0u8.write(writer)?;
3991                                         funding_txo.write(writer)?;
3992                                         monitor_update.write(writer)?;
3993                                 },
3994                         }
3995                 }
3996
3997                 (self.last_node_announcement_serial.load(Ordering::Acquire) as u32).write(writer)?;
3998
3999                 Ok(())
4000         }
4001 }
4002
4003 /// Arguments for the creation of a ChannelManager that are not deserialized.
4004 ///
4005 /// At a high-level, the process for deserializing a ChannelManager and resuming normal operation
4006 /// is:
4007 /// 1) Deserialize all stored ChannelMonitors.
4008 /// 2) Deserialize the ChannelManager by filling in this struct and calling <(Option<BlockHash>,
4009 ///    ChannelManager)>::read(reader, args).
4010 ///    This may result in closing some Channels if the ChannelMonitor is newer than the stored
4011 ///    ChannelManager state to ensure no loss of funds. Thus, transactions may be broadcasted.
4012 /// 3) Register all relevant ChannelMonitor outpoints with your chain watch mechanism using
4013 ///    ChannelMonitor::get_outputs_to_watch() and ChannelMonitor::get_funding_txo().
4014 /// 4) Reconnect blocks on your ChannelMonitors.
4015 /// 5) Disconnect/connect blocks on the ChannelManager.
4016 /// 6) Move the ChannelMonitors into your local chain::Watch.
4017 ///
4018 /// Note that the ordering of #4-6 is not of importance, however all three must occur before you
4019 /// call any other methods on the newly-deserialized ChannelManager.
4020 ///
4021 /// Note that because some channels may be closed during deserialization, it is critical that you
4022 /// always deserialize only the latest version of a ChannelManager and ChannelMonitors available to
4023 /// you. If you deserialize an old ChannelManager (during which force-closure transactions may be
4024 /// broadcast), and then later deserialize a newer version of the same ChannelManager (which will
4025 /// not force-close the same channels but consider them live), you may end up revoking a state for
4026 /// which you've already broadcasted the transaction.
4027 pub struct ChannelManagerReadArgs<'a, Signer: 'a + Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
4028         where M::Target: chain::Watch<Signer>,
4029         T::Target: BroadcasterInterface,
4030         K::Target: KeysInterface<Signer = Signer>,
4031         F::Target: FeeEstimator,
4032         L::Target: Logger,
4033 {
4034         /// The keys provider which will give us relevant keys. Some keys will be loaded during
4035         /// deserialization and KeysInterface::read_chan_signer will be used to read per-Channel
4036         /// signing data.
4037         pub keys_manager: K,
4038
4039         /// The fee_estimator for use in the ChannelManager in the future.
4040         ///
4041         /// No calls to the FeeEstimator will be made during deserialization.
4042         pub fee_estimator: F,
4043         /// The chain::Watch for use in the ChannelManager in the future.
4044         ///
4045         /// No calls to the chain::Watch will be made during deserialization. It is assumed that
4046         /// you have deserialized ChannelMonitors separately and will add them to your
4047         /// chain::Watch after deserializing this ChannelManager.
4048         pub chain_monitor: M,
4049
4050         /// The BroadcasterInterface which will be used in the ChannelManager in the future and may be
4051         /// used to broadcast the latest local commitment transactions of channels which must be
4052         /// force-closed during deserialization.
4053         pub tx_broadcaster: T,
4054         /// The Logger for use in the ChannelManager and which may be used to log information during
4055         /// deserialization.
4056         pub logger: L,
4057         /// Default settings used for new channels. Any existing channels will continue to use the
4058         /// runtime settings which were stored when the ChannelManager was serialized.
4059         pub default_config: UserConfig,
4060
4061         /// A map from channel funding outpoints to ChannelMonitors for those channels (ie
4062         /// value.get_funding_txo() should be the key).
4063         ///
4064         /// If a monitor is inconsistent with the channel state during deserialization the channel will
4065         /// be force-closed using the data in the ChannelMonitor and the channel will be dropped. This
4066         /// is true for missing channels as well. If there is a monitor missing for which we find
4067         /// channel data Err(DecodeError::InvalidValue) will be returned.
4068         ///
4069         /// In such cases the latest local transactions will be sent to the tx_broadcaster included in
4070         /// this struct.
4071         ///
4072         /// (C-not exported) because we have no HashMap bindings
4073         pub channel_monitors: HashMap<OutPoint, &'a mut ChannelMonitor<Signer>>,
4074 }
4075
4076 impl<'a, Signer: 'a + Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
4077                 ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>
4078         where M::Target: chain::Watch<Signer>,
4079                 T::Target: BroadcasterInterface,
4080                 K::Target: KeysInterface<Signer = Signer>,
4081                 F::Target: FeeEstimator,
4082                 L::Target: Logger,
4083         {
4084         /// Simple utility function to create a ChannelManagerReadArgs which creates the monitor
4085         /// HashMap for you. This is primarily useful for C bindings where it is not practical to
4086         /// populate a HashMap directly from C.
4087         pub fn new(keys_manager: K, fee_estimator: F, chain_monitor: M, tx_broadcaster: T, logger: L, default_config: UserConfig,
4088                         mut channel_monitors: Vec<&'a mut ChannelMonitor<Signer>>) -> Self {
4089                 Self {
4090                         keys_manager, fee_estimator, chain_monitor, tx_broadcaster, logger, default_config,
4091                         channel_monitors: channel_monitors.drain(..).map(|monitor| { (monitor.get_funding_txo().0, monitor) }).collect()
4092                 }
4093         }
4094 }
4095
4096 // Implement ReadableArgs for an Arc'd ChannelManager to make it a bit easier to work with the
4097 // SipmleArcChannelManager type:
4098 impl<'a, Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
4099         ReadableArgs<ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>> for (Option<BlockHash>, Arc<ChannelManager<Signer, M, T, K, F, L>>)
4100         where M::Target: chain::Watch<Signer>,
4101         T::Target: BroadcasterInterface,
4102         K::Target: KeysInterface<Signer = Signer>,
4103         F::Target: FeeEstimator,
4104         L::Target: Logger,
4105 {
4106         fn read<R: ::std::io::Read>(reader: &mut R, args: ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>) -> Result<Self, DecodeError> {
4107                 let (blockhash, chan_manager) = <(Option<BlockHash>, ChannelManager<Signer, M, T, K, F, L>)>::read(reader, args)?;
4108                 Ok((blockhash, Arc::new(chan_manager)))
4109         }
4110 }
4111
4112 impl<'a, Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
4113         ReadableArgs<ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>> for (Option<BlockHash>, ChannelManager<Signer, M, T, K, F, L>)
4114         where M::Target: chain::Watch<Signer>,
4115         T::Target: BroadcasterInterface,
4116         K::Target: KeysInterface<Signer = Signer>,
4117         F::Target: FeeEstimator,
4118         L::Target: Logger,
4119 {
4120         fn read<R: ::std::io::Read>(reader: &mut R, mut args: ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>) -> Result<Self, DecodeError> {
4121                 let _ver: u8 = Readable::read(reader)?;
4122                 let min_ver: u8 = Readable::read(reader)?;
4123                 if min_ver > SERIALIZATION_VERSION {
4124                         return Err(DecodeError::UnknownVersion);
4125                 }
4126
4127                 let genesis_hash: BlockHash = Readable::read(reader)?;
4128                 let latest_block_height: u32 = Readable::read(reader)?;
4129                 let last_block_hash: BlockHash = Readable::read(reader)?;
4130
4131                 let mut failed_htlcs = Vec::new();
4132
4133                 let channel_count: u64 = Readable::read(reader)?;
4134                 let mut funding_txo_set = HashSet::with_capacity(cmp::min(channel_count as usize, 128));
4135                 let mut by_id = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
4136                 let mut short_to_id = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
4137                 for _ in 0..channel_count {
4138                         let mut channel: Channel<Signer> = Channel::read(reader, &args.keys_manager)?;
4139                         if channel.last_block_connected != Default::default() && channel.last_block_connected != last_block_hash {
4140                                 return Err(DecodeError::InvalidValue);
4141                         }
4142
4143                         let funding_txo = channel.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
4144                         funding_txo_set.insert(funding_txo.clone());
4145                         if let Some(ref mut monitor) = args.channel_monitors.get_mut(&funding_txo) {
4146                                 if channel.get_cur_holder_commitment_transaction_number() < monitor.get_cur_holder_commitment_number() ||
4147                                                 channel.get_revoked_counterparty_commitment_transaction_number() < monitor.get_min_seen_secret() ||
4148                                                 channel.get_cur_counterparty_commitment_transaction_number() < monitor.get_cur_counterparty_commitment_number() ||
4149                                                 channel.get_latest_monitor_update_id() > monitor.get_latest_update_id() {
4150                                         // If the channel is ahead of the monitor, return InvalidValue:
4151                                         return Err(DecodeError::InvalidValue);
4152                                 } else if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() ||
4153                                                 channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() ||
4154                                                 channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() ||
4155                                                 channel.get_latest_monitor_update_id() < monitor.get_latest_update_id() {
4156                                         // But if the channel is behind of the monitor, close the channel:
4157                                         let (_, mut new_failed_htlcs) = channel.force_shutdown(true);
4158                                         failed_htlcs.append(&mut new_failed_htlcs);
4159                                         monitor.broadcast_latest_holder_commitment_txn(&args.tx_broadcaster, &args.logger);
4160                                 } else {
4161                                         if let Some(short_channel_id) = channel.get_short_channel_id() {
4162                                                 short_to_id.insert(short_channel_id, channel.channel_id());
4163                                         }
4164                                         by_id.insert(channel.channel_id(), channel);
4165                                 }
4166                         } else {
4167                                 return Err(DecodeError::InvalidValue);
4168                         }
4169                 }
4170
4171                 for (ref funding_txo, ref mut monitor) in args.channel_monitors.iter_mut() {
4172                         if !funding_txo_set.contains(funding_txo) {
4173                                 monitor.broadcast_latest_holder_commitment_txn(&args.tx_broadcaster, &args.logger);
4174                         }
4175                 }
4176
4177                 const MAX_ALLOC_SIZE: usize = 1024 * 64;
4178                 let forward_htlcs_count: u64 = Readable::read(reader)?;
4179                 let mut forward_htlcs = HashMap::with_capacity(cmp::min(forward_htlcs_count as usize, 128));
4180                 for _ in 0..forward_htlcs_count {
4181                         let short_channel_id = Readable::read(reader)?;
4182                         let pending_forwards_count: u64 = Readable::read(reader)?;
4183                         let mut pending_forwards = Vec::with_capacity(cmp::min(pending_forwards_count as usize, MAX_ALLOC_SIZE/mem::size_of::<HTLCForwardInfo>()));
4184                         for _ in 0..pending_forwards_count {
4185                                 pending_forwards.push(Readable::read(reader)?);
4186                         }
4187                         forward_htlcs.insert(short_channel_id, pending_forwards);
4188                 }
4189
4190                 let claimable_htlcs_count: u64 = Readable::read(reader)?;
4191                 let mut claimable_htlcs = HashMap::with_capacity(cmp::min(claimable_htlcs_count as usize, 128));
4192                 for _ in 0..claimable_htlcs_count {
4193                         let payment_hash = Readable::read(reader)?;
4194                         let previous_hops_len: u64 = Readable::read(reader)?;
4195                         let mut previous_hops = Vec::with_capacity(cmp::min(previous_hops_len as usize, MAX_ALLOC_SIZE/mem::size_of::<ClaimableHTLC>()));
4196                         for _ in 0..previous_hops_len {
4197                                 previous_hops.push(Readable::read(reader)?);
4198                         }
4199                         claimable_htlcs.insert(payment_hash, previous_hops);
4200                 }
4201
4202                 let peer_count: u64 = Readable::read(reader)?;
4203                 let mut per_peer_state = HashMap::with_capacity(cmp::min(peer_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(PublicKey, Mutex<PeerState>)>()));
4204                 for _ in 0..peer_count {
4205                         let peer_pubkey = Readable::read(reader)?;
4206                         let peer_state = PeerState {
4207                                 latest_features: Readable::read(reader)?,
4208                         };
4209                         per_peer_state.insert(peer_pubkey, Mutex::new(peer_state));
4210                 }
4211
4212                 let event_count: u64 = Readable::read(reader)?;
4213                 let mut pending_events_read: Vec<events::Event> = Vec::with_capacity(cmp::min(event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<events::Event>()));
4214                 for _ in 0..event_count {
4215                         match MaybeReadable::read(reader)? {
4216                                 Some(event) => pending_events_read.push(event),
4217                                 None => continue,
4218                         }
4219                 }
4220
4221                 let background_event_count: u64 = Readable::read(reader)?;
4222                 let mut pending_background_events_read: Vec<BackgroundEvent> = Vec::with_capacity(cmp::min(background_event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<BackgroundEvent>()));
4223                 for _ in 0..background_event_count {
4224                         match <u8 as Readable>::read(reader)? {
4225                                 0 => pending_background_events_read.push(BackgroundEvent::ClosingMonitorUpdate((Readable::read(reader)?, Readable::read(reader)?))),
4226                                 _ => return Err(DecodeError::InvalidValue),
4227                         }
4228                 }
4229
4230                 let last_node_announcement_serial: u32 = Readable::read(reader)?;
4231
4232                 let mut secp_ctx = Secp256k1::new();
4233                 secp_ctx.seeded_randomize(&args.keys_manager.get_secure_random_bytes());
4234
4235                 let channel_manager = ChannelManager {
4236                         genesis_hash,
4237                         fee_estimator: args.fee_estimator,
4238                         chain_monitor: args.chain_monitor,
4239                         tx_broadcaster: args.tx_broadcaster,
4240
4241                         latest_block_height: AtomicUsize::new(latest_block_height as usize),
4242                         last_block_hash: Mutex::new(last_block_hash),
4243                         secp_ctx,
4244
4245                         channel_state: Mutex::new(ChannelHolder {
4246                                 by_id,
4247                                 short_to_id,
4248                                 forward_htlcs,
4249                                 claimable_htlcs,
4250                                 pending_msg_events: Vec::new(),
4251                         }),
4252                         our_network_key: args.keys_manager.get_node_secret(),
4253
4254                         last_node_announcement_serial: AtomicUsize::new(last_node_announcement_serial as usize),
4255
4256                         per_peer_state: RwLock::new(per_peer_state),
4257
4258                         pending_events: Mutex::new(pending_events_read),
4259                         pending_background_events: Mutex::new(pending_background_events_read),
4260                         total_consistency_lock: RwLock::new(()),
4261                         persistence_notifier: PersistenceNotifier::new(),
4262
4263                         keys_manager: args.keys_manager,
4264                         logger: args.logger,
4265                         default_configuration: args.default_config,
4266                 };
4267
4268                 for htlc_source in failed_htlcs.drain(..) {
4269                         channel_manager.fail_htlc_backwards_internal(channel_manager.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
4270                 }
4271
4272                 //TODO: Broadcast channel update for closed channels, but only after we've made a
4273                 //connection or two.
4274
4275                 let last_seen_block_hash = if last_block_hash == Default::default() {
4276                         None
4277                 } else {
4278                         Some(last_block_hash)
4279                 };
4280                 Ok((last_seen_block_hash, channel_manager))
4281         }
4282 }
4283
4284 #[cfg(test)]
4285 mod tests {
4286         use ln::channelmanager::PersistenceNotifier;
4287         use std::sync::Arc;
4288         use std::sync::atomic::{AtomicBool, Ordering};
4289         use std::thread;
4290         use std::time::Duration;
4291
4292         #[test]
4293         fn test_wait_timeout() {
4294                 let persistence_notifier = Arc::new(PersistenceNotifier::new());
4295                 let thread_notifier = Arc::clone(&persistence_notifier);
4296
4297                 let exit_thread = Arc::new(AtomicBool::new(false));
4298                 let exit_thread_clone = exit_thread.clone();
4299                 thread::spawn(move || {
4300                         loop {
4301                                 let &(ref persist_mtx, ref cnd) = &thread_notifier.persistence_lock;
4302                                 let mut persistence_lock = persist_mtx.lock().unwrap();
4303                                 *persistence_lock = true;
4304                                 cnd.notify_all();
4305
4306                                 if exit_thread_clone.load(Ordering::SeqCst) {
4307                                         break
4308                                 }
4309                         }
4310                 });
4311
4312                 // Check that we can block indefinitely until updates are available.
4313                 let _ = persistence_notifier.wait();
4314
4315                 // Check that the PersistenceNotifier will return after the given duration if updates are
4316                 // available.
4317                 loop {
4318                         if persistence_notifier.wait_timeout(Duration::from_millis(100)) {
4319                                 break
4320                         }
4321                 }
4322
4323                 exit_thread.store(true, Ordering::SeqCst);
4324
4325                 // Check that the PersistenceNotifier will return after the given duration even if no updates
4326                 // are available.
4327                 loop {
4328                         if !persistence_notifier.wait_timeout(Duration::from_millis(100)) {
4329                                 break
4330                         }
4331                 }
4332         }
4333 }