Remove unnecessary scope from ChannelManager
[rust-lightning] / lightning / src / ln / channelmanager.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! The top-level channel management and payment tracking stuff lives here.
11 //!
12 //! The ChannelManager is the main chunk of logic implementing the lightning protocol and is
13 //! responsible for tracking which channels are open, HTLCs are in flight and reestablishing those
14 //! upon reconnect to the relevant peer(s).
15 //!
16 //! It does not manage routing logic (see routing::router::get_route for that) nor does it manage constructing
17 //! on-chain transactions (it only monitors the chain to watch for any force-closes that might
18 //! imply it needs to fail HTLCs/payments/channels it manages).
19 //!
20
21 use bitcoin::blockdata::block::{Block, BlockHeader};
22 use bitcoin::blockdata::transaction::Transaction;
23 use bitcoin::blockdata::constants::genesis_block;
24 use bitcoin::network::constants::Network;
25
26 use bitcoin::hashes::{Hash, HashEngine};
27 use bitcoin::hashes::hmac::{Hmac, HmacEngine};
28 use bitcoin::hashes::sha256::Hash as Sha256;
29 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
30 use bitcoin::hashes::cmp::fixed_time_eq;
31 use bitcoin::hash_types::{BlockHash, Txid};
32
33 use bitcoin::secp256k1::key::{SecretKey,PublicKey};
34 use bitcoin::secp256k1::Secp256k1;
35 use bitcoin::secp256k1::ecdh::SharedSecret;
36 use bitcoin::secp256k1;
37
38 use chain;
39 use chain::Confirm;
40 use chain::Watch;
41 use chain::chaininterface::{BroadcasterInterface, FeeEstimator};
42 use chain::channelmonitor::{ChannelMonitor, ChannelMonitorUpdate, ChannelMonitorUpdateStep, ChannelMonitorUpdateErr, HTLC_FAIL_BACK_BUFFER, CLTV_CLAIM_BUFFER, LATENCY_GRACE_PERIOD_BLOCKS, ANTI_REORG_DELAY, MonitorEvent, CLOSED_CHANNEL_UPDATE_ID};
43 use chain::transaction::{OutPoint, TransactionData};
44 // Since this struct is returned in `list_channels` methods, expose it here in case users want to
45 // construct one themselves.
46 use ln::{PaymentHash, PaymentPreimage, PaymentSecret};
47 pub use ln::channel::CounterpartyForwardingInfo;
48 use ln::channel::{Channel, ChannelError, ChannelUpdateStatus};
49 use ln::features::{InitFeatures, NodeFeatures};
50 use routing::router::{Route, RouteHop};
51 use ln::msgs;
52 use ln::msgs::NetAddress;
53 use ln::onion_utils;
54 use ln::msgs::{ChannelMessageHandler, DecodeError, LightningError, OptionalField};
55 use chain::keysinterface::{Sign, KeysInterface, KeysManager, InMemorySigner};
56 use util::config::UserConfig;
57 use util::events::{EventHandler, EventsProvider, MessageSendEvent, MessageSendEventsProvider};
58 use util::{byte_utils, events};
59 use util::ser::{Readable, ReadableArgs, MaybeReadable, Writeable, Writer};
60 use util::chacha20::{ChaCha20, ChaChaReader};
61 use util::logger::Logger;
62 use util::errors::APIError;
63
64 use core::{cmp, mem};
65 use std::collections::{HashMap, hash_map, HashSet};
66 use std::io::{Cursor, Read};
67 use std::sync::{Arc, Condvar, Mutex, MutexGuard, RwLock, RwLockReadGuard};
68 use core::sync::atomic::{AtomicUsize, Ordering};
69 use core::time::Duration;
70 #[cfg(any(test, feature = "allow_wallclock_use"))]
71 use std::time::Instant;
72 use core::ops::Deref;
73 use bitcoin::hashes::hex::ToHex;
74
75 // We hold various information about HTLC relay in the HTLC objects in Channel itself:
76 //
77 // Upon receipt of an HTLC from a peer, we'll give it a PendingHTLCStatus indicating if it should
78 // forward the HTLC with information it will give back to us when it does so, or if it should Fail
79 // the HTLC with the relevant message for the Channel to handle giving to the remote peer.
80 //
81 // Once said HTLC is committed in the Channel, if the PendingHTLCStatus indicated Forward, the
82 // Channel will return the PendingHTLCInfo back to us, and we will create an HTLCForwardInfo
83 // with it to track where it came from (in case of onwards-forward error), waiting a random delay
84 // before we forward it.
85 //
86 // We will then use HTLCForwardInfo's PendingHTLCInfo to construct an outbound HTLC, with a
87 // relevant HTLCSource::PreviousHopData filled in to indicate where it came from (which we can use
88 // to either fail-backwards or fulfill the HTLC backwards along the relevant path).
89 // Alternatively, we can fill an outbound HTLC with a HTLCSource::OutboundRoute indicating this is
90 // our payment, which we can use to decode errors or inform the user that the payment was sent.
91
92 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
93 enum PendingHTLCRouting {
94         Forward {
95                 onion_packet: msgs::OnionPacket,
96                 short_channel_id: u64, // This should be NonZero<u64> eventually when we bump MSRV
97         },
98         Receive {
99                 payment_data: msgs::FinalOnionHopData,
100                 incoming_cltv_expiry: u32, // Used to track when we should expire pending HTLCs that go unclaimed
101         },
102 }
103
104 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
105 pub(super) struct PendingHTLCInfo {
106         routing: PendingHTLCRouting,
107         incoming_shared_secret: [u8; 32],
108         payment_hash: PaymentHash,
109         pub(super) amt_to_forward: u64,
110         pub(super) outgoing_cltv_value: u32,
111 }
112
113 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
114 pub(super) enum HTLCFailureMsg {
115         Relay(msgs::UpdateFailHTLC),
116         Malformed(msgs::UpdateFailMalformedHTLC),
117 }
118
119 /// Stores whether we can't forward an HTLC or relevant forwarding info
120 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
121 pub(super) enum PendingHTLCStatus {
122         Forward(PendingHTLCInfo),
123         Fail(HTLCFailureMsg),
124 }
125
126 pub(super) enum HTLCForwardInfo {
127         AddHTLC {
128                 forward_info: PendingHTLCInfo,
129
130                 // These fields are produced in `forward_htlcs()` and consumed in
131                 // `process_pending_htlc_forwards()` for constructing the
132                 // `HTLCSource::PreviousHopData` for failed and forwarded
133                 // HTLCs.
134                 prev_short_channel_id: u64,
135                 prev_htlc_id: u64,
136                 prev_funding_outpoint: OutPoint,
137         },
138         FailHTLC {
139                 htlc_id: u64,
140                 err_packet: msgs::OnionErrorPacket,
141         },
142 }
143
144 /// Tracks the inbound corresponding to an outbound HTLC
145 #[derive(Clone, PartialEq)]
146 pub(crate) struct HTLCPreviousHopData {
147         short_channel_id: u64,
148         htlc_id: u64,
149         incoming_packet_shared_secret: [u8; 32],
150
151         // This field is consumed by `claim_funds_from_hop()` when updating a force-closed backwards
152         // channel with a preimage provided by the forward channel.
153         outpoint: OutPoint,
154 }
155
156 struct ClaimableHTLC {
157         prev_hop: HTLCPreviousHopData,
158         value: u64,
159         /// Contains a total_msat (which may differ from value if this is a Multi-Path Payment) and a
160         /// payment_secret which prevents path-probing attacks and can associate different HTLCs which
161         /// are part of the same payment.
162         payment_data: msgs::FinalOnionHopData,
163         cltv_expiry: u32,
164 }
165
166 /// Tracks the inbound corresponding to an outbound HTLC
167 #[derive(Clone, PartialEq)]
168 pub(crate) enum HTLCSource {
169         PreviousHopData(HTLCPreviousHopData),
170         OutboundRoute {
171                 path: Vec<RouteHop>,
172                 session_priv: SecretKey,
173                 /// Technically we can recalculate this from the route, but we cache it here to avoid
174                 /// doing a double-pass on route when we get a failure back
175                 first_hop_htlc_msat: u64,
176         },
177 }
178 #[cfg(test)]
179 impl HTLCSource {
180         pub fn dummy() -> Self {
181                 HTLCSource::OutboundRoute {
182                         path: Vec::new(),
183                         session_priv: SecretKey::from_slice(&[1; 32]).unwrap(),
184                         first_hop_htlc_msat: 0,
185                 }
186         }
187 }
188
189 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
190 pub(super) enum HTLCFailReason {
191         LightningError {
192                 err: msgs::OnionErrorPacket,
193         },
194         Reason {
195                 failure_code: u16,
196                 data: Vec<u8>,
197         }
198 }
199
200 type ShutdownResult = (Option<(OutPoint, ChannelMonitorUpdate)>, Vec<(HTLCSource, PaymentHash)>);
201
202 /// Error type returned across the channel_state mutex boundary. When an Err is generated for a
203 /// Channel, we generally end up with a ChannelError::Close for which we have to close the channel
204 /// immediately (ie with no further calls on it made). Thus, this step happens inside a
205 /// channel_state lock. We then return the set of things that need to be done outside the lock in
206 /// this struct and call handle_error!() on it.
207
208 struct MsgHandleErrInternal {
209         err: msgs::LightningError,
210         shutdown_finish: Option<(ShutdownResult, Option<msgs::ChannelUpdate>)>,
211 }
212 impl MsgHandleErrInternal {
213         #[inline]
214         fn send_err_msg_no_close(err: String, channel_id: [u8; 32]) -> Self {
215                 Self {
216                         err: LightningError {
217                                 err: err.clone(),
218                                 action: msgs::ErrorAction::SendErrorMessage {
219                                         msg: msgs::ErrorMessage {
220                                                 channel_id,
221                                                 data: err
222                                         },
223                                 },
224                         },
225                         shutdown_finish: None,
226                 }
227         }
228         #[inline]
229         fn ignore_no_close(err: String) -> Self {
230                 Self {
231                         err: LightningError {
232                                 err,
233                                 action: msgs::ErrorAction::IgnoreError,
234                         },
235                         shutdown_finish: None,
236                 }
237         }
238         #[inline]
239         fn from_no_close(err: msgs::LightningError) -> Self {
240                 Self { err, shutdown_finish: None }
241         }
242         #[inline]
243         fn from_finish_shutdown(err: String, channel_id: [u8; 32], shutdown_res: ShutdownResult, channel_update: Option<msgs::ChannelUpdate>) -> Self {
244                 Self {
245                         err: LightningError {
246                                 err: err.clone(),
247                                 action: msgs::ErrorAction::SendErrorMessage {
248                                         msg: msgs::ErrorMessage {
249                                                 channel_id,
250                                                 data: err
251                                         },
252                                 },
253                         },
254                         shutdown_finish: Some((shutdown_res, channel_update)),
255                 }
256         }
257         #[inline]
258         fn from_chan_no_close(err: ChannelError, channel_id: [u8; 32]) -> Self {
259                 Self {
260                         err: match err {
261                                 ChannelError::Ignore(msg) => LightningError {
262                                         err: msg,
263                                         action: msgs::ErrorAction::IgnoreError,
264                                 },
265                                 ChannelError::Close(msg) => LightningError {
266                                         err: msg.clone(),
267                                         action: msgs::ErrorAction::SendErrorMessage {
268                                                 msg: msgs::ErrorMessage {
269                                                         channel_id,
270                                                         data: msg
271                                                 },
272                                         },
273                                 },
274                                 ChannelError::CloseDelayBroadcast(msg) => LightningError {
275                                         err: msg.clone(),
276                                         action: msgs::ErrorAction::SendErrorMessage {
277                                                 msg: msgs::ErrorMessage {
278                                                         channel_id,
279                                                         data: msg
280                                                 },
281                                         },
282                                 },
283                         },
284                         shutdown_finish: None,
285                 }
286         }
287 }
288
289 /// We hold back HTLCs we intend to relay for a random interval greater than this (see
290 /// Event::PendingHTLCsForwardable for the API guidelines indicating how long should be waited).
291 /// This provides some limited amount of privacy. Ideally this would range from somewhere like one
292 /// second to 30 seconds, but people expect lightning to be, you know, kinda fast, sadly.
293 const MIN_HTLC_RELAY_HOLDING_CELL_MILLIS: u64 = 100;
294
295 /// For events which result in both a RevokeAndACK and a CommitmentUpdate, by default they should
296 /// be sent in the order they appear in the return value, however sometimes the order needs to be
297 /// variable at runtime (eg Channel::channel_reestablish needs to re-send messages in the order
298 /// they were originally sent). In those cases, this enum is also returned.
299 #[derive(Clone, PartialEq)]
300 pub(super) enum RAACommitmentOrder {
301         /// Send the CommitmentUpdate messages first
302         CommitmentFirst,
303         /// Send the RevokeAndACK message first
304         RevokeAndACKFirst,
305 }
306
307 // Note this is only exposed in cfg(test):
308 pub(super) struct ChannelHolder<Signer: Sign> {
309         pub(super) by_id: HashMap<[u8; 32], Channel<Signer>>,
310         pub(super) short_to_id: HashMap<u64, [u8; 32]>,
311         /// short channel id -> forward infos. Key of 0 means payments received
312         /// Note that while this is held in the same mutex as the channels themselves, no consistency
313         /// guarantees are made about the existence of a channel with the short id here, nor the short
314         /// ids in the PendingHTLCInfo!
315         pub(super) forward_htlcs: HashMap<u64, Vec<HTLCForwardInfo>>,
316         /// Map from payment hash to any HTLCs which are to us and can be failed/claimed by the user.
317         /// Note that while this is held in the same mutex as the channels themselves, no consistency
318         /// guarantees are made about the channels given here actually existing anymore by the time you
319         /// go to read them!
320         claimable_htlcs: HashMap<PaymentHash, Vec<ClaimableHTLC>>,
321         /// Messages to send to peers - pushed to in the same lock that they are generated in (except
322         /// for broadcast messages, where ordering isn't as strict).
323         pub(super) pending_msg_events: Vec<MessageSendEvent>,
324 }
325
326 /// Events which we process internally but cannot be procsesed immediately at the generation site
327 /// for some reason. They are handled in timer_tick_occurred, so may be processed with
328 /// quite some time lag.
329 enum BackgroundEvent {
330         /// Handle a ChannelMonitorUpdate that closes a channel, broadcasting its current latest holder
331         /// commitment transaction.
332         ClosingMonitorUpdate((OutPoint, ChannelMonitorUpdate)),
333 }
334
335 /// State we hold per-peer. In the future we should put channels in here, but for now we only hold
336 /// the latest Init features we heard from the peer.
337 struct PeerState {
338         latest_features: InitFeatures,
339 }
340
341 /// Stores a PaymentSecret and any other data we may need to validate an inbound payment is
342 /// actually ours and not some duplicate HTLC sent to us by a node along the route.
343 ///
344 /// For users who don't want to bother doing their own payment preimage storage, we also store that
345 /// here.
346 struct PendingInboundPayment {
347         /// The payment secret that the sender must use for us to accept this payment
348         payment_secret: PaymentSecret,
349         /// Time at which this HTLC expires - blocks with a header time above this value will result in
350         /// this payment being removed.
351         expiry_time: u64,
352         /// Arbitrary identifier the user specifies (or not)
353         user_payment_id: u64,
354         // Other required attributes of the payment, optionally enforced:
355         payment_preimage: Option<PaymentPreimage>,
356         min_value_msat: Option<u64>,
357 }
358
359 /// SimpleArcChannelManager is useful when you need a ChannelManager with a static lifetime, e.g.
360 /// when you're using lightning-net-tokio (since tokio::spawn requires parameters with static
361 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
362 /// SimpleRefChannelManager is the more appropriate type. Defining these type aliases prevents
363 /// issues such as overly long function definitions. Note that the ChannelManager can take any
364 /// type that implements KeysInterface for its keys manager, but this type alias chooses the
365 /// concrete type of the KeysManager.
366 pub type SimpleArcChannelManager<M, T, F, L> = ChannelManager<InMemorySigner, Arc<M>, Arc<T>, Arc<KeysManager>, Arc<F>, Arc<L>>;
367
368 /// SimpleRefChannelManager is a type alias for a ChannelManager reference, and is the reference
369 /// counterpart to the SimpleArcChannelManager type alias. Use this type by default when you don't
370 /// need a ChannelManager with a static lifetime. You'll need a static lifetime in cases such as
371 /// usage of lightning-net-tokio (since tokio::spawn requires parameters with static lifetimes).
372 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
373 /// helps with issues such as long function definitions. Note that the ChannelManager can take any
374 /// type that implements KeysInterface for its keys manager, but this type alias chooses the
375 /// concrete type of the KeysManager.
376 pub type SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, M, T, F, L> = ChannelManager<InMemorySigner, &'a M, &'b T, &'c KeysManager, &'d F, &'e L>;
377
378 /// Manager which keeps track of a number of channels and sends messages to the appropriate
379 /// channel, also tracking HTLC preimages and forwarding onion packets appropriately.
380 ///
381 /// Implements ChannelMessageHandler, handling the multi-channel parts and passing things through
382 /// to individual Channels.
383 ///
384 /// Implements Writeable to write out all channel state to disk. Implies peer_disconnected() for
385 /// all peers during write/read (though does not modify this instance, only the instance being
386 /// serialized). This will result in any channels which have not yet exchanged funding_created (ie
387 /// called funding_transaction_generated for outbound channels).
388 ///
389 /// Note that you can be a bit lazier about writing out ChannelManager than you can be with
390 /// ChannelMonitors. With ChannelMonitors you MUST write each monitor update out to disk before
391 /// returning from chain::Watch::watch_/update_channel, with ChannelManagers, writing updates
392 /// happens out-of-band (and will prevent any other ChannelManager operations from occurring during
393 /// the serialization process). If the deserialized version is out-of-date compared to the
394 /// ChannelMonitors passed by reference to read(), those channels will be force-closed based on the
395 /// ChannelMonitor state and no funds will be lost (mod on-chain transaction fees).
396 ///
397 /// Note that the deserializer is only implemented for (BlockHash, ChannelManager), which
398 /// tells you the last block hash which was block_connect()ed. You MUST rescan any blocks along
399 /// the "reorg path" (ie call block_disconnected() until you get to a common block and then call
400 /// block_connected() to step towards your best block) upon deserialization before using the
401 /// object!
402 ///
403 /// Note that ChannelManager is responsible for tracking liveness of its channels and generating
404 /// ChannelUpdate messages informing peers that the channel is temporarily disabled. To avoid
405 /// spam due to quick disconnection/reconnection, updates are not sent until the channel has been
406 /// offline for a full minute. In order to track this, you must call
407 /// timer_tick_occurred roughly once per minute, though it doesn't have to be perfect.
408 ///
409 /// Rather than using a plain ChannelManager, it is preferable to use either a SimpleArcChannelManager
410 /// a SimpleRefChannelManager, for conciseness. See their documentation for more details, but
411 /// essentially you should default to using a SimpleRefChannelManager, and use a
412 /// SimpleArcChannelManager when you require a ChannelManager with a static lifetime, such as when
413 /// you're using lightning-net-tokio.
414 pub struct ChannelManager<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
415         where M::Target: chain::Watch<Signer>,
416         T::Target: BroadcasterInterface,
417         K::Target: KeysInterface<Signer = Signer>,
418         F::Target: FeeEstimator,
419                                 L::Target: Logger,
420 {
421         default_configuration: UserConfig,
422         genesis_hash: BlockHash,
423         fee_estimator: F,
424         chain_monitor: M,
425         tx_broadcaster: T,
426
427         #[cfg(test)]
428         pub(super) best_block: RwLock<BestBlock>,
429         #[cfg(not(test))]
430         best_block: RwLock<BestBlock>,
431         secp_ctx: Secp256k1<secp256k1::All>,
432
433         #[cfg(any(test, feature = "_test_utils"))]
434         pub(super) channel_state: Mutex<ChannelHolder<Signer>>,
435         #[cfg(not(any(test, feature = "_test_utils")))]
436         channel_state: Mutex<ChannelHolder<Signer>>,
437
438         /// Storage for PaymentSecrets and any requirements on future inbound payments before we will
439         /// expose them to users via a PaymentReceived event. HTLCs which do not meet the requirements
440         /// here are failed when we process them as pending-forwardable-HTLCs, and entries are removed
441         /// after we generate a PaymentReceived upon receipt of all MPP parts or when they time out.
442         /// Locked *after* channel_state.
443         pending_inbound_payments: Mutex<HashMap<PaymentHash, PendingInboundPayment>>,
444
445         /// The session_priv bytes of outbound payments which are pending resolution.
446         /// The authoritative state of these HTLCs resides either within Channels or ChannelMonitors
447         /// (if the channel has been force-closed), however we track them here to prevent duplicative
448         /// PaymentSent/PaymentFailed events. Specifically, in the case of a duplicative
449         /// update_fulfill_htlc message after a reconnect, we may "claim" a payment twice.
450         /// Additionally, because ChannelMonitors are often not re-serialized after connecting block(s)
451         /// which may generate a claim event, we may receive similar duplicate claim/fail MonitorEvents
452         /// after reloading from disk while replaying blocks against ChannelMonitors.
453         ///
454         /// Locked *after* channel_state.
455         pending_outbound_payments: Mutex<HashSet<[u8; 32]>>,
456
457         our_network_key: SecretKey,
458         our_network_pubkey: PublicKey,
459
460         /// Used to track the last value sent in a node_announcement "timestamp" field. We ensure this
461         /// value increases strictly since we don't assume access to a time source.
462         last_node_announcement_serial: AtomicUsize,
463
464         /// The highest block timestamp we've seen, which is usually a good guess at the current time.
465         /// Assuming most miners are generating blocks with reasonable timestamps, this shouldn't be
466         /// very far in the past, and can only ever be up to two hours in the future.
467         highest_seen_timestamp: AtomicUsize,
468
469         /// The bulk of our storage will eventually be here (channels and message queues and the like).
470         /// If we are connected to a peer we always at least have an entry here, even if no channels
471         /// are currently open with that peer.
472         /// Because adding or removing an entry is rare, we usually take an outer read lock and then
473         /// operate on the inner value freely. Sadly, this prevents parallel operation when opening a
474         /// new channel.
475         per_peer_state: RwLock<HashMap<PublicKey, Mutex<PeerState>>>,
476
477         pending_events: Mutex<Vec<events::Event>>,
478         pending_background_events: Mutex<Vec<BackgroundEvent>>,
479         /// Used when we have to take a BIG lock to make sure everything is self-consistent.
480         /// Essentially just when we're serializing ourselves out.
481         /// Taken first everywhere where we are making changes before any other locks.
482         /// When acquiring this lock in read mode, rather than acquiring it directly, call
483         /// `PersistenceNotifierGuard::notify_on_drop(..)` and pass the lock to it, to ensure the
484         /// PersistenceNotifier the lock contains sends out a notification when the lock is released.
485         total_consistency_lock: RwLock<()>,
486
487         persistence_notifier: PersistenceNotifier,
488
489         keys_manager: K,
490
491         logger: L,
492 }
493
494 /// Chain-related parameters used to construct a new `ChannelManager`.
495 ///
496 /// Typically, the block-specific parameters are derived from the best block hash for the network,
497 /// as a newly constructed `ChannelManager` will not have created any channels yet. These parameters
498 /// are not needed when deserializing a previously constructed `ChannelManager`.
499 pub struct ChainParameters {
500         /// The network for determining the `chain_hash` in Lightning messages.
501         pub network: Network,
502
503         /// The hash and height of the latest block successfully connected.
504         ///
505         /// Used to track on-chain channel funding outputs and send payments with reliable timelocks.
506         pub best_block: BestBlock,
507 }
508
509 /// The best known block as identified by its hash and height.
510 #[derive(Clone, Copy)]
511 pub struct BestBlock {
512         block_hash: BlockHash,
513         height: u32,
514 }
515
516 impl BestBlock {
517         /// Returns the best block from the genesis of the given network.
518         pub fn from_genesis(network: Network) -> Self {
519                 BestBlock {
520                         block_hash: genesis_block(network).header.block_hash(),
521                         height: 0,
522                 }
523         }
524
525         /// Returns the best block as identified by the given block hash and height.
526         pub fn new(block_hash: BlockHash, height: u32) -> Self {
527                 BestBlock { block_hash, height }
528         }
529
530         /// Returns the best block hash.
531         pub fn block_hash(&self) -> BlockHash { self.block_hash }
532
533         /// Returns the best block height.
534         pub fn height(&self) -> u32 { self.height }
535 }
536
537 #[derive(Copy, Clone, PartialEq)]
538 enum NotifyOption {
539         DoPersist,
540         SkipPersist,
541 }
542
543 /// Whenever we release the `ChannelManager`'s `total_consistency_lock`, from read mode, it is
544 /// desirable to notify any listeners on `await_persistable_update_timeout`/
545 /// `await_persistable_update` when new updates are available for persistence. Therefore, this
546 /// struct is responsible for locking the total consistency lock and, upon going out of scope,
547 /// sending the aforementioned notification (since the lock being released indicates that the
548 /// updates are ready for persistence).
549 ///
550 /// We allow callers to either always notify by constructing with `notify_on_drop` or choose to
551 /// notify or not based on whether relevant changes have been made, providing a closure to
552 /// `optionally_notify` which returns a `NotifyOption`.
553 struct PersistenceNotifierGuard<'a, F: Fn() -> NotifyOption> {
554         persistence_notifier: &'a PersistenceNotifier,
555         should_persist: F,
556         // We hold onto this result so the lock doesn't get released immediately.
557         _read_guard: RwLockReadGuard<'a, ()>,
558 }
559
560 impl<'a> PersistenceNotifierGuard<'a, fn() -> NotifyOption> { // We don't care what the concrete F is here, it's unused
561         fn notify_on_drop(lock: &'a RwLock<()>, notifier: &'a PersistenceNotifier) -> PersistenceNotifierGuard<'a, impl Fn() -> NotifyOption> {
562                 PersistenceNotifierGuard::optionally_notify(lock, notifier, || -> NotifyOption { NotifyOption::DoPersist })
563         }
564
565         fn optionally_notify<F: Fn() -> NotifyOption>(lock: &'a RwLock<()>, notifier: &'a PersistenceNotifier, persist_check: F) -> PersistenceNotifierGuard<'a, F> {
566                 let read_guard = lock.read().unwrap();
567
568                 PersistenceNotifierGuard {
569                         persistence_notifier: notifier,
570                         should_persist: persist_check,
571                         _read_guard: read_guard,
572                 }
573         }
574 }
575
576 impl<'a, F: Fn() -> NotifyOption> Drop for PersistenceNotifierGuard<'a, F> {
577         fn drop(&mut self) {
578                 if (self.should_persist)() == NotifyOption::DoPersist {
579                         self.persistence_notifier.notify();
580                 }
581         }
582 }
583
584 /// The amount of time in blocks we require our counterparty wait to claim their money (ie time
585 /// between when we, or our watchtower, must check for them having broadcast a theft transaction).
586 ///
587 /// This can be increased (but not decreased) through [`ChannelHandshakeConfig::our_to_self_delay`]
588 ///
589 /// [`ChannelHandshakeConfig::our_to_self_delay`]: crate::util::config::ChannelHandshakeConfig::our_to_self_delay
590 pub const BREAKDOWN_TIMEOUT: u16 = 6 * 24;
591 /// The amount of time in blocks we're willing to wait to claim money back to us. This matches
592 /// the maximum required amount in lnd as of March 2021.
593 pub(crate) const MAX_LOCAL_BREAKDOWN_TIMEOUT: u16 = 2 * 6 * 24 * 7;
594
595 /// The minimum number of blocks between an inbound HTLC's CLTV and the corresponding outbound
596 /// HTLC's CLTV. The current default represents roughly seven hours of blocks at six blocks/hour.
597 ///
598 /// This can be increased (but not decreased) through [`ChannelConfig::cltv_expiry_delta`]
599 ///
600 /// [`ChannelConfig::cltv_expiry_delta`]: crate::util::config::ChannelConfig::cltv_expiry_delta
601 // This should always be a few blocks greater than channelmonitor::CLTV_CLAIM_BUFFER,
602 // i.e. the node we forwarded the payment on to should always have enough room to reliably time out
603 // the HTLC via a full update_fail_htlc/commitment_signed dance before we hit the
604 // CLTV_CLAIM_BUFFER point (we static assert that it's at least 3 blocks more).
605 pub const MIN_CLTV_EXPIRY_DELTA: u16 = 6*7;
606 pub(super) const CLTV_FAR_FAR_AWAY: u32 = 6 * 24 * 7; //TODO?
607
608 /// Minimum CLTV difference between the current block height and received inbound payments.
609 /// Invoices generated for payment to us must set their `min_final_cltv_expiry` field to at least
610 /// this value.
611 // Note that we fail if exactly HTLC_FAIL_BACK_BUFFER + 1 was used, so we need to add one for
612 // any payments to succeed. Further, we don't want payments to fail if a block was found while
613 // a payment was being routed, so we add an extra block to be safe.
614 pub const MIN_FINAL_CLTV_EXPIRY: u32 = HTLC_FAIL_BACK_BUFFER + 3;
615
616 // Check that our CLTV_EXPIRY is at least CLTV_CLAIM_BUFFER + ANTI_REORG_DELAY + LATENCY_GRACE_PERIOD_BLOCKS,
617 // ie that if the next-hop peer fails the HTLC within
618 // LATENCY_GRACE_PERIOD_BLOCKS then we'll still have CLTV_CLAIM_BUFFER left to timeout it onchain,
619 // then waiting ANTI_REORG_DELAY to be reorg-safe on the outbound HLTC and
620 // failing the corresponding htlc backward, and us now seeing the last block of ANTI_REORG_DELAY before
621 // LATENCY_GRACE_PERIOD_BLOCKS.
622 #[deny(const_err)]
623 #[allow(dead_code)]
624 const CHECK_CLTV_EXPIRY_SANITY: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - CLTV_CLAIM_BUFFER - ANTI_REORG_DELAY - LATENCY_GRACE_PERIOD_BLOCKS;
625
626 // Check for ability of an attacker to make us fail on-chain by delaying an HTLC claim. See
627 // ChannelMontior::would_broadcast_at_height for a description of why this is needed.
628 #[deny(const_err)]
629 #[allow(dead_code)]
630 const CHECK_CLTV_EXPIRY_SANITY_2: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - 2*CLTV_CLAIM_BUFFER;
631
632 /// Details of a channel, as returned by ChannelManager::list_channels and ChannelManager::list_usable_channels
633 #[derive(Clone)]
634 pub struct ChannelDetails {
635         /// The channel's ID (prior to funding transaction generation, this is a random 32 bytes,
636         /// thereafter this is the txid of the funding transaction xor the funding transaction output).
637         /// Note that this means this value is *not* persistent - it can change once during the
638         /// lifetime of the channel.
639         pub channel_id: [u8; 32],
640         /// The Channel's funding transaction output, if we've negotiated the funding transaction with
641         /// our counterparty already.
642         ///
643         /// Note that, if this has been set, `channel_id` will be equivalent to
644         /// `funding_txo.unwrap().to_channel_id()`.
645         pub funding_txo: Option<OutPoint>,
646         /// The position of the funding transaction in the chain. None if the funding transaction has
647         /// not yet been confirmed and the channel fully opened.
648         pub short_channel_id: Option<u64>,
649         /// The node_id of our counterparty
650         pub remote_network_id: PublicKey,
651         /// The Features the channel counterparty provided upon last connection.
652         /// Useful for routing as it is the most up-to-date copy of the counterparty's features and
653         /// many routing-relevant features are present in the init context.
654         pub counterparty_features: InitFeatures,
655         /// The value, in satoshis, of this channel as appears in the funding output
656         pub channel_value_satoshis: u64,
657         /// The user_id passed in to create_channel, or 0 if the channel was inbound.
658         pub user_id: u64,
659         /// The available outbound capacity for sending HTLCs to the remote peer. This does not include
660         /// any pending HTLCs which are not yet fully resolved (and, thus, who's balance is not
661         /// available for inclusion in new outbound HTLCs). This further does not include any pending
662         /// outgoing HTLCs which are awaiting some other resolution to be sent.
663         pub outbound_capacity_msat: u64,
664         /// The available inbound capacity for the remote peer to send HTLCs to us. This does not
665         /// include any pending HTLCs which are not yet fully resolved (and, thus, who's balance is not
666         /// available for inclusion in new inbound HTLCs).
667         /// Note that there are some corner cases not fully handled here, so the actual available
668         /// inbound capacity may be slightly higher than this.
669         pub inbound_capacity_msat: u64,
670         /// True if the channel was initiated (and thus funded) by us.
671         pub is_outbound: bool,
672         /// True if the channel is confirmed, funding_locked messages have been exchanged, and the
673         /// channel is not currently being shut down. `funding_locked` message exchange implies the
674         /// required confirmation count has been reached (and we were connected to the peer at some
675         /// point after the funding transaction received enough confirmations).
676         pub is_funding_locked: bool,
677         /// True if the channel is (a) confirmed and funding_locked messages have been exchanged, (b)
678         /// the peer is connected, (c) no monitor update failure is pending resolution, and (d) the
679         /// channel is not currently negotiating a shutdown.
680         ///
681         /// This is a strict superset of `is_funding_locked`.
682         pub is_usable: bool,
683         /// True if this channel is (or will be) publicly-announced.
684         pub is_public: bool,
685         /// Information on the fees and requirements that the counterparty requires when forwarding
686         /// payments to us through this channel.
687         pub counterparty_forwarding_info: Option<CounterpartyForwardingInfo>,
688 }
689
690 /// If a payment fails to send, it can be in one of several states. This enum is returned as the
691 /// Err() type describing which state the payment is in, see the description of individual enum
692 /// states for more.
693 #[derive(Clone, Debug)]
694 pub enum PaymentSendFailure {
695         /// A parameter which was passed to send_payment was invalid, preventing us from attempting to
696         /// send the payment at all. No channel state has been changed or messages sent to peers, and
697         /// once you've changed the parameter at error, you can freely retry the payment in full.
698         ParameterError(APIError),
699         /// A parameter in a single path which was passed to send_payment was invalid, preventing us
700         /// from attempting to send the payment at all. No channel state has been changed or messages
701         /// sent to peers, and once you've changed the parameter at error, you can freely retry the
702         /// payment in full.
703         ///
704         /// The results here are ordered the same as the paths in the route object which was passed to
705         /// send_payment.
706         PathParameterError(Vec<Result<(), APIError>>),
707         /// All paths which were attempted failed to send, with no channel state change taking place.
708         /// You can freely retry the payment in full (though you probably want to do so over different
709         /// paths than the ones selected).
710         AllFailedRetrySafe(Vec<APIError>),
711         /// Some paths which were attempted failed to send, though possibly not all. At least some
712         /// paths have irrevocably committed to the HTLC and retrying the payment in full would result
713         /// in over-/re-payment.
714         ///
715         /// The results here are ordered the same as the paths in the route object which was passed to
716         /// send_payment, and any Errs which are not APIError::MonitorUpdateFailed can be safely
717         /// retried (though there is currently no API with which to do so).
718         ///
719         /// Any entries which contain Err(APIError::MonitorUpdateFailed) or Ok(()) MUST NOT be retried
720         /// as they will result in over-/re-payment. These HTLCs all either successfully sent (in the
721         /// case of Ok(())) or will send once channel_monitor_updated is called on the next-hop channel
722         /// with the latest update_id.
723         PartialFailure(Vec<Result<(), APIError>>),
724 }
725
726 macro_rules! handle_error {
727         ($self: ident, $internal: expr, $counterparty_node_id: expr) => {
728                 match $internal {
729                         Ok(msg) => Ok(msg),
730                         Err(MsgHandleErrInternal { err, shutdown_finish }) => {
731                                 #[cfg(debug_assertions)]
732                                 {
733                                         // In testing, ensure there are no deadlocks where the lock is already held upon
734                                         // entering the macro.
735                                         assert!($self.channel_state.try_lock().is_ok());
736                                 }
737
738                                 let mut msg_events = Vec::with_capacity(2);
739
740                                 if let Some((shutdown_res, update_option)) = shutdown_finish {
741                                         $self.finish_force_close_channel(shutdown_res);
742                                         if let Some(update) = update_option {
743                                                 msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
744                                                         msg: update
745                                                 });
746                                         }
747                                 }
748
749                                 log_error!($self.logger, "{}", err.err);
750                                 if let msgs::ErrorAction::IgnoreError = err.action {
751                                 } else {
752                                         msg_events.push(events::MessageSendEvent::HandleError {
753                                                 node_id: $counterparty_node_id,
754                                                 action: err.action.clone()
755                                         });
756                                 }
757
758                                 if !msg_events.is_empty() {
759                                         $self.channel_state.lock().unwrap().pending_msg_events.append(&mut msg_events);
760                                 }
761
762                                 // Return error in case higher-API need one
763                                 Err(err)
764                         },
765                 }
766         }
767 }
768
769 /// Returns (boolean indicating if we should remove the Channel object from memory, a mapped error)
770 macro_rules! convert_chan_err {
771         ($self: ident, $err: expr, $short_to_id: expr, $channel: expr, $channel_id: expr) => {
772                 match $err {
773                         ChannelError::Ignore(msg) => {
774                                 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore(msg), $channel_id.clone()))
775                         },
776                         ChannelError::Close(msg) => {
777                                 log_trace!($self.logger, "Closing channel {} due to close-required error: {}", log_bytes!($channel_id[..]), msg);
778                                 if let Some(short_id) = $channel.get_short_channel_id() {
779                                         $short_to_id.remove(&short_id);
780                                 }
781                                 let shutdown_res = $channel.force_shutdown(true);
782                                 (true, MsgHandleErrInternal::from_finish_shutdown(msg, *$channel_id, shutdown_res, $self.get_channel_update(&$channel).ok()))
783                         },
784                         ChannelError::CloseDelayBroadcast(msg) => {
785                                 log_error!($self.logger, "Channel {} need to be shutdown but closing transactions not broadcast due to {}", log_bytes!($channel_id[..]), msg);
786                                 if let Some(short_id) = $channel.get_short_channel_id() {
787                                         $short_to_id.remove(&short_id);
788                                 }
789                                 let shutdown_res = $channel.force_shutdown(false);
790                                 (true, MsgHandleErrInternal::from_finish_shutdown(msg, *$channel_id, shutdown_res, $self.get_channel_update(&$channel).ok()))
791                         }
792                 }
793         }
794 }
795
796 macro_rules! break_chan_entry {
797         ($self: ident, $res: expr, $channel_state: expr, $entry: expr) => {
798                 match $res {
799                         Ok(res) => res,
800                         Err(e) => {
801                                 let (drop, res) = convert_chan_err!($self, e, $channel_state.short_to_id, $entry.get_mut(), $entry.key());
802                                 if drop {
803                                         $entry.remove_entry();
804                                 }
805                                 break Err(res);
806                         }
807                 }
808         }
809 }
810
811 macro_rules! try_chan_entry {
812         ($self: ident, $res: expr, $channel_state: expr, $entry: expr) => {
813                 match $res {
814                         Ok(res) => res,
815                         Err(e) => {
816                                 let (drop, res) = convert_chan_err!($self, e, $channel_state.short_to_id, $entry.get_mut(), $entry.key());
817                                 if drop {
818                                         $entry.remove_entry();
819                                 }
820                                 return Err(res);
821                         }
822                 }
823         }
824 }
825
826 macro_rules! handle_monitor_err {
827         ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => {
828                 handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment, Vec::new(), Vec::new())
829         };
830         ($self: ident, $err: expr, $short_to_id: expr, $chan: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr, $failed_forwards: expr, $failed_fails: expr, $chan_id: expr) => {
831                 match $err {
832                         ChannelMonitorUpdateErr::PermanentFailure => {
833                                 log_error!($self.logger, "Closing channel {} due to monitor update ChannelMonitorUpdateErr::PermanentFailure", log_bytes!($chan_id[..]));
834                                 if let Some(short_id) = $chan.get_short_channel_id() {
835                                         $short_to_id.remove(&short_id);
836                                 }
837                                 // TODO: $failed_fails is dropped here, which will cause other channels to hit the
838                                 // chain in a confused state! We need to move them into the ChannelMonitor which
839                                 // will be responsible for failing backwards once things confirm on-chain.
840                                 // It's ok that we drop $failed_forwards here - at this point we'd rather they
841                                 // broadcast HTLC-Timeout and pay the associated fees to get their funds back than
842                                 // us bother trying to claim it just to forward on to another peer. If we're
843                                 // splitting hairs we'd prefer to claim payments that were to us, but we haven't
844                                 // given up the preimage yet, so might as well just wait until the payment is
845                                 // retried, avoiding the on-chain fees.
846                                 let res: Result<(), _> = Err(MsgHandleErrInternal::from_finish_shutdown("ChannelMonitor storage failure".to_owned(), *$chan_id, $chan.force_shutdown(true), $self.get_channel_update(&$chan).ok()));
847                                 (res, true)
848                         },
849                         ChannelMonitorUpdateErr::TemporaryFailure => {
850                                 log_info!($self.logger, "Disabling channel {} due to monitor update TemporaryFailure. On restore will send {} and process {} forwards and {} fails",
851                                                 log_bytes!($chan_id[..]),
852                                                 if $resend_commitment && $resend_raa {
853                                                                 match $action_type {
854                                                                         RAACommitmentOrder::CommitmentFirst => { "commitment then RAA" },
855                                                                         RAACommitmentOrder::RevokeAndACKFirst => { "RAA then commitment" },
856                                                                 }
857                                                         } else if $resend_commitment { "commitment" }
858                                                         else if $resend_raa { "RAA" }
859                                                         else { "nothing" },
860                                                 (&$failed_forwards as &Vec<(PendingHTLCInfo, u64)>).len(),
861                                                 (&$failed_fails as &Vec<(HTLCSource, PaymentHash, HTLCFailReason)>).len());
862                                 if !$resend_commitment {
863                                         debug_assert!($action_type == RAACommitmentOrder::RevokeAndACKFirst || !$resend_raa);
864                                 }
865                                 if !$resend_raa {
866                                         debug_assert!($action_type == RAACommitmentOrder::CommitmentFirst || !$resend_commitment);
867                                 }
868                                 $chan.monitor_update_failed($resend_raa, $resend_commitment, $failed_forwards, $failed_fails);
869                                 (Err(MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore("Failed to update ChannelMonitor".to_owned()), *$chan_id)), false)
870                         },
871                 }
872         };
873         ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr, $failed_forwards: expr, $failed_fails: expr) => { {
874                 let (res, drop) = handle_monitor_err!($self, $err, $channel_state.short_to_id, $entry.get_mut(), $action_type, $resend_raa, $resend_commitment, $failed_forwards, $failed_fails, $entry.key());
875                 if drop {
876                         $entry.remove_entry();
877                 }
878                 res
879         } };
880 }
881
882 macro_rules! return_monitor_err {
883         ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => {
884                 return handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment);
885         };
886         ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr, $failed_forwards: expr, $failed_fails: expr) => {
887                 return handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment, $failed_forwards, $failed_fails);
888         }
889 }
890
891 // Does not break in case of TemporaryFailure!
892 macro_rules! maybe_break_monitor_err {
893         ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => {
894                 match (handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment), $err) {
895                         (e, ChannelMonitorUpdateErr::PermanentFailure) => {
896                                 break e;
897                         },
898                         (_, ChannelMonitorUpdateErr::TemporaryFailure) => { },
899                 }
900         }
901 }
902
903 macro_rules! handle_chan_restoration_locked {
904         ($self: ident, $channel_lock: expr, $channel_state: expr, $channel_entry: expr,
905          $raa: expr, $commitment_update: expr, $order: expr, $chanmon_update: expr,
906          $pending_forwards: expr, $funding_broadcastable: expr, $funding_locked: expr) => { {
907                 let mut htlc_forwards = None;
908                 let counterparty_node_id = $channel_entry.get().get_counterparty_node_id();
909
910                 let chanmon_update: Option<ChannelMonitorUpdate> = $chanmon_update; // Force type-checking to resolve
911                 let chanmon_update_is_none = chanmon_update.is_none();
912                 let res = loop {
913                         let forwards: Vec<(PendingHTLCInfo, u64)> = $pending_forwards; // Force type-checking to resolve
914                         if !forwards.is_empty() {
915                                 htlc_forwards = Some(($channel_entry.get().get_short_channel_id().expect("We can't have pending forwards before funding confirmation"),
916                                         $channel_entry.get().get_funding_txo().unwrap(), forwards));
917                         }
918
919                         if chanmon_update.is_some() {
920                                 // On reconnect, we, by definition, only resend a funding_locked if there have been
921                                 // no commitment updates, so the only channel monitor update which could also be
922                                 // associated with a funding_locked would be the funding_created/funding_signed
923                                 // monitor update. That monitor update failing implies that we won't send
924                                 // funding_locked until it's been updated, so we can't have a funding_locked and a
925                                 // monitor update here (so we don't bother to handle it correctly below).
926                                 assert!($funding_locked.is_none());
927                                 // A channel monitor update makes no sense without either a funding_locked or a
928                                 // commitment update to process after it. Since we can't have a funding_locked, we
929                                 // only bother to handle the monitor-update + commitment_update case below.
930                                 assert!($commitment_update.is_some());
931                         }
932
933                         if let Some(msg) = $funding_locked {
934                                 // Similar to the above, this implies that we're letting the funding_locked fly
935                                 // before it should be allowed to.
936                                 assert!(chanmon_update.is_none());
937                                 $channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingLocked {
938                                         node_id: counterparty_node_id,
939                                         msg,
940                                 });
941                                 if let Some(announcement_sigs) = $self.get_announcement_sigs($channel_entry.get()) {
942                                         $channel_state.pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
943                                                 node_id: counterparty_node_id,
944                                                 msg: announcement_sigs,
945                                         });
946                                 }
947                                 $channel_state.short_to_id.insert($channel_entry.get().get_short_channel_id().unwrap(), $channel_entry.get().channel_id());
948                         }
949
950                         let funding_broadcastable: Option<Transaction> = $funding_broadcastable; // Force type-checking to resolve
951                         if let Some(monitor_update) = chanmon_update {
952                                 // We only ever broadcast a funding transaction in response to a funding_signed
953                                 // message and the resulting monitor update. Thus, on channel_reestablish
954                                 // message handling we can't have a funding transaction to broadcast. When
955                                 // processing a monitor update finishing resulting in a funding broadcast, we
956                                 // cannot have a second monitor update, thus this case would indicate a bug.
957                                 assert!(funding_broadcastable.is_none());
958                                 // Given we were just reconnected or finished updating a channel monitor, the
959                                 // only case where we can get a new ChannelMonitorUpdate would be if we also
960                                 // have some commitment updates to send as well.
961                                 assert!($commitment_update.is_some());
962                                 if let Err(e) = $self.chain_monitor.update_channel($channel_entry.get().get_funding_txo().unwrap(), monitor_update) {
963                                         // channel_reestablish doesn't guarantee the order it returns is sensical
964                                         // for the messages it returns, but if we're setting what messages to
965                                         // re-transmit on monitor update success, we need to make sure it is sane.
966                                         let mut order = $order;
967                                         if $raa.is_none() {
968                                                 order = RAACommitmentOrder::CommitmentFirst;
969                                         }
970                                         break handle_monitor_err!($self, e, $channel_state, $channel_entry, order, $raa.is_some(), true);
971                                 }
972                         }
973
974                         macro_rules! handle_cs { () => {
975                                 if let Some(update) = $commitment_update {
976                                         $channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
977                                                 node_id: counterparty_node_id,
978                                                 updates: update,
979                                         });
980                                 }
981                         } }
982                         macro_rules! handle_raa { () => {
983                                 if let Some(revoke_and_ack) = $raa {
984                                         $channel_state.pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
985                                                 node_id: counterparty_node_id,
986                                                 msg: revoke_and_ack,
987                                         });
988                                 }
989                         } }
990                         match $order {
991                                 RAACommitmentOrder::CommitmentFirst => {
992                                         handle_cs!();
993                                         handle_raa!();
994                                 },
995                                 RAACommitmentOrder::RevokeAndACKFirst => {
996                                         handle_raa!();
997                                         handle_cs!();
998                                 },
999                         }
1000                         if let Some(tx) = funding_broadcastable {
1001                                 log_info!($self.logger, "Broadcasting funding transaction with txid {}", tx.txid());
1002                                 $self.tx_broadcaster.broadcast_transaction(&tx);
1003                         }
1004                         break Ok(());
1005                 };
1006
1007                 if chanmon_update_is_none {
1008                         // If there was no ChannelMonitorUpdate, we should never generate an Err in the res loop
1009                         // above. Doing so would imply calling handle_err!() from channel_monitor_updated() which
1010                         // should *never* end up calling back to `chain_monitor.update_channel()`.
1011                         assert!(res.is_ok());
1012                 }
1013
1014                 (htlc_forwards, res, counterparty_node_id)
1015         } }
1016 }
1017
1018 macro_rules! post_handle_chan_restoration {
1019         ($self: ident, $locked_res: expr) => { {
1020                 let (htlc_forwards, res, counterparty_node_id) = $locked_res;
1021
1022                 let _ = handle_error!($self, res, counterparty_node_id);
1023
1024                 if let Some(forwards) = htlc_forwards {
1025                         $self.forward_htlcs(&mut [forwards][..]);
1026                 }
1027         } }
1028 }
1029
1030 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> ChannelManager<Signer, M, T, K, F, L>
1031         where M::Target: chain::Watch<Signer>,
1032         T::Target: BroadcasterInterface,
1033         K::Target: KeysInterface<Signer = Signer>,
1034         F::Target: FeeEstimator,
1035         L::Target: Logger,
1036 {
1037         /// Constructs a new ChannelManager to hold several channels and route between them.
1038         ///
1039         /// This is the main "logic hub" for all channel-related actions, and implements
1040         /// ChannelMessageHandler.
1041         ///
1042         /// Non-proportional fees are fixed according to our risk using the provided fee estimator.
1043         ///
1044         /// panics if channel_value_satoshis is >= `MAX_FUNDING_SATOSHIS`!
1045         ///
1046         /// Users need to notify the new ChannelManager when a new block is connected or
1047         /// disconnected using its `block_connected` and `block_disconnected` methods, starting
1048         /// from after `params.latest_hash`.
1049         pub fn new(fee_est: F, chain_monitor: M, tx_broadcaster: T, logger: L, keys_manager: K, config: UserConfig, params: ChainParameters) -> Self {
1050                 let mut secp_ctx = Secp256k1::new();
1051                 secp_ctx.seeded_randomize(&keys_manager.get_secure_random_bytes());
1052
1053                 ChannelManager {
1054                         default_configuration: config.clone(),
1055                         genesis_hash: genesis_block(params.network).header.block_hash(),
1056                         fee_estimator: fee_est,
1057                         chain_monitor,
1058                         tx_broadcaster,
1059
1060                         best_block: RwLock::new(params.best_block),
1061
1062                         channel_state: Mutex::new(ChannelHolder{
1063                                 by_id: HashMap::new(),
1064                                 short_to_id: HashMap::new(),
1065                                 forward_htlcs: HashMap::new(),
1066                                 claimable_htlcs: HashMap::new(),
1067                                 pending_msg_events: Vec::new(),
1068                         }),
1069                         pending_inbound_payments: Mutex::new(HashMap::new()),
1070                         pending_outbound_payments: Mutex::new(HashSet::new()),
1071
1072                         our_network_key: keys_manager.get_node_secret(),
1073                         our_network_pubkey: PublicKey::from_secret_key(&secp_ctx, &keys_manager.get_node_secret()),
1074                         secp_ctx,
1075
1076                         last_node_announcement_serial: AtomicUsize::new(0),
1077                         highest_seen_timestamp: AtomicUsize::new(0),
1078
1079                         per_peer_state: RwLock::new(HashMap::new()),
1080
1081                         pending_events: Mutex::new(Vec::new()),
1082                         pending_background_events: Mutex::new(Vec::new()),
1083                         total_consistency_lock: RwLock::new(()),
1084                         persistence_notifier: PersistenceNotifier::new(),
1085
1086                         keys_manager,
1087
1088                         logger,
1089                 }
1090         }
1091
1092         /// Gets the current configuration applied to all new channels,  as
1093         pub fn get_current_default_configuration(&self) -> &UserConfig {
1094                 &self.default_configuration
1095         }
1096
1097         /// Creates a new outbound channel to the given remote node and with the given value.
1098         ///
1099         /// user_id will be provided back as user_channel_id in FundingGenerationReady events to allow
1100         /// tracking of which events correspond with which create_channel call. Note that the
1101         /// user_channel_id defaults to 0 for inbound channels, so you may wish to avoid using 0 for
1102         /// user_id here. user_id has no meaning inside of LDK, it is simply copied to events and
1103         /// otherwise ignored.
1104         ///
1105         /// If successful, will generate a SendOpenChannel message event, so you should probably poll
1106         /// PeerManager::process_events afterwards.
1107         ///
1108         /// Raises APIError::APIMisuseError when channel_value_satoshis > 2**24 or push_msat is
1109         /// greater than channel_value_satoshis * 1k or channel_value_satoshis is < 1000.
1110         pub fn create_channel(&self, their_network_key: PublicKey, channel_value_satoshis: u64, push_msat: u64, user_id: u64, override_config: Option<UserConfig>) -> Result<(), APIError> {
1111                 if channel_value_satoshis < 1000 {
1112                         return Err(APIError::APIMisuseError { err: format!("Channel value must be at least 1000 satoshis. It was {}", channel_value_satoshis) });
1113                 }
1114
1115                 let config = if override_config.is_some() { override_config.as_ref().unwrap() } else { &self.default_configuration };
1116                 let channel = Channel::new_outbound(&self.fee_estimator, &self.keys_manager, their_network_key, channel_value_satoshis, push_msat, user_id, config)?;
1117                 let res = channel.get_open_channel(self.genesis_hash.clone());
1118
1119                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1120                 // We want to make sure the lock is actually acquired by PersistenceNotifierGuard.
1121                 debug_assert!(&self.total_consistency_lock.try_write().is_err());
1122
1123                 let mut channel_state = self.channel_state.lock().unwrap();
1124                 match channel_state.by_id.entry(channel.channel_id()) {
1125                         hash_map::Entry::Occupied(_) => {
1126                                 if cfg!(feature = "fuzztarget") {
1127                                         return Err(APIError::APIMisuseError { err: "Fuzzy bad RNG".to_owned() });
1128                                 } else {
1129                                         panic!("RNG is bad???");
1130                                 }
1131                         },
1132                         hash_map::Entry::Vacant(entry) => { entry.insert(channel); }
1133                 }
1134                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
1135                         node_id: their_network_key,
1136                         msg: res,
1137                 });
1138                 Ok(())
1139         }
1140
1141         fn list_channels_with_filter<Fn: FnMut(&(&[u8; 32], &Channel<Signer>)) -> bool>(&self, f: Fn) -> Vec<ChannelDetails> {
1142                 let mut res = Vec::new();
1143                 {
1144                         let channel_state = self.channel_state.lock().unwrap();
1145                         res.reserve(channel_state.by_id.len());
1146                         for (channel_id, channel) in channel_state.by_id.iter().filter(f) {
1147                                 let (inbound_capacity_msat, outbound_capacity_msat) = channel.get_inbound_outbound_available_balance_msat();
1148                                 res.push(ChannelDetails {
1149                                         channel_id: (*channel_id).clone(),
1150                                         funding_txo: channel.get_funding_txo(),
1151                                         short_channel_id: channel.get_short_channel_id(),
1152                                         remote_network_id: channel.get_counterparty_node_id(),
1153                                         counterparty_features: InitFeatures::empty(),
1154                                         channel_value_satoshis: channel.get_value_satoshis(),
1155                                         inbound_capacity_msat,
1156                                         outbound_capacity_msat,
1157                                         user_id: channel.get_user_id(),
1158                                         is_outbound: channel.is_outbound(),
1159                                         is_funding_locked: channel.is_usable(),
1160                                         is_usable: channel.is_live(),
1161                                         is_public: channel.should_announce(),
1162                                         counterparty_forwarding_info: channel.counterparty_forwarding_info(),
1163                                 });
1164                         }
1165                 }
1166                 let per_peer_state = self.per_peer_state.read().unwrap();
1167                 for chan in res.iter_mut() {
1168                         if let Some(peer_state) = per_peer_state.get(&chan.remote_network_id) {
1169                                 chan.counterparty_features = peer_state.lock().unwrap().latest_features.clone();
1170                         }
1171                 }
1172                 res
1173         }
1174
1175         /// Gets the list of open channels, in random order. See ChannelDetail field documentation for
1176         /// more information.
1177         pub fn list_channels(&self) -> Vec<ChannelDetails> {
1178                 self.list_channels_with_filter(|_| true)
1179         }
1180
1181         /// Gets the list of usable channels, in random order. Useful as an argument to
1182         /// get_route to ensure non-announced channels are used.
1183         ///
1184         /// These are guaranteed to have their [`ChannelDetails::is_usable`] value set to true, see the
1185         /// documentation for [`ChannelDetails::is_usable`] for more info on exactly what the criteria
1186         /// are.
1187         pub fn list_usable_channels(&self) -> Vec<ChannelDetails> {
1188                 // Note we use is_live here instead of usable which leads to somewhat confused
1189                 // internal/external nomenclature, but that's ok cause that's probably what the user
1190                 // really wanted anyway.
1191                 self.list_channels_with_filter(|&(_, ref channel)| channel.is_live())
1192         }
1193
1194         /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
1195         /// will be accepted on the given channel, and after additional timeout/the closing of all
1196         /// pending HTLCs, the channel will be closed on chain.
1197         ///
1198         /// May generate a SendShutdown message event on success, which should be relayed.
1199         pub fn close_channel(&self, channel_id: &[u8; 32]) -> Result<(), APIError> {
1200                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1201
1202                 let (mut failed_htlcs, chan_option) = {
1203                         let mut channel_state_lock = self.channel_state.lock().unwrap();
1204                         let channel_state = &mut *channel_state_lock;
1205                         match channel_state.by_id.entry(channel_id.clone()) {
1206                                 hash_map::Entry::Occupied(mut chan_entry) => {
1207                                         let (shutdown_msg, failed_htlcs) = chan_entry.get_mut().get_shutdown()?;
1208                                         channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
1209                                                 node_id: chan_entry.get().get_counterparty_node_id(),
1210                                                 msg: shutdown_msg
1211                                         });
1212                                         if chan_entry.get().is_shutdown() {
1213                                                 if let Some(short_id) = chan_entry.get().get_short_channel_id() {
1214                                                         channel_state.short_to_id.remove(&short_id);
1215                                                 }
1216                                                 (failed_htlcs, Some(chan_entry.remove_entry().1))
1217                                         } else { (failed_htlcs, None) }
1218                                 },
1219                                 hash_map::Entry::Vacant(_) => return Err(APIError::ChannelUnavailable{err: "No such channel".to_owned()})
1220                         }
1221                 };
1222                 for htlc_source in failed_htlcs.drain(..) {
1223                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
1224                 }
1225                 let chan_update = if let Some(chan) = chan_option {
1226                         if let Ok(update) = self.get_channel_update(&chan) {
1227                                 Some(update)
1228                         } else { None }
1229                 } else { None };
1230
1231                 if let Some(update) = chan_update {
1232                         let mut channel_state = self.channel_state.lock().unwrap();
1233                         channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
1234                                 msg: update
1235                         });
1236                 }
1237
1238                 Ok(())
1239         }
1240
1241         #[inline]
1242         fn finish_force_close_channel(&self, shutdown_res: ShutdownResult) {
1243                 let (monitor_update_option, mut failed_htlcs) = shutdown_res;
1244                 log_trace!(self.logger, "Finishing force-closure of channel {} HTLCs to fail", failed_htlcs.len());
1245                 for htlc_source in failed_htlcs.drain(..) {
1246                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
1247                 }
1248                 if let Some((funding_txo, monitor_update)) = monitor_update_option {
1249                         // There isn't anything we can do if we get an update failure - we're already
1250                         // force-closing. The monitor update on the required in-memory copy should broadcast
1251                         // the latest local state, which is the best we can do anyway. Thus, it is safe to
1252                         // ignore the result here.
1253                         let _ = self.chain_monitor.update_channel(funding_txo, monitor_update);
1254                 }
1255         }
1256
1257         fn force_close_channel_with_peer(&self, channel_id: &[u8; 32], peer_node_id: Option<&PublicKey>) -> Result<PublicKey, APIError> {
1258                 let mut chan = {
1259                         let mut channel_state_lock = self.channel_state.lock().unwrap();
1260                         let channel_state = &mut *channel_state_lock;
1261                         if let hash_map::Entry::Occupied(chan) = channel_state.by_id.entry(channel_id.clone()) {
1262                                 if let Some(node_id) = peer_node_id {
1263                                         if chan.get().get_counterparty_node_id() != *node_id {
1264                                                 return Err(APIError::ChannelUnavailable{err: "No such channel".to_owned()});
1265                                         }
1266                                 }
1267                                 if let Some(short_id) = chan.get().get_short_channel_id() {
1268                                         channel_state.short_to_id.remove(&short_id);
1269                                 }
1270                                 chan.remove_entry().1
1271                         } else {
1272                                 return Err(APIError::ChannelUnavailable{err: "No such channel".to_owned()});
1273                         }
1274                 };
1275                 log_trace!(self.logger, "Force-closing channel {}", log_bytes!(channel_id[..]));
1276                 self.finish_force_close_channel(chan.force_shutdown(true));
1277                 if let Ok(update) = self.get_channel_update(&chan) {
1278                         let mut channel_state = self.channel_state.lock().unwrap();
1279                         channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
1280                                 msg: update
1281                         });
1282                 }
1283
1284                 Ok(chan.get_counterparty_node_id())
1285         }
1286
1287         /// Force closes a channel, immediately broadcasting the latest local commitment transaction to
1288         /// the chain and rejecting new HTLCs on the given channel. Fails if channel_id is unknown to the manager.
1289         pub fn force_close_channel(&self, channel_id: &[u8; 32]) -> Result<(), APIError> {
1290                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1291                 match self.force_close_channel_with_peer(channel_id, None) {
1292                         Ok(counterparty_node_id) => {
1293                                 self.channel_state.lock().unwrap().pending_msg_events.push(
1294                                         events::MessageSendEvent::HandleError {
1295                                                 node_id: counterparty_node_id,
1296                                                 action: msgs::ErrorAction::SendErrorMessage {
1297                                                         msg: msgs::ErrorMessage { channel_id: *channel_id, data: "Channel force-closed".to_owned() }
1298                                                 },
1299                                         }
1300                                 );
1301                                 Ok(())
1302                         },
1303                         Err(e) => Err(e)
1304                 }
1305         }
1306
1307         /// Force close all channels, immediately broadcasting the latest local commitment transaction
1308         /// for each to the chain and rejecting new HTLCs on each.
1309         pub fn force_close_all_channels(&self) {
1310                 for chan in self.list_channels() {
1311                         let _ = self.force_close_channel(&chan.channel_id);
1312                 }
1313         }
1314
1315         fn decode_update_add_htlc_onion(&self, msg: &msgs::UpdateAddHTLC) -> (PendingHTLCStatus, MutexGuard<ChannelHolder<Signer>>) {
1316                 macro_rules! return_malformed_err {
1317                         ($msg: expr, $err_code: expr) => {
1318                                 {
1319                                         log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
1320                                         return (PendingHTLCStatus::Fail(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
1321                                                 channel_id: msg.channel_id,
1322                                                 htlc_id: msg.htlc_id,
1323                                                 sha256_of_onion: Sha256::hash(&msg.onion_routing_packet.hop_data).into_inner(),
1324                                                 failure_code: $err_code,
1325                                         })), self.channel_state.lock().unwrap());
1326                                 }
1327                         }
1328                 }
1329
1330                 if let Err(_) = msg.onion_routing_packet.public_key {
1331                         return_malformed_err!("invalid ephemeral pubkey", 0x8000 | 0x4000 | 6);
1332                 }
1333
1334                 let shared_secret = {
1335                         let mut arr = [0; 32];
1336                         arr.copy_from_slice(&SharedSecret::new(&msg.onion_routing_packet.public_key.unwrap(), &self.our_network_key)[..]);
1337                         arr
1338                 };
1339                 let (rho, mu) = onion_utils::gen_rho_mu_from_shared_secret(&shared_secret);
1340
1341                 if msg.onion_routing_packet.version != 0 {
1342                         //TODO: Spec doesn't indicate if we should only hash hop_data here (and in other
1343                         //sha256_of_onion error data packets), or the entire onion_routing_packet. Either way,
1344                         //the hash doesn't really serve any purpose - in the case of hashing all data, the
1345                         //receiving node would have to brute force to figure out which version was put in the
1346                         //packet by the node that send us the message, in the case of hashing the hop_data, the
1347                         //node knows the HMAC matched, so they already know what is there...
1348                         return_malformed_err!("Unknown onion packet version", 0x8000 | 0x4000 | 4);
1349                 }
1350
1351                 let mut hmac = HmacEngine::<Sha256>::new(&mu);
1352                 hmac.input(&msg.onion_routing_packet.hop_data);
1353                 hmac.input(&msg.payment_hash.0[..]);
1354                 if !fixed_time_eq(&Hmac::from_engine(hmac).into_inner(), &msg.onion_routing_packet.hmac) {
1355                         return_malformed_err!("HMAC Check failed", 0x8000 | 0x4000 | 5);
1356                 }
1357
1358                 let mut channel_state = None;
1359                 macro_rules! return_err {
1360                         ($msg: expr, $err_code: expr, $data: expr) => {
1361                                 {
1362                                         log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
1363                                         if channel_state.is_none() {
1364                                                 channel_state = Some(self.channel_state.lock().unwrap());
1365                                         }
1366                                         return (PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
1367                                                 channel_id: msg.channel_id,
1368                                                 htlc_id: msg.htlc_id,
1369                                                 reason: onion_utils::build_first_hop_failure_packet(&shared_secret, $err_code, $data),
1370                                         })), channel_state.unwrap());
1371                                 }
1372                         }
1373                 }
1374
1375                 let mut chacha = ChaCha20::new(&rho, &[0u8; 8]);
1376                 let mut chacha_stream = ChaChaReader { chacha: &mut chacha, read: Cursor::new(&msg.onion_routing_packet.hop_data[..]) };
1377                 let (next_hop_data, next_hop_hmac) = {
1378                         match msgs::OnionHopData::read(&mut chacha_stream) {
1379                                 Err(err) => {
1380                                         let error_code = match err {
1381                                                 msgs::DecodeError::UnknownVersion => 0x4000 | 1, // unknown realm byte
1382                                                 msgs::DecodeError::UnknownRequiredFeature|
1383                                                 msgs::DecodeError::InvalidValue|
1384                                                 msgs::DecodeError::ShortRead => 0x4000 | 22, // invalid_onion_payload
1385                                                 _ => 0x2000 | 2, // Should never happen
1386                                         };
1387                                         return_err!("Unable to decode our hop data", error_code, &[0;0]);
1388                                 },
1389                                 Ok(msg) => {
1390                                         let mut hmac = [0; 32];
1391                                         if let Err(_) = chacha_stream.read_exact(&mut hmac[..]) {
1392                                                 return_err!("Unable to decode hop data", 0x4000 | 22, &[0;0]);
1393                                         }
1394                                         (msg, hmac)
1395                                 },
1396                         }
1397                 };
1398
1399                 let pending_forward_info = if next_hop_hmac == [0; 32] {
1400                                 #[cfg(test)]
1401                                 {
1402                                         // In tests, make sure that the initial onion pcket data is, at least, non-0.
1403                                         // We could do some fancy randomness test here, but, ehh, whatever.
1404                                         // This checks for the issue where you can calculate the path length given the
1405                                         // onion data as all the path entries that the originator sent will be here
1406                                         // as-is (and were originally 0s).
1407                                         // Of course reverse path calculation is still pretty easy given naive routing
1408                                         // algorithms, but this fixes the most-obvious case.
1409                                         let mut next_bytes = [0; 32];
1410                                         chacha_stream.read_exact(&mut next_bytes).unwrap();
1411                                         assert_ne!(next_bytes[..], [0; 32][..]);
1412                                         chacha_stream.read_exact(&mut next_bytes).unwrap();
1413                                         assert_ne!(next_bytes[..], [0; 32][..]);
1414                                 }
1415
1416                                 // OUR PAYMENT!
1417                                 // final_expiry_too_soon
1418                                 // We have to have some headroom to broadcast on chain if we have the preimage, so make sure we have at least
1419                                 // HTLC_FAIL_BACK_BUFFER blocks to go.
1420                                 // Also, ensure that, in the case of an unknown payment hash, our payment logic has enough time to fail the HTLC backward
1421                                 // before our onchain logic triggers a channel closure (see HTLC_FAIL_BACK_BUFFER rational).
1422                                 if (msg.cltv_expiry as u64) <= self.best_block.read().unwrap().height() as u64 + HTLC_FAIL_BACK_BUFFER as u64 + 1 {
1423                                         return_err!("The final CLTV expiry is too soon to handle", 17, &[0;0]);
1424                                 }
1425                                 // final_incorrect_htlc_amount
1426                                 if next_hop_data.amt_to_forward > msg.amount_msat {
1427                                         return_err!("Upstream node sent less than we were supposed to receive in payment", 19, &byte_utils::be64_to_array(msg.amount_msat));
1428                                 }
1429                                 // final_incorrect_cltv_expiry
1430                                 if next_hop_data.outgoing_cltv_value != msg.cltv_expiry {
1431                                         return_err!("Upstream node set CLTV to the wrong value", 18, &byte_utils::be32_to_array(msg.cltv_expiry));
1432                                 }
1433
1434                                 let payment_data = match next_hop_data.format {
1435                                         msgs::OnionHopDataFormat::Legacy { .. } => None,
1436                                         msgs::OnionHopDataFormat::NonFinalNode { .. } => return_err!("Got non final data with an HMAC of 0", 0x4000 | 22, &[0;0]),
1437                                         msgs::OnionHopDataFormat::FinalNode { payment_data } => payment_data,
1438                                 };
1439
1440                                 if payment_data.is_none() {
1441                                         return_err!("We require payment_secrets", 0x4000|0x2000|3, &[0;0]);
1442                                 }
1443
1444                                 // Note that we could obviously respond immediately with an update_fulfill_htlc
1445                                 // message, however that would leak that we are the recipient of this payment, so
1446                                 // instead we stay symmetric with the forwarding case, only responding (after a
1447                                 // delay) once they've send us a commitment_signed!
1448
1449                                 PendingHTLCStatus::Forward(PendingHTLCInfo {
1450                                         routing: PendingHTLCRouting::Receive {
1451                                                 payment_data: payment_data.unwrap(),
1452                                                 incoming_cltv_expiry: msg.cltv_expiry,
1453                                         },
1454                                         payment_hash: msg.payment_hash.clone(),
1455                                         incoming_shared_secret: shared_secret,
1456                                         amt_to_forward: next_hop_data.amt_to_forward,
1457                                         outgoing_cltv_value: next_hop_data.outgoing_cltv_value,
1458                                 })
1459                         } else {
1460                                 let mut new_packet_data = [0; 20*65];
1461                                 let read_pos = chacha_stream.read(&mut new_packet_data).unwrap();
1462                                 #[cfg(debug_assertions)]
1463                                 {
1464                                         // Check two things:
1465                                         // a) that the behavior of our stream here will return Ok(0) even if the TLV
1466                                         //    read above emptied out our buffer and the unwrap() wont needlessly panic
1467                                         // b) that we didn't somehow magically end up with extra data.
1468                                         let mut t = [0; 1];
1469                                         debug_assert!(chacha_stream.read(&mut t).unwrap() == 0);
1470                                 }
1471                                 // Once we've emptied the set of bytes our peer gave us, encrypt 0 bytes until we
1472                                 // fill the onion hop data we'll forward to our next-hop peer.
1473                                 chacha_stream.chacha.process_in_place(&mut new_packet_data[read_pos..]);
1474
1475                                 let mut new_pubkey = msg.onion_routing_packet.public_key.unwrap();
1476
1477                                 let blinding_factor = {
1478                                         let mut sha = Sha256::engine();
1479                                         sha.input(&new_pubkey.serialize()[..]);
1480                                         sha.input(&shared_secret);
1481                                         Sha256::from_engine(sha).into_inner()
1482                                 };
1483
1484                                 let public_key = if let Err(e) = new_pubkey.mul_assign(&self.secp_ctx, &blinding_factor[..]) {
1485                                         Err(e)
1486                                 } else { Ok(new_pubkey) };
1487
1488                                 let outgoing_packet = msgs::OnionPacket {
1489                                         version: 0,
1490                                         public_key,
1491                                         hop_data: new_packet_data,
1492                                         hmac: next_hop_hmac.clone(),
1493                                 };
1494
1495                                 let short_channel_id = match next_hop_data.format {
1496                                         msgs::OnionHopDataFormat::Legacy { short_channel_id } => short_channel_id,
1497                                         msgs::OnionHopDataFormat::NonFinalNode { short_channel_id } => short_channel_id,
1498                                         msgs::OnionHopDataFormat::FinalNode { .. } => {
1499                                                 return_err!("Final Node OnionHopData provided for us as an intermediary node", 0x4000 | 22, &[0;0]);
1500                                         },
1501                                 };
1502
1503                                 PendingHTLCStatus::Forward(PendingHTLCInfo {
1504                                         routing: PendingHTLCRouting::Forward {
1505                                                 onion_packet: outgoing_packet,
1506                                                 short_channel_id,
1507                                         },
1508                                         payment_hash: msg.payment_hash.clone(),
1509                                         incoming_shared_secret: shared_secret,
1510                                         amt_to_forward: next_hop_data.amt_to_forward,
1511                                         outgoing_cltv_value: next_hop_data.outgoing_cltv_value,
1512                                 })
1513                         };
1514
1515                 channel_state = Some(self.channel_state.lock().unwrap());
1516                 if let &PendingHTLCStatus::Forward(PendingHTLCInfo { ref routing, ref amt_to_forward, ref outgoing_cltv_value, .. }) = &pending_forward_info {
1517                         // If short_channel_id is 0 here, we'll reject the HTLC as there cannot be a channel
1518                         // with a short_channel_id of 0. This is important as various things later assume
1519                         // short_channel_id is non-0 in any ::Forward.
1520                         if let &PendingHTLCRouting::Forward { ref short_channel_id, .. } = routing {
1521                                 let id_option = channel_state.as_ref().unwrap().short_to_id.get(&short_channel_id).cloned();
1522                                 let forwarding_id = match id_option {
1523                                         None => { // unknown_next_peer
1524                                                 return_err!("Don't have available channel for forwarding as requested.", 0x4000 | 10, &[0;0]);
1525                                         },
1526                                         Some(id) => id.clone(),
1527                                 };
1528                                 if let Some((err, code, chan_update)) = loop {
1529                                         let chan = channel_state.as_mut().unwrap().by_id.get_mut(&forwarding_id).unwrap();
1530
1531                                         // Note that we could technically not return an error yet here and just hope
1532                                         // that the connection is reestablished or monitor updated by the time we get
1533                                         // around to doing the actual forward, but better to fail early if we can and
1534                                         // hopefully an attacker trying to path-trace payments cannot make this occur
1535                                         // on a small/per-node/per-channel scale.
1536                                         if !chan.is_live() { // channel_disabled
1537                                                 break Some(("Forwarding channel is not in a ready state.", 0x1000 | 20, Some(self.get_channel_update(chan).unwrap())));
1538                                         }
1539                                         if *amt_to_forward < chan.get_counterparty_htlc_minimum_msat() { // amount_below_minimum
1540                                                 break Some(("HTLC amount was below the htlc_minimum_msat", 0x1000 | 11, Some(self.get_channel_update(chan).unwrap())));
1541                                         }
1542                                         let fee = amt_to_forward.checked_mul(chan.get_fee_proportional_millionths() as u64).and_then(|prop_fee| { (prop_fee / 1000000).checked_add(chan.get_holder_fee_base_msat(&self.fee_estimator) as u64) });
1543                                         if fee.is_none() || msg.amount_msat < fee.unwrap() || (msg.amount_msat - fee.unwrap()) < *amt_to_forward { // fee_insufficient
1544                                                 break Some(("Prior hop has deviated from specified fees parameters or origin node has obsolete ones", 0x1000 | 12, Some(self.get_channel_update(chan).unwrap())));
1545                                         }
1546                                         if (msg.cltv_expiry as u64) < (*outgoing_cltv_value) as u64 + chan.get_cltv_expiry_delta() as u64 { // incorrect_cltv_expiry
1547                                                 break Some(("Forwarding node has tampered with the intended HTLC values or origin node has an obsolete cltv_expiry_delta", 0x1000 | 13, Some(self.get_channel_update(chan).unwrap())));
1548                                         }
1549                                         let cur_height = self.best_block.read().unwrap().height() + 1;
1550                                         // Theoretically, channel counterparty shouldn't send us a HTLC expiring now, but we want to be robust wrt to counterparty
1551                                         // packet sanitization (see HTLC_FAIL_BACK_BUFFER rational)
1552                                         if msg.cltv_expiry <= cur_height + HTLC_FAIL_BACK_BUFFER as u32 { // expiry_too_soon
1553                                                 break Some(("CLTV expiry is too close", 0x1000 | 14, Some(self.get_channel_update(chan).unwrap())));
1554                                         }
1555                                         if msg.cltv_expiry > cur_height + CLTV_FAR_FAR_AWAY as u32 { // expiry_too_far
1556                                                 break Some(("CLTV expiry is too far in the future", 21, None));
1557                                         }
1558                                         // In theory, we would be safe against unitentional channel-closure, if we only required a margin of LATENCY_GRACE_PERIOD_BLOCKS.
1559                                         // But, to be safe against policy reception, we use a longuer delay.
1560                                         if (*outgoing_cltv_value) as u64 <= (cur_height + HTLC_FAIL_BACK_BUFFER) as u64 {
1561                                                 break Some(("Outgoing CLTV value is too soon", 0x1000 | 14, Some(self.get_channel_update(chan).unwrap())));
1562                                         }
1563
1564                                         break None;
1565                                 }
1566                                 {
1567                                         let mut res = Vec::with_capacity(8 + 128);
1568                                         if let Some(chan_update) = chan_update {
1569                                                 if code == 0x1000 | 11 || code == 0x1000 | 12 {
1570                                                         res.extend_from_slice(&byte_utils::be64_to_array(msg.amount_msat));
1571                                                 }
1572                                                 else if code == 0x1000 | 13 {
1573                                                         res.extend_from_slice(&byte_utils::be32_to_array(msg.cltv_expiry));
1574                                                 }
1575                                                 else if code == 0x1000 | 20 {
1576                                                         // TODO: underspecified, follow https://github.com/lightningnetwork/lightning-rfc/issues/791
1577                                                         res.extend_from_slice(&byte_utils::be16_to_array(0));
1578                                                 }
1579                                                 res.extend_from_slice(&chan_update.encode_with_len()[..]);
1580                                         }
1581                                         return_err!(err, code, &res[..]);
1582                                 }
1583                         }
1584                 }
1585
1586                 (pending_forward_info, channel_state.unwrap())
1587         }
1588
1589         /// only fails if the channel does not yet have an assigned short_id
1590         /// May be called with channel_state already locked!
1591         fn get_channel_update(&self, chan: &Channel<Signer>) -> Result<msgs::ChannelUpdate, LightningError> {
1592                 let short_channel_id = match chan.get_short_channel_id() {
1593                         None => return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError}),
1594                         Some(id) => id,
1595                 };
1596
1597                 let were_node_one = PublicKey::from_secret_key(&self.secp_ctx, &self.our_network_key).serialize()[..] < chan.get_counterparty_node_id().serialize()[..];
1598
1599                 let unsigned = msgs::UnsignedChannelUpdate {
1600                         chain_hash: self.genesis_hash,
1601                         short_channel_id,
1602                         timestamp: chan.get_update_time_counter(),
1603                         flags: (!were_node_one) as u8 | ((!chan.is_live() as u8) << 1),
1604                         cltv_expiry_delta: chan.get_cltv_expiry_delta(),
1605                         htlc_minimum_msat: chan.get_counterparty_htlc_minimum_msat(),
1606                         htlc_maximum_msat: OptionalField::Present(chan.get_announced_htlc_max_msat()),
1607                         fee_base_msat: chan.get_holder_fee_base_msat(&self.fee_estimator),
1608                         fee_proportional_millionths: chan.get_fee_proportional_millionths(),
1609                         excess_data: Vec::new(),
1610                 };
1611
1612                 let msg_hash = Sha256dHash::hash(&unsigned.encode()[..]);
1613                 let sig = self.secp_ctx.sign(&hash_to_message!(&msg_hash[..]), &self.our_network_key);
1614
1615                 Ok(msgs::ChannelUpdate {
1616                         signature: sig,
1617                         contents: unsigned
1618                 })
1619         }
1620
1621         // Only public for testing, this should otherwise never be called direcly
1622         pub(crate) fn send_payment_along_path(&self, path: &Vec<RouteHop>, payment_hash: &PaymentHash, payment_secret: &Option<PaymentSecret>, total_value: u64, cur_height: u32) -> Result<(), APIError> {
1623                 log_trace!(self.logger, "Attempting to send payment for path with next hop {}", path.first().unwrap().short_channel_id);
1624                 let prng_seed = self.keys_manager.get_secure_random_bytes();
1625                 let session_priv_bytes = self.keys_manager.get_secure_random_bytes();
1626                 let session_priv = SecretKey::from_slice(&session_priv_bytes[..]).expect("RNG is busted");
1627
1628                 let onion_keys = onion_utils::construct_onion_keys(&self.secp_ctx, &path, &session_priv)
1629                         .map_err(|_| APIError::RouteError{err: "Pubkey along hop was maliciously selected"})?;
1630                 let (onion_payloads, htlc_msat, htlc_cltv) = onion_utils::build_onion_payloads(path, total_value, payment_secret, cur_height)?;
1631                 if onion_utils::route_size_insane(&onion_payloads) {
1632                         return Err(APIError::RouteError{err: "Route size too large considering onion data"});
1633                 }
1634                 let onion_packet = onion_utils::construct_onion_packet(onion_payloads, onion_keys, prng_seed, payment_hash);
1635
1636                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1637                 assert!(self.pending_outbound_payments.lock().unwrap().insert(session_priv_bytes));
1638
1639                 let err: Result<(), _> = loop {
1640                         let mut channel_lock = self.channel_state.lock().unwrap();
1641                         let id = match channel_lock.short_to_id.get(&path.first().unwrap().short_channel_id) {
1642                                 None => return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()}),
1643                                 Some(id) => id.clone(),
1644                         };
1645
1646                         let channel_state = &mut *channel_lock;
1647                         if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(id) {
1648                                 match {
1649                                         if chan.get().get_counterparty_node_id() != path.first().unwrap().pubkey {
1650                                                 return Err(APIError::RouteError{err: "Node ID mismatch on first hop!"});
1651                                         }
1652                                         if !chan.get().is_live() {
1653                                                 return Err(APIError::ChannelUnavailable{err: "Peer for first hop currently disconnected/pending monitor update!".to_owned()});
1654                                         }
1655                                         break_chan_entry!(self, chan.get_mut().send_htlc_and_commit(htlc_msat, payment_hash.clone(), htlc_cltv, HTLCSource::OutboundRoute {
1656                                                 path: path.clone(),
1657                                                 session_priv: session_priv.clone(),
1658                                                 first_hop_htlc_msat: htlc_msat,
1659                                         }, onion_packet, &self.logger), channel_state, chan)
1660                                 } {
1661                                         Some((update_add, commitment_signed, monitor_update)) => {
1662                                                 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
1663                                                         maybe_break_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, true);
1664                                                         // Note that MonitorUpdateFailed here indicates (per function docs)
1665                                                         // that we will resend the commitment update once monitor updating
1666                                                         // is restored. Therefore, we must return an error indicating that
1667                                                         // it is unsafe to retry the payment wholesale, which we do in the
1668                                                         // send_payment check for MonitorUpdateFailed, below.
1669                                                         return Err(APIError::MonitorUpdateFailed);
1670                                                 }
1671
1672                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
1673                                                         node_id: path.first().unwrap().pubkey,
1674                                                         updates: msgs::CommitmentUpdate {
1675                                                                 update_add_htlcs: vec![update_add],
1676                                                                 update_fulfill_htlcs: Vec::new(),
1677                                                                 update_fail_htlcs: Vec::new(),
1678                                                                 update_fail_malformed_htlcs: Vec::new(),
1679                                                                 update_fee: None,
1680                                                                 commitment_signed,
1681                                                         },
1682                                                 });
1683                                         },
1684                                         None => {},
1685                                 }
1686                         } else { unreachable!(); }
1687                         return Ok(());
1688                 };
1689
1690                 match handle_error!(self, err, path.first().unwrap().pubkey) {
1691                         Ok(_) => unreachable!(),
1692                         Err(e) => {
1693                                 Err(APIError::ChannelUnavailable { err: e.err })
1694                         },
1695                 }
1696         }
1697
1698         /// Sends a payment along a given route.
1699         ///
1700         /// Value parameters are provided via the last hop in route, see documentation for RouteHop
1701         /// fields for more info.
1702         ///
1703         /// Note that if the payment_hash already exists elsewhere (eg you're sending a duplicative
1704         /// payment), we don't do anything to stop you! We always try to ensure that if the provided
1705         /// next hop knows the preimage to payment_hash they can claim an additional amount as
1706         /// specified in the last hop in the route! Thus, you should probably do your own
1707         /// payment_preimage tracking (which you should already be doing as they represent "proof of
1708         /// payment") and prevent double-sends yourself.
1709         ///
1710         /// May generate SendHTLCs message(s) event on success, which should be relayed.
1711         ///
1712         /// Each path may have a different return value, and PaymentSendValue may return a Vec with
1713         /// each entry matching the corresponding-index entry in the route paths, see
1714         /// PaymentSendFailure for more info.
1715         ///
1716         /// In general, a path may raise:
1717         ///  * APIError::RouteError when an invalid route or forwarding parameter (cltv_delta, fee,
1718         ///    node public key) is specified.
1719         ///  * APIError::ChannelUnavailable if the next-hop channel is not available for updates
1720         ///    (including due to previous monitor update failure or new permanent monitor update
1721         ///    failure).
1722         ///  * APIError::MonitorUpdateFailed if a new monitor update failure prevented sending the
1723         ///    relevant updates.
1724         ///
1725         /// Note that depending on the type of the PaymentSendFailure the HTLC may have been
1726         /// irrevocably committed to on our end. In such a case, do NOT retry the payment with a
1727         /// different route unless you intend to pay twice!
1728         ///
1729         /// payment_secret is unrelated to payment_hash (or PaymentPreimage) and exists to authenticate
1730         /// the sender to the recipient and prevent payment-probing (deanonymization) attacks. For
1731         /// newer nodes, it will be provided to you in the invoice. If you do not have one, the Route
1732         /// must not contain multiple paths as multi-path payments require a recipient-provided
1733         /// payment_secret.
1734         /// If a payment_secret *is* provided, we assume that the invoice had the payment_secret feature
1735         /// bit set (either as required or as available). If multiple paths are present in the Route,
1736         /// we assume the invoice had the basic_mpp feature set.
1737         pub fn send_payment(&self, route: &Route, payment_hash: PaymentHash, payment_secret: &Option<PaymentSecret>) -> Result<(), PaymentSendFailure> {
1738                 if route.paths.len() < 1 {
1739                         return Err(PaymentSendFailure::ParameterError(APIError::RouteError{err: "There must be at least one path to send over"}));
1740                 }
1741                 if route.paths.len() > 10 {
1742                         // This limit is completely arbitrary - there aren't any real fundamental path-count
1743                         // limits. After we support retrying individual paths we should likely bump this, but
1744                         // for now more than 10 paths likely carries too much one-path failure.
1745                         return Err(PaymentSendFailure::ParameterError(APIError::RouteError{err: "Sending over more than 10 paths is not currently supported"}));
1746                 }
1747                 let mut total_value = 0;
1748                 let our_node_id = self.get_our_node_id();
1749                 let mut path_errs = Vec::with_capacity(route.paths.len());
1750                 'path_check: for path in route.paths.iter() {
1751                         if path.len() < 1 || path.len() > 20 {
1752                                 path_errs.push(Err(APIError::RouteError{err: "Path didn't go anywhere/had bogus size"}));
1753                                 continue 'path_check;
1754                         }
1755                         for (idx, hop) in path.iter().enumerate() {
1756                                 if idx != path.len() - 1 && hop.pubkey == our_node_id {
1757                                         path_errs.push(Err(APIError::RouteError{err: "Path went through us but wasn't a simple rebalance loop to us"}));
1758                                         continue 'path_check;
1759                                 }
1760                         }
1761                         total_value += path.last().unwrap().fee_msat;
1762                         path_errs.push(Ok(()));
1763                 }
1764                 if path_errs.iter().any(|e| e.is_err()) {
1765                         return Err(PaymentSendFailure::PathParameterError(path_errs));
1766                 }
1767
1768                 let cur_height = self.best_block.read().unwrap().height() + 1;
1769                 let mut results = Vec::new();
1770                 for path in route.paths.iter() {
1771                         results.push(self.send_payment_along_path(&path, &payment_hash, payment_secret, total_value, cur_height));
1772                 }
1773                 let mut has_ok = false;
1774                 let mut has_err = false;
1775                 for res in results.iter() {
1776                         if res.is_ok() { has_ok = true; }
1777                         if res.is_err() { has_err = true; }
1778                         if let &Err(APIError::MonitorUpdateFailed) = res {
1779                                 // MonitorUpdateFailed is inherently unsafe to retry, so we call it a
1780                                 // PartialFailure.
1781                                 has_err = true;
1782                                 has_ok = true;
1783                                 break;
1784                         }
1785                 }
1786                 if has_err && has_ok {
1787                         Err(PaymentSendFailure::PartialFailure(results))
1788                 } else if has_err {
1789                         Err(PaymentSendFailure::AllFailedRetrySafe(results.drain(..).map(|r| r.unwrap_err()).collect()))
1790                 } else {
1791                         Ok(())
1792                 }
1793         }
1794
1795         /// Handles the generation of a funding transaction, optionally (for tests) with a function
1796         /// which checks the correctness of the funding transaction given the associated channel.
1797         fn funding_transaction_generated_intern<FundingOutput: Fn(&Channel<Signer>, &Transaction) -> Result<OutPoint, APIError>>
1798                         (&self, temporary_channel_id: &[u8; 32], funding_transaction: Transaction, find_funding_output: FundingOutput) -> Result<(), APIError> {
1799                 let (chan, msg) = {
1800                         let (res, chan) = match self.channel_state.lock().unwrap().by_id.remove(temporary_channel_id) {
1801                                 Some(mut chan) => {
1802                                         let funding_txo = find_funding_output(&chan, &funding_transaction)?;
1803
1804                                         (chan.get_outbound_funding_created(funding_transaction, funding_txo, &self.logger)
1805                                                 .map_err(|e| if let ChannelError::Close(msg) = e {
1806                                                         MsgHandleErrInternal::from_finish_shutdown(msg, chan.channel_id(), chan.force_shutdown(true), None)
1807                                                 } else { unreachable!(); })
1808                                         , chan)
1809                                 },
1810                                 None => { return Err(APIError::ChannelUnavailable { err: "No such channel".to_owned() }) },
1811                         };
1812                         match handle_error!(self, res, chan.get_counterparty_node_id()) {
1813                                 Ok(funding_msg) => {
1814                                         (chan, funding_msg)
1815                                 },
1816                                 Err(_) => { return Err(APIError::ChannelUnavailable {
1817                                         err: "Error deriving keys or signing initial commitment transactions - either our RNG or our counterparty's RNG is broken or the Signer refused to sign".to_owned()
1818                                 }) },
1819                         }
1820                 };
1821
1822                 let mut channel_state = self.channel_state.lock().unwrap();
1823                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingCreated {
1824                         node_id: chan.get_counterparty_node_id(),
1825                         msg,
1826                 });
1827                 match channel_state.by_id.entry(chan.channel_id()) {
1828                         hash_map::Entry::Occupied(_) => {
1829                                 panic!("Generated duplicate funding txid?");
1830                         },
1831                         hash_map::Entry::Vacant(e) => {
1832                                 e.insert(chan);
1833                         }
1834                 }
1835                 Ok(())
1836         }
1837
1838         #[cfg(test)]
1839         pub(crate) fn funding_transaction_generated_unchecked(&self, temporary_channel_id: &[u8; 32], funding_transaction: Transaction, output_index: u16) -> Result<(), APIError> {
1840                 self.funding_transaction_generated_intern(temporary_channel_id, funding_transaction, |_, tx| {
1841                         Ok(OutPoint { txid: tx.txid(), index: output_index })
1842                 })
1843         }
1844
1845         /// Call this upon creation of a funding transaction for the given channel.
1846         ///
1847         /// Returns an [`APIError::APIMisuseError`] if the funding_transaction spent non-SegWit outputs
1848         /// or if no output was found which matches the parameters in [`Event::FundingGenerationReady`].
1849         ///
1850         /// Panics if a funding transaction has already been provided for this channel.
1851         ///
1852         /// May panic if the output found in the funding transaction is duplicative with some other
1853         /// channel (note that this should be trivially prevented by using unique funding transaction
1854         /// keys per-channel).
1855         ///
1856         /// Do NOT broadcast the funding transaction yourself. When we have safely received our
1857         /// counterparty's signature the funding transaction will automatically be broadcast via the
1858         /// [`BroadcasterInterface`] provided when this `ChannelManager` was constructed.
1859         ///
1860         /// Note that this includes RBF or similar transaction replacement strategies - lightning does
1861         /// not currently support replacing a funding transaction on an existing channel. Instead,
1862         /// create a new channel with a conflicting funding transaction.
1863         ///
1864         /// [`Event::FundingGenerationReady`]: crate::util::events::Event::FundingGenerationReady
1865         pub fn funding_transaction_generated(&self, temporary_channel_id: &[u8; 32], funding_transaction: Transaction) -> Result<(), APIError> {
1866                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1867
1868                 for inp in funding_transaction.input.iter() {
1869                         if inp.witness.is_empty() {
1870                                 return Err(APIError::APIMisuseError {
1871                                         err: "Funding transaction must be fully signed and spend Segwit outputs".to_owned()
1872                                 });
1873                         }
1874                 }
1875                 self.funding_transaction_generated_intern(temporary_channel_id, funding_transaction, |chan, tx| {
1876                         let mut output_index = None;
1877                         let expected_spk = chan.get_funding_redeemscript().to_v0_p2wsh();
1878                         for (idx, outp) in tx.output.iter().enumerate() {
1879                                 if outp.script_pubkey == expected_spk && outp.value == chan.get_value_satoshis() {
1880                                         if output_index.is_some() {
1881                                                 return Err(APIError::APIMisuseError {
1882                                                         err: "Multiple outputs matched the expected script and value".to_owned()
1883                                                 });
1884                                         }
1885                                         if idx > u16::max_value() as usize {
1886                                                 return Err(APIError::APIMisuseError {
1887                                                         err: "Transaction had more than 2^16 outputs, which is not supported".to_owned()
1888                                                 });
1889                                         }
1890                                         output_index = Some(idx as u16);
1891                                 }
1892                         }
1893                         if output_index.is_none() {
1894                                 return Err(APIError::APIMisuseError {
1895                                         err: "No output matched the script_pubkey and value in the FundingGenerationReady event".to_owned()
1896                                 });
1897                         }
1898                         Ok(OutPoint { txid: tx.txid(), index: output_index.unwrap() })
1899                 })
1900         }
1901
1902         fn get_announcement_sigs(&self, chan: &Channel<Signer>) -> Option<msgs::AnnouncementSignatures> {
1903                 if !chan.should_announce() {
1904                         log_trace!(self.logger, "Can't send announcement_signatures for private channel {}", log_bytes!(chan.channel_id()));
1905                         return None
1906                 }
1907
1908                 let (announcement, our_bitcoin_sig) = match chan.get_channel_announcement(self.get_our_node_id(), self.genesis_hash.clone()) {
1909                         Ok(res) => res,
1910                         Err(_) => return None, // Only in case of state precondition violations eg channel is closing
1911                 };
1912                 let msghash = hash_to_message!(&Sha256dHash::hash(&announcement.encode()[..])[..]);
1913                 let our_node_sig = self.secp_ctx.sign(&msghash, &self.our_network_key);
1914
1915                 Some(msgs::AnnouncementSignatures {
1916                         channel_id: chan.channel_id(),
1917                         short_channel_id: chan.get_short_channel_id().unwrap(),
1918                         node_signature: our_node_sig,
1919                         bitcoin_signature: our_bitcoin_sig,
1920                 })
1921         }
1922
1923         #[allow(dead_code)]
1924         // Messages of up to 64KB should never end up more than half full with addresses, as that would
1925         // be absurd. We ensure this by checking that at least 500 (our stated public contract on when
1926         // broadcast_node_announcement panics) of the maximum-length addresses would fit in a 64KB
1927         // message...
1928         const HALF_MESSAGE_IS_ADDRS: u32 = ::core::u16::MAX as u32 / (NetAddress::MAX_LEN as u32 + 1) / 2;
1929         #[deny(const_err)]
1930         #[allow(dead_code)]
1931         // ...by failing to compile if the number of addresses that would be half of a message is
1932         // smaller than 500:
1933         const STATIC_ASSERT: u32 = Self::HALF_MESSAGE_IS_ADDRS - 500;
1934
1935         /// Generates a signed node_announcement from the given arguments and creates a
1936         /// BroadcastNodeAnnouncement event. Note that such messages will be ignored unless peers have
1937         /// seen a channel_announcement from us (ie unless we have public channels open).
1938         ///
1939         /// RGB is a node "color" and alias is a printable human-readable string to describe this node
1940         /// to humans. They carry no in-protocol meaning.
1941         ///
1942         /// addresses represent the set (possibly empty) of socket addresses on which this node accepts
1943         /// incoming connections. These will be broadcast to the network, publicly tying these
1944         /// addresses together. If you wish to preserve user privacy, addresses should likely contain
1945         /// only Tor Onion addresses.
1946         ///
1947         /// Panics if addresses is absurdly large (more than 500).
1948         pub fn broadcast_node_announcement(&self, rgb: [u8; 3], alias: [u8; 32], mut addresses: Vec<NetAddress>) {
1949                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1950
1951                 if addresses.len() > 500 {
1952                         panic!("More than half the message size was taken up by public addresses!");
1953                 }
1954
1955                 // While all existing nodes handle unsorted addresses just fine, the spec requires that
1956                 // addresses be sorted for future compatibility.
1957                 addresses.sort_by_key(|addr| addr.get_id());
1958
1959                 let announcement = msgs::UnsignedNodeAnnouncement {
1960                         features: NodeFeatures::known(),
1961                         timestamp: self.last_node_announcement_serial.fetch_add(1, Ordering::AcqRel) as u32,
1962                         node_id: self.get_our_node_id(),
1963                         rgb, alias, addresses,
1964                         excess_address_data: Vec::new(),
1965                         excess_data: Vec::new(),
1966                 };
1967                 let msghash = hash_to_message!(&Sha256dHash::hash(&announcement.encode()[..])[..]);
1968
1969                 let mut channel_state = self.channel_state.lock().unwrap();
1970                 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastNodeAnnouncement {
1971                         msg: msgs::NodeAnnouncement {
1972                                 signature: self.secp_ctx.sign(&msghash, &self.our_network_key),
1973                                 contents: announcement
1974                         },
1975                 });
1976         }
1977
1978         /// Processes HTLCs which are pending waiting on random forward delay.
1979         ///
1980         /// Should only really ever be called in response to a PendingHTLCsForwardable event.
1981         /// Will likely generate further events.
1982         pub fn process_pending_htlc_forwards(&self) {
1983                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1984
1985                 let mut new_events = Vec::new();
1986                 let mut failed_forwards = Vec::new();
1987                 let mut handle_errors = Vec::new();
1988                 {
1989                         let mut channel_state_lock = self.channel_state.lock().unwrap();
1990                         let channel_state = &mut *channel_state_lock;
1991
1992                         for (short_chan_id, mut pending_forwards) in channel_state.forward_htlcs.drain() {
1993                                 if short_chan_id != 0 {
1994                                         let forward_chan_id = match channel_state.short_to_id.get(&short_chan_id) {
1995                                                 Some(chan_id) => chan_id.clone(),
1996                                                 None => {
1997                                                         failed_forwards.reserve(pending_forwards.len());
1998                                                         for forward_info in pending_forwards.drain(..) {
1999                                                                 match forward_info {
2000                                                                         HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info,
2001                                                                                                    prev_funding_outpoint } => {
2002                                                                                 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
2003                                                                                         short_channel_id: prev_short_channel_id,
2004                                                                                         outpoint: prev_funding_outpoint,
2005                                                                                         htlc_id: prev_htlc_id,
2006                                                                                         incoming_packet_shared_secret: forward_info.incoming_shared_secret,
2007                                                                                 });
2008                                                                                 failed_forwards.push((htlc_source, forward_info.payment_hash,
2009                                                                                         HTLCFailReason::Reason { failure_code: 0x4000 | 10, data: Vec::new() }
2010                                                                                 ));
2011                                                                         },
2012                                                                         HTLCForwardInfo::FailHTLC { .. } => {
2013                                                                                 // Channel went away before we could fail it. This implies
2014                                                                                 // the channel is now on chain and our counterparty is
2015                                                                                 // trying to broadcast the HTLC-Timeout, but that's their
2016                                                                                 // problem, not ours.
2017                                                                         }
2018                                                                 }
2019                                                         }
2020                                                         continue;
2021                                                 }
2022                                         };
2023                                         if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(forward_chan_id) {
2024                                                 let mut add_htlc_msgs = Vec::new();
2025                                                 let mut fail_htlc_msgs = Vec::new();
2026                                                 for forward_info in pending_forwards.drain(..) {
2027                                                         match forward_info {
2028                                                                 HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info: PendingHTLCInfo {
2029                                                                                 routing: PendingHTLCRouting::Forward {
2030                                                                                         onion_packet, ..
2031                                                                                 }, incoming_shared_secret, payment_hash, amt_to_forward, outgoing_cltv_value },
2032                                                                                 prev_funding_outpoint } => {
2033                                                                         log_trace!(self.logger, "Adding HTLC from short id {} with payment_hash {} to channel with short id {} after delay", log_bytes!(payment_hash.0), prev_short_channel_id, short_chan_id);
2034                                                                         let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
2035                                                                                 short_channel_id: prev_short_channel_id,
2036                                                                                 outpoint: prev_funding_outpoint,
2037                                                                                 htlc_id: prev_htlc_id,
2038                                                                                 incoming_packet_shared_secret: incoming_shared_secret,
2039                                                                         });
2040                                                                         match chan.get_mut().send_htlc(amt_to_forward, payment_hash, outgoing_cltv_value, htlc_source.clone(), onion_packet) {
2041                                                                                 Err(e) => {
2042                                                                                         if let ChannelError::Ignore(msg) = e {
2043                                                                                                 log_trace!(self.logger, "Failed to forward HTLC with payment_hash {}: {}", log_bytes!(payment_hash.0), msg);
2044                                                                                         } else {
2045                                                                                                 panic!("Stated return value requirements in send_htlc() were not met");
2046                                                                                         }
2047                                                                                         let chan_update = self.get_channel_update(chan.get()).unwrap();
2048                                                                                         failed_forwards.push((htlc_source, payment_hash,
2049                                                                                                 HTLCFailReason::Reason { failure_code: 0x1000 | 7, data: chan_update.encode_with_len() }
2050                                                                                         ));
2051                                                                                         continue;
2052                                                                                 },
2053                                                                                 Ok(update_add) => {
2054                                                                                         match update_add {
2055                                                                                                 Some(msg) => { add_htlc_msgs.push(msg); },
2056                                                                                                 None => {
2057                                                                                                         // Nothing to do here...we're waiting on a remote
2058                                                                                                         // revoke_and_ack before we can add anymore HTLCs. The Channel
2059                                                                                                         // will automatically handle building the update_add_htlc and
2060                                                                                                         // commitment_signed messages when we can.
2061                                                                                                         // TODO: Do some kind of timer to set the channel as !is_live()
2062                                                                                                         // as we don't really want others relying on us relaying through
2063                                                                                                         // this channel currently :/.
2064                                                                                                 }
2065                                                                                         }
2066                                                                                 }
2067                                                                         }
2068                                                                 },
2069                                                                 HTLCForwardInfo::AddHTLC { .. } => {
2070                                                                         panic!("short_channel_id != 0 should imply any pending_forward entries are of type Forward");
2071                                                                 },
2072                                                                 HTLCForwardInfo::FailHTLC { htlc_id, err_packet } => {
2073                                                                         log_trace!(self.logger, "Failing HTLC back to channel with short id {} after delay", short_chan_id);
2074                                                                         match chan.get_mut().get_update_fail_htlc(htlc_id, err_packet, &self.logger) {
2075                                                                                 Err(e) => {
2076                                                                                         if let ChannelError::Ignore(msg) = e {
2077                                                                                                 log_trace!(self.logger, "Failed to fail backwards to short_id {}: {}", short_chan_id, msg);
2078                                                                                         } else {
2079                                                                                                 panic!("Stated return value requirements in get_update_fail_htlc() were not met");
2080                                                                                         }
2081                                                                                         // fail-backs are best-effort, we probably already have one
2082                                                                                         // pending, and if not that's OK, if not, the channel is on
2083                                                                                         // the chain and sending the HTLC-Timeout is their problem.
2084                                                                                         continue;
2085                                                                                 },
2086                                                                                 Ok(Some(msg)) => { fail_htlc_msgs.push(msg); },
2087                                                                                 Ok(None) => {
2088                                                                                         // Nothing to do here...we're waiting on a remote
2089                                                                                         // revoke_and_ack before we can update the commitment
2090                                                                                         // transaction. The Channel will automatically handle
2091                                                                                         // building the update_fail_htlc and commitment_signed
2092                                                                                         // messages when we can.
2093                                                                                         // We don't need any kind of timer here as they should fail
2094                                                                                         // the channel onto the chain if they can't get our
2095                                                                                         // update_fail_htlc in time, it's not our problem.
2096                                                                                 }
2097                                                                         }
2098                                                                 },
2099                                                         }
2100                                                 }
2101
2102                                                 if !add_htlc_msgs.is_empty() || !fail_htlc_msgs.is_empty() {
2103                                                         let (commitment_msg, monitor_update) = match chan.get_mut().send_commitment(&self.logger) {
2104                                                                 Ok(res) => res,
2105                                                                 Err(e) => {
2106                                                                         // We surely failed send_commitment due to bad keys, in that case
2107                                                                         // close channel and then send error message to peer.
2108                                                                         let counterparty_node_id = chan.get().get_counterparty_node_id();
2109                                                                         let err: Result<(), _>  = match e {
2110                                                                                 ChannelError::Ignore(_) => {
2111                                                                                         panic!("Stated return value requirements in send_commitment() were not met");
2112                                                                                 },
2113                                                                                 ChannelError::Close(msg) => {
2114                                                                                         log_trace!(self.logger, "Closing channel {} due to Close-required error: {}", log_bytes!(chan.key()[..]), msg);
2115                                                                                         let (channel_id, mut channel) = chan.remove_entry();
2116                                                                                         if let Some(short_id) = channel.get_short_channel_id() {
2117                                                                                                 channel_state.short_to_id.remove(&short_id);
2118                                                                                         }
2119                                                                                         Err(MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, channel.force_shutdown(true), self.get_channel_update(&channel).ok()))
2120                                                                                 },
2121                                                                                 ChannelError::CloseDelayBroadcast(_) => { panic!("Wait is only generated on receipt of channel_reestablish, which is handled by try_chan_entry, we don't bother to support it here"); }
2122                                                                         };
2123                                                                         handle_errors.push((counterparty_node_id, err));
2124                                                                         continue;
2125                                                                 }
2126                                                         };
2127                                                         if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
2128                                                                 handle_errors.push((chan.get().get_counterparty_node_id(), handle_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, true)));
2129                                                                 continue;
2130                                                         }
2131                                                         channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
2132                                                                 node_id: chan.get().get_counterparty_node_id(),
2133                                                                 updates: msgs::CommitmentUpdate {
2134                                                                         update_add_htlcs: add_htlc_msgs,
2135                                                                         update_fulfill_htlcs: Vec::new(),
2136                                                                         update_fail_htlcs: fail_htlc_msgs,
2137                                                                         update_fail_malformed_htlcs: Vec::new(),
2138                                                                         update_fee: None,
2139                                                                         commitment_signed: commitment_msg,
2140                                                                 },
2141                                                         });
2142                                                 }
2143                                         } else {
2144                                                 unreachable!();
2145                                         }
2146                                 } else {
2147                                         for forward_info in pending_forwards.drain(..) {
2148                                                 match forward_info {
2149                                                         HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info: PendingHTLCInfo {
2150                                                                         routing: PendingHTLCRouting::Receive { payment_data, incoming_cltv_expiry },
2151                                                                         incoming_shared_secret, payment_hash, amt_to_forward, .. },
2152                                                                         prev_funding_outpoint } => {
2153                                                                 let claimable_htlc = ClaimableHTLC {
2154                                                                         prev_hop: HTLCPreviousHopData {
2155                                                                                 short_channel_id: prev_short_channel_id,
2156                                                                                 outpoint: prev_funding_outpoint,
2157                                                                                 htlc_id: prev_htlc_id,
2158                                                                                 incoming_packet_shared_secret: incoming_shared_secret,
2159                                                                         },
2160                                                                         value: amt_to_forward,
2161                                                                         payment_data: payment_data.clone(),
2162                                                                         cltv_expiry: incoming_cltv_expiry,
2163                                                                 };
2164
2165                                                                 macro_rules! fail_htlc {
2166                                                                         ($htlc: expr) => {
2167                                                                                 let mut htlc_msat_height_data = byte_utils::be64_to_array($htlc.value).to_vec();
2168                                                                                 htlc_msat_height_data.extend_from_slice(
2169                                                                                         &byte_utils::be32_to_array(self.best_block.read().unwrap().height()),
2170                                                                                 );
2171                                                                                 failed_forwards.push((HTLCSource::PreviousHopData(HTLCPreviousHopData {
2172                                                                                                 short_channel_id: $htlc.prev_hop.short_channel_id,
2173                                                                                                 outpoint: prev_funding_outpoint,
2174                                                                                                 htlc_id: $htlc.prev_hop.htlc_id,
2175                                                                                                 incoming_packet_shared_secret: $htlc.prev_hop.incoming_packet_shared_secret,
2176                                                                                         }), payment_hash,
2177                                                                                         HTLCFailReason::Reason { failure_code: 0x4000 | 15, data: htlc_msat_height_data }
2178                                                                                 ));
2179                                                                         }
2180                                                                 }
2181
2182                                                                 // Check that the payment hash and secret are known. Note that we
2183                                                                 // MUST take care to handle the "unknown payment hash" and
2184                                                                 // "incorrect payment secret" cases here identically or we'd expose
2185                                                                 // that we are the ultimate recipient of the given payment hash.
2186                                                                 // Further, we must not expose whether we have any other HTLCs
2187                                                                 // associated with the same payment_hash pending or not.
2188                                                                 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
2189                                                                 match payment_secrets.entry(payment_hash) {
2190                                                                         hash_map::Entry::Vacant(_) => {
2191                                                                                 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as we didn't have a corresponding inbound payment.", log_bytes!(payment_hash.0));
2192                                                                                 fail_htlc!(claimable_htlc);
2193                                                                         },
2194                                                                         hash_map::Entry::Occupied(inbound_payment) => {
2195                                                                                 if inbound_payment.get().payment_secret != payment_data.payment_secret {
2196                                                                                         log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our expected payment secret.", log_bytes!(payment_hash.0));
2197                                                                                         fail_htlc!(claimable_htlc);
2198                                                                                 } else if inbound_payment.get().min_value_msat.is_some() && payment_data.total_msat < inbound_payment.get().min_value_msat.unwrap() {
2199                                                                                         log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our minimum value (had {}, needed {}).",
2200                                                                                                 log_bytes!(payment_hash.0), payment_data.total_msat, inbound_payment.get().min_value_msat.unwrap());
2201                                                                                         fail_htlc!(claimable_htlc);
2202                                                                                 } else {
2203                                                                                         let mut total_value = 0;
2204                                                                                         let htlcs = channel_state.claimable_htlcs.entry(payment_hash)
2205                                                                                                 .or_insert(Vec::new());
2206                                                                                         htlcs.push(claimable_htlc);
2207                                                                                         for htlc in htlcs.iter() {
2208                                                                                                 total_value += htlc.value;
2209                                                                                                 if htlc.payment_data.total_msat != payment_data.total_msat {
2210                                                                                                         log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the HTLCs had inconsistent total values (eg {} and {})",
2211                                                                                                                 log_bytes!(payment_hash.0), payment_data.total_msat, htlc.payment_data.total_msat);
2212                                                                                                         total_value = msgs::MAX_VALUE_MSAT;
2213                                                                                                 }
2214                                                                                                 if total_value >= msgs::MAX_VALUE_MSAT { break; }
2215                                                                                         }
2216                                                                                         if total_value >= msgs::MAX_VALUE_MSAT || total_value > payment_data.total_msat {
2217                                                                                                 log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the total value {} ran over expected value {} (or HTLCs were inconsistent)",
2218                                                                                                         log_bytes!(payment_hash.0), total_value, payment_data.total_msat);
2219                                                                                                 for htlc in htlcs.iter() {
2220                                                                                                         fail_htlc!(htlc);
2221                                                                                                 }
2222                                                                                         } else if total_value == payment_data.total_msat {
2223                                                                                                 new_events.push(events::Event::PaymentReceived {
2224                                                                                                         payment_hash,
2225                                                                                                         payment_preimage: inbound_payment.get().payment_preimage,
2226                                                                                                         payment_secret: payment_data.payment_secret,
2227                                                                                                         amt: total_value,
2228                                                                                                         user_payment_id: inbound_payment.get().user_payment_id,
2229                                                                                                 });
2230                                                                                                 // Only ever generate at most one PaymentReceived
2231                                                                                                 // per registered payment_hash, even if it isn't
2232                                                                                                 // claimed.
2233                                                                                                 inbound_payment.remove_entry();
2234                                                                                         } else {
2235                                                                                                 // Nothing to do - we haven't reached the total
2236                                                                                                 // payment value yet, wait until we receive more
2237                                                                                                 // MPP parts.
2238                                                                                         }
2239                                                                                 }
2240                                                                         },
2241                                                                 };
2242                                                         },
2243                                                         HTLCForwardInfo::AddHTLC { .. } => {
2244                                                                 panic!("short_channel_id == 0 should imply any pending_forward entries are of type Receive");
2245                                                         },
2246                                                         HTLCForwardInfo::FailHTLC { .. } => {
2247                                                                 panic!("Got pending fail of our own HTLC");
2248                                                         }
2249                                                 }
2250                                         }
2251                                 }
2252                         }
2253                 }
2254
2255                 for (htlc_source, payment_hash, failure_reason) in failed_forwards.drain(..) {
2256                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source, &payment_hash, failure_reason);
2257                 }
2258
2259                 for (counterparty_node_id, err) in handle_errors.drain(..) {
2260                         let _ = handle_error!(self, err, counterparty_node_id);
2261                 }
2262
2263                 if new_events.is_empty() { return }
2264                 let mut events = self.pending_events.lock().unwrap();
2265                 events.append(&mut new_events);
2266         }
2267
2268         /// Free the background events, generally called from timer_tick_occurred.
2269         ///
2270         /// Exposed for testing to allow us to process events quickly without generating accidental
2271         /// BroadcastChannelUpdate events in timer_tick_occurred.
2272         ///
2273         /// Expects the caller to have a total_consistency_lock read lock.
2274         fn process_background_events(&self) -> bool {
2275                 let mut background_events = Vec::new();
2276                 mem::swap(&mut *self.pending_background_events.lock().unwrap(), &mut background_events);
2277                 if background_events.is_empty() {
2278                         return false;
2279                 }
2280
2281                 for event in background_events.drain(..) {
2282                         match event {
2283                                 BackgroundEvent::ClosingMonitorUpdate((funding_txo, update)) => {
2284                                         // The channel has already been closed, so no use bothering to care about the
2285                                         // monitor updating completing.
2286                                         let _ = self.chain_monitor.update_channel(funding_txo, update);
2287                                 },
2288                         }
2289                 }
2290                 true
2291         }
2292
2293         #[cfg(any(test, feature = "_test_utils"))]
2294         pub(crate) fn test_process_background_events(&self) {
2295                 self.process_background_events();
2296         }
2297
2298         /// If a peer is disconnected we mark any channels with that peer as 'disabled'.
2299         /// After some time, if channels are still disabled we need to broadcast a ChannelUpdate
2300         /// to inform the network about the uselessness of these channels.
2301         ///
2302         /// This method handles all the details, and must be called roughly once per minute.
2303         ///
2304         /// Note that in some rare cases this may generate a `chain::Watch::update_channel` call.
2305         pub fn timer_tick_occurred(&self) {
2306                 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
2307                         let mut should_persist = NotifyOption::SkipPersist;
2308                         if self.process_background_events() { should_persist = NotifyOption::DoPersist; }
2309
2310                         let mut channel_state_lock = self.channel_state.lock().unwrap();
2311                         let channel_state = &mut *channel_state_lock;
2312                         for (_, chan) in channel_state.by_id.iter_mut() {
2313                                 match chan.channel_update_status() {
2314                                         ChannelUpdateStatus::Enabled if !chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::DisabledStaged),
2315                                         ChannelUpdateStatus::Disabled if chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::EnabledStaged),
2316                                         ChannelUpdateStatus::DisabledStaged if chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::Enabled),
2317                                         ChannelUpdateStatus::EnabledStaged if !chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::Disabled),
2318                                         ChannelUpdateStatus::DisabledStaged if !chan.is_live() => {
2319                                                 if let Ok(update) = self.get_channel_update(&chan) {
2320                                                         channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2321                                                                 msg: update
2322                                                         });
2323                                                 }
2324                                                 should_persist = NotifyOption::DoPersist;
2325                                                 chan.set_channel_update_status(ChannelUpdateStatus::Disabled);
2326                                         },
2327                                         ChannelUpdateStatus::EnabledStaged if chan.is_live() => {
2328                                                 if let Ok(update) = self.get_channel_update(&chan) {
2329                                                         channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2330                                                                 msg: update
2331                                                         });
2332                                                 }
2333                                                 should_persist = NotifyOption::DoPersist;
2334                                                 chan.set_channel_update_status(ChannelUpdateStatus::Enabled);
2335                                         },
2336                                         _ => {},
2337                                 }
2338                         }
2339
2340                         should_persist
2341                 });
2342         }
2343
2344         /// Indicates that the preimage for payment_hash is unknown or the received amount is incorrect
2345         /// after a PaymentReceived event, failing the HTLC back to its origin and freeing resources
2346         /// along the path (including in our own channel on which we received it).
2347         /// Returns false if no payment was found to fail backwards, true if the process of failing the
2348         /// HTLC backwards has been started.
2349         pub fn fail_htlc_backwards(&self, payment_hash: &PaymentHash) -> bool {
2350                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2351
2352                 let mut channel_state = Some(self.channel_state.lock().unwrap());
2353                 let removed_source = channel_state.as_mut().unwrap().claimable_htlcs.remove(payment_hash);
2354                 if let Some(mut sources) = removed_source {
2355                         for htlc in sources.drain(..) {
2356                                 if channel_state.is_none() { channel_state = Some(self.channel_state.lock().unwrap()); }
2357                                 let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec();
2358                                 htlc_msat_height_data.extend_from_slice(&byte_utils::be32_to_array(
2359                                                 self.best_block.read().unwrap().height()));
2360                                 self.fail_htlc_backwards_internal(channel_state.take().unwrap(),
2361                                                 HTLCSource::PreviousHopData(htlc.prev_hop), payment_hash,
2362                                                 HTLCFailReason::Reason { failure_code: 0x4000 | 15, data: htlc_msat_height_data });
2363                         }
2364                         true
2365                 } else { false }
2366         }
2367
2368         // Fail a list of HTLCs that were just freed from the holding cell. The HTLCs need to be
2369         // failed backwards or, if they were one of our outgoing HTLCs, then their failure needs to
2370         // be surfaced to the user.
2371         fn fail_holding_cell_htlcs(&self, mut htlcs_to_fail: Vec<(HTLCSource, PaymentHash)>, channel_id: [u8; 32]) {
2372                 for (htlc_src, payment_hash) in htlcs_to_fail.drain(..) {
2373                         match htlc_src {
2374                                 HTLCSource::PreviousHopData(HTLCPreviousHopData { .. }) => {
2375                                         let (failure_code, onion_failure_data) =
2376                                                 match self.channel_state.lock().unwrap().by_id.entry(channel_id) {
2377                                                         hash_map::Entry::Occupied(chan_entry) => {
2378                                                                 if let Ok(upd) = self.get_channel_update(&chan_entry.get()) {
2379                                                                         (0x1000|7, upd.encode_with_len())
2380                                                                 } else {
2381                                                                         (0x4000|10, Vec::new())
2382                                                                 }
2383                                                         },
2384                                                         hash_map::Entry::Vacant(_) => (0x4000|10, Vec::new())
2385                                                 };
2386                                         let channel_state = self.channel_state.lock().unwrap();
2387                                         self.fail_htlc_backwards_internal(channel_state,
2388                                                 htlc_src, &payment_hash, HTLCFailReason::Reason { failure_code, data: onion_failure_data});
2389                                 },
2390                                 HTLCSource::OutboundRoute { session_priv, .. } => {
2391                                         if {
2392                                                 let mut session_priv_bytes = [0; 32];
2393                                                 session_priv_bytes.copy_from_slice(&session_priv[..]);
2394                                                 self.pending_outbound_payments.lock().unwrap().remove(&session_priv_bytes)
2395                                         } {
2396                                                 self.pending_events.lock().unwrap().push(
2397                                                         events::Event::PaymentFailed {
2398                                                                 payment_hash,
2399                                                                 rejected_by_dest: false,
2400 #[cfg(test)]
2401                                                                 error_code: None,
2402 #[cfg(test)]
2403                                                                 error_data: None,
2404                                                         }
2405                                                 )
2406                                         } else {
2407                                                 log_trace!(self.logger, "Received duplicative fail for HTLC with payment_hash {}", log_bytes!(payment_hash.0));
2408                                         }
2409                                 },
2410                         };
2411                 }
2412         }
2413
2414         /// Fails an HTLC backwards to the sender of it to us.
2415         /// Note that while we take a channel_state lock as input, we do *not* assume consistency here.
2416         /// There are several callsites that do stupid things like loop over a list of payment_hashes
2417         /// to fail and take the channel_state lock for each iteration (as we take ownership and may
2418         /// drop it). In other words, no assumptions are made that entries in claimable_htlcs point to
2419         /// still-available channels.
2420         fn fail_htlc_backwards_internal(&self, mut channel_state_lock: MutexGuard<ChannelHolder<Signer>>, source: HTLCSource, payment_hash: &PaymentHash, onion_error: HTLCFailReason) {
2421                 //TODO: There is a timing attack here where if a node fails an HTLC back to us they can
2422                 //identify whether we sent it or not based on the (I presume) very different runtime
2423                 //between the branches here. We should make this async and move it into the forward HTLCs
2424                 //timer handling.
2425
2426                 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
2427                 // from block_connected which may run during initialization prior to the chain_monitor
2428                 // being fully configured. See the docs for `ChannelManagerReadArgs` for more.
2429                 match source {
2430                         HTLCSource::OutboundRoute { ref path, session_priv, .. } => {
2431                                 if {
2432                                         let mut session_priv_bytes = [0; 32];
2433                                         session_priv_bytes.copy_from_slice(&session_priv[..]);
2434                                         !self.pending_outbound_payments.lock().unwrap().remove(&session_priv_bytes)
2435                                 } {
2436                                         log_trace!(self.logger, "Received duplicative fail for HTLC with payment_hash {}", log_bytes!(payment_hash.0));
2437                                         return;
2438                                 }
2439                                 log_trace!(self.logger, "Failing outbound payment HTLC with payment_hash {}", log_bytes!(payment_hash.0));
2440                                 mem::drop(channel_state_lock);
2441                                 match &onion_error {
2442                                         &HTLCFailReason::LightningError { ref err } => {
2443 #[cfg(test)]
2444                                                 let (channel_update, payment_retryable, onion_error_code, onion_error_data) = onion_utils::process_onion_failure(&self.secp_ctx, &self.logger, &source, err.data.clone());
2445 #[cfg(not(test))]
2446                                                 let (channel_update, payment_retryable, _, _) = onion_utils::process_onion_failure(&self.secp_ctx, &self.logger, &source, err.data.clone());
2447                                                 // TODO: If we decided to blame ourselves (or one of our channels) in
2448                                                 // process_onion_failure we should close that channel as it implies our
2449                                                 // next-hop is needlessly blaming us!
2450                                                 if let Some(update) = channel_update {
2451                                                         self.channel_state.lock().unwrap().pending_msg_events.push(
2452                                                                 events::MessageSendEvent::PaymentFailureNetworkUpdate {
2453                                                                         update,
2454                                                                 }
2455                                                         );
2456                                                 }
2457                                                 self.pending_events.lock().unwrap().push(
2458                                                         events::Event::PaymentFailed {
2459                                                                 payment_hash: payment_hash.clone(),
2460                                                                 rejected_by_dest: !payment_retryable,
2461 #[cfg(test)]
2462                                                                 error_code: onion_error_code,
2463 #[cfg(test)]
2464                                                                 error_data: onion_error_data
2465                                                         }
2466                                                 );
2467                                         },
2468                                         &HTLCFailReason::Reason {
2469 #[cfg(test)]
2470                                                         ref failure_code,
2471 #[cfg(test)]
2472                                                         ref data,
2473                                                         .. } => {
2474                                                 // we get a fail_malformed_htlc from the first hop
2475                                                 // TODO: We'd like to generate a PaymentFailureNetworkUpdate for temporary
2476                                                 // failures here, but that would be insufficient as get_route
2477                                                 // generally ignores its view of our own channels as we provide them via
2478                                                 // ChannelDetails.
2479                                                 // TODO: For non-temporary failures, we really should be closing the
2480                                                 // channel here as we apparently can't relay through them anyway.
2481                                                 self.pending_events.lock().unwrap().push(
2482                                                         events::Event::PaymentFailed {
2483                                                                 payment_hash: payment_hash.clone(),
2484                                                                 rejected_by_dest: path.len() == 1,
2485 #[cfg(test)]
2486                                                                 error_code: Some(*failure_code),
2487 #[cfg(test)]
2488                                                                 error_data: Some(data.clone()),
2489                                                         }
2490                                                 );
2491                                         }
2492                                 }
2493                         },
2494                         HTLCSource::PreviousHopData(HTLCPreviousHopData { short_channel_id, htlc_id, incoming_packet_shared_secret, .. }) => {
2495                                 let err_packet = match onion_error {
2496                                         HTLCFailReason::Reason { failure_code, data } => {
2497                                                 log_trace!(self.logger, "Failing HTLC with payment_hash {} backwards from us with code {}", log_bytes!(payment_hash.0), failure_code);
2498                                                 let packet = onion_utils::build_failure_packet(&incoming_packet_shared_secret, failure_code, &data[..]).encode();
2499                                                 onion_utils::encrypt_failure_packet(&incoming_packet_shared_secret, &packet)
2500                                         },
2501                                         HTLCFailReason::LightningError { err } => {
2502                                                 log_trace!(self.logger, "Failing HTLC with payment_hash {} backwards with pre-built LightningError", log_bytes!(payment_hash.0));
2503                                                 onion_utils::encrypt_failure_packet(&incoming_packet_shared_secret, &err.data)
2504                                         }
2505                                 };
2506
2507                                 let mut forward_event = None;
2508                                 if channel_state_lock.forward_htlcs.is_empty() {
2509                                         forward_event = Some(Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS));
2510                                 }
2511                                 match channel_state_lock.forward_htlcs.entry(short_channel_id) {
2512                                         hash_map::Entry::Occupied(mut entry) => {
2513                                                 entry.get_mut().push(HTLCForwardInfo::FailHTLC { htlc_id, err_packet });
2514                                         },
2515                                         hash_map::Entry::Vacant(entry) => {
2516                                                 entry.insert(vec!(HTLCForwardInfo::FailHTLC { htlc_id, err_packet }));
2517                                         }
2518                                 }
2519                                 mem::drop(channel_state_lock);
2520                                 if let Some(time) = forward_event {
2521                                         let mut pending_events = self.pending_events.lock().unwrap();
2522                                         pending_events.push(events::Event::PendingHTLCsForwardable {
2523                                                 time_forwardable: time
2524                                         });
2525                                 }
2526                         },
2527                 }
2528         }
2529
2530         /// Provides a payment preimage in response to a PaymentReceived event, returning true and
2531         /// generating message events for the net layer to claim the payment, if possible. Thus, you
2532         /// should probably kick the net layer to go send messages if this returns true!
2533         ///
2534         /// Note that if you did not set an `amount_msat` when calling [`create_inbound_payment`] or
2535         /// [`create_inbound_payment_for_hash`] you must check that the amount in the `PaymentReceived`
2536         /// event matches your expectation. If you fail to do so and call this method, you may provide
2537         /// the sender "proof-of-payment" when they did not fulfill the full expected payment.
2538         ///
2539         /// May panic if called except in response to a PaymentReceived event.
2540         ///
2541         /// [`create_inbound_payment`]: Self::create_inbound_payment
2542         /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
2543         pub fn claim_funds(&self, payment_preimage: PaymentPreimage) -> bool {
2544                 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
2545
2546                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2547
2548                 let mut channel_state = Some(self.channel_state.lock().unwrap());
2549                 let removed_source = channel_state.as_mut().unwrap().claimable_htlcs.remove(&payment_hash);
2550                 if let Some(mut sources) = removed_source {
2551                         assert!(!sources.is_empty());
2552
2553                         // If we are claiming an MPP payment, we have to take special care to ensure that each
2554                         // channel exists before claiming all of the payments (inside one lock).
2555                         // Note that channel existance is sufficient as we should always get a monitor update
2556                         // which will take care of the real HTLC claim enforcement.
2557                         //
2558                         // If we find an HTLC which we would need to claim but for which we do not have a
2559                         // channel, we will fail all parts of the MPP payment. While we could wait and see if
2560                         // the sender retries the already-failed path(s), it should be a pretty rare case where
2561                         // we got all the HTLCs and then a channel closed while we were waiting for the user to
2562                         // provide the preimage, so worrying too much about the optimal handling isn't worth
2563                         // it.
2564                         let mut valid_mpp = true;
2565                         for htlc in sources.iter() {
2566                                 if let None = channel_state.as_ref().unwrap().short_to_id.get(&htlc.prev_hop.short_channel_id) {
2567                                         valid_mpp = false;
2568                                         break;
2569                                 }
2570                         }
2571
2572                         let mut errs = Vec::new();
2573                         let mut claimed_any_htlcs = false;
2574                         for htlc in sources.drain(..) {
2575                                 if !valid_mpp {
2576                                         if channel_state.is_none() { channel_state = Some(self.channel_state.lock().unwrap()); }
2577                                         let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec();
2578                                         htlc_msat_height_data.extend_from_slice(&byte_utils::be32_to_array(
2579                                                         self.best_block.read().unwrap().height()));
2580                                         self.fail_htlc_backwards_internal(channel_state.take().unwrap(),
2581                                                                          HTLCSource::PreviousHopData(htlc.prev_hop), &payment_hash,
2582                                                                          HTLCFailReason::Reason { failure_code: 0x4000|15, data: htlc_msat_height_data });
2583                                 } else {
2584                                         match self.claim_funds_from_hop(channel_state.as_mut().unwrap(), htlc.prev_hop, payment_preimage) {
2585                                                 Err(Some(e)) => {
2586                                                         if let msgs::ErrorAction::IgnoreError = e.1.err.action {
2587                                                                 // We got a temporary failure updating monitor, but will claim the
2588                                                                 // HTLC when the monitor updating is restored (or on chain).
2589                                                                 log_error!(self.logger, "Temporary failure claiming HTLC, treating as success: {}", e.1.err.err);
2590                                                                 claimed_any_htlcs = true;
2591                                                         } else { errs.push(e); }
2592                                                 },
2593                                                 Err(None) => unreachable!("We already checked for channel existence, we can't fail here!"),
2594                                                 Ok(()) => claimed_any_htlcs = true,
2595                                         }
2596                                 }
2597                         }
2598
2599                         // Now that we've done the entire above loop in one lock, we can handle any errors
2600                         // which were generated.
2601                         channel_state.take();
2602
2603                         for (counterparty_node_id, err) in errs.drain(..) {
2604                                 let res: Result<(), _> = Err(err);
2605                                 let _ = handle_error!(self, res, counterparty_node_id);
2606                         }
2607
2608                         claimed_any_htlcs
2609                 } else { false }
2610         }
2611
2612         fn claim_funds_from_hop(&self, channel_state_lock: &mut MutexGuard<ChannelHolder<Signer>>, prev_hop: HTLCPreviousHopData, payment_preimage: PaymentPreimage) -> Result<(), Option<(PublicKey, MsgHandleErrInternal)>> {
2613                 //TODO: Delay the claimed_funds relaying just like we do outbound relay!
2614                 let channel_state = &mut **channel_state_lock;
2615                 let chan_id = match channel_state.short_to_id.get(&prev_hop.short_channel_id) {
2616                         Some(chan_id) => chan_id.clone(),
2617                         None => {
2618                                 return Err(None)
2619                         }
2620                 };
2621
2622                 if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(chan_id) {
2623                         let was_frozen_for_monitor = chan.get().is_awaiting_monitor_update();
2624                         match chan.get_mut().get_update_fulfill_htlc_and_commit(prev_hop.htlc_id, payment_preimage, &self.logger) {
2625                                 Ok((msgs, monitor_option)) => {
2626                                         if let Some(monitor_update) = monitor_option {
2627                                                 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
2628                                                         if was_frozen_for_monitor {
2629                                                                 assert!(msgs.is_none());
2630                                                         } else {
2631                                                                 return Err(Some((chan.get().get_counterparty_node_id(), handle_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, msgs.is_some()).unwrap_err())));
2632                                                         }
2633                                                 }
2634                                         }
2635                                         if let Some((msg, commitment_signed)) = msgs {
2636                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
2637                                                         node_id: chan.get().get_counterparty_node_id(),
2638                                                         updates: msgs::CommitmentUpdate {
2639                                                                 update_add_htlcs: Vec::new(),
2640                                                                 update_fulfill_htlcs: vec![msg],
2641                                                                 update_fail_htlcs: Vec::new(),
2642                                                                 update_fail_malformed_htlcs: Vec::new(),
2643                                                                 update_fee: None,
2644                                                                 commitment_signed,
2645                                                         }
2646                                                 });
2647                                         }
2648                                         return Ok(())
2649                                 },
2650                                 Err(e) => {
2651                                         // TODO: Do something with e?
2652                                         // This should only occur if we are claiming an HTLC at the same time as the
2653                                         // HTLC is being failed (eg because a block is being connected and this caused
2654                                         // an HTLC to time out). This should, of course, only occur if the user is the
2655                                         // one doing the claiming (as it being a part of a peer claim would imply we're
2656                                         // about to lose funds) and only if the lock in claim_funds was dropped as a
2657                                         // previous HTLC was failed (thus not for an MPP payment).
2658                                         debug_assert!(false, "This shouldn't be reachable except in absurdly rare cases between monitor updates and HTLC timeouts: {:?}", e);
2659                                         return Err(None)
2660                                 },
2661                         }
2662                 } else { unreachable!(); }
2663         }
2664
2665         fn claim_funds_internal(&self, mut channel_state_lock: MutexGuard<ChannelHolder<Signer>>, source: HTLCSource, payment_preimage: PaymentPreimage) {
2666                 match source {
2667                         HTLCSource::OutboundRoute { session_priv, .. } => {
2668                                 mem::drop(channel_state_lock);
2669                                 if {
2670                                         let mut session_priv_bytes = [0; 32];
2671                                         session_priv_bytes.copy_from_slice(&session_priv[..]);
2672                                         self.pending_outbound_payments.lock().unwrap().remove(&session_priv_bytes)
2673                                 } {
2674                                         let mut pending_events = self.pending_events.lock().unwrap();
2675                                         pending_events.push(events::Event::PaymentSent {
2676                                                 payment_preimage
2677                                         });
2678                                 } else {
2679                                         log_trace!(self.logger, "Received duplicative fulfill for HTLC with payment_preimage {}", log_bytes!(payment_preimage.0));
2680                                 }
2681                         },
2682                         HTLCSource::PreviousHopData(hop_data) => {
2683                                 let prev_outpoint = hop_data.outpoint;
2684                                 if let Err((counterparty_node_id, err)) = match self.claim_funds_from_hop(&mut channel_state_lock, hop_data, payment_preimage) {
2685                                         Ok(()) => Ok(()),
2686                                         Err(None) => {
2687                                                 let preimage_update = ChannelMonitorUpdate {
2688                                                         update_id: CLOSED_CHANNEL_UPDATE_ID,
2689                                                         updates: vec![ChannelMonitorUpdateStep::PaymentPreimage {
2690                                                                 payment_preimage: payment_preimage.clone(),
2691                                                         }],
2692                                                 };
2693                                                 // We update the ChannelMonitor on the backward link, after
2694                                                 // receiving an offchain preimage event from the forward link (the
2695                                                 // event being update_fulfill_htlc).
2696                                                 if let Err(e) = self.chain_monitor.update_channel(prev_outpoint, preimage_update) {
2697                                                         log_error!(self.logger, "Critical error: failed to update channel monitor with preimage {:?}: {:?}",
2698                                                                    payment_preimage, e);
2699                                                 }
2700                                                 Ok(())
2701                                         },
2702                                         Err(Some(res)) => Err(res),
2703                                 } {
2704                                         mem::drop(channel_state_lock);
2705                                         let res: Result<(), _> = Err(err);
2706                                         let _ = handle_error!(self, res, counterparty_node_id);
2707                                 }
2708                         },
2709                 }
2710         }
2711
2712         /// Gets the node_id held by this ChannelManager
2713         pub fn get_our_node_id(&self) -> PublicKey {
2714                 self.our_network_pubkey.clone()
2715         }
2716
2717         /// Restores a single, given channel to normal operation after a
2718         /// ChannelMonitorUpdateErr::TemporaryFailure was returned from a channel monitor update
2719         /// operation.
2720         ///
2721         /// All ChannelMonitor updates up to and including highest_applied_update_id must have been
2722         /// fully committed in every copy of the given channels' ChannelMonitors.
2723         ///
2724         /// Note that there is no effect to calling with a highest_applied_update_id other than the
2725         /// current latest ChannelMonitorUpdate and one call to this function after multiple
2726         /// ChannelMonitorUpdateErr::TemporaryFailures is fine. The highest_applied_update_id field
2727         /// exists largely only to prevent races between this and concurrent update_monitor calls.
2728         ///
2729         /// Thus, the anticipated use is, at a high level:
2730         ///  1) You register a chain::Watch with this ChannelManager,
2731         ///  2) it stores each update to disk, and begins updating any remote (eg watchtower) copies of
2732         ///     said ChannelMonitors as it can, returning ChannelMonitorUpdateErr::TemporaryFailures
2733         ///     any time it cannot do so instantly,
2734         ///  3) update(s) are applied to each remote copy of a ChannelMonitor,
2735         ///  4) once all remote copies are updated, you call this function with the update_id that
2736         ///     completed, and once it is the latest the Channel will be re-enabled.
2737         pub fn channel_monitor_updated(&self, funding_txo: &OutPoint, highest_applied_update_id: u64) {
2738                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2739
2740                 let (mut pending_failures, chan_restoration_res) = {
2741                         let mut channel_lock = self.channel_state.lock().unwrap();
2742                         let channel_state = &mut *channel_lock;
2743                         let mut channel = match channel_state.by_id.entry(funding_txo.to_channel_id()) {
2744                                 hash_map::Entry::Occupied(chan) => chan,
2745                                 hash_map::Entry::Vacant(_) => return,
2746                         };
2747                         if !channel.get().is_awaiting_monitor_update() || channel.get().get_latest_monitor_update_id() != highest_applied_update_id {
2748                                 return;
2749                         }
2750
2751                         let (raa, commitment_update, order, pending_forwards, pending_failures, funding_broadcastable, funding_locked) = channel.get_mut().monitor_updating_restored(&self.logger);
2752                         (pending_failures, handle_chan_restoration_locked!(self, channel_lock, channel_state, channel, raa, commitment_update, order, None, pending_forwards, funding_broadcastable, funding_locked))
2753                 };
2754                 post_handle_chan_restoration!(self, chan_restoration_res);
2755                 for failure in pending_failures.drain(..) {
2756                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), failure.0, &failure.1, failure.2);
2757                 }
2758         }
2759
2760         fn internal_open_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::OpenChannel) -> Result<(), MsgHandleErrInternal> {
2761                 if msg.chain_hash != self.genesis_hash {
2762                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Unknown genesis block hash".to_owned(), msg.temporary_channel_id.clone()));
2763                 }
2764
2765                 let channel = Channel::new_from_req(&self.fee_estimator, &self.keys_manager, counterparty_node_id.clone(), their_features, msg, 0, &self.default_configuration)
2766                         .map_err(|e| MsgHandleErrInternal::from_chan_no_close(e, msg.temporary_channel_id))?;
2767                 let mut channel_state_lock = self.channel_state.lock().unwrap();
2768                 let channel_state = &mut *channel_state_lock;
2769                 match channel_state.by_id.entry(channel.channel_id()) {
2770                         hash_map::Entry::Occupied(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("temporary_channel_id collision!".to_owned(), msg.temporary_channel_id.clone())),
2771                         hash_map::Entry::Vacant(entry) => {
2772                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
2773                                         node_id: counterparty_node_id.clone(),
2774                                         msg: channel.get_accept_channel(),
2775                                 });
2776                                 entry.insert(channel);
2777                         }
2778                 }
2779                 Ok(())
2780         }
2781
2782         fn internal_accept_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::AcceptChannel) -> Result<(), MsgHandleErrInternal> {
2783                 let (value, output_script, user_id) = {
2784                         let mut channel_lock = self.channel_state.lock().unwrap();
2785                         let channel_state = &mut *channel_lock;
2786                         match channel_state.by_id.entry(msg.temporary_channel_id) {
2787                                 hash_map::Entry::Occupied(mut chan) => {
2788                                         if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2789                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.temporary_channel_id));
2790                                         }
2791                                         try_chan_entry!(self, chan.get_mut().accept_channel(&msg, &self.default_configuration, their_features), channel_state, chan);
2792                                         (chan.get().get_value_satoshis(), chan.get().get_funding_redeemscript().to_v0_p2wsh(), chan.get().get_user_id())
2793                                 },
2794                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.temporary_channel_id))
2795                         }
2796                 };
2797                 let mut pending_events = self.pending_events.lock().unwrap();
2798                 pending_events.push(events::Event::FundingGenerationReady {
2799                         temporary_channel_id: msg.temporary_channel_id,
2800                         channel_value_satoshis: value,
2801                         output_script,
2802                         user_channel_id: user_id,
2803                 });
2804                 Ok(())
2805         }
2806
2807         fn internal_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) -> Result<(), MsgHandleErrInternal> {
2808                 let ((funding_msg, monitor), mut chan) = {
2809                         let best_block = *self.best_block.read().unwrap();
2810                         let mut channel_lock = self.channel_state.lock().unwrap();
2811                         let channel_state = &mut *channel_lock;
2812                         match channel_state.by_id.entry(msg.temporary_channel_id.clone()) {
2813                                 hash_map::Entry::Occupied(mut chan) => {
2814                                         if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2815                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.temporary_channel_id));
2816                                         }
2817                                         (try_chan_entry!(self, chan.get_mut().funding_created(msg, best_block, &self.logger), channel_state, chan), chan.remove())
2818                                 },
2819                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.temporary_channel_id))
2820                         }
2821                 };
2822                 // Because we have exclusive ownership of the channel here we can release the channel_state
2823                 // lock before watch_channel
2824                 if let Err(e) = self.chain_monitor.watch_channel(monitor.get_funding_txo().0, monitor) {
2825                         match e {
2826                                 ChannelMonitorUpdateErr::PermanentFailure => {
2827                                         // Note that we reply with the new channel_id in error messages if we gave up on the
2828                                         // channel, not the temporary_channel_id. This is compatible with ourselves, but the
2829                                         // spec is somewhat ambiguous here. Not a huge deal since we'll send error messages for
2830                                         // any messages referencing a previously-closed channel anyway.
2831                                         // We do not do a force-close here as that would generate a monitor update for
2832                                         // a monitor that we didn't manage to store (and that we don't care about - we
2833                                         // don't respond with the funding_signed so the channel can never go on chain).
2834                                         let (_monitor_update, failed_htlcs) = chan.force_shutdown(true);
2835                                         assert!(failed_htlcs.is_empty());
2836                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("ChannelMonitor storage failure".to_owned(), funding_msg.channel_id));
2837                                 },
2838                                 ChannelMonitorUpdateErr::TemporaryFailure => {
2839                                         // There's no problem signing a counterparty's funding transaction if our monitor
2840                                         // hasn't persisted to disk yet - we can't lose money on a transaction that we haven't
2841                                         // accepted payment from yet. We do, however, need to wait to send our funding_locked
2842                                         // until we have persisted our monitor.
2843                                         chan.monitor_update_failed(false, false, Vec::new(), Vec::new());
2844                                 },
2845                         }
2846                 }
2847                 let mut channel_state_lock = self.channel_state.lock().unwrap();
2848                 let channel_state = &mut *channel_state_lock;
2849                 match channel_state.by_id.entry(funding_msg.channel_id) {
2850                         hash_map::Entry::Occupied(_) => {
2851                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Already had channel with the new channel_id".to_owned(), funding_msg.channel_id))
2852                         },
2853                         hash_map::Entry::Vacant(e) => {
2854                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingSigned {
2855                                         node_id: counterparty_node_id.clone(),
2856                                         msg: funding_msg,
2857                                 });
2858                                 e.insert(chan);
2859                         }
2860                 }
2861                 Ok(())
2862         }
2863
2864         fn internal_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) -> Result<(), MsgHandleErrInternal> {
2865                 let funding_tx = {
2866                         let best_block = *self.best_block.read().unwrap();
2867                         let mut channel_lock = self.channel_state.lock().unwrap();
2868                         let channel_state = &mut *channel_lock;
2869                         match channel_state.by_id.entry(msg.channel_id) {
2870                                 hash_map::Entry::Occupied(mut chan) => {
2871                                         if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2872                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2873                                         }
2874                                         let (monitor, funding_tx) = match chan.get_mut().funding_signed(&msg, best_block, &self.logger) {
2875                                                 Ok(update) => update,
2876                                                 Err(e) => try_chan_entry!(self, Err(e), channel_state, chan),
2877                                         };
2878                                         if let Err(e) = self.chain_monitor.watch_channel(chan.get().get_funding_txo().unwrap(), monitor) {
2879                                                 return_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::RevokeAndACKFirst, false, false);
2880                                         }
2881                                         funding_tx
2882                                 },
2883                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2884                         }
2885                 };
2886                 log_info!(self.logger, "Broadcasting funding transaction with txid {}", funding_tx.txid());
2887                 self.tx_broadcaster.broadcast_transaction(&funding_tx);
2888                 Ok(())
2889         }
2890
2891         fn internal_funding_locked(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingLocked) -> Result<(), MsgHandleErrInternal> {
2892                 let mut channel_state_lock = self.channel_state.lock().unwrap();
2893                 let channel_state = &mut *channel_state_lock;
2894                 match channel_state.by_id.entry(msg.channel_id) {
2895                         hash_map::Entry::Occupied(mut chan) => {
2896                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2897                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2898                                 }
2899                                 try_chan_entry!(self, chan.get_mut().funding_locked(&msg), channel_state, chan);
2900                                 if let Some(announcement_sigs) = self.get_announcement_sigs(chan.get()) {
2901                                         log_trace!(self.logger, "Sending announcement_signatures for {} in response to funding_locked", log_bytes!(chan.get().channel_id()));
2902                                         // If we see locking block before receiving remote funding_locked, we broadcast our
2903                                         // announcement_sigs at remote funding_locked reception. If we receive remote
2904                                         // funding_locked before seeing locking block, we broadcast our announcement_sigs at locking
2905                                         // block connection. We should guanrantee to broadcast announcement_sigs to our peer whatever
2906                                         // the order of the events but our peer may not receive it due to disconnection. The specs
2907                                         // lacking an acknowledgement for announcement_sigs we may have to re-send them at peer
2908                                         // connection in the future if simultaneous misses by both peers due to network/hardware
2909                                         // failures is an issue. Note, to achieve its goal, only one of the announcement_sigs needs
2910                                         // to be received, from then sigs are going to be flood to the whole network.
2911                                         channel_state.pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
2912                                                 node_id: counterparty_node_id.clone(),
2913                                                 msg: announcement_sigs,
2914                                         });
2915                                 }
2916                                 Ok(())
2917                         },
2918                         hash_map::Entry::Vacant(_) => Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2919                 }
2920         }
2921
2922         fn internal_shutdown(&self, counterparty_node_id: &PublicKey, their_features: &InitFeatures, msg: &msgs::Shutdown) -> Result<(), MsgHandleErrInternal> {
2923                 let (mut dropped_htlcs, chan_option) = {
2924                         let mut channel_state_lock = self.channel_state.lock().unwrap();
2925                         let channel_state = &mut *channel_state_lock;
2926
2927                         match channel_state.by_id.entry(msg.channel_id.clone()) {
2928                                 hash_map::Entry::Occupied(mut chan_entry) => {
2929                                         if chan_entry.get().get_counterparty_node_id() != *counterparty_node_id {
2930                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2931                                         }
2932                                         let (shutdown, closing_signed, dropped_htlcs) = try_chan_entry!(self, chan_entry.get_mut().shutdown(&self.fee_estimator, &their_features, &msg), channel_state, chan_entry);
2933                                         if let Some(msg) = shutdown {
2934                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
2935                                                         node_id: counterparty_node_id.clone(),
2936                                                         msg,
2937                                                 });
2938                                         }
2939                                         if let Some(msg) = closing_signed {
2940                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
2941                                                         node_id: counterparty_node_id.clone(),
2942                                                         msg,
2943                                                 });
2944                                         }
2945                                         if chan_entry.get().is_shutdown() {
2946                                                 if let Some(short_id) = chan_entry.get().get_short_channel_id() {
2947                                                         channel_state.short_to_id.remove(&short_id);
2948                                                 }
2949                                                 (dropped_htlcs, Some(chan_entry.remove_entry().1))
2950                                         } else { (dropped_htlcs, None) }
2951                                 },
2952                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2953                         }
2954                 };
2955                 for htlc_source in dropped_htlcs.drain(..) {
2956                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
2957                 }
2958                 if let Some(chan) = chan_option {
2959                         if let Ok(update) = self.get_channel_update(&chan) {
2960                                 let mut channel_state = self.channel_state.lock().unwrap();
2961                                 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2962                                         msg: update
2963                                 });
2964                         }
2965                 }
2966                 Ok(())
2967         }
2968
2969         fn internal_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) -> Result<(), MsgHandleErrInternal> {
2970                 let (tx, chan_option) = {
2971                         let mut channel_state_lock = self.channel_state.lock().unwrap();
2972                         let channel_state = &mut *channel_state_lock;
2973                         match channel_state.by_id.entry(msg.channel_id.clone()) {
2974                                 hash_map::Entry::Occupied(mut chan_entry) => {
2975                                         if chan_entry.get().get_counterparty_node_id() != *counterparty_node_id {
2976                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2977                                         }
2978                                         let (closing_signed, tx) = try_chan_entry!(self, chan_entry.get_mut().closing_signed(&self.fee_estimator, &msg), channel_state, chan_entry);
2979                                         if let Some(msg) = closing_signed {
2980                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
2981                                                         node_id: counterparty_node_id.clone(),
2982                                                         msg,
2983                                                 });
2984                                         }
2985                                         if tx.is_some() {
2986                                                 // We're done with this channel, we've got a signed closing transaction and
2987                                                 // will send the closing_signed back to the remote peer upon return. This
2988                                                 // also implies there are no pending HTLCs left on the channel, so we can
2989                                                 // fully delete it from tracking (the channel monitor is still around to
2990                                                 // watch for old state broadcasts)!
2991                                                 if let Some(short_id) = chan_entry.get().get_short_channel_id() {
2992                                                         channel_state.short_to_id.remove(&short_id);
2993                                                 }
2994                                                 (tx, Some(chan_entry.remove_entry().1))
2995                                         } else { (tx, None) }
2996                                 },
2997                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2998                         }
2999                 };
3000                 if let Some(broadcast_tx) = tx {
3001                         log_info!(self.logger, "Broadcasting {}", log_tx!(broadcast_tx));
3002                         self.tx_broadcaster.broadcast_transaction(&broadcast_tx);
3003                 }
3004                 if let Some(chan) = chan_option {
3005                         if let Ok(update) = self.get_channel_update(&chan) {
3006                                 let mut channel_state = self.channel_state.lock().unwrap();
3007                                 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
3008                                         msg: update
3009                                 });
3010                         }
3011                 }
3012                 Ok(())
3013         }
3014
3015         fn internal_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) -> Result<(), MsgHandleErrInternal> {
3016                 //TODO: BOLT 4 points out a specific attack where a peer may re-send an onion packet and
3017                 //determine the state of the payment based on our response/if we forward anything/the time
3018                 //we take to respond. We should take care to avoid allowing such an attack.
3019                 //
3020                 //TODO: There exists a further attack where a node may garble the onion data, forward it to
3021                 //us repeatedly garbled in different ways, and compare our error messages, which are
3022                 //encrypted with the same key. It's not immediately obvious how to usefully exploit that,
3023                 //but we should prevent it anyway.
3024
3025                 let (pending_forward_info, mut channel_state_lock) = self.decode_update_add_htlc_onion(msg);
3026                 let channel_state = &mut *channel_state_lock;
3027
3028                 match channel_state.by_id.entry(msg.channel_id) {
3029                         hash_map::Entry::Occupied(mut chan) => {
3030                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3031                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3032                                 }
3033
3034                                 let create_pending_htlc_status = |chan: &Channel<Signer>, pending_forward_info: PendingHTLCStatus, error_code: u16| {
3035                                         // Ensure error_code has the UPDATE flag set, since by default we send a
3036                                         // channel update along as part of failing the HTLC.
3037                                         assert!((error_code & 0x1000) != 0);
3038                                         // If the update_add is completely bogus, the call will Err and we will close,
3039                                         // but if we've sent a shutdown and they haven't acknowledged it yet, we just
3040                                         // want to reject the new HTLC and fail it backwards instead of forwarding.
3041                                         match pending_forward_info {
3042                                                 PendingHTLCStatus::Forward(PendingHTLCInfo { ref incoming_shared_secret, .. }) => {
3043                                                         let reason = if let Ok(upd) = self.get_channel_update(chan) {
3044                                                                 onion_utils::build_first_hop_failure_packet(incoming_shared_secret, error_code, &{
3045                                                                         let mut res = Vec::with_capacity(8 + 128);
3046                                                                         // TODO: underspecified, follow https://github.com/lightningnetwork/lightning-rfc/issues/791
3047                                                                         res.extend_from_slice(&byte_utils::be16_to_array(0));
3048                                                                         res.extend_from_slice(&upd.encode_with_len()[..]);
3049                                                                         res
3050                                                                 }[..])
3051                                                         } else {
3052                                                                 // The only case where we'd be unable to
3053                                                                 // successfully get a channel update is if the
3054                                                                 // channel isn't in the fully-funded state yet,
3055                                                                 // implying our counterparty is trying to route
3056                                                                 // payments over the channel back to themselves
3057                                                                 // (cause no one else should know the short_id
3058                                                                 // is a lightning channel yet). We should have
3059                                                                 // no problem just calling this
3060                                                                 // unknown_next_peer (0x4000|10).
3061                                                                 onion_utils::build_first_hop_failure_packet(incoming_shared_secret, 0x4000|10, &[])
3062                                                         };
3063                                                         let msg = msgs::UpdateFailHTLC {
3064                                                                 channel_id: msg.channel_id,
3065                                                                 htlc_id: msg.htlc_id,
3066                                                                 reason
3067                                                         };
3068                                                         PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msg))
3069                                                 },
3070                                                 _ => pending_forward_info
3071                                         }
3072                                 };
3073                                 try_chan_entry!(self, chan.get_mut().update_add_htlc(&msg, pending_forward_info, create_pending_htlc_status, &self.logger), channel_state, chan);
3074                         },
3075                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3076                 }
3077                 Ok(())
3078         }
3079
3080         fn internal_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) -> Result<(), MsgHandleErrInternal> {
3081                 let mut channel_lock = self.channel_state.lock().unwrap();
3082                 let htlc_source = {
3083                         let channel_state = &mut *channel_lock;
3084                         match channel_state.by_id.entry(msg.channel_id) {
3085                                 hash_map::Entry::Occupied(mut chan) => {
3086                                         if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3087                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3088                                         }
3089                                         try_chan_entry!(self, chan.get_mut().update_fulfill_htlc(&msg), channel_state, chan)
3090                                 },
3091                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3092                         }
3093                 };
3094                 self.claim_funds_internal(channel_lock, htlc_source, msg.payment_preimage.clone());
3095                 Ok(())
3096         }
3097
3098         fn internal_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) -> Result<(), MsgHandleErrInternal> {
3099                 let mut channel_lock = self.channel_state.lock().unwrap();
3100                 let channel_state = &mut *channel_lock;
3101                 match channel_state.by_id.entry(msg.channel_id) {
3102                         hash_map::Entry::Occupied(mut chan) => {
3103                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3104                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3105                                 }
3106                                 try_chan_entry!(self, chan.get_mut().update_fail_htlc(&msg, HTLCFailReason::LightningError { err: msg.reason.clone() }), channel_state, chan);
3107                         },
3108                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3109                 }
3110                 Ok(())
3111         }
3112
3113         fn internal_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) -> Result<(), MsgHandleErrInternal> {
3114                 let mut channel_lock = self.channel_state.lock().unwrap();
3115                 let channel_state = &mut *channel_lock;
3116                 match channel_state.by_id.entry(msg.channel_id) {
3117                         hash_map::Entry::Occupied(mut chan) => {
3118                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3119                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3120                                 }
3121                                 if (msg.failure_code & 0x8000) == 0 {
3122                                         let chan_err: ChannelError = ChannelError::Close("Got update_fail_malformed_htlc with BADONION not set".to_owned());
3123                                         try_chan_entry!(self, Err(chan_err), channel_state, chan);
3124                                 }
3125                                 try_chan_entry!(self, chan.get_mut().update_fail_malformed_htlc(&msg, HTLCFailReason::Reason { failure_code: msg.failure_code, data: Vec::new() }), channel_state, chan);
3126                                 Ok(())
3127                         },
3128                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3129                 }
3130         }
3131
3132         fn internal_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) -> Result<(), MsgHandleErrInternal> {
3133                 let mut channel_state_lock = self.channel_state.lock().unwrap();
3134                 let channel_state = &mut *channel_state_lock;
3135                 match channel_state.by_id.entry(msg.channel_id) {
3136                         hash_map::Entry::Occupied(mut chan) => {
3137                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3138                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3139                                 }
3140                                 let (revoke_and_ack, commitment_signed, closing_signed, monitor_update) =
3141                                         match chan.get_mut().commitment_signed(&msg, &self.fee_estimator, &self.logger) {
3142                                                 Err((None, e)) => try_chan_entry!(self, Err(e), channel_state, chan),
3143                                                 Err((Some(update), e)) => {
3144                                                         assert!(chan.get().is_awaiting_monitor_update());
3145                                                         let _ = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), update);
3146                                                         try_chan_entry!(self, Err(e), channel_state, chan);
3147                                                         unreachable!();
3148                                                 },
3149                                                 Ok(res) => res
3150                                         };
3151                                 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
3152                                         return_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::RevokeAndACKFirst, true, commitment_signed.is_some());
3153                                         //TODO: Rebroadcast closing_signed if present on monitor update restoration
3154                                 }
3155                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
3156                                         node_id: counterparty_node_id.clone(),
3157                                         msg: revoke_and_ack,
3158                                 });
3159                                 if let Some(msg) = commitment_signed {
3160                                         channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
3161                                                 node_id: counterparty_node_id.clone(),
3162                                                 updates: msgs::CommitmentUpdate {
3163                                                         update_add_htlcs: Vec::new(),
3164                                                         update_fulfill_htlcs: Vec::new(),
3165                                                         update_fail_htlcs: Vec::new(),
3166                                                         update_fail_malformed_htlcs: Vec::new(),
3167                                                         update_fee: None,
3168                                                         commitment_signed: msg,
3169                                                 },
3170                                         });
3171                                 }
3172                                 if let Some(msg) = closing_signed {
3173                                         channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
3174                                                 node_id: counterparty_node_id.clone(),
3175                                                 msg,
3176                                         });
3177                                 }
3178                                 Ok(())
3179                         },
3180                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3181                 }
3182         }
3183
3184         #[inline]
3185         fn forward_htlcs(&self, per_source_pending_forwards: &mut [(u64, OutPoint, Vec<(PendingHTLCInfo, u64)>)]) {
3186                 for &mut (prev_short_channel_id, prev_funding_outpoint, ref mut pending_forwards) in per_source_pending_forwards {
3187                         let mut forward_event = None;
3188                         if !pending_forwards.is_empty() {
3189                                 let mut channel_state = self.channel_state.lock().unwrap();
3190                                 if channel_state.forward_htlcs.is_empty() {
3191                                         forward_event = Some(Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS))
3192                                 }
3193                                 for (forward_info, prev_htlc_id) in pending_forwards.drain(..) {
3194                                         match channel_state.forward_htlcs.entry(match forward_info.routing {
3195                                                         PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
3196                                                         PendingHTLCRouting::Receive { .. } => 0,
3197                                         }) {
3198                                                 hash_map::Entry::Occupied(mut entry) => {
3199                                                         entry.get_mut().push(HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_funding_outpoint,
3200                                                                                                         prev_htlc_id, forward_info });
3201                                                 },
3202                                                 hash_map::Entry::Vacant(entry) => {
3203                                                         entry.insert(vec!(HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_funding_outpoint,
3204                                                                                                      prev_htlc_id, forward_info }));
3205                                                 }
3206                                         }
3207                                 }
3208                         }
3209                         match forward_event {
3210                                 Some(time) => {
3211                                         let mut pending_events = self.pending_events.lock().unwrap();
3212                                         pending_events.push(events::Event::PendingHTLCsForwardable {
3213                                                 time_forwardable: time
3214                                         });
3215                                 }
3216                                 None => {},
3217                         }
3218                 }
3219         }
3220
3221         fn internal_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) -> Result<(), MsgHandleErrInternal> {
3222                 let mut htlcs_to_fail = Vec::new();
3223                 let res = loop {
3224                         let mut channel_state_lock = self.channel_state.lock().unwrap();
3225                         let channel_state = &mut *channel_state_lock;
3226                         match channel_state.by_id.entry(msg.channel_id) {
3227                                 hash_map::Entry::Occupied(mut chan) => {
3228                                         if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3229                                                 break Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3230                                         }
3231                                         let was_frozen_for_monitor = chan.get().is_awaiting_monitor_update();
3232                                         let (commitment_update, pending_forwards, pending_failures, closing_signed, monitor_update, htlcs_to_fail_in) =
3233                                                 break_chan_entry!(self, chan.get_mut().revoke_and_ack(&msg, &self.fee_estimator, &self.logger), channel_state, chan);
3234                                         htlcs_to_fail = htlcs_to_fail_in;
3235                                         if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
3236                                                 if was_frozen_for_monitor {
3237                                                         assert!(commitment_update.is_none() && closing_signed.is_none() && pending_forwards.is_empty() && pending_failures.is_empty());
3238                                                         break Err(MsgHandleErrInternal::ignore_no_close("Previous monitor update failure prevented responses to RAA".to_owned()));
3239                                                 } else {
3240                                                         if let Err(e) = handle_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, commitment_update.is_some(), pending_forwards, pending_failures) {
3241                                                                 break Err(e);
3242                                                         } else { unreachable!(); }
3243                                                 }
3244                                         }
3245                                         if let Some(updates) = commitment_update {
3246                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
3247                                                         node_id: counterparty_node_id.clone(),
3248                                                         updates,
3249                                                 });
3250                                         }
3251                                         if let Some(msg) = closing_signed {
3252                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
3253                                                         node_id: counterparty_node_id.clone(),
3254                                                         msg,
3255                                                 });
3256                                         }
3257                                         break Ok((pending_forwards, pending_failures, chan.get().get_short_channel_id().expect("RAA should only work on a short-id-available channel"), chan.get().get_funding_txo().unwrap()))
3258                                 },
3259                                 hash_map::Entry::Vacant(_) => break Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3260                         }
3261                 };
3262                 self.fail_holding_cell_htlcs(htlcs_to_fail, msg.channel_id);
3263                 match res {
3264                         Ok((pending_forwards, mut pending_failures, short_channel_id, channel_outpoint)) => {
3265                                 for failure in pending_failures.drain(..) {
3266                                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), failure.0, &failure.1, failure.2);
3267                                 }
3268                                 self.forward_htlcs(&mut [(short_channel_id, channel_outpoint, pending_forwards)]);
3269                                 Ok(())
3270                         },
3271                         Err(e) => Err(e)
3272                 }
3273         }
3274
3275         fn internal_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) -> Result<(), MsgHandleErrInternal> {
3276                 let mut channel_lock = self.channel_state.lock().unwrap();
3277                 let channel_state = &mut *channel_lock;
3278                 match channel_state.by_id.entry(msg.channel_id) {
3279                         hash_map::Entry::Occupied(mut chan) => {
3280                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3281                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3282                                 }
3283                                 try_chan_entry!(self, chan.get_mut().update_fee(&self.fee_estimator, &msg), channel_state, chan);
3284                         },
3285                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3286                 }
3287                 Ok(())
3288         }
3289
3290         fn internal_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) -> Result<(), MsgHandleErrInternal> {
3291                 let mut channel_state_lock = self.channel_state.lock().unwrap();
3292                 let channel_state = &mut *channel_state_lock;
3293
3294                 match channel_state.by_id.entry(msg.channel_id) {
3295                         hash_map::Entry::Occupied(mut chan) => {
3296                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3297                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3298                                 }
3299                                 if !chan.get().is_usable() {
3300                                         return Err(MsgHandleErrInternal::from_no_close(LightningError{err: "Got an announcement_signatures before we were ready for it".to_owned(), action: msgs::ErrorAction::IgnoreError}));
3301                                 }
3302
3303                                 let our_node_id = self.get_our_node_id();
3304                                 let (announcement, our_bitcoin_sig) =
3305                                         try_chan_entry!(self, chan.get_mut().get_channel_announcement(our_node_id.clone(), self.genesis_hash.clone()), channel_state, chan);
3306
3307                                 let were_node_one = announcement.node_id_1 == our_node_id;
3308                                 let msghash = hash_to_message!(&Sha256dHash::hash(&announcement.encode()[..])[..]);
3309                                 {
3310                                         let their_node_key = if were_node_one { &announcement.node_id_2 } else { &announcement.node_id_1 };
3311                                         let their_bitcoin_key = if were_node_one { &announcement.bitcoin_key_2 } else { &announcement.bitcoin_key_1 };
3312                                         match (self.secp_ctx.verify(&msghash, &msg.node_signature, their_node_key),
3313                                                    self.secp_ctx.verify(&msghash, &msg.bitcoin_signature, their_bitcoin_key)) {
3314                                                 (Err(e), _) => {
3315                                                         let chan_err: ChannelError = ChannelError::Close(format!("Bad announcement_signatures. Failed to verify node_signature: {:?}. Maybe using different node_secret for transport and routing msg? UnsignedChannelAnnouncement used for verification is {:?}. their_node_key is {:?}", e, &announcement, their_node_key));
3316                                                         try_chan_entry!(self, Err(chan_err), channel_state, chan);
3317                                                 },
3318                                                 (_, Err(e)) => {
3319                                                         let chan_err: ChannelError = ChannelError::Close(format!("Bad announcement_signatures. Failed to verify bitcoin_signature: {:?}. UnsignedChannelAnnouncement used for verification is {:?}. their_bitcoin_key is ({:?})", e, &announcement, their_bitcoin_key));
3320                                                         try_chan_entry!(self, Err(chan_err), channel_state, chan);
3321                                                 },
3322                                                 _ => {}
3323                                         }
3324                                 }
3325
3326                                 let our_node_sig = self.secp_ctx.sign(&msghash, &self.our_network_key);
3327
3328                                 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
3329                                         msg: msgs::ChannelAnnouncement {
3330                                                 node_signature_1: if were_node_one { our_node_sig } else { msg.node_signature },
3331                                                 node_signature_2: if were_node_one { msg.node_signature } else { our_node_sig },
3332                                                 bitcoin_signature_1: if were_node_one { our_bitcoin_sig } else { msg.bitcoin_signature },
3333                                                 bitcoin_signature_2: if were_node_one { msg.bitcoin_signature } else { our_bitcoin_sig },
3334                                                 contents: announcement,
3335                                         },
3336                                         update_msg: self.get_channel_update(chan.get()).unwrap(), // can only fail if we're not in a ready state
3337                                 });
3338                         },
3339                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3340                 }
3341                 Ok(())
3342         }
3343
3344         fn internal_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) -> Result<(), MsgHandleErrInternal> {
3345                 let mut channel_state_lock = self.channel_state.lock().unwrap();
3346                 let channel_state = &mut *channel_state_lock;
3347                 let chan_id = match channel_state.short_to_id.get(&msg.contents.short_channel_id) {
3348                         Some(chan_id) => chan_id.clone(),
3349                         None => {
3350                                 // It's not a local channel
3351                                 return Ok(())
3352                         }
3353                 };
3354                 match channel_state.by_id.entry(chan_id) {
3355                         hash_map::Entry::Occupied(mut chan) => {
3356                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3357                                         // TODO: see issue #153, need a consistent behavior on obnoxious behavior from random node
3358                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), chan_id));
3359                                 }
3360                                 try_chan_entry!(self, chan.get_mut().channel_update(&msg), channel_state, chan);
3361                         },
3362                         hash_map::Entry::Vacant(_) => unreachable!()
3363                 }
3364                 Ok(())
3365         }
3366
3367         fn internal_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) -> Result<(), MsgHandleErrInternal> {
3368                 let (htlcs_failed_forward, chan_restoration_res) = {
3369                         let mut channel_state_lock = self.channel_state.lock().unwrap();
3370                         let channel_state = &mut *channel_state_lock;
3371
3372                         match channel_state.by_id.entry(msg.channel_id) {
3373                                 hash_map::Entry::Occupied(mut chan) => {
3374                                         if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3375                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3376                                         }
3377                                         // Currently, we expect all holding cell update_adds to be dropped on peer
3378                                         // disconnect, so Channel's reestablish will never hand us any holding cell
3379                                         // freed HTLCs to fail backwards. If in the future we no longer drop pending
3380                                         // add-HTLCs on disconnect, we may be handed HTLCs to fail backwards here.
3381                                         let (funding_locked, revoke_and_ack, commitment_update, monitor_update_opt, order, htlcs_failed_forward, shutdown) =
3382                                                 try_chan_entry!(self, chan.get_mut().channel_reestablish(msg, &self.logger), channel_state, chan);
3383                                         if let Some(msg) = shutdown {
3384                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
3385                                                         node_id: counterparty_node_id.clone(),
3386                                                         msg,
3387                                                 });
3388                                         }
3389                                         (htlcs_failed_forward, handle_chan_restoration_locked!(self, channel_state_lock, channel_state, chan, revoke_and_ack, commitment_update, order, monitor_update_opt, Vec::new(), None, funding_locked))
3390                                 },
3391                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3392                         }
3393                 };
3394                 post_handle_chan_restoration!(self, chan_restoration_res);
3395                 self.fail_holding_cell_htlcs(htlcs_failed_forward, msg.channel_id);
3396                 Ok(())
3397         }
3398
3399         /// Begin Update fee process. Allowed only on an outbound channel.
3400         /// If successful, will generate a UpdateHTLCs event, so you should probably poll
3401         /// PeerManager::process_events afterwards.
3402         /// Note: This API is likely to change!
3403         /// (C-not exported) Cause its doc(hidden) anyway
3404         #[doc(hidden)]
3405         pub fn update_fee(&self, channel_id: [u8;32], feerate_per_kw: u32) -> Result<(), APIError> {
3406                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3407                 let counterparty_node_id;
3408                 let err: Result<(), _> = loop {
3409                         let mut channel_state_lock = self.channel_state.lock().unwrap();
3410                         let channel_state = &mut *channel_state_lock;
3411
3412                         match channel_state.by_id.entry(channel_id) {
3413                                 hash_map::Entry::Vacant(_) => return Err(APIError::APIMisuseError{err: format!("Failed to find corresponding channel for id {}", channel_id.to_hex())}),
3414                                 hash_map::Entry::Occupied(mut chan) => {
3415                                         if !chan.get().is_outbound() {
3416                                                 return Err(APIError::APIMisuseError{err: "update_fee cannot be sent for an inbound channel".to_owned()});
3417                                         }
3418                                         if chan.get().is_awaiting_monitor_update() {
3419                                                 return Err(APIError::MonitorUpdateFailed);
3420                                         }
3421                                         if !chan.get().is_live() {
3422                                                 return Err(APIError::ChannelUnavailable{err: "Channel is either not yet fully established or peer is currently disconnected".to_owned()});
3423                                         }
3424                                         counterparty_node_id = chan.get().get_counterparty_node_id();
3425                                         if let Some((update_fee, commitment_signed, monitor_update)) =
3426                                                         break_chan_entry!(self, chan.get_mut().send_update_fee_and_commit(feerate_per_kw, &self.logger), channel_state, chan)
3427                                         {
3428                                                 if let Err(_e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
3429                                                         unimplemented!();
3430                                                 }
3431                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
3432                                                         node_id: chan.get().get_counterparty_node_id(),
3433                                                         updates: msgs::CommitmentUpdate {
3434                                                                 update_add_htlcs: Vec::new(),
3435                                                                 update_fulfill_htlcs: Vec::new(),
3436                                                                 update_fail_htlcs: Vec::new(),
3437                                                                 update_fail_malformed_htlcs: Vec::new(),
3438                                                                 update_fee: Some(update_fee),
3439                                                                 commitment_signed,
3440                                                         },
3441                                                 });
3442                                         }
3443                                 },
3444                         }
3445                         return Ok(())
3446                 };
3447
3448                 match handle_error!(self, err, counterparty_node_id) {
3449                         Ok(_) => unreachable!(),
3450                         Err(e) => { Err(APIError::APIMisuseError { err: e.err })}
3451                 }
3452         }
3453
3454         /// Process pending events from the `chain::Watch`, returning whether any events were processed.
3455         fn process_pending_monitor_events(&self) -> bool {
3456                 let mut failed_channels = Vec::new();
3457                 let pending_monitor_events = self.chain_monitor.release_pending_monitor_events();
3458                 let has_pending_monitor_events = !pending_monitor_events.is_empty();
3459                 for monitor_event in pending_monitor_events {
3460                         match monitor_event {
3461                                 MonitorEvent::HTLCEvent(htlc_update) => {
3462                                         if let Some(preimage) = htlc_update.payment_preimage {
3463                                                 log_trace!(self.logger, "Claiming HTLC with preimage {} from our monitor", log_bytes!(preimage.0));
3464                                                 self.claim_funds_internal(self.channel_state.lock().unwrap(), htlc_update.source, preimage);
3465                                         } else {
3466                                                 log_trace!(self.logger, "Failing HTLC with hash {} from our monitor", log_bytes!(htlc_update.payment_hash.0));
3467                                                 self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_update.source, &htlc_update.payment_hash, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
3468                                         }
3469                                 },
3470                                 MonitorEvent::CommitmentTxBroadcasted(funding_outpoint) => {
3471                                         let mut channel_lock = self.channel_state.lock().unwrap();
3472                                         let channel_state = &mut *channel_lock;
3473                                         let by_id = &mut channel_state.by_id;
3474                                         let short_to_id = &mut channel_state.short_to_id;
3475                                         let pending_msg_events = &mut channel_state.pending_msg_events;
3476                                         if let Some(mut chan) = by_id.remove(&funding_outpoint.to_channel_id()) {
3477                                                 if let Some(short_id) = chan.get_short_channel_id() {
3478                                                         short_to_id.remove(&short_id);
3479                                                 }
3480                                                 failed_channels.push(chan.force_shutdown(false));
3481                                                 if let Ok(update) = self.get_channel_update(&chan) {
3482                                                         pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
3483                                                                 msg: update
3484                                                         });
3485                                                 }
3486                                                 pending_msg_events.push(events::MessageSendEvent::HandleError {
3487                                                         node_id: chan.get_counterparty_node_id(),
3488                                                         action: msgs::ErrorAction::SendErrorMessage {
3489                                                                 msg: msgs::ErrorMessage { channel_id: chan.channel_id(), data: "Channel force-closed".to_owned() }
3490                                                         },
3491                                                 });
3492                                         }
3493                                 },
3494                         }
3495                 }
3496
3497                 for failure in failed_channels.drain(..) {
3498                         self.finish_force_close_channel(failure);
3499                 }
3500
3501                 has_pending_monitor_events
3502         }
3503
3504         /// Check the holding cell in each channel and free any pending HTLCs in them if possible.
3505         /// This should only apply to HTLCs which were added to the holding cell because we were
3506         /// waiting on a monitor update to finish. In that case, we don't want to free the holding cell
3507         /// directly in `channel_monitor_updated` as it may introduce deadlocks calling back into user
3508         /// code to inform them of a channel monitor update.
3509         fn check_free_holding_cells(&self) {
3510                 let mut failed_htlcs = Vec::new();
3511                 let mut handle_errors = Vec::new();
3512                 {
3513                         let mut channel_state_lock = self.channel_state.lock().unwrap();
3514                         let channel_state = &mut *channel_state_lock;
3515                         let by_id = &mut channel_state.by_id;
3516                         let short_to_id = &mut channel_state.short_to_id;
3517                         let pending_msg_events = &mut channel_state.pending_msg_events;
3518
3519                         by_id.retain(|channel_id, chan| {
3520                                 match chan.maybe_free_holding_cell_htlcs(&self.logger) {
3521                                         Ok((None, ref htlcs)) if htlcs.is_empty() => true,
3522                                         Ok((commitment_opt, holding_cell_failed_htlcs)) => {
3523                                                 failed_htlcs.push((holding_cell_failed_htlcs, *channel_id));
3524                                                 if let Some((commitment_update, monitor_update)) = commitment_opt {
3525                                                         if let Err(e) = self.chain_monitor.update_channel(chan.get_funding_txo().unwrap(), monitor_update) {
3526                                                                 let (res, close_channel) = handle_monitor_err!(self, e, short_to_id, chan, RAACommitmentOrder::CommitmentFirst, false, true, Vec::new(), Vec::new(), channel_id);
3527                                                                 handle_errors.push((chan.get_counterparty_node_id(), res));
3528                                                                 if close_channel { return false; }
3529                                                         } else {
3530                                                                 pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
3531                                                                         node_id: chan.get_counterparty_node_id(),
3532                                                                         updates: commitment_update,
3533                                                                 });
3534                                                         }
3535                                                 }
3536                                                 true
3537                                         },
3538                                         Err(e) => {
3539                                                 let (close_channel, res) = convert_chan_err!(self, e, short_to_id, chan, channel_id);
3540                                                 handle_errors.push((chan.get_counterparty_node_id(), Err(res)));
3541                                                 !close_channel
3542                                         }
3543                                 }
3544                         });
3545                 }
3546                 for (failures, channel_id) in failed_htlcs.drain(..) {
3547                         self.fail_holding_cell_htlcs(failures, channel_id);
3548                 }
3549
3550                 for (counterparty_node_id, err) in handle_errors.drain(..) {
3551                         let _ = handle_error!(self, err, counterparty_node_id);
3552                 }
3553         }
3554
3555         /// Handle a list of channel failures during a block_connected or block_disconnected call,
3556         /// pushing the channel monitor update (if any) to the background events queue and removing the
3557         /// Channel object.
3558         fn handle_init_event_channel_failures(&self, mut failed_channels: Vec<ShutdownResult>) {
3559                 for mut failure in failed_channels.drain(..) {
3560                         // Either a commitment transactions has been confirmed on-chain or
3561                         // Channel::block_disconnected detected that the funding transaction has been
3562                         // reorganized out of the main chain.
3563                         // We cannot broadcast our latest local state via monitor update (as
3564                         // Channel::force_shutdown tries to make us do) as we may still be in initialization,
3565                         // so we track the update internally and handle it when the user next calls
3566                         // timer_tick_occurred, guaranteeing we're running normally.
3567                         if let Some((funding_txo, update)) = failure.0.take() {
3568                                 assert_eq!(update.updates.len(), 1);
3569                                 if let ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast } = update.updates[0] {
3570                                         assert!(should_broadcast);
3571                                 } else { unreachable!(); }
3572                                 self.pending_background_events.lock().unwrap().push(BackgroundEvent::ClosingMonitorUpdate((funding_txo, update)));
3573                         }
3574                         self.finish_force_close_channel(failure);
3575                 }
3576         }
3577
3578         fn set_payment_hash_secret_map(&self, payment_hash: PaymentHash, payment_preimage: Option<PaymentPreimage>, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32, user_payment_id: u64) -> Result<PaymentSecret, APIError> {
3579                 assert!(invoice_expiry_delta_secs <= 60*60*24*365); // Sadly bitcoin timestamps are u32s, so panic before 2106
3580
3581                 let payment_secret = PaymentSecret(self.keys_manager.get_secure_random_bytes());
3582
3583                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3584                 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
3585                 match payment_secrets.entry(payment_hash) {
3586                         hash_map::Entry::Vacant(e) => {
3587                                 e.insert(PendingInboundPayment {
3588                                         payment_secret, min_value_msat, user_payment_id, payment_preimage,
3589                                         // We assume that highest_seen_timestamp is pretty close to the current time -
3590                                         // its updated when we receive a new block with the maximum time we've seen in
3591                                         // a header. It should never be more than two hours in the future.
3592                                         // Thus, we add two hours here as a buffer to ensure we absolutely
3593                                         // never fail a payment too early.
3594                                         // Note that we assume that received blocks have reasonably up-to-date
3595                                         // timestamps.
3596                                         expiry_time: self.highest_seen_timestamp.load(Ordering::Acquire) as u64 + invoice_expiry_delta_secs as u64 + 7200,
3597                                 });
3598                         },
3599                         hash_map::Entry::Occupied(_) => return Err(APIError::APIMisuseError { err: "Duplicate payment hash".to_owned() }),
3600                 }
3601                 Ok(payment_secret)
3602         }
3603
3604         /// Gets a payment secret and payment hash for use in an invoice given to a third party wishing
3605         /// to pay us.
3606         ///
3607         /// This differs from [`create_inbound_payment_for_hash`] only in that it generates the
3608         /// [`PaymentHash`] and [`PaymentPreimage`] for you, returning the first and storing the second.
3609         ///
3610         /// The [`PaymentPreimage`] will ultimately be returned to you in the [`PaymentReceived`], which
3611         /// will have the [`PaymentReceived::payment_preimage`] field filled in. That should then be
3612         /// passed directly to [`claim_funds`].
3613         ///
3614         /// See [`create_inbound_payment_for_hash`] for detailed documentation on behavior and requirements.
3615         ///
3616         /// [`claim_funds`]: Self::claim_funds
3617         /// [`PaymentReceived`]: events::Event::PaymentReceived
3618         /// [`PaymentReceived::payment_preimage`]: events::Event::PaymentReceived::payment_preimage
3619         /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
3620         pub fn create_inbound_payment(&self, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32, user_payment_id: u64) -> (PaymentHash, PaymentSecret) {
3621                 let payment_preimage = PaymentPreimage(self.keys_manager.get_secure_random_bytes());
3622                 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
3623
3624                 (payment_hash,
3625                         self.set_payment_hash_secret_map(payment_hash, Some(payment_preimage), min_value_msat, invoice_expiry_delta_secs, user_payment_id)
3626                                 .expect("RNG Generated Duplicate PaymentHash"))
3627         }
3628
3629         /// Gets a [`PaymentSecret`] for a given [`PaymentHash`], for which the payment preimage is
3630         /// stored external to LDK.
3631         ///
3632         /// A [`PaymentReceived`] event will only be generated if the [`PaymentSecret`] matches a
3633         /// payment secret fetched via this method or [`create_inbound_payment`], and which is at least
3634         /// the `min_value_msat` provided here, if one is provided.
3635         ///
3636         /// The [`PaymentHash`] (and corresponding [`PaymentPreimage`]) must be globally unique. This
3637         /// method may return an Err if another payment with the same payment_hash is still pending.
3638         ///
3639         /// `user_payment_id` will be provided back in [`PaymentReceived::user_payment_id`] events to
3640         /// allow tracking of which events correspond with which calls to this and
3641         /// [`create_inbound_payment`]. `user_payment_id` has no meaning inside of LDK, it is simply
3642         /// copied to events and otherwise ignored. It may be used to correlate PaymentReceived events
3643         /// with invoice metadata stored elsewhere.
3644         ///
3645         /// `min_value_msat` should be set if the invoice being generated contains a value. Any payment
3646         /// received for the returned [`PaymentHash`] will be required to be at least `min_value_msat`
3647         /// before a [`PaymentReceived`] event will be generated, ensuring that we do not provide the
3648         /// sender "proof-of-payment" unless they have paid the required amount.
3649         ///
3650         /// `invoice_expiry_delta_secs` describes the number of seconds that the invoice is valid for
3651         /// in excess of the current time. This should roughly match the expiry time set in the invoice.
3652         /// After this many seconds, we will remove the inbound payment, resulting in any attempts to
3653         /// pay the invoice failing. The BOLT spec suggests 3,600 secs as a default validity time for
3654         /// invoices when no timeout is set.
3655         ///
3656         /// Note that we use block header time to time-out pending inbound payments (with some margin
3657         /// to compensate for the inaccuracy of block header timestamps). Thus, in practice we will
3658         /// accept a payment and generate a [`PaymentReceived`] event for some time after the expiry.
3659         /// If you need exact expiry semantics, you should enforce them upon receipt of
3660         /// [`PaymentReceived`].
3661         ///
3662         /// Pending inbound payments are stored in memory and in serialized versions of this
3663         /// [`ChannelManager`]. If potentially unbounded numbers of inbound payments may exist and
3664         /// space is limited, you may wish to rate-limit inbound payment creation.
3665         ///
3666         /// May panic if `invoice_expiry_delta_secs` is greater than one year.
3667         ///
3668         /// Note that invoices generated for inbound payments should have their `min_final_cltv_expiry`
3669         /// set to at least [`MIN_FINAL_CLTV_EXPIRY`].
3670         ///
3671         /// [`create_inbound_payment`]: Self::create_inbound_payment
3672         /// [`PaymentReceived`]: events::Event::PaymentReceived
3673         /// [`PaymentReceived::user_payment_id`]: events::Event::PaymentReceived::user_payment_id
3674         pub fn create_inbound_payment_for_hash(&self, payment_hash: PaymentHash, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32, user_payment_id: u64) -> Result<PaymentSecret, APIError> {
3675                 self.set_payment_hash_secret_map(payment_hash, None, min_value_msat, invoice_expiry_delta_secs, user_payment_id)
3676         }
3677
3678         #[cfg(any(test, feature = "fuzztarget", feature = "_test_utils"))]
3679         pub fn get_and_clear_pending_events(&self) -> Vec<events::Event> {
3680                 let events = std::cell::RefCell::new(Vec::new());
3681                 let event_handler = |event| events.borrow_mut().push(event);
3682                 self.process_pending_events(&event_handler);
3683                 events.into_inner()
3684         }
3685 }
3686
3687 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> MessageSendEventsProvider for ChannelManager<Signer, M, T, K, F, L>
3688         where M::Target: chain::Watch<Signer>,
3689         T::Target: BroadcasterInterface,
3690         K::Target: KeysInterface<Signer = Signer>,
3691         F::Target: FeeEstimator,
3692                                 L::Target: Logger,
3693 {
3694         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
3695                 //TODO: This behavior should be documented. It's non-intuitive that we query
3696                 // ChannelMonitors when clearing other events.
3697                 self.process_pending_monitor_events();
3698
3699                 self.check_free_holding_cells();
3700
3701                 let mut ret = Vec::new();
3702                 let mut channel_state = self.channel_state.lock().unwrap();
3703                 mem::swap(&mut ret, &mut channel_state.pending_msg_events);
3704                 ret
3705         }
3706 }
3707
3708 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> EventsProvider for ChannelManager<Signer, M, T, K, F, L>
3709 where
3710         M::Target: chain::Watch<Signer>,
3711         T::Target: BroadcasterInterface,
3712         K::Target: KeysInterface<Signer = Signer>,
3713         F::Target: FeeEstimator,
3714         L::Target: Logger,
3715 {
3716         /// Processes events that must be periodically handled.
3717         ///
3718         /// An [`EventHandler`] may safely call back to the provider in order to handle an event.
3719         /// However, it must not call [`Writeable::write`] as doing so would result in a deadlock.
3720         ///
3721         /// Pending events are persisted as part of [`ChannelManager`]. While these events are cleared
3722         /// when processed, an [`EventHandler`] must be able to handle previously seen events when
3723         /// restarting from an old state.
3724         fn process_pending_events<H: Deref>(&self, handler: H) where H::Target: EventHandler {
3725                 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
3726                         let mut result = NotifyOption::SkipPersist;
3727
3728                         // TODO: This behavior should be documented. It's unintuitive that we query
3729                         // ChannelMonitors when clearing other events.
3730                         if self.process_pending_monitor_events() {
3731                                 result = NotifyOption::DoPersist;
3732                         }
3733
3734                         let mut pending_events = std::mem::replace(&mut *self.pending_events.lock().unwrap(), vec![]);
3735                         if !pending_events.is_empty() {
3736                                 result = NotifyOption::DoPersist;
3737                         }
3738
3739                         for event in pending_events.drain(..) {
3740                                 handler.handle_event(event);
3741                         }
3742
3743                         result
3744                 });
3745         }
3746 }
3747
3748 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> chain::Listen for ChannelManager<Signer, M, T, K, F, L>
3749 where
3750         M::Target: chain::Watch<Signer>,
3751         T::Target: BroadcasterInterface,
3752         K::Target: KeysInterface<Signer = Signer>,
3753         F::Target: FeeEstimator,
3754         L::Target: Logger,
3755 {
3756         fn block_connected(&self, block: &Block, height: u32) {
3757                 {
3758                         let best_block = self.best_block.read().unwrap();
3759                         assert_eq!(best_block.block_hash(), block.header.prev_blockhash,
3760                                 "Blocks must be connected in chain-order - the connected header must build on the last connected header");
3761                         assert_eq!(best_block.height(), height - 1,
3762                                 "Blocks must be connected in chain-order - the connected block height must be one greater than the previous height");
3763                 }
3764
3765                 let txdata: Vec<_> = block.txdata.iter().enumerate().collect();
3766                 self.transactions_confirmed(&block.header, &txdata, height);
3767                 self.best_block_updated(&block.header, height);
3768         }
3769
3770         fn block_disconnected(&self, header: &BlockHeader, height: u32) {
3771                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3772                 let new_height = height - 1;
3773                 {
3774                         let mut best_block = self.best_block.write().unwrap();
3775                         assert_eq!(best_block.block_hash(), header.block_hash(),
3776                                 "Blocks must be disconnected in chain-order - the disconnected header must be the last connected header");
3777                         assert_eq!(best_block.height(), height,
3778                                 "Blocks must be disconnected in chain-order - the disconnected block must have the correct height");
3779                         *best_block = BestBlock::new(header.prev_blockhash, new_height)
3780                 }
3781
3782                 self.do_chain_event(Some(new_height), |channel| channel.best_block_updated(new_height, header.time));
3783         }
3784 }
3785
3786 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> chain::Confirm for ChannelManager<Signer, M, T, K, F, L>
3787 where
3788         M::Target: chain::Watch<Signer>,
3789         T::Target: BroadcasterInterface,
3790         K::Target: KeysInterface<Signer = Signer>,
3791         F::Target: FeeEstimator,
3792         L::Target: Logger,
3793 {
3794         fn transactions_confirmed(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
3795                 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
3796                 // during initialization prior to the chain_monitor being fully configured in some cases.
3797                 // See the docs for `ChannelManagerReadArgs` for more.
3798
3799                 let block_hash = header.block_hash();
3800                 log_trace!(self.logger, "{} transactions included in block {} at height {} provided", txdata.len(), block_hash, height);
3801
3802                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3803                 self.do_chain_event(Some(height), |channel| channel.transactions_confirmed(&block_hash, height, txdata, &self.logger).map(|a| (a, Vec::new())));
3804         }
3805
3806         fn best_block_updated(&self, header: &BlockHeader, height: u32) {
3807                 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
3808                 // during initialization prior to the chain_monitor being fully configured in some cases.
3809                 // See the docs for `ChannelManagerReadArgs` for more.
3810
3811                 let block_hash = header.block_hash();
3812                 log_trace!(self.logger, "New best block: {} at height {}", block_hash, height);
3813
3814                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3815
3816                 *self.best_block.write().unwrap() = BestBlock::new(block_hash, height);
3817
3818                 self.do_chain_event(Some(height), |channel| channel.best_block_updated(height, header.time));
3819
3820                 macro_rules! max_time {
3821                         ($timestamp: expr) => {
3822                                 loop {
3823                                         // Update $timestamp to be the max of its current value and the block
3824                                         // timestamp. This should keep us close to the current time without relying on
3825                                         // having an explicit local time source.
3826                                         // Just in case we end up in a race, we loop until we either successfully
3827                                         // update $timestamp or decide we don't need to.
3828                                         let old_serial = $timestamp.load(Ordering::Acquire);
3829                                         if old_serial >= header.time as usize { break; }
3830                                         if $timestamp.compare_exchange(old_serial, header.time as usize, Ordering::AcqRel, Ordering::Relaxed).is_ok() {
3831                                                 break;
3832                                         }
3833                                 }
3834                         }
3835                 }
3836                 max_time!(self.last_node_announcement_serial);
3837                 max_time!(self.highest_seen_timestamp);
3838                 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
3839                 payment_secrets.retain(|_, inbound_payment| {
3840                         inbound_payment.expiry_time > header.time as u64
3841                 });
3842         }
3843
3844         fn get_relevant_txids(&self) -> Vec<Txid> {
3845                 let channel_state = self.channel_state.lock().unwrap();
3846                 let mut res = Vec::with_capacity(channel_state.short_to_id.len());
3847                 for chan in channel_state.by_id.values() {
3848                         if let Some(funding_txo) = chan.get_funding_txo() {
3849                                 res.push(funding_txo.txid);
3850                         }
3851                 }
3852                 res
3853         }
3854
3855         fn transaction_unconfirmed(&self, txid: &Txid) {
3856                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3857                 self.do_chain_event(None, |channel| {
3858                         if let Some(funding_txo) = channel.get_funding_txo() {
3859                                 if funding_txo.txid == *txid {
3860                                         channel.funding_transaction_unconfirmed().map(|_| (None, Vec::new()))
3861                                 } else { Ok((None, Vec::new())) }
3862                         } else { Ok((None, Vec::new())) }
3863                 });
3864         }
3865 }
3866
3867 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> ChannelManager<Signer, M, T, K, F, L>
3868 where
3869         M::Target: chain::Watch<Signer>,
3870         T::Target: BroadcasterInterface,
3871         K::Target: KeysInterface<Signer = Signer>,
3872         F::Target: FeeEstimator,
3873         L::Target: Logger,
3874 {
3875         /// Calls a function which handles an on-chain event (blocks dis/connected, transactions
3876         /// un/confirmed, etc) on each channel, handling any resulting errors or messages generated by
3877         /// the function.
3878         fn do_chain_event<FN: Fn(&mut Channel<Signer>) -> Result<(Option<msgs::FundingLocked>, Vec<(HTLCSource, PaymentHash)>), msgs::ErrorMessage>>
3879                         (&self, height_opt: Option<u32>, f: FN) {
3880                 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
3881                 // during initialization prior to the chain_monitor being fully configured in some cases.
3882                 // See the docs for `ChannelManagerReadArgs` for more.
3883
3884                 let mut failed_channels = Vec::new();
3885                 let mut timed_out_htlcs = Vec::new();
3886                 {
3887                         let mut channel_lock = self.channel_state.lock().unwrap();
3888                         let channel_state = &mut *channel_lock;
3889                         let short_to_id = &mut channel_state.short_to_id;
3890                         let pending_msg_events = &mut channel_state.pending_msg_events;
3891                         channel_state.by_id.retain(|_, channel| {
3892                                 let res = f(channel);
3893                                 if let Ok((chan_res, mut timed_out_pending_htlcs)) = res {
3894                                         for (source, payment_hash) in timed_out_pending_htlcs.drain(..) {
3895                                                 let chan_update = self.get_channel_update(&channel).map(|u| u.encode_with_len()).unwrap(); // Cannot add/recv HTLCs before we have a short_id so unwrap is safe
3896                                                 timed_out_htlcs.push((source, payment_hash,  HTLCFailReason::Reason {
3897                                                         failure_code: 0x1000 | 14, // expiry_too_soon, or at least it is now
3898                                                         data: chan_update,
3899                                                 }));
3900                                         }
3901                                         if let Some(funding_locked) = chan_res {
3902                                                 pending_msg_events.push(events::MessageSendEvent::SendFundingLocked {
3903                                                         node_id: channel.get_counterparty_node_id(),
3904                                                         msg: funding_locked,
3905                                                 });
3906                                                 if let Some(announcement_sigs) = self.get_announcement_sigs(channel) {
3907                                                         log_trace!(self.logger, "Sending funding_locked and announcement_signatures for {}", log_bytes!(channel.channel_id()));
3908                                                         pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
3909                                                                 node_id: channel.get_counterparty_node_id(),
3910                                                                 msg: announcement_sigs,
3911                                                         });
3912                                                 } else {
3913                                                         log_trace!(self.logger, "Sending funding_locked WITHOUT announcement_signatures for {}", log_bytes!(channel.channel_id()));
3914                                                 }
3915                                                 short_to_id.insert(channel.get_short_channel_id().unwrap(), channel.channel_id());
3916                                         }
3917                                 } else if let Err(e) = res {
3918                                         if let Some(short_id) = channel.get_short_channel_id() {
3919                                                 short_to_id.remove(&short_id);
3920                                         }
3921                                         // It looks like our counterparty went on-chain or funding transaction was
3922                                         // reorged out of the main chain. Close the channel.
3923                                         failed_channels.push(channel.force_shutdown(true));
3924                                         if let Ok(update) = self.get_channel_update(&channel) {
3925                                                 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
3926                                                         msg: update
3927                                                 });
3928                                         }
3929                                         pending_msg_events.push(events::MessageSendEvent::HandleError {
3930                                                 node_id: channel.get_counterparty_node_id(),
3931                                                 action: msgs::ErrorAction::SendErrorMessage { msg: e },
3932                                         });
3933                                         return false;
3934                                 }
3935                                 true
3936                         });
3937
3938                         if let Some(height) = height_opt {
3939                                 channel_state.claimable_htlcs.retain(|payment_hash, htlcs| {
3940                                         htlcs.retain(|htlc| {
3941                                                 // If height is approaching the number of blocks we think it takes us to get
3942                                                 // our commitment transaction confirmed before the HTLC expires, plus the
3943                                                 // number of blocks we generally consider it to take to do a commitment update,
3944                                                 // just give up on it and fail the HTLC.
3945                                                 if height >= htlc.cltv_expiry - HTLC_FAIL_BACK_BUFFER {
3946                                                         let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec();
3947                                                         htlc_msat_height_data.extend_from_slice(&byte_utils::be32_to_array(height));
3948                                                         timed_out_htlcs.push((HTLCSource::PreviousHopData(htlc.prev_hop.clone()), payment_hash.clone(), HTLCFailReason::Reason {
3949                                                                 failure_code: 0x4000 | 15,
3950                                                                 data: htlc_msat_height_data
3951                                                         }));
3952                                                         false
3953                                                 } else { true }
3954                                         });
3955                                         !htlcs.is_empty() // Only retain this entry if htlcs has at least one entry.
3956                                 });
3957                         }
3958                 }
3959
3960                 self.handle_init_event_channel_failures(failed_channels);
3961
3962                 for (source, payment_hash, reason) in timed_out_htlcs.drain(..) {
3963                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), source, &payment_hash, reason);
3964                 }
3965         }
3966
3967         /// Blocks until ChannelManager needs to be persisted or a timeout is reached. It returns a bool
3968         /// indicating whether persistence is necessary. Only one listener on
3969         /// `await_persistable_update` or `await_persistable_update_timeout` is guaranteed to be woken
3970         /// up.
3971         /// Note that the feature `allow_wallclock_use` must be enabled to use this function.
3972         #[cfg(any(test, feature = "allow_wallclock_use"))]
3973         pub fn await_persistable_update_timeout(&self, max_wait: Duration) -> bool {
3974                 self.persistence_notifier.wait_timeout(max_wait)
3975         }
3976
3977         /// Blocks until ChannelManager needs to be persisted. Only one listener on
3978         /// `await_persistable_update` or `await_persistable_update_timeout` is guaranteed to be woken
3979         /// up.
3980         pub fn await_persistable_update(&self) {
3981                 self.persistence_notifier.wait()
3982         }
3983
3984         #[cfg(any(test, feature = "_test_utils"))]
3985         pub fn get_persistence_condvar_value(&self) -> bool {
3986                 let mutcond = &self.persistence_notifier.persistence_lock;
3987                 let &(ref mtx, _) = mutcond;
3988                 let guard = mtx.lock().unwrap();
3989                 *guard
3990         }
3991 }
3992
3993 impl<Signer: Sign, M: Deref , T: Deref , K: Deref , F: Deref , L: Deref >
3994         ChannelMessageHandler for ChannelManager<Signer, M, T, K, F, L>
3995         where M::Target: chain::Watch<Signer>,
3996         T::Target: BroadcasterInterface,
3997         K::Target: KeysInterface<Signer = Signer>,
3998         F::Target: FeeEstimator,
3999         L::Target: Logger,
4000 {
4001         fn handle_open_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::OpenChannel) {
4002                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4003                 let _ = handle_error!(self, self.internal_open_channel(counterparty_node_id, their_features, msg), *counterparty_node_id);
4004         }
4005
4006         fn handle_accept_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::AcceptChannel) {
4007                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4008                 let _ = handle_error!(self, self.internal_accept_channel(counterparty_node_id, their_features, msg), *counterparty_node_id);
4009         }
4010
4011         fn handle_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) {
4012                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4013                 let _ = handle_error!(self, self.internal_funding_created(counterparty_node_id, msg), *counterparty_node_id);
4014         }
4015
4016         fn handle_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) {
4017                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4018                 let _ = handle_error!(self, self.internal_funding_signed(counterparty_node_id, msg), *counterparty_node_id);
4019         }
4020
4021         fn handle_funding_locked(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingLocked) {
4022                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4023                 let _ = handle_error!(self, self.internal_funding_locked(counterparty_node_id, msg), *counterparty_node_id);
4024         }
4025
4026         fn handle_shutdown(&self, counterparty_node_id: &PublicKey, their_features: &InitFeatures, msg: &msgs::Shutdown) {
4027                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4028                 let _ = handle_error!(self, self.internal_shutdown(counterparty_node_id, their_features, msg), *counterparty_node_id);
4029         }
4030
4031         fn handle_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
4032                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4033                 let _ = handle_error!(self, self.internal_closing_signed(counterparty_node_id, msg), *counterparty_node_id);
4034         }
4035
4036         fn handle_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
4037                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4038                 let _ = handle_error!(self, self.internal_update_add_htlc(counterparty_node_id, msg), *counterparty_node_id);
4039         }
4040
4041         fn handle_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
4042                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4043                 let _ = handle_error!(self, self.internal_update_fulfill_htlc(counterparty_node_id, msg), *counterparty_node_id);
4044         }
4045
4046         fn handle_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
4047                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4048                 let _ = handle_error!(self, self.internal_update_fail_htlc(counterparty_node_id, msg), *counterparty_node_id);
4049         }
4050
4051         fn handle_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
4052                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4053                 let _ = handle_error!(self, self.internal_update_fail_malformed_htlc(counterparty_node_id, msg), *counterparty_node_id);
4054         }
4055
4056         fn handle_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
4057                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4058                 let _ = handle_error!(self, self.internal_commitment_signed(counterparty_node_id, msg), *counterparty_node_id);
4059         }
4060
4061         fn handle_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
4062                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4063                 let _ = handle_error!(self, self.internal_revoke_and_ack(counterparty_node_id, msg), *counterparty_node_id);
4064         }
4065
4066         fn handle_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) {
4067                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4068                 let _ = handle_error!(self, self.internal_update_fee(counterparty_node_id, msg), *counterparty_node_id);
4069         }
4070
4071         fn handle_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
4072                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4073                 let _ = handle_error!(self, self.internal_announcement_signatures(counterparty_node_id, msg), *counterparty_node_id);
4074         }
4075
4076         fn handle_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) {
4077                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4078                 let _ = handle_error!(self, self.internal_channel_update(counterparty_node_id, msg), *counterparty_node_id);
4079         }
4080
4081         fn handle_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
4082                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4083                 let _ = handle_error!(self, self.internal_channel_reestablish(counterparty_node_id, msg), *counterparty_node_id);
4084         }
4085
4086         fn peer_disconnected(&self, counterparty_node_id: &PublicKey, no_connection_possible: bool) {
4087                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4088                 let mut failed_channels = Vec::new();
4089                 let mut no_channels_remain = true;
4090                 {
4091                         let mut channel_state_lock = self.channel_state.lock().unwrap();
4092                         let channel_state = &mut *channel_state_lock;
4093                         let short_to_id = &mut channel_state.short_to_id;
4094                         let pending_msg_events = &mut channel_state.pending_msg_events;
4095                         if no_connection_possible {
4096                                 log_debug!(self.logger, "Failing all channels with {} due to no_connection_possible", log_pubkey!(counterparty_node_id));
4097                                 channel_state.by_id.retain(|_, chan| {
4098                                         if chan.get_counterparty_node_id() == *counterparty_node_id {
4099                                                 if let Some(short_id) = chan.get_short_channel_id() {
4100                                                         short_to_id.remove(&short_id);
4101                                                 }
4102                                                 failed_channels.push(chan.force_shutdown(true));
4103                                                 if let Ok(update) = self.get_channel_update(&chan) {
4104                                                         pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
4105                                                                 msg: update
4106                                                         });
4107                                                 }
4108                                                 false
4109                                         } else {
4110                                                 true
4111                                         }
4112                                 });
4113                         } else {
4114                                 log_debug!(self.logger, "Marking channels with {} disconnected and generating channel_updates", log_pubkey!(counterparty_node_id));
4115                                 channel_state.by_id.retain(|_, chan| {
4116                                         if chan.get_counterparty_node_id() == *counterparty_node_id {
4117                                                 chan.remove_uncommitted_htlcs_and_mark_paused(&self.logger);
4118                                                 if chan.is_shutdown() {
4119                                                         if let Some(short_id) = chan.get_short_channel_id() {
4120                                                                 short_to_id.remove(&short_id);
4121                                                         }
4122                                                         return false;
4123                                                 } else {
4124                                                         no_channels_remain = false;
4125                                                 }
4126                                         }
4127                                         true
4128                                 })
4129                         }
4130                         pending_msg_events.retain(|msg| {
4131                                 match msg {
4132                                         &events::MessageSendEvent::SendAcceptChannel { ref node_id, .. } => node_id != counterparty_node_id,
4133                                         &events::MessageSendEvent::SendOpenChannel { ref node_id, .. } => node_id != counterparty_node_id,
4134                                         &events::MessageSendEvent::SendFundingCreated { ref node_id, .. } => node_id != counterparty_node_id,
4135                                         &events::MessageSendEvent::SendFundingSigned { ref node_id, .. } => node_id != counterparty_node_id,
4136                                         &events::MessageSendEvent::SendFundingLocked { ref node_id, .. } => node_id != counterparty_node_id,
4137                                         &events::MessageSendEvent::SendAnnouncementSignatures { ref node_id, .. } => node_id != counterparty_node_id,
4138                                         &events::MessageSendEvent::UpdateHTLCs { ref node_id, .. } => node_id != counterparty_node_id,
4139                                         &events::MessageSendEvent::SendRevokeAndACK { ref node_id, .. } => node_id != counterparty_node_id,
4140                                         &events::MessageSendEvent::SendClosingSigned { ref node_id, .. } => node_id != counterparty_node_id,
4141                                         &events::MessageSendEvent::SendShutdown { ref node_id, .. } => node_id != counterparty_node_id,
4142                                         &events::MessageSendEvent::SendChannelReestablish { ref node_id, .. } => node_id != counterparty_node_id,
4143                                         &events::MessageSendEvent::BroadcastChannelAnnouncement { .. } => true,
4144                                         &events::MessageSendEvent::BroadcastNodeAnnouncement { .. } => true,
4145                                         &events::MessageSendEvent::BroadcastChannelUpdate { .. } => true,
4146                                         &events::MessageSendEvent::HandleError { ref node_id, .. } => node_id != counterparty_node_id,
4147                                         &events::MessageSendEvent::PaymentFailureNetworkUpdate { .. } => true,
4148                                         &events::MessageSendEvent::SendChannelRangeQuery { .. } => false,
4149                                         &events::MessageSendEvent::SendShortIdsQuery { .. } => false,
4150                                         &events::MessageSendEvent::SendReplyChannelRange { .. } => false,
4151                                 }
4152                         });
4153                 }
4154                 if no_channels_remain {
4155                         self.per_peer_state.write().unwrap().remove(counterparty_node_id);
4156                 }
4157
4158                 for failure in failed_channels.drain(..) {
4159                         self.finish_force_close_channel(failure);
4160                 }
4161         }
4162
4163         fn peer_connected(&self, counterparty_node_id: &PublicKey, init_msg: &msgs::Init) {
4164                 log_debug!(self.logger, "Generating channel_reestablish events for {}", log_pubkey!(counterparty_node_id));
4165
4166                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4167
4168                 {
4169                         let mut peer_state_lock = self.per_peer_state.write().unwrap();
4170                         match peer_state_lock.entry(counterparty_node_id.clone()) {
4171                                 hash_map::Entry::Vacant(e) => {
4172                                         e.insert(Mutex::new(PeerState {
4173                                                 latest_features: init_msg.features.clone(),
4174                                         }));
4175                                 },
4176                                 hash_map::Entry::Occupied(e) => {
4177                                         e.get().lock().unwrap().latest_features = init_msg.features.clone();
4178                                 },
4179                         }
4180                 }
4181
4182                 let mut channel_state_lock = self.channel_state.lock().unwrap();
4183                 let channel_state = &mut *channel_state_lock;
4184                 let pending_msg_events = &mut channel_state.pending_msg_events;
4185                 channel_state.by_id.retain(|_, chan| {
4186                         if chan.get_counterparty_node_id() == *counterparty_node_id {
4187                                 if !chan.have_received_message() {
4188                                         // If we created this (outbound) channel while we were disconnected from the
4189                                         // peer we probably failed to send the open_channel message, which is now
4190                                         // lost. We can't have had anything pending related to this channel, so we just
4191                                         // drop it.
4192                                         false
4193                                 } else {
4194                                         pending_msg_events.push(events::MessageSendEvent::SendChannelReestablish {
4195                                                 node_id: chan.get_counterparty_node_id(),
4196                                                 msg: chan.get_channel_reestablish(&self.logger),
4197                                         });
4198                                         true
4199                                 }
4200                         } else { true }
4201                 });
4202                 //TODO: Also re-broadcast announcement_signatures
4203         }
4204
4205         fn handle_error(&self, counterparty_node_id: &PublicKey, msg: &msgs::ErrorMessage) {
4206                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4207
4208                 if msg.channel_id == [0; 32] {
4209                         for chan in self.list_channels() {
4210                                 if chan.remote_network_id == *counterparty_node_id {
4211                                         // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
4212                                         let _ = self.force_close_channel_with_peer(&chan.channel_id, Some(counterparty_node_id));
4213                                 }
4214                         }
4215                 } else {
4216                         // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
4217                         let _ = self.force_close_channel_with_peer(&msg.channel_id, Some(counterparty_node_id));
4218                 }
4219         }
4220 }
4221
4222 /// Used to signal to the ChannelManager persister that the manager needs to be re-persisted to
4223 /// disk/backups, through `await_persistable_update_timeout` and `await_persistable_update`.
4224 struct PersistenceNotifier {
4225         /// Users won't access the persistence_lock directly, but rather wait on its bool using
4226         /// `wait_timeout` and `wait`.
4227         persistence_lock: (Mutex<bool>, Condvar),
4228 }
4229
4230 impl PersistenceNotifier {
4231         fn new() -> Self {
4232                 Self {
4233                         persistence_lock: (Mutex::new(false), Condvar::new()),
4234                 }
4235         }
4236
4237         fn wait(&self) {
4238                 loop {
4239                         let &(ref mtx, ref cvar) = &self.persistence_lock;
4240                         let mut guard = mtx.lock().unwrap();
4241                         if *guard {
4242                                 *guard = false;
4243                                 return;
4244                         }
4245                         guard = cvar.wait(guard).unwrap();
4246                         let result = *guard;
4247                         if result {
4248                                 *guard = false;
4249                                 return
4250                         }
4251                 }
4252         }
4253
4254         #[cfg(any(test, feature = "allow_wallclock_use"))]
4255         fn wait_timeout(&self, max_wait: Duration) -> bool {
4256                 let current_time = Instant::now();
4257                 loop {
4258                         let &(ref mtx, ref cvar) = &self.persistence_lock;
4259                         let mut guard = mtx.lock().unwrap();
4260                         if *guard {
4261                                 *guard = false;
4262                                 return true;
4263                         }
4264                         guard = cvar.wait_timeout(guard, max_wait).unwrap().0;
4265                         // Due to spurious wakeups that can happen on `wait_timeout`, here we need to check if the
4266                         // desired wait time has actually passed, and if not then restart the loop with a reduced wait
4267                         // time. Note that this logic can be highly simplified through the use of
4268                         // `Condvar::wait_while` and `Condvar::wait_timeout_while`, if and when our MSRV is raised to
4269                         // 1.42.0.
4270                         let elapsed = current_time.elapsed();
4271                         let result = *guard;
4272                         if result || elapsed >= max_wait {
4273                                 *guard = false;
4274                                 return result;
4275                         }
4276                         match max_wait.checked_sub(elapsed) {
4277                                 None => return result,
4278                                 Some(_) => continue
4279                         }
4280                 }
4281         }
4282
4283         // Signal to the ChannelManager persister that there are updates necessitating persisting to disk.
4284         fn notify(&self) {
4285                 let &(ref persist_mtx, ref cnd) = &self.persistence_lock;
4286                 let mut persistence_lock = persist_mtx.lock().unwrap();
4287                 *persistence_lock = true;
4288                 mem::drop(persistence_lock);
4289                 cnd.notify_all();
4290         }
4291 }
4292
4293 const SERIALIZATION_VERSION: u8 = 1;
4294 const MIN_SERIALIZATION_VERSION: u8 = 1;
4295
4296 impl Writeable for PendingHTLCInfo {
4297         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
4298                 match &self.routing {
4299                         &PendingHTLCRouting::Forward { ref onion_packet, ref short_channel_id } => {
4300                                 0u8.write(writer)?;
4301                                 onion_packet.write(writer)?;
4302                                 short_channel_id.write(writer)?;
4303                         },
4304                         &PendingHTLCRouting::Receive { ref payment_data, ref incoming_cltv_expiry } => {
4305                                 1u8.write(writer)?;
4306                                 payment_data.payment_secret.write(writer)?;
4307                                 payment_data.total_msat.write(writer)?;
4308                                 incoming_cltv_expiry.write(writer)?;
4309                         },
4310                 }
4311                 self.incoming_shared_secret.write(writer)?;
4312                 self.payment_hash.write(writer)?;
4313                 self.amt_to_forward.write(writer)?;
4314                 self.outgoing_cltv_value.write(writer)?;
4315                 Ok(())
4316         }
4317 }
4318
4319 impl Readable for PendingHTLCInfo {
4320         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<PendingHTLCInfo, DecodeError> {
4321                 Ok(PendingHTLCInfo {
4322                         routing: match Readable::read(reader)? {
4323                                 0u8 => PendingHTLCRouting::Forward {
4324                                         onion_packet: Readable::read(reader)?,
4325                                         short_channel_id: Readable::read(reader)?,
4326                                 },
4327                                 1u8 => PendingHTLCRouting::Receive {
4328                                         payment_data: msgs::FinalOnionHopData {
4329                                                 payment_secret: Readable::read(reader)?,
4330                                                 total_msat: Readable::read(reader)?,
4331                                         },
4332                                         incoming_cltv_expiry: Readable::read(reader)?,
4333                                 },
4334                                 _ => return Err(DecodeError::InvalidValue),
4335                         },
4336                         incoming_shared_secret: Readable::read(reader)?,
4337                         payment_hash: Readable::read(reader)?,
4338                         amt_to_forward: Readable::read(reader)?,
4339                         outgoing_cltv_value: Readable::read(reader)?,
4340                 })
4341         }
4342 }
4343
4344 impl Writeable for HTLCFailureMsg {
4345         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
4346                 match self {
4347                         &HTLCFailureMsg::Relay(ref fail_msg) => {
4348                                 0u8.write(writer)?;
4349                                 fail_msg.write(writer)?;
4350                         },
4351                         &HTLCFailureMsg::Malformed(ref fail_msg) => {
4352                                 1u8.write(writer)?;
4353                                 fail_msg.write(writer)?;
4354                         }
4355                 }
4356                 Ok(())
4357         }
4358 }
4359
4360 impl Readable for HTLCFailureMsg {
4361         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<HTLCFailureMsg, DecodeError> {
4362                 match <u8 as Readable>::read(reader)? {
4363                         0 => Ok(HTLCFailureMsg::Relay(Readable::read(reader)?)),
4364                         1 => Ok(HTLCFailureMsg::Malformed(Readable::read(reader)?)),
4365                         _ => Err(DecodeError::InvalidValue),
4366                 }
4367         }
4368 }
4369
4370 impl Writeable for PendingHTLCStatus {
4371         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
4372                 match self {
4373                         &PendingHTLCStatus::Forward(ref forward_info) => {
4374                                 0u8.write(writer)?;
4375                                 forward_info.write(writer)?;
4376                         },
4377                         &PendingHTLCStatus::Fail(ref fail_msg) => {
4378                                 1u8.write(writer)?;
4379                                 fail_msg.write(writer)?;
4380                         }
4381                 }
4382                 Ok(())
4383         }
4384 }
4385
4386 impl Readable for PendingHTLCStatus {
4387         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<PendingHTLCStatus, DecodeError> {
4388                 match <u8 as Readable>::read(reader)? {
4389                         0 => Ok(PendingHTLCStatus::Forward(Readable::read(reader)?)),
4390                         1 => Ok(PendingHTLCStatus::Fail(Readable::read(reader)?)),
4391                         _ => Err(DecodeError::InvalidValue),
4392                 }
4393         }
4394 }
4395
4396 impl_writeable!(HTLCPreviousHopData, 0, {
4397         short_channel_id,
4398         outpoint,
4399         htlc_id,
4400         incoming_packet_shared_secret
4401 });
4402
4403 impl Writeable for ClaimableHTLC {
4404         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
4405                 self.prev_hop.write(writer)?;
4406                 self.value.write(writer)?;
4407                 self.payment_data.payment_secret.write(writer)?;
4408                 self.payment_data.total_msat.write(writer)?;
4409                 self.cltv_expiry.write(writer)
4410         }
4411 }
4412
4413 impl Readable for ClaimableHTLC {
4414         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
4415                 Ok(ClaimableHTLC {
4416                         prev_hop: Readable::read(reader)?,
4417                         value: Readable::read(reader)?,
4418                         payment_data: msgs::FinalOnionHopData {
4419                                 payment_secret: Readable::read(reader)?,
4420                                 total_msat: Readable::read(reader)?,
4421                         },
4422                         cltv_expiry: Readable::read(reader)?,
4423                 })
4424         }
4425 }
4426
4427 impl Writeable for HTLCSource {
4428         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
4429                 match self {
4430                         &HTLCSource::PreviousHopData(ref hop_data) => {
4431                                 0u8.write(writer)?;
4432                                 hop_data.write(writer)?;
4433                         },
4434                         &HTLCSource::OutboundRoute { ref path, ref session_priv, ref first_hop_htlc_msat } => {
4435                                 1u8.write(writer)?;
4436                                 path.write(writer)?;
4437                                 session_priv.write(writer)?;
4438                                 first_hop_htlc_msat.write(writer)?;
4439                         }
4440                 }
4441                 Ok(())
4442         }
4443 }
4444
4445 impl Readable for HTLCSource {
4446         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<HTLCSource, DecodeError> {
4447                 match <u8 as Readable>::read(reader)? {
4448                         0 => Ok(HTLCSource::PreviousHopData(Readable::read(reader)?)),
4449                         1 => Ok(HTLCSource::OutboundRoute {
4450                                 path: Readable::read(reader)?,
4451                                 session_priv: Readable::read(reader)?,
4452                                 first_hop_htlc_msat: Readable::read(reader)?,
4453                         }),
4454                         _ => Err(DecodeError::InvalidValue),
4455                 }
4456         }
4457 }
4458
4459 impl Writeable for HTLCFailReason {
4460         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
4461                 match self {
4462                         &HTLCFailReason::LightningError { ref err } => {
4463                                 0u8.write(writer)?;
4464                                 err.write(writer)?;
4465                         },
4466                         &HTLCFailReason::Reason { ref failure_code, ref data } => {
4467                                 1u8.write(writer)?;
4468                                 failure_code.write(writer)?;
4469                                 data.write(writer)?;
4470                         }
4471                 }
4472                 Ok(())
4473         }
4474 }
4475
4476 impl Readable for HTLCFailReason {
4477         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<HTLCFailReason, DecodeError> {
4478                 match <u8 as Readable>::read(reader)? {
4479                         0 => Ok(HTLCFailReason::LightningError { err: Readable::read(reader)? }),
4480                         1 => Ok(HTLCFailReason::Reason {
4481                                 failure_code: Readable::read(reader)?,
4482                                 data: Readable::read(reader)?,
4483                         }),
4484                         _ => Err(DecodeError::InvalidValue),
4485                 }
4486         }
4487 }
4488
4489 impl Writeable for HTLCForwardInfo {
4490         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
4491                 match self {
4492                         &HTLCForwardInfo::AddHTLC { ref prev_short_channel_id, ref prev_funding_outpoint, ref prev_htlc_id, ref forward_info } => {
4493                                 0u8.write(writer)?;
4494                                 prev_short_channel_id.write(writer)?;
4495                                 prev_funding_outpoint.write(writer)?;
4496                                 prev_htlc_id.write(writer)?;
4497                                 forward_info.write(writer)?;
4498                         },
4499                         &HTLCForwardInfo::FailHTLC { ref htlc_id, ref err_packet } => {
4500                                 1u8.write(writer)?;
4501                                 htlc_id.write(writer)?;
4502                                 err_packet.write(writer)?;
4503                         },
4504                 }
4505                 Ok(())
4506         }
4507 }
4508
4509 impl Readable for HTLCForwardInfo {
4510         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<HTLCForwardInfo, DecodeError> {
4511                 match <u8 as Readable>::read(reader)? {
4512                         0 => Ok(HTLCForwardInfo::AddHTLC {
4513                                 prev_short_channel_id: Readable::read(reader)?,
4514                                 prev_funding_outpoint: Readable::read(reader)?,
4515                                 prev_htlc_id: Readable::read(reader)?,
4516                                 forward_info: Readable::read(reader)?,
4517                         }),
4518                         1 => Ok(HTLCForwardInfo::FailHTLC {
4519                                 htlc_id: Readable::read(reader)?,
4520                                 err_packet: Readable::read(reader)?,
4521                         }),
4522                         _ => Err(DecodeError::InvalidValue),
4523                 }
4524         }
4525 }
4526
4527 impl_writeable!(PendingInboundPayment, 0, {
4528         payment_secret,
4529         expiry_time,
4530         user_payment_id,
4531         payment_preimage,
4532         min_value_msat
4533 });
4534
4535 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> Writeable for ChannelManager<Signer, M, T, K, F, L>
4536         where M::Target: chain::Watch<Signer>,
4537         T::Target: BroadcasterInterface,
4538         K::Target: KeysInterface<Signer = Signer>,
4539         F::Target: FeeEstimator,
4540         L::Target: Logger,
4541 {
4542         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
4543                 let _consistency_lock = self.total_consistency_lock.write().unwrap();
4544
4545                 writer.write_all(&[SERIALIZATION_VERSION; 1])?;
4546                 writer.write_all(&[MIN_SERIALIZATION_VERSION; 1])?;
4547
4548                 self.genesis_hash.write(writer)?;
4549                 {
4550                         let best_block = self.best_block.read().unwrap();
4551                         best_block.height().write(writer)?;
4552                         best_block.block_hash().write(writer)?;
4553                 }
4554
4555                 let channel_state = self.channel_state.lock().unwrap();
4556                 let mut unfunded_channels = 0;
4557                 for (_, channel) in channel_state.by_id.iter() {
4558                         if !channel.is_funding_initiated() {
4559                                 unfunded_channels += 1;
4560                         }
4561                 }
4562                 ((channel_state.by_id.len() - unfunded_channels) as u64).write(writer)?;
4563                 for (_, channel) in channel_state.by_id.iter() {
4564                         if channel.is_funding_initiated() {
4565                                 channel.write(writer)?;
4566                         }
4567                 }
4568
4569                 (channel_state.forward_htlcs.len() as u64).write(writer)?;
4570                 for (short_channel_id, pending_forwards) in channel_state.forward_htlcs.iter() {
4571                         short_channel_id.write(writer)?;
4572                         (pending_forwards.len() as u64).write(writer)?;
4573                         for forward in pending_forwards {
4574                                 forward.write(writer)?;
4575                         }
4576                 }
4577
4578                 (channel_state.claimable_htlcs.len() as u64).write(writer)?;
4579                 for (payment_hash, previous_hops) in channel_state.claimable_htlcs.iter() {
4580                         payment_hash.write(writer)?;
4581                         (previous_hops.len() as u64).write(writer)?;
4582                         for htlc in previous_hops.iter() {
4583                                 htlc.write(writer)?;
4584                         }
4585                 }
4586
4587                 let per_peer_state = self.per_peer_state.write().unwrap();
4588                 (per_peer_state.len() as u64).write(writer)?;
4589                 for (peer_pubkey, peer_state_mutex) in per_peer_state.iter() {
4590                         peer_pubkey.write(writer)?;
4591                         let peer_state = peer_state_mutex.lock().unwrap();
4592                         peer_state.latest_features.write(writer)?;
4593                 }
4594
4595                 let events = self.pending_events.lock().unwrap();
4596                 (events.len() as u64).write(writer)?;
4597                 for event in events.iter() {
4598                         event.write(writer)?;
4599                 }
4600
4601                 let background_events = self.pending_background_events.lock().unwrap();
4602                 (background_events.len() as u64).write(writer)?;
4603                 for event in background_events.iter() {
4604                         match event {
4605                                 BackgroundEvent::ClosingMonitorUpdate((funding_txo, monitor_update)) => {
4606                                         0u8.write(writer)?;
4607                                         funding_txo.write(writer)?;
4608                                         monitor_update.write(writer)?;
4609                                 },
4610                         }
4611                 }
4612
4613                 (self.last_node_announcement_serial.load(Ordering::Acquire) as u32).write(writer)?;
4614                 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
4615
4616                 let pending_inbound_payments = self.pending_inbound_payments.lock().unwrap();
4617                 (pending_inbound_payments.len() as u64).write(writer)?;
4618                 for (hash, pending_payment) in pending_inbound_payments.iter() {
4619                         hash.write(writer)?;
4620                         pending_payment.write(writer)?;
4621                 }
4622
4623                 let pending_outbound_payments = self.pending_outbound_payments.lock().unwrap();
4624                 (pending_outbound_payments.len() as u64).write(writer)?;
4625                 for session_priv in pending_outbound_payments.iter() {
4626                         session_priv.write(writer)?;
4627                 }
4628
4629                 Ok(())
4630         }
4631 }
4632
4633 /// Arguments for the creation of a ChannelManager that are not deserialized.
4634 ///
4635 /// At a high-level, the process for deserializing a ChannelManager and resuming normal operation
4636 /// is:
4637 /// 1) Deserialize all stored ChannelMonitors.
4638 /// 2) Deserialize the ChannelManager by filling in this struct and calling:
4639 ///    <(BlockHash, ChannelManager)>::read(reader, args)
4640 ///    This may result in closing some Channels if the ChannelMonitor is newer than the stored
4641 ///    ChannelManager state to ensure no loss of funds. Thus, transactions may be broadcasted.
4642 /// 3) If you are not fetching full blocks, register all relevant ChannelMonitor outpoints the same
4643 ///    way you would handle a `chain::Filter` call using ChannelMonitor::get_outputs_to_watch() and
4644 ///    ChannelMonitor::get_funding_txo().
4645 /// 4) Reconnect blocks on your ChannelMonitors.
4646 /// 5) Disconnect/connect blocks on the ChannelManager.
4647 /// 6) Move the ChannelMonitors into your local chain::Watch.
4648 ///
4649 /// Note that the ordering of #4-6 is not of importance, however all three must occur before you
4650 /// call any other methods on the newly-deserialized ChannelManager.
4651 ///
4652 /// Note that because some channels may be closed during deserialization, it is critical that you
4653 /// always deserialize only the latest version of a ChannelManager and ChannelMonitors available to
4654 /// you. If you deserialize an old ChannelManager (during which force-closure transactions may be
4655 /// broadcast), and then later deserialize a newer version of the same ChannelManager (which will
4656 /// not force-close the same channels but consider them live), you may end up revoking a state for
4657 /// which you've already broadcasted the transaction.
4658 pub struct ChannelManagerReadArgs<'a, Signer: 'a + Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
4659         where M::Target: chain::Watch<Signer>,
4660         T::Target: BroadcasterInterface,
4661         K::Target: KeysInterface<Signer = Signer>,
4662         F::Target: FeeEstimator,
4663         L::Target: Logger,
4664 {
4665         /// The keys provider which will give us relevant keys. Some keys will be loaded during
4666         /// deserialization and KeysInterface::read_chan_signer will be used to read per-Channel
4667         /// signing data.
4668         pub keys_manager: K,
4669
4670         /// The fee_estimator for use in the ChannelManager in the future.
4671         ///
4672         /// No calls to the FeeEstimator will be made during deserialization.
4673         pub fee_estimator: F,
4674         /// The chain::Watch for use in the ChannelManager in the future.
4675         ///
4676         /// No calls to the chain::Watch will be made during deserialization. It is assumed that
4677         /// you have deserialized ChannelMonitors separately and will add them to your
4678         /// chain::Watch after deserializing this ChannelManager.
4679         pub chain_monitor: M,
4680
4681         /// The BroadcasterInterface which will be used in the ChannelManager in the future and may be
4682         /// used to broadcast the latest local commitment transactions of channels which must be
4683         /// force-closed during deserialization.
4684         pub tx_broadcaster: T,
4685         /// The Logger for use in the ChannelManager and which may be used to log information during
4686         /// deserialization.
4687         pub logger: L,
4688         /// Default settings used for new channels. Any existing channels will continue to use the
4689         /// runtime settings which were stored when the ChannelManager was serialized.
4690         pub default_config: UserConfig,
4691
4692         /// A map from channel funding outpoints to ChannelMonitors for those channels (ie
4693         /// value.get_funding_txo() should be the key).
4694         ///
4695         /// If a monitor is inconsistent with the channel state during deserialization the channel will
4696         /// be force-closed using the data in the ChannelMonitor and the channel will be dropped. This
4697         /// is true for missing channels as well. If there is a monitor missing for which we find
4698         /// channel data Err(DecodeError::InvalidValue) will be returned.
4699         ///
4700         /// In such cases the latest local transactions will be sent to the tx_broadcaster included in
4701         /// this struct.
4702         ///
4703         /// (C-not exported) because we have no HashMap bindings
4704         pub channel_monitors: HashMap<OutPoint, &'a mut ChannelMonitor<Signer>>,
4705 }
4706
4707 impl<'a, Signer: 'a + Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
4708                 ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>
4709         where M::Target: chain::Watch<Signer>,
4710                 T::Target: BroadcasterInterface,
4711                 K::Target: KeysInterface<Signer = Signer>,
4712                 F::Target: FeeEstimator,
4713                 L::Target: Logger,
4714         {
4715         /// Simple utility function to create a ChannelManagerReadArgs which creates the monitor
4716         /// HashMap for you. This is primarily useful for C bindings where it is not practical to
4717         /// populate a HashMap directly from C.
4718         pub fn new(keys_manager: K, fee_estimator: F, chain_monitor: M, tx_broadcaster: T, logger: L, default_config: UserConfig,
4719                         mut channel_monitors: Vec<&'a mut ChannelMonitor<Signer>>) -> Self {
4720                 Self {
4721                         keys_manager, fee_estimator, chain_monitor, tx_broadcaster, logger, default_config,
4722                         channel_monitors: channel_monitors.drain(..).map(|monitor| { (monitor.get_funding_txo().0, monitor) }).collect()
4723                 }
4724         }
4725 }
4726
4727 // Implement ReadableArgs for an Arc'd ChannelManager to make it a bit easier to work with the
4728 // SipmleArcChannelManager type:
4729 impl<'a, Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
4730         ReadableArgs<ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>> for (BlockHash, Arc<ChannelManager<Signer, M, T, K, F, L>>)
4731         where M::Target: chain::Watch<Signer>,
4732         T::Target: BroadcasterInterface,
4733         K::Target: KeysInterface<Signer = Signer>,
4734         F::Target: FeeEstimator,
4735         L::Target: Logger,
4736 {
4737         fn read<R: ::std::io::Read>(reader: &mut R, args: ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>) -> Result<Self, DecodeError> {
4738                 let (blockhash, chan_manager) = <(BlockHash, ChannelManager<Signer, M, T, K, F, L>)>::read(reader, args)?;
4739                 Ok((blockhash, Arc::new(chan_manager)))
4740         }
4741 }
4742
4743 impl<'a, Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
4744         ReadableArgs<ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>> for (BlockHash, ChannelManager<Signer, M, T, K, F, L>)
4745         where M::Target: chain::Watch<Signer>,
4746         T::Target: BroadcasterInterface,
4747         K::Target: KeysInterface<Signer = Signer>,
4748         F::Target: FeeEstimator,
4749         L::Target: Logger,
4750 {
4751         fn read<R: ::std::io::Read>(reader: &mut R, mut args: ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>) -> Result<Self, DecodeError> {
4752                 let _ver: u8 = Readable::read(reader)?;
4753                 let min_ver: u8 = Readable::read(reader)?;
4754                 if min_ver > SERIALIZATION_VERSION {
4755                         return Err(DecodeError::UnknownVersion);
4756                 }
4757
4758                 let genesis_hash: BlockHash = Readable::read(reader)?;
4759                 let best_block_height: u32 = Readable::read(reader)?;
4760                 let best_block_hash: BlockHash = Readable::read(reader)?;
4761
4762                 let mut failed_htlcs = Vec::new();
4763
4764                 let channel_count: u64 = Readable::read(reader)?;
4765                 let mut funding_txo_set = HashSet::with_capacity(cmp::min(channel_count as usize, 128));
4766                 let mut by_id = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
4767                 let mut short_to_id = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
4768                 for _ in 0..channel_count {
4769                         let mut channel: Channel<Signer> = Channel::read(reader, &args.keys_manager)?;
4770                         let funding_txo = channel.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
4771                         funding_txo_set.insert(funding_txo.clone());
4772                         if let Some(ref mut monitor) = args.channel_monitors.get_mut(&funding_txo) {
4773                                 if channel.get_cur_holder_commitment_transaction_number() < monitor.get_cur_holder_commitment_number() ||
4774                                                 channel.get_revoked_counterparty_commitment_transaction_number() < monitor.get_min_seen_secret() ||
4775                                                 channel.get_cur_counterparty_commitment_transaction_number() < monitor.get_cur_counterparty_commitment_number() ||
4776                                                 channel.get_latest_monitor_update_id() > monitor.get_latest_update_id() {
4777                                         // If the channel is ahead of the monitor, return InvalidValue:
4778                                         return Err(DecodeError::InvalidValue);
4779                                 } else if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() ||
4780                                                 channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() ||
4781                                                 channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() ||
4782                                                 channel.get_latest_monitor_update_id() < monitor.get_latest_update_id() {
4783                                         // But if the channel is behind of the monitor, close the channel:
4784                                         let (_, mut new_failed_htlcs) = channel.force_shutdown(true);
4785                                         failed_htlcs.append(&mut new_failed_htlcs);
4786                                         monitor.broadcast_latest_holder_commitment_txn(&args.tx_broadcaster, &args.logger);
4787                                 } else {
4788                                         if let Some(short_channel_id) = channel.get_short_channel_id() {
4789                                                 short_to_id.insert(short_channel_id, channel.channel_id());
4790                                         }
4791                                         by_id.insert(channel.channel_id(), channel);
4792                                 }
4793                         } else {
4794                                 return Err(DecodeError::InvalidValue);
4795                         }
4796                 }
4797
4798                 for (ref funding_txo, ref mut monitor) in args.channel_monitors.iter_mut() {
4799                         if !funding_txo_set.contains(funding_txo) {
4800                                 monitor.broadcast_latest_holder_commitment_txn(&args.tx_broadcaster, &args.logger);
4801                         }
4802                 }
4803
4804                 const MAX_ALLOC_SIZE: usize = 1024 * 64;
4805                 let forward_htlcs_count: u64 = Readable::read(reader)?;
4806                 let mut forward_htlcs = HashMap::with_capacity(cmp::min(forward_htlcs_count as usize, 128));
4807                 for _ in 0..forward_htlcs_count {
4808                         let short_channel_id = Readable::read(reader)?;
4809                         let pending_forwards_count: u64 = Readable::read(reader)?;
4810                         let mut pending_forwards = Vec::with_capacity(cmp::min(pending_forwards_count as usize, MAX_ALLOC_SIZE/mem::size_of::<HTLCForwardInfo>()));
4811                         for _ in 0..pending_forwards_count {
4812                                 pending_forwards.push(Readable::read(reader)?);
4813                         }
4814                         forward_htlcs.insert(short_channel_id, pending_forwards);
4815                 }
4816
4817                 let claimable_htlcs_count: u64 = Readable::read(reader)?;
4818                 let mut claimable_htlcs = HashMap::with_capacity(cmp::min(claimable_htlcs_count as usize, 128));
4819                 for _ in 0..claimable_htlcs_count {
4820                         let payment_hash = Readable::read(reader)?;
4821                         let previous_hops_len: u64 = Readable::read(reader)?;
4822                         let mut previous_hops = Vec::with_capacity(cmp::min(previous_hops_len as usize, MAX_ALLOC_SIZE/mem::size_of::<ClaimableHTLC>()));
4823                         for _ in 0..previous_hops_len {
4824                                 previous_hops.push(Readable::read(reader)?);
4825                         }
4826                         claimable_htlcs.insert(payment_hash, previous_hops);
4827                 }
4828
4829                 let peer_count: u64 = Readable::read(reader)?;
4830                 let mut per_peer_state = HashMap::with_capacity(cmp::min(peer_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(PublicKey, Mutex<PeerState>)>()));
4831                 for _ in 0..peer_count {
4832                         let peer_pubkey = Readable::read(reader)?;
4833                         let peer_state = PeerState {
4834                                 latest_features: Readable::read(reader)?,
4835                         };
4836                         per_peer_state.insert(peer_pubkey, Mutex::new(peer_state));
4837                 }
4838
4839                 let event_count: u64 = Readable::read(reader)?;
4840                 let mut pending_events_read: Vec<events::Event> = Vec::with_capacity(cmp::min(event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<events::Event>()));
4841                 for _ in 0..event_count {
4842                         match MaybeReadable::read(reader)? {
4843                                 Some(event) => pending_events_read.push(event),
4844                                 None => continue,
4845                         }
4846                 }
4847
4848                 let background_event_count: u64 = Readable::read(reader)?;
4849                 let mut pending_background_events_read: Vec<BackgroundEvent> = Vec::with_capacity(cmp::min(background_event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<BackgroundEvent>()));
4850                 for _ in 0..background_event_count {
4851                         match <u8 as Readable>::read(reader)? {
4852                                 0 => pending_background_events_read.push(BackgroundEvent::ClosingMonitorUpdate((Readable::read(reader)?, Readable::read(reader)?))),
4853                                 _ => return Err(DecodeError::InvalidValue),
4854                         }
4855                 }
4856
4857                 let last_node_announcement_serial: u32 = Readable::read(reader)?;
4858                 let highest_seen_timestamp: u32 = Readable::read(reader)?;
4859
4860                 let pending_inbound_payment_count: u64 = Readable::read(reader)?;
4861                 let mut pending_inbound_payments: HashMap<PaymentHash, PendingInboundPayment> = HashMap::with_capacity(cmp::min(pending_inbound_payment_count as usize, MAX_ALLOC_SIZE/(3*32)));
4862                 for _ in 0..pending_inbound_payment_count {
4863                         if pending_inbound_payments.insert(Readable::read(reader)?, Readable::read(reader)?).is_some() {
4864                                 return Err(DecodeError::InvalidValue);
4865                         }
4866                 }
4867
4868                 let pending_outbound_payments_count: u64 = Readable::read(reader)?;
4869                 let mut pending_outbound_payments: HashSet<[u8; 32]> = HashSet::with_capacity(cmp::min(pending_outbound_payments_count as usize, MAX_ALLOC_SIZE/32));
4870                 for _ in 0..pending_outbound_payments_count {
4871                         if !pending_outbound_payments.insert(Readable::read(reader)?) {
4872                                 return Err(DecodeError::InvalidValue);
4873                         }
4874                 }
4875
4876                 let mut secp_ctx = Secp256k1::new();
4877                 secp_ctx.seeded_randomize(&args.keys_manager.get_secure_random_bytes());
4878
4879                 let channel_manager = ChannelManager {
4880                         genesis_hash,
4881                         fee_estimator: args.fee_estimator,
4882                         chain_monitor: args.chain_monitor,
4883                         tx_broadcaster: args.tx_broadcaster,
4884
4885                         best_block: RwLock::new(BestBlock::new(best_block_hash, best_block_height)),
4886
4887                         channel_state: Mutex::new(ChannelHolder {
4888                                 by_id,
4889                                 short_to_id,
4890                                 forward_htlcs,
4891                                 claimable_htlcs,
4892                                 pending_msg_events: Vec::new(),
4893                         }),
4894                         pending_inbound_payments: Mutex::new(pending_inbound_payments),
4895                         pending_outbound_payments: Mutex::new(pending_outbound_payments),
4896
4897                         our_network_key: args.keys_manager.get_node_secret(),
4898                         our_network_pubkey: PublicKey::from_secret_key(&secp_ctx, &args.keys_manager.get_node_secret()),
4899                         secp_ctx,
4900
4901                         last_node_announcement_serial: AtomicUsize::new(last_node_announcement_serial as usize),
4902                         highest_seen_timestamp: AtomicUsize::new(highest_seen_timestamp as usize),
4903
4904                         per_peer_state: RwLock::new(per_peer_state),
4905
4906                         pending_events: Mutex::new(pending_events_read),
4907                         pending_background_events: Mutex::new(pending_background_events_read),
4908                         total_consistency_lock: RwLock::new(()),
4909                         persistence_notifier: PersistenceNotifier::new(),
4910
4911                         keys_manager: args.keys_manager,
4912                         logger: args.logger,
4913                         default_configuration: args.default_config,
4914                 };
4915
4916                 for htlc_source in failed_htlcs.drain(..) {
4917                         channel_manager.fail_htlc_backwards_internal(channel_manager.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
4918                 }
4919
4920                 //TODO: Broadcast channel update for closed channels, but only after we've made a
4921                 //connection or two.
4922
4923                 Ok((best_block_hash.clone(), channel_manager))
4924         }
4925 }
4926
4927 #[cfg(test)]
4928 mod tests {
4929         use ln::channelmanager::PersistenceNotifier;
4930         use std::sync::Arc;
4931         use core::sync::atomic::{AtomicBool, Ordering};
4932         use std::thread;
4933         use core::time::Duration;
4934
4935         #[test]
4936         fn test_wait_timeout() {
4937                 let persistence_notifier = Arc::new(PersistenceNotifier::new());
4938                 let thread_notifier = Arc::clone(&persistence_notifier);
4939
4940                 let exit_thread = Arc::new(AtomicBool::new(false));
4941                 let exit_thread_clone = exit_thread.clone();
4942                 thread::spawn(move || {
4943                         loop {
4944                                 let &(ref persist_mtx, ref cnd) = &thread_notifier.persistence_lock;
4945                                 let mut persistence_lock = persist_mtx.lock().unwrap();
4946                                 *persistence_lock = true;
4947                                 cnd.notify_all();
4948
4949                                 if exit_thread_clone.load(Ordering::SeqCst) {
4950                                         break
4951                                 }
4952                         }
4953                 });
4954
4955                 // Check that we can block indefinitely until updates are available.
4956                 let _ = persistence_notifier.wait();
4957
4958                 // Check that the PersistenceNotifier will return after the given duration if updates are
4959                 // available.
4960                 loop {
4961                         if persistence_notifier.wait_timeout(Duration::from_millis(100)) {
4962                                 break
4963                         }
4964                 }
4965
4966                 exit_thread.store(true, Ordering::SeqCst);
4967
4968                 // Check that the PersistenceNotifier will return after the given duration even if no updates
4969                 // are available.
4970                 loop {
4971                         if !persistence_notifier.wait_timeout(Duration::from_millis(100)) {
4972                                 break
4973                         }
4974                 }
4975         }
4976 }
4977
4978 #[cfg(all(any(test, feature = "_test_utils"), feature = "unstable"))]
4979 pub mod bench {
4980         use chain::Listen;
4981         use chain::chainmonitor::ChainMonitor;
4982         use chain::channelmonitor::Persist;
4983         use chain::keysinterface::{KeysManager, InMemorySigner};
4984         use ln::channelmanager::{BestBlock, ChainParameters, ChannelManager, PaymentHash, PaymentPreimage};
4985         use ln::features::{InitFeatures, InvoiceFeatures};
4986         use ln::functional_test_utils::*;
4987         use ln::msgs::ChannelMessageHandler;
4988         use routing::network_graph::NetworkGraph;
4989         use routing::router::get_route;
4990         use util::test_utils;
4991         use util::config::UserConfig;
4992         use util::events::{Event, MessageSendEvent, MessageSendEventsProvider};
4993
4994         use bitcoin::hashes::Hash;
4995         use bitcoin::hashes::sha256::Hash as Sha256;
4996         use bitcoin::{Block, BlockHeader, Transaction, TxOut};
4997
4998         use std::sync::Mutex;
4999
5000         use test::Bencher;
5001
5002         struct NodeHolder<'a, P: Persist<InMemorySigner>> {
5003                 node: &'a ChannelManager<InMemorySigner,
5004                         &'a ChainMonitor<InMemorySigner, &'a test_utils::TestChainSource,
5005                                 &'a test_utils::TestBroadcaster, &'a test_utils::TestFeeEstimator,
5006                                 &'a test_utils::TestLogger, &'a P>,
5007                         &'a test_utils::TestBroadcaster, &'a KeysManager,
5008                         &'a test_utils::TestFeeEstimator, &'a test_utils::TestLogger>
5009         }
5010
5011         #[cfg(test)]
5012         #[bench]
5013         fn bench_sends(bench: &mut Bencher) {
5014                 bench_two_sends(bench, test_utils::TestPersister::new(), test_utils::TestPersister::new());
5015         }
5016
5017         pub fn bench_two_sends<P: Persist<InMemorySigner>>(bench: &mut Bencher, persister_a: P, persister_b: P) {
5018                 // Do a simple benchmark of sending a payment back and forth between two nodes.
5019                 // Note that this is unrealistic as each payment send will require at least two fsync
5020                 // calls per node.
5021                 let network = bitcoin::Network::Testnet;
5022                 let genesis_hash = bitcoin::blockdata::constants::genesis_block(network).header.block_hash();
5023
5024                 let tx_broadcaster = test_utils::TestBroadcaster{txn_broadcasted: Mutex::new(Vec::new())};
5025                 let fee_estimator = test_utils::TestFeeEstimator { sat_per_kw: 253 };
5026
5027                 let mut config: UserConfig = Default::default();
5028                 config.own_channel_config.minimum_depth = 1;
5029
5030                 let logger_a = test_utils::TestLogger::with_id("node a".to_owned());
5031                 let chain_monitor_a = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_a);
5032                 let seed_a = [1u8; 32];
5033                 let keys_manager_a = KeysManager::new(&seed_a, 42, 42);
5034                 let node_a = ChannelManager::new(&fee_estimator, &chain_monitor_a, &tx_broadcaster, &logger_a, &keys_manager_a, config.clone(), ChainParameters {
5035                         network,
5036                         best_block: BestBlock::from_genesis(network),
5037                 });
5038                 let node_a_holder = NodeHolder { node: &node_a };
5039
5040                 let logger_b = test_utils::TestLogger::with_id("node a".to_owned());
5041                 let chain_monitor_b = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_b);
5042                 let seed_b = [2u8; 32];
5043                 let keys_manager_b = KeysManager::new(&seed_b, 42, 42);
5044                 let node_b = ChannelManager::new(&fee_estimator, &chain_monitor_b, &tx_broadcaster, &logger_b, &keys_manager_b, config.clone(), ChainParameters {
5045                         network,
5046                         best_block: BestBlock::from_genesis(network),
5047                 });
5048                 let node_b_holder = NodeHolder { node: &node_b };
5049
5050                 node_a.create_channel(node_b.get_our_node_id(), 8_000_000, 100_000_000, 42, None).unwrap();
5051                 node_b.handle_open_channel(&node_a.get_our_node_id(), InitFeatures::known(), &get_event_msg!(node_a_holder, MessageSendEvent::SendOpenChannel, node_b.get_our_node_id()));
5052                 node_a.handle_accept_channel(&node_b.get_our_node_id(), InitFeatures::known(), &get_event_msg!(node_b_holder, MessageSendEvent::SendAcceptChannel, node_a.get_our_node_id()));
5053
5054                 let tx;
5055                 if let Event::FundingGenerationReady { temporary_channel_id, output_script, .. } = get_event!(node_a_holder, Event::FundingGenerationReady) {
5056                         tx = Transaction { version: 2, lock_time: 0, input: Vec::new(), output: vec![TxOut {
5057                                 value: 8_000_000, script_pubkey: output_script,
5058                         }]};
5059                         node_a.funding_transaction_generated(&temporary_channel_id, tx.clone()).unwrap();
5060                 } else { panic!(); }
5061
5062                 node_b.handle_funding_created(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendFundingCreated, node_b.get_our_node_id()));
5063                 node_a.handle_funding_signed(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendFundingSigned, node_a.get_our_node_id()));
5064
5065                 assert_eq!(&tx_broadcaster.txn_broadcasted.lock().unwrap()[..], &[tx.clone()]);
5066
5067                 let block = Block {
5068                         header: BlockHeader { version: 0x20000000, prev_blockhash: genesis_hash, merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 },
5069                         txdata: vec![tx],
5070                 };
5071                 Listen::block_connected(&node_a, &block, 1);
5072                 Listen::block_connected(&node_b, &block, 1);
5073
5074                 node_a.handle_funding_locked(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendFundingLocked, node_a.get_our_node_id()));
5075                 node_b.handle_funding_locked(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendFundingLocked, node_b.get_our_node_id()));
5076
5077                 let dummy_graph = NetworkGraph::new(genesis_hash);
5078
5079                 let mut payment_count: u64 = 0;
5080                 macro_rules! send_payment {
5081                         ($node_a: expr, $node_b: expr) => {
5082                                 let usable_channels = $node_a.list_usable_channels();
5083                                 let route = get_route(&$node_a.get_our_node_id(), &dummy_graph, &$node_b.get_our_node_id(), Some(InvoiceFeatures::known()),
5084                                         Some(&usable_channels.iter().map(|r| r).collect::<Vec<_>>()), &[], 10_000, TEST_FINAL_CLTV, &logger_a).unwrap();
5085
5086                                 let mut payment_preimage = PaymentPreimage([0; 32]);
5087                                 payment_preimage.0[0..8].copy_from_slice(&payment_count.to_le_bytes());
5088                                 payment_count += 1;
5089                                 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0[..]).into_inner());
5090                                 let payment_secret = $node_b.create_inbound_payment_for_hash(payment_hash, None, 7200, 0).unwrap();
5091
5092                                 $node_a.send_payment(&route, payment_hash, &Some(payment_secret)).unwrap();
5093                                 let payment_event = SendEvent::from_event($node_a.get_and_clear_pending_msg_events().pop().unwrap());
5094                                 $node_b.handle_update_add_htlc(&$node_a.get_our_node_id(), &payment_event.msgs[0]);
5095                                 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &payment_event.commitment_msg);
5096                                 let (raa, cs) = get_revoke_commit_msgs!(NodeHolder { node: &$node_b }, $node_a.get_our_node_id());
5097                                 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &raa);
5098                                 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &cs);
5099                                 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &get_event_msg!(NodeHolder { node: &$node_a }, MessageSendEvent::SendRevokeAndACK, $node_b.get_our_node_id()));
5100
5101                                 expect_pending_htlcs_forwardable!(NodeHolder { node: &$node_b });
5102                                 expect_payment_received!(NodeHolder { node: &$node_b }, payment_hash, payment_secret, 10_000);
5103                                 assert!($node_b.claim_funds(payment_preimage));
5104
5105                                 match $node_b.get_and_clear_pending_msg_events().pop().unwrap() {
5106                                         MessageSendEvent::UpdateHTLCs { node_id, updates } => {
5107                                                 assert_eq!(node_id, $node_a.get_our_node_id());
5108                                                 $node_a.handle_update_fulfill_htlc(&$node_b.get_our_node_id(), &updates.update_fulfill_htlcs[0]);
5109                                                 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &updates.commitment_signed);
5110                                         },
5111                                         _ => panic!("Failed to generate claim event"),
5112                                 }
5113
5114                                 let (raa, cs) = get_revoke_commit_msgs!(NodeHolder { node: &$node_a }, $node_b.get_our_node_id());
5115                                 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &raa);
5116                                 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &cs);
5117                                 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &get_event_msg!(NodeHolder { node: &$node_b }, MessageSendEvent::SendRevokeAndACK, $node_a.get_our_node_id()));
5118
5119                                 expect_payment_sent!(NodeHolder { node: &$node_a }, payment_preimage);
5120                         }
5121                 }
5122
5123                 bench.iter(|| {
5124                         send_payment!(node_a, node_b);
5125                         send_payment!(node_b, node_a);
5126                 });
5127         }
5128 }