Process announcement_signatures messages in Channel and store sigs
[rust-lightning] / lightning / src / ln / channelmanager.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! The top-level channel management and payment tracking stuff lives here.
11 //!
12 //! The ChannelManager is the main chunk of logic implementing the lightning protocol and is
13 //! responsible for tracking which channels are open, HTLCs are in flight and reestablishing those
14 //! upon reconnect to the relevant peer(s).
15 //!
16 //! It does not manage routing logic (see routing::router::get_route for that) nor does it manage constructing
17 //! on-chain transactions (it only monitors the chain to watch for any force-closes that might
18 //! imply it needs to fail HTLCs/payments/channels it manages).
19 //!
20
21 use bitcoin::blockdata::block::{Block, BlockHeader};
22 use bitcoin::blockdata::transaction::Transaction;
23 use bitcoin::blockdata::constants::genesis_block;
24 use bitcoin::network::constants::Network;
25
26 use bitcoin::hashes::{Hash, HashEngine};
27 use bitcoin::hashes::hmac::{Hmac, HmacEngine};
28 use bitcoin::hashes::sha256::Hash as Sha256;
29 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
30 use bitcoin::hashes::cmp::fixed_time_eq;
31 use bitcoin::hash_types::{BlockHash, Txid};
32
33 use bitcoin::secp256k1::key::{SecretKey,PublicKey};
34 use bitcoin::secp256k1::Secp256k1;
35 use bitcoin::secp256k1::ecdh::SharedSecret;
36 use bitcoin::secp256k1;
37
38 use chain;
39 use chain::Confirm;
40 use chain::Watch;
41 use chain::chaininterface::{BroadcasterInterface, FeeEstimator};
42 use chain::channelmonitor::{ChannelMonitor, ChannelMonitorUpdate, ChannelMonitorUpdateStep, ChannelMonitorUpdateErr, HTLC_FAIL_BACK_BUFFER, CLTV_CLAIM_BUFFER, LATENCY_GRACE_PERIOD_BLOCKS, ANTI_REORG_DELAY, MonitorEvent, CLOSED_CHANNEL_UPDATE_ID};
43 use chain::transaction::{OutPoint, TransactionData};
44 // Since this struct is returned in `list_channels` methods, expose it here in case users want to
45 // construct one themselves.
46 use ln::{PaymentHash, PaymentPreimage, PaymentSecret};
47 pub use ln::channel::CounterpartyForwardingInfo;
48 use ln::channel::{Channel, ChannelError, ChannelUpdateStatus};
49 use ln::features::{InitFeatures, NodeFeatures};
50 use routing::router::{Route, RouteHop};
51 use ln::msgs;
52 use ln::msgs::NetAddress;
53 use ln::onion_utils;
54 use ln::msgs::{ChannelMessageHandler, DecodeError, LightningError, OptionalField};
55 use chain::keysinterface::{Sign, KeysInterface, KeysManager, InMemorySigner};
56 use util::config::UserConfig;
57 use util::events::{EventHandler, EventsProvider, MessageSendEvent, MessageSendEventsProvider};
58 use util::{byte_utils, events};
59 use util::ser::{Readable, ReadableArgs, MaybeReadable, Writeable, Writer};
60 use util::chacha20::{ChaCha20, ChaChaReader};
61 use util::logger::Logger;
62 use util::errors::APIError;
63
64 use core::{cmp, mem};
65 use std::cell::RefCell;
66 use std::collections::{HashMap, hash_map, HashSet};
67 use std::io::{Cursor, Read};
68 use std::sync::{Arc, Condvar, Mutex, MutexGuard, RwLock, RwLockReadGuard};
69 use core::sync::atomic::{AtomicUsize, Ordering};
70 use core::time::Duration;
71 #[cfg(any(test, feature = "allow_wallclock_use"))]
72 use std::time::Instant;
73 use core::ops::Deref;
74 use bitcoin::hashes::hex::ToHex;
75
76 // We hold various information about HTLC relay in the HTLC objects in Channel itself:
77 //
78 // Upon receipt of an HTLC from a peer, we'll give it a PendingHTLCStatus indicating if it should
79 // forward the HTLC with information it will give back to us when it does so, or if it should Fail
80 // the HTLC with the relevant message for the Channel to handle giving to the remote peer.
81 //
82 // Once said HTLC is committed in the Channel, if the PendingHTLCStatus indicated Forward, the
83 // Channel will return the PendingHTLCInfo back to us, and we will create an HTLCForwardInfo
84 // with it to track where it came from (in case of onwards-forward error), waiting a random delay
85 // before we forward it.
86 //
87 // We will then use HTLCForwardInfo's PendingHTLCInfo to construct an outbound HTLC, with a
88 // relevant HTLCSource::PreviousHopData filled in to indicate where it came from (which we can use
89 // to either fail-backwards or fulfill the HTLC backwards along the relevant path).
90 // Alternatively, we can fill an outbound HTLC with a HTLCSource::OutboundRoute indicating this is
91 // our payment, which we can use to decode errors or inform the user that the payment was sent.
92
93 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
94 enum PendingHTLCRouting {
95         Forward {
96                 onion_packet: msgs::OnionPacket,
97                 short_channel_id: u64, // This should be NonZero<u64> eventually when we bump MSRV
98         },
99         Receive {
100                 payment_data: msgs::FinalOnionHopData,
101                 incoming_cltv_expiry: u32, // Used to track when we should expire pending HTLCs that go unclaimed
102         },
103 }
104
105 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
106 pub(super) struct PendingHTLCInfo {
107         routing: PendingHTLCRouting,
108         incoming_shared_secret: [u8; 32],
109         payment_hash: PaymentHash,
110         pub(super) amt_to_forward: u64,
111         pub(super) outgoing_cltv_value: u32,
112 }
113
114 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
115 pub(super) enum HTLCFailureMsg {
116         Relay(msgs::UpdateFailHTLC),
117         Malformed(msgs::UpdateFailMalformedHTLC),
118 }
119
120 /// Stores whether we can't forward an HTLC or relevant forwarding info
121 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
122 pub(super) enum PendingHTLCStatus {
123         Forward(PendingHTLCInfo),
124         Fail(HTLCFailureMsg),
125 }
126
127 pub(super) enum HTLCForwardInfo {
128         AddHTLC {
129                 forward_info: PendingHTLCInfo,
130
131                 // These fields are produced in `forward_htlcs()` and consumed in
132                 // `process_pending_htlc_forwards()` for constructing the
133                 // `HTLCSource::PreviousHopData` for failed and forwarded
134                 // HTLCs.
135                 prev_short_channel_id: u64,
136                 prev_htlc_id: u64,
137                 prev_funding_outpoint: OutPoint,
138         },
139         FailHTLC {
140                 htlc_id: u64,
141                 err_packet: msgs::OnionErrorPacket,
142         },
143 }
144
145 /// Tracks the inbound corresponding to an outbound HTLC
146 #[derive(Clone, PartialEq)]
147 pub(crate) struct HTLCPreviousHopData {
148         short_channel_id: u64,
149         htlc_id: u64,
150         incoming_packet_shared_secret: [u8; 32],
151
152         // This field is consumed by `claim_funds_from_hop()` when updating a force-closed backwards
153         // channel with a preimage provided by the forward channel.
154         outpoint: OutPoint,
155 }
156
157 struct ClaimableHTLC {
158         prev_hop: HTLCPreviousHopData,
159         value: u64,
160         /// Contains a total_msat (which may differ from value if this is a Multi-Path Payment) and a
161         /// payment_secret which prevents path-probing attacks and can associate different HTLCs which
162         /// are part of the same payment.
163         payment_data: msgs::FinalOnionHopData,
164         cltv_expiry: u32,
165 }
166
167 /// Tracks the inbound corresponding to an outbound HTLC
168 #[derive(Clone, PartialEq)]
169 pub(crate) enum HTLCSource {
170         PreviousHopData(HTLCPreviousHopData),
171         OutboundRoute {
172                 path: Vec<RouteHop>,
173                 session_priv: SecretKey,
174                 /// Technically we can recalculate this from the route, but we cache it here to avoid
175                 /// doing a double-pass on route when we get a failure back
176                 first_hop_htlc_msat: u64,
177         },
178 }
179 #[cfg(test)]
180 impl HTLCSource {
181         pub fn dummy() -> Self {
182                 HTLCSource::OutboundRoute {
183                         path: Vec::new(),
184                         session_priv: SecretKey::from_slice(&[1; 32]).unwrap(),
185                         first_hop_htlc_msat: 0,
186                 }
187         }
188 }
189
190 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
191 pub(super) enum HTLCFailReason {
192         LightningError {
193                 err: msgs::OnionErrorPacket,
194         },
195         Reason {
196                 failure_code: u16,
197                 data: Vec<u8>,
198         }
199 }
200
201 type ShutdownResult = (Option<(OutPoint, ChannelMonitorUpdate)>, Vec<(HTLCSource, PaymentHash)>);
202
203 /// Error type returned across the channel_state mutex boundary. When an Err is generated for a
204 /// Channel, we generally end up with a ChannelError::Close for which we have to close the channel
205 /// immediately (ie with no further calls on it made). Thus, this step happens inside a
206 /// channel_state lock. We then return the set of things that need to be done outside the lock in
207 /// this struct and call handle_error!() on it.
208
209 struct MsgHandleErrInternal {
210         err: msgs::LightningError,
211         shutdown_finish: Option<(ShutdownResult, Option<msgs::ChannelUpdate>)>,
212 }
213 impl MsgHandleErrInternal {
214         #[inline]
215         fn send_err_msg_no_close(err: String, channel_id: [u8; 32]) -> Self {
216                 Self {
217                         err: LightningError {
218                                 err: err.clone(),
219                                 action: msgs::ErrorAction::SendErrorMessage {
220                                         msg: msgs::ErrorMessage {
221                                                 channel_id,
222                                                 data: err
223                                         },
224                                 },
225                         },
226                         shutdown_finish: None,
227                 }
228         }
229         #[inline]
230         fn ignore_no_close(err: String) -> Self {
231                 Self {
232                         err: LightningError {
233                                 err,
234                                 action: msgs::ErrorAction::IgnoreError,
235                         },
236                         shutdown_finish: None,
237                 }
238         }
239         #[inline]
240         fn from_no_close(err: msgs::LightningError) -> Self {
241                 Self { err, shutdown_finish: None }
242         }
243         #[inline]
244         fn from_finish_shutdown(err: String, channel_id: [u8; 32], shutdown_res: ShutdownResult, channel_update: Option<msgs::ChannelUpdate>) -> Self {
245                 Self {
246                         err: LightningError {
247                                 err: err.clone(),
248                                 action: msgs::ErrorAction::SendErrorMessage {
249                                         msg: msgs::ErrorMessage {
250                                                 channel_id,
251                                                 data: err
252                                         },
253                                 },
254                         },
255                         shutdown_finish: Some((shutdown_res, channel_update)),
256                 }
257         }
258         #[inline]
259         fn from_chan_no_close(err: ChannelError, channel_id: [u8; 32]) -> Self {
260                 Self {
261                         err: match err {
262                                 ChannelError::Ignore(msg) => LightningError {
263                                         err: msg,
264                                         action: msgs::ErrorAction::IgnoreError,
265                                 },
266                                 ChannelError::Close(msg) => LightningError {
267                                         err: msg.clone(),
268                                         action: msgs::ErrorAction::SendErrorMessage {
269                                                 msg: msgs::ErrorMessage {
270                                                         channel_id,
271                                                         data: msg
272                                                 },
273                                         },
274                                 },
275                                 ChannelError::CloseDelayBroadcast(msg) => LightningError {
276                                         err: msg.clone(),
277                                         action: msgs::ErrorAction::SendErrorMessage {
278                                                 msg: msgs::ErrorMessage {
279                                                         channel_id,
280                                                         data: msg
281                                                 },
282                                         },
283                                 },
284                         },
285                         shutdown_finish: None,
286                 }
287         }
288 }
289
290 /// We hold back HTLCs we intend to relay for a random interval greater than this (see
291 /// Event::PendingHTLCsForwardable for the API guidelines indicating how long should be waited).
292 /// This provides some limited amount of privacy. Ideally this would range from somewhere like one
293 /// second to 30 seconds, but people expect lightning to be, you know, kinda fast, sadly.
294 const MIN_HTLC_RELAY_HOLDING_CELL_MILLIS: u64 = 100;
295
296 /// For events which result in both a RevokeAndACK and a CommitmentUpdate, by default they should
297 /// be sent in the order they appear in the return value, however sometimes the order needs to be
298 /// variable at runtime (eg Channel::channel_reestablish needs to re-send messages in the order
299 /// they were originally sent). In those cases, this enum is also returned.
300 #[derive(Clone, PartialEq)]
301 pub(super) enum RAACommitmentOrder {
302         /// Send the CommitmentUpdate messages first
303         CommitmentFirst,
304         /// Send the RevokeAndACK message first
305         RevokeAndACKFirst,
306 }
307
308 // Note this is only exposed in cfg(test):
309 pub(super) struct ChannelHolder<Signer: Sign> {
310         pub(super) by_id: HashMap<[u8; 32], Channel<Signer>>,
311         pub(super) short_to_id: HashMap<u64, [u8; 32]>,
312         /// short channel id -> forward infos. Key of 0 means payments received
313         /// Note that while this is held in the same mutex as the channels themselves, no consistency
314         /// guarantees are made about the existence of a channel with the short id here, nor the short
315         /// ids in the PendingHTLCInfo!
316         pub(super) forward_htlcs: HashMap<u64, Vec<HTLCForwardInfo>>,
317         /// Map from payment hash to any HTLCs which are to us and can be failed/claimed by the user.
318         /// Note that while this is held in the same mutex as the channels themselves, no consistency
319         /// guarantees are made about the channels given here actually existing anymore by the time you
320         /// go to read them!
321         claimable_htlcs: HashMap<PaymentHash, Vec<ClaimableHTLC>>,
322         /// Messages to send to peers - pushed to in the same lock that they are generated in (except
323         /// for broadcast messages, where ordering isn't as strict).
324         pub(super) pending_msg_events: Vec<MessageSendEvent>,
325 }
326
327 /// Events which we process internally but cannot be procsesed immediately at the generation site
328 /// for some reason. They are handled in timer_tick_occurred, so may be processed with
329 /// quite some time lag.
330 enum BackgroundEvent {
331         /// Handle a ChannelMonitorUpdate that closes a channel, broadcasting its current latest holder
332         /// commitment transaction.
333         ClosingMonitorUpdate((OutPoint, ChannelMonitorUpdate)),
334 }
335
336 /// State we hold per-peer. In the future we should put channels in here, but for now we only hold
337 /// the latest Init features we heard from the peer.
338 struct PeerState {
339         latest_features: InitFeatures,
340 }
341
342 /// Stores a PaymentSecret and any other data we may need to validate an inbound payment is
343 /// actually ours and not some duplicate HTLC sent to us by a node along the route.
344 ///
345 /// For users who don't want to bother doing their own payment preimage storage, we also store that
346 /// here.
347 struct PendingInboundPayment {
348         /// The payment secret that the sender must use for us to accept this payment
349         payment_secret: PaymentSecret,
350         /// Time at which this HTLC expires - blocks with a header time above this value will result in
351         /// this payment being removed.
352         expiry_time: u64,
353         /// Arbitrary identifier the user specifies (or not)
354         user_payment_id: u64,
355         // Other required attributes of the payment, optionally enforced:
356         payment_preimage: Option<PaymentPreimage>,
357         min_value_msat: Option<u64>,
358 }
359
360 /// SimpleArcChannelManager is useful when you need a ChannelManager with a static lifetime, e.g.
361 /// when you're using lightning-net-tokio (since tokio::spawn requires parameters with static
362 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
363 /// SimpleRefChannelManager is the more appropriate type. Defining these type aliases prevents
364 /// issues such as overly long function definitions. Note that the ChannelManager can take any
365 /// type that implements KeysInterface for its keys manager, but this type alias chooses the
366 /// concrete type of the KeysManager.
367 pub type SimpleArcChannelManager<M, T, F, L> = ChannelManager<InMemorySigner, Arc<M>, Arc<T>, Arc<KeysManager>, Arc<F>, Arc<L>>;
368
369 /// SimpleRefChannelManager is a type alias for a ChannelManager reference, and is the reference
370 /// counterpart to the SimpleArcChannelManager type alias. Use this type by default when you don't
371 /// need a ChannelManager with a static lifetime. You'll need a static lifetime in cases such as
372 /// usage of lightning-net-tokio (since tokio::spawn requires parameters with static lifetimes).
373 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
374 /// helps with issues such as long function definitions. Note that the ChannelManager can take any
375 /// type that implements KeysInterface for its keys manager, but this type alias chooses the
376 /// concrete type of the KeysManager.
377 pub type SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, M, T, F, L> = ChannelManager<InMemorySigner, &'a M, &'b T, &'c KeysManager, &'d F, &'e L>;
378
379 /// Manager which keeps track of a number of channels and sends messages to the appropriate
380 /// channel, also tracking HTLC preimages and forwarding onion packets appropriately.
381 ///
382 /// Implements ChannelMessageHandler, handling the multi-channel parts and passing things through
383 /// to individual Channels.
384 ///
385 /// Implements Writeable to write out all channel state to disk. Implies peer_disconnected() for
386 /// all peers during write/read (though does not modify this instance, only the instance being
387 /// serialized). This will result in any channels which have not yet exchanged funding_created (ie
388 /// called funding_transaction_generated for outbound channels).
389 ///
390 /// Note that you can be a bit lazier about writing out ChannelManager than you can be with
391 /// ChannelMonitors. With ChannelMonitors you MUST write each monitor update out to disk before
392 /// returning from chain::Watch::watch_/update_channel, with ChannelManagers, writing updates
393 /// happens out-of-band (and will prevent any other ChannelManager operations from occurring during
394 /// the serialization process). If the deserialized version is out-of-date compared to the
395 /// ChannelMonitors passed by reference to read(), those channels will be force-closed based on the
396 /// ChannelMonitor state and no funds will be lost (mod on-chain transaction fees).
397 ///
398 /// Note that the deserializer is only implemented for (BlockHash, ChannelManager), which
399 /// tells you the last block hash which was block_connect()ed. You MUST rescan any blocks along
400 /// the "reorg path" (ie call block_disconnected() until you get to a common block and then call
401 /// block_connected() to step towards your best block) upon deserialization before using the
402 /// object!
403 ///
404 /// Note that ChannelManager is responsible for tracking liveness of its channels and generating
405 /// ChannelUpdate messages informing peers that the channel is temporarily disabled. To avoid
406 /// spam due to quick disconnection/reconnection, updates are not sent until the channel has been
407 /// offline for a full minute. In order to track this, you must call
408 /// timer_tick_occurred roughly once per minute, though it doesn't have to be perfect.
409 ///
410 /// Rather than using a plain ChannelManager, it is preferable to use either a SimpleArcChannelManager
411 /// a SimpleRefChannelManager, for conciseness. See their documentation for more details, but
412 /// essentially you should default to using a SimpleRefChannelManager, and use a
413 /// SimpleArcChannelManager when you require a ChannelManager with a static lifetime, such as when
414 /// you're using lightning-net-tokio.
415 pub struct ChannelManager<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
416         where M::Target: chain::Watch<Signer>,
417         T::Target: BroadcasterInterface,
418         K::Target: KeysInterface<Signer = Signer>,
419         F::Target: FeeEstimator,
420                                 L::Target: Logger,
421 {
422         default_configuration: UserConfig,
423         genesis_hash: BlockHash,
424         fee_estimator: F,
425         chain_monitor: M,
426         tx_broadcaster: T,
427
428         #[cfg(test)]
429         pub(super) best_block: RwLock<BestBlock>,
430         #[cfg(not(test))]
431         best_block: RwLock<BestBlock>,
432         secp_ctx: Secp256k1<secp256k1::All>,
433
434         #[cfg(any(test, feature = "_test_utils"))]
435         pub(super) channel_state: Mutex<ChannelHolder<Signer>>,
436         #[cfg(not(any(test, feature = "_test_utils")))]
437         channel_state: Mutex<ChannelHolder<Signer>>,
438
439         /// Storage for PaymentSecrets and any requirements on future inbound payments before we will
440         /// expose them to users via a PaymentReceived event. HTLCs which do not meet the requirements
441         /// here are failed when we process them as pending-forwardable-HTLCs, and entries are removed
442         /// after we generate a PaymentReceived upon receipt of all MPP parts or when they time out.
443         /// Locked *after* channel_state.
444         pending_inbound_payments: Mutex<HashMap<PaymentHash, PendingInboundPayment>>,
445
446         /// The session_priv bytes of outbound payments which are pending resolution.
447         /// The authoritative state of these HTLCs resides either within Channels or ChannelMonitors
448         /// (if the channel has been force-closed), however we track them here to prevent duplicative
449         /// PaymentSent/PaymentFailed events. Specifically, in the case of a duplicative
450         /// update_fulfill_htlc message after a reconnect, we may "claim" a payment twice.
451         /// Additionally, because ChannelMonitors are often not re-serialized after connecting block(s)
452         /// which may generate a claim event, we may receive similar duplicate claim/fail MonitorEvents
453         /// after reloading from disk while replaying blocks against ChannelMonitors.
454         ///
455         /// Locked *after* channel_state.
456         pending_outbound_payments: Mutex<HashSet<[u8; 32]>>,
457
458         our_network_key: SecretKey,
459         our_network_pubkey: PublicKey,
460
461         /// Used to track the last value sent in a node_announcement "timestamp" field. We ensure this
462         /// value increases strictly since we don't assume access to a time source.
463         last_node_announcement_serial: AtomicUsize,
464
465         /// The highest block timestamp we've seen, which is usually a good guess at the current time.
466         /// Assuming most miners are generating blocks with reasonable timestamps, this shouldn't be
467         /// very far in the past, and can only ever be up to two hours in the future.
468         highest_seen_timestamp: AtomicUsize,
469
470         /// The bulk of our storage will eventually be here (channels and message queues and the like).
471         /// If we are connected to a peer we always at least have an entry here, even if no channels
472         /// are currently open with that peer.
473         /// Because adding or removing an entry is rare, we usually take an outer read lock and then
474         /// operate on the inner value freely. Sadly, this prevents parallel operation when opening a
475         /// new channel.
476         per_peer_state: RwLock<HashMap<PublicKey, Mutex<PeerState>>>,
477
478         pending_events: Mutex<Vec<events::Event>>,
479         pending_background_events: Mutex<Vec<BackgroundEvent>>,
480         /// Used when we have to take a BIG lock to make sure everything is self-consistent.
481         /// Essentially just when we're serializing ourselves out.
482         /// Taken first everywhere where we are making changes before any other locks.
483         /// When acquiring this lock in read mode, rather than acquiring it directly, call
484         /// `PersistenceNotifierGuard::notify_on_drop(..)` and pass the lock to it, to ensure the
485         /// PersistenceNotifier the lock contains sends out a notification when the lock is released.
486         total_consistency_lock: RwLock<()>,
487
488         persistence_notifier: PersistenceNotifier,
489
490         keys_manager: K,
491
492         logger: L,
493 }
494
495 /// Chain-related parameters used to construct a new `ChannelManager`.
496 ///
497 /// Typically, the block-specific parameters are derived from the best block hash for the network,
498 /// as a newly constructed `ChannelManager` will not have created any channels yet. These parameters
499 /// are not needed when deserializing a previously constructed `ChannelManager`.
500 pub struct ChainParameters {
501         /// The network for determining the `chain_hash` in Lightning messages.
502         pub network: Network,
503
504         /// The hash and height of the latest block successfully connected.
505         ///
506         /// Used to track on-chain channel funding outputs and send payments with reliable timelocks.
507         pub best_block: BestBlock,
508 }
509
510 /// The best known block as identified by its hash and height.
511 #[derive(Clone, Copy)]
512 pub struct BestBlock {
513         block_hash: BlockHash,
514         height: u32,
515 }
516
517 impl BestBlock {
518         /// Returns the best block from the genesis of the given network.
519         pub fn from_genesis(network: Network) -> Self {
520                 BestBlock {
521                         block_hash: genesis_block(network).header.block_hash(),
522                         height: 0,
523                 }
524         }
525
526         /// Returns the best block as identified by the given block hash and height.
527         pub fn new(block_hash: BlockHash, height: u32) -> Self {
528                 BestBlock { block_hash, height }
529         }
530
531         /// Returns the best block hash.
532         pub fn block_hash(&self) -> BlockHash { self.block_hash }
533
534         /// Returns the best block height.
535         pub fn height(&self) -> u32 { self.height }
536 }
537
538 #[derive(Copy, Clone, PartialEq)]
539 enum NotifyOption {
540         DoPersist,
541         SkipPersist,
542 }
543
544 /// Whenever we release the `ChannelManager`'s `total_consistency_lock`, from read mode, it is
545 /// desirable to notify any listeners on `await_persistable_update_timeout`/
546 /// `await_persistable_update` when new updates are available for persistence. Therefore, this
547 /// struct is responsible for locking the total consistency lock and, upon going out of scope,
548 /// sending the aforementioned notification (since the lock being released indicates that the
549 /// updates are ready for persistence).
550 ///
551 /// We allow callers to either always notify by constructing with `notify_on_drop` or choose to
552 /// notify or not based on whether relevant changes have been made, providing a closure to
553 /// `optionally_notify` which returns a `NotifyOption`.
554 struct PersistenceNotifierGuard<'a, F: Fn() -> NotifyOption> {
555         persistence_notifier: &'a PersistenceNotifier,
556         should_persist: F,
557         // We hold onto this result so the lock doesn't get released immediately.
558         _read_guard: RwLockReadGuard<'a, ()>,
559 }
560
561 impl<'a> PersistenceNotifierGuard<'a, fn() -> NotifyOption> { // We don't care what the concrete F is here, it's unused
562         fn notify_on_drop(lock: &'a RwLock<()>, notifier: &'a PersistenceNotifier) -> PersistenceNotifierGuard<'a, impl Fn() -> NotifyOption> {
563                 PersistenceNotifierGuard::optionally_notify(lock, notifier, || -> NotifyOption { NotifyOption::DoPersist })
564         }
565
566         fn optionally_notify<F: Fn() -> NotifyOption>(lock: &'a RwLock<()>, notifier: &'a PersistenceNotifier, persist_check: F) -> PersistenceNotifierGuard<'a, F> {
567                 let read_guard = lock.read().unwrap();
568
569                 PersistenceNotifierGuard {
570                         persistence_notifier: notifier,
571                         should_persist: persist_check,
572                         _read_guard: read_guard,
573                 }
574         }
575 }
576
577 impl<'a, F: Fn() -> NotifyOption> Drop for PersistenceNotifierGuard<'a, F> {
578         fn drop(&mut self) {
579                 if (self.should_persist)() == NotifyOption::DoPersist {
580                         self.persistence_notifier.notify();
581                 }
582         }
583 }
584
585 /// The amount of time in blocks we require our counterparty wait to claim their money (ie time
586 /// between when we, or our watchtower, must check for them having broadcast a theft transaction).
587 ///
588 /// This can be increased (but not decreased) through [`ChannelHandshakeConfig::our_to_self_delay`]
589 ///
590 /// [`ChannelHandshakeConfig::our_to_self_delay`]: crate::util::config::ChannelHandshakeConfig::our_to_self_delay
591 pub const BREAKDOWN_TIMEOUT: u16 = 6 * 24;
592 /// The amount of time in blocks we're willing to wait to claim money back to us. This matches
593 /// the maximum required amount in lnd as of March 2021.
594 pub(crate) const MAX_LOCAL_BREAKDOWN_TIMEOUT: u16 = 2 * 6 * 24 * 7;
595
596 /// The minimum number of blocks between an inbound HTLC's CLTV and the corresponding outbound
597 /// HTLC's CLTV. The current default represents roughly seven hours of blocks at six blocks/hour.
598 ///
599 /// This can be increased (but not decreased) through [`ChannelConfig::cltv_expiry_delta`]
600 ///
601 /// [`ChannelConfig::cltv_expiry_delta`]: crate::util::config::ChannelConfig::cltv_expiry_delta
602 // This should always be a few blocks greater than channelmonitor::CLTV_CLAIM_BUFFER,
603 // i.e. the node we forwarded the payment on to should always have enough room to reliably time out
604 // the HTLC via a full update_fail_htlc/commitment_signed dance before we hit the
605 // CLTV_CLAIM_BUFFER point (we static assert that it's at least 3 blocks more).
606 pub const MIN_CLTV_EXPIRY_DELTA: u16 = 6*7;
607 pub(super) const CLTV_FAR_FAR_AWAY: u32 = 6 * 24 * 7; //TODO?
608
609 /// Minimum CLTV difference between the current block height and received inbound payments.
610 /// Invoices generated for payment to us must set their `min_final_cltv_expiry` field to at least
611 /// this value.
612 // Note that we fail if exactly HTLC_FAIL_BACK_BUFFER + 1 was used, so we need to add one for
613 // any payments to succeed. Further, we don't want payments to fail if a block was found while
614 // a payment was being routed, so we add an extra block to be safe.
615 pub const MIN_FINAL_CLTV_EXPIRY: u32 = HTLC_FAIL_BACK_BUFFER + 3;
616
617 // Check that our CLTV_EXPIRY is at least CLTV_CLAIM_BUFFER + ANTI_REORG_DELAY + LATENCY_GRACE_PERIOD_BLOCKS,
618 // ie that if the next-hop peer fails the HTLC within
619 // LATENCY_GRACE_PERIOD_BLOCKS then we'll still have CLTV_CLAIM_BUFFER left to timeout it onchain,
620 // then waiting ANTI_REORG_DELAY to be reorg-safe on the outbound HLTC and
621 // failing the corresponding htlc backward, and us now seeing the last block of ANTI_REORG_DELAY before
622 // LATENCY_GRACE_PERIOD_BLOCKS.
623 #[deny(const_err)]
624 #[allow(dead_code)]
625 const CHECK_CLTV_EXPIRY_SANITY: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - CLTV_CLAIM_BUFFER - ANTI_REORG_DELAY - LATENCY_GRACE_PERIOD_BLOCKS;
626
627 // Check for ability of an attacker to make us fail on-chain by delaying an HTLC claim. See
628 // ChannelMontior::would_broadcast_at_height for a description of why this is needed.
629 #[deny(const_err)]
630 #[allow(dead_code)]
631 const CHECK_CLTV_EXPIRY_SANITY_2: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - 2*CLTV_CLAIM_BUFFER;
632
633 /// Details of a channel, as returned by ChannelManager::list_channels and ChannelManager::list_usable_channels
634 #[derive(Clone)]
635 pub struct ChannelDetails {
636         /// The channel's ID (prior to funding transaction generation, this is a random 32 bytes,
637         /// thereafter this is the txid of the funding transaction xor the funding transaction output).
638         /// Note that this means this value is *not* persistent - it can change once during the
639         /// lifetime of the channel.
640         pub channel_id: [u8; 32],
641         /// The Channel's funding transaction output, if we've negotiated the funding transaction with
642         /// our counterparty already.
643         ///
644         /// Note that, if this has been set, `channel_id` will be equivalent to
645         /// `funding_txo.unwrap().to_channel_id()`.
646         pub funding_txo: Option<OutPoint>,
647         /// The position of the funding transaction in the chain. None if the funding transaction has
648         /// not yet been confirmed and the channel fully opened.
649         pub short_channel_id: Option<u64>,
650         /// The node_id of our counterparty
651         pub remote_network_id: PublicKey,
652         /// The Features the channel counterparty provided upon last connection.
653         /// Useful for routing as it is the most up-to-date copy of the counterparty's features and
654         /// many routing-relevant features are present in the init context.
655         pub counterparty_features: InitFeatures,
656         /// The value, in satoshis, of this channel as appears in the funding output
657         pub channel_value_satoshis: u64,
658         /// The user_id passed in to create_channel, or 0 if the channel was inbound.
659         pub user_id: u64,
660         /// The available outbound capacity for sending HTLCs to the remote peer. This does not include
661         /// any pending HTLCs which are not yet fully resolved (and, thus, who's balance is not
662         /// available for inclusion in new outbound HTLCs). This further does not include any pending
663         /// outgoing HTLCs which are awaiting some other resolution to be sent.
664         pub outbound_capacity_msat: u64,
665         /// The available inbound capacity for the remote peer to send HTLCs to us. This does not
666         /// include any pending HTLCs which are not yet fully resolved (and, thus, who's balance is not
667         /// available for inclusion in new inbound HTLCs).
668         /// Note that there are some corner cases not fully handled here, so the actual available
669         /// inbound capacity may be slightly higher than this.
670         pub inbound_capacity_msat: u64,
671         /// True if the channel was initiated (and thus funded) by us.
672         pub is_outbound: bool,
673         /// True if the channel is confirmed, funding_locked messages have been exchanged, and the
674         /// channel is not currently being shut down. `funding_locked` message exchange implies the
675         /// required confirmation count has been reached (and we were connected to the peer at some
676         /// point after the funding transaction received enough confirmations).
677         pub is_funding_locked: bool,
678         /// True if the channel is (a) confirmed and funding_locked messages have been exchanged, (b)
679         /// the peer is connected, (c) no monitor update failure is pending resolution, and (d) the
680         /// channel is not currently negotiating a shutdown.
681         ///
682         /// This is a strict superset of `is_funding_locked`.
683         pub is_usable: bool,
684         /// True if this channel is (or will be) publicly-announced.
685         pub is_public: bool,
686         /// Information on the fees and requirements that the counterparty requires when forwarding
687         /// payments to us through this channel.
688         pub counterparty_forwarding_info: Option<CounterpartyForwardingInfo>,
689 }
690
691 /// If a payment fails to send, it can be in one of several states. This enum is returned as the
692 /// Err() type describing which state the payment is in, see the description of individual enum
693 /// states for more.
694 #[derive(Clone, Debug)]
695 pub enum PaymentSendFailure {
696         /// A parameter which was passed to send_payment was invalid, preventing us from attempting to
697         /// send the payment at all. No channel state has been changed or messages sent to peers, and
698         /// once you've changed the parameter at error, you can freely retry the payment in full.
699         ParameterError(APIError),
700         /// A parameter in a single path which was passed to send_payment was invalid, preventing us
701         /// from attempting to send the payment at all. No channel state has been changed or messages
702         /// sent to peers, and once you've changed the parameter at error, you can freely retry the
703         /// payment in full.
704         ///
705         /// The results here are ordered the same as the paths in the route object which was passed to
706         /// send_payment.
707         PathParameterError(Vec<Result<(), APIError>>),
708         /// All paths which were attempted failed to send, with no channel state change taking place.
709         /// You can freely retry the payment in full (though you probably want to do so over different
710         /// paths than the ones selected).
711         AllFailedRetrySafe(Vec<APIError>),
712         /// Some paths which were attempted failed to send, though possibly not all. At least some
713         /// paths have irrevocably committed to the HTLC and retrying the payment in full would result
714         /// in over-/re-payment.
715         ///
716         /// The results here are ordered the same as the paths in the route object which was passed to
717         /// send_payment, and any Errs which are not APIError::MonitorUpdateFailed can be safely
718         /// retried (though there is currently no API with which to do so).
719         ///
720         /// Any entries which contain Err(APIError::MonitorUpdateFailed) or Ok(()) MUST NOT be retried
721         /// as they will result in over-/re-payment. These HTLCs all either successfully sent (in the
722         /// case of Ok(())) or will send once channel_monitor_updated is called on the next-hop channel
723         /// with the latest update_id.
724         PartialFailure(Vec<Result<(), APIError>>),
725 }
726
727 macro_rules! handle_error {
728         ($self: ident, $internal: expr, $counterparty_node_id: expr) => {
729                 match $internal {
730                         Ok(msg) => Ok(msg),
731                         Err(MsgHandleErrInternal { err, shutdown_finish }) => {
732                                 #[cfg(debug_assertions)]
733                                 {
734                                         // In testing, ensure there are no deadlocks where the lock is already held upon
735                                         // entering the macro.
736                                         assert!($self.channel_state.try_lock().is_ok());
737                                 }
738
739                                 let mut msg_events = Vec::with_capacity(2);
740
741                                 if let Some((shutdown_res, update_option)) = shutdown_finish {
742                                         $self.finish_force_close_channel(shutdown_res);
743                                         if let Some(update) = update_option {
744                                                 msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
745                                                         msg: update
746                                                 });
747                                         }
748                                 }
749
750                                 log_error!($self.logger, "{}", err.err);
751                                 if let msgs::ErrorAction::IgnoreError = err.action {
752                                 } else {
753                                         msg_events.push(events::MessageSendEvent::HandleError {
754                                                 node_id: $counterparty_node_id,
755                                                 action: err.action.clone()
756                                         });
757                                 }
758
759                                 if !msg_events.is_empty() {
760                                         $self.channel_state.lock().unwrap().pending_msg_events.append(&mut msg_events);
761                                 }
762
763                                 // Return error in case higher-API need one
764                                 Err(err)
765                         },
766                 }
767         }
768 }
769
770 /// Returns (boolean indicating if we should remove the Channel object from memory, a mapped error)
771 macro_rules! convert_chan_err {
772         ($self: ident, $err: expr, $short_to_id: expr, $channel: expr, $channel_id: expr) => {
773                 match $err {
774                         ChannelError::Ignore(msg) => {
775                                 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore(msg), $channel_id.clone()))
776                         },
777                         ChannelError::Close(msg) => {
778                                 log_trace!($self.logger, "Closing channel {} due to close-required error: {}", log_bytes!($channel_id[..]), msg);
779                                 if let Some(short_id) = $channel.get_short_channel_id() {
780                                         $short_to_id.remove(&short_id);
781                                 }
782                                 let shutdown_res = $channel.force_shutdown(true);
783                                 (true, MsgHandleErrInternal::from_finish_shutdown(msg, *$channel_id, shutdown_res, $self.get_channel_update(&$channel).ok()))
784                         },
785                         ChannelError::CloseDelayBroadcast(msg) => {
786                                 log_error!($self.logger, "Channel {} need to be shutdown but closing transactions not broadcast due to {}", log_bytes!($channel_id[..]), msg);
787                                 if let Some(short_id) = $channel.get_short_channel_id() {
788                                         $short_to_id.remove(&short_id);
789                                 }
790                                 let shutdown_res = $channel.force_shutdown(false);
791                                 (true, MsgHandleErrInternal::from_finish_shutdown(msg, *$channel_id, shutdown_res, $self.get_channel_update(&$channel).ok()))
792                         }
793                 }
794         }
795 }
796
797 macro_rules! break_chan_entry {
798         ($self: ident, $res: expr, $channel_state: expr, $entry: expr) => {
799                 match $res {
800                         Ok(res) => res,
801                         Err(e) => {
802                                 let (drop, res) = convert_chan_err!($self, e, $channel_state.short_to_id, $entry.get_mut(), $entry.key());
803                                 if drop {
804                                         $entry.remove_entry();
805                                 }
806                                 break Err(res);
807                         }
808                 }
809         }
810 }
811
812 macro_rules! try_chan_entry {
813         ($self: ident, $res: expr, $channel_state: expr, $entry: expr) => {
814                 match $res {
815                         Ok(res) => res,
816                         Err(e) => {
817                                 let (drop, res) = convert_chan_err!($self, e, $channel_state.short_to_id, $entry.get_mut(), $entry.key());
818                                 if drop {
819                                         $entry.remove_entry();
820                                 }
821                                 return Err(res);
822                         }
823                 }
824         }
825 }
826
827 macro_rules! handle_monitor_err {
828         ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => {
829                 handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment, Vec::new(), Vec::new())
830         };
831         ($self: ident, $err: expr, $short_to_id: expr, $chan: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr, $failed_forwards: expr, $failed_fails: expr, $chan_id: expr) => {
832                 match $err {
833                         ChannelMonitorUpdateErr::PermanentFailure => {
834                                 log_error!($self.logger, "Closing channel {} due to monitor update ChannelMonitorUpdateErr::PermanentFailure", log_bytes!($chan_id[..]));
835                                 if let Some(short_id) = $chan.get_short_channel_id() {
836                                         $short_to_id.remove(&short_id);
837                                 }
838                                 // TODO: $failed_fails is dropped here, which will cause other channels to hit the
839                                 // chain in a confused state! We need to move them into the ChannelMonitor which
840                                 // will be responsible for failing backwards once things confirm on-chain.
841                                 // It's ok that we drop $failed_forwards here - at this point we'd rather they
842                                 // broadcast HTLC-Timeout and pay the associated fees to get their funds back than
843                                 // us bother trying to claim it just to forward on to another peer. If we're
844                                 // splitting hairs we'd prefer to claim payments that were to us, but we haven't
845                                 // given up the preimage yet, so might as well just wait until the payment is
846                                 // retried, avoiding the on-chain fees.
847                                 let res: Result<(), _> = Err(MsgHandleErrInternal::from_finish_shutdown("ChannelMonitor storage failure".to_owned(), *$chan_id, $chan.force_shutdown(true), $self.get_channel_update(&$chan).ok()));
848                                 (res, true)
849                         },
850                         ChannelMonitorUpdateErr::TemporaryFailure => {
851                                 log_info!($self.logger, "Disabling channel {} due to monitor update TemporaryFailure. On restore will send {} and process {} forwards and {} fails",
852                                                 log_bytes!($chan_id[..]),
853                                                 if $resend_commitment && $resend_raa {
854                                                                 match $action_type {
855                                                                         RAACommitmentOrder::CommitmentFirst => { "commitment then RAA" },
856                                                                         RAACommitmentOrder::RevokeAndACKFirst => { "RAA then commitment" },
857                                                                 }
858                                                         } else if $resend_commitment { "commitment" }
859                                                         else if $resend_raa { "RAA" }
860                                                         else { "nothing" },
861                                                 (&$failed_forwards as &Vec<(PendingHTLCInfo, u64)>).len(),
862                                                 (&$failed_fails as &Vec<(HTLCSource, PaymentHash, HTLCFailReason)>).len());
863                                 if !$resend_commitment {
864                                         debug_assert!($action_type == RAACommitmentOrder::RevokeAndACKFirst || !$resend_raa);
865                                 }
866                                 if !$resend_raa {
867                                         debug_assert!($action_type == RAACommitmentOrder::CommitmentFirst || !$resend_commitment);
868                                 }
869                                 $chan.monitor_update_failed($resend_raa, $resend_commitment, $failed_forwards, $failed_fails);
870                                 (Err(MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore("Failed to update ChannelMonitor".to_owned()), *$chan_id)), false)
871                         },
872                 }
873         };
874         ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr, $failed_forwards: expr, $failed_fails: expr) => { {
875                 let (res, drop) = handle_monitor_err!($self, $err, $channel_state.short_to_id, $entry.get_mut(), $action_type, $resend_raa, $resend_commitment, $failed_forwards, $failed_fails, $entry.key());
876                 if drop {
877                         $entry.remove_entry();
878                 }
879                 res
880         } };
881 }
882
883 macro_rules! return_monitor_err {
884         ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => {
885                 return handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment);
886         };
887         ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr, $failed_forwards: expr, $failed_fails: expr) => {
888                 return handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment, $failed_forwards, $failed_fails);
889         }
890 }
891
892 // Does not break in case of TemporaryFailure!
893 macro_rules! maybe_break_monitor_err {
894         ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => {
895                 match (handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment), $err) {
896                         (e, ChannelMonitorUpdateErr::PermanentFailure) => {
897                                 break e;
898                         },
899                         (_, ChannelMonitorUpdateErr::TemporaryFailure) => { },
900                 }
901         }
902 }
903
904 macro_rules! handle_chan_restoration_locked {
905         ($self: ident, $channel_lock: expr, $channel_state: expr, $channel_entry: expr,
906          $raa: expr, $commitment_update: expr, $order: expr, $chanmon_update: expr,
907          $pending_forwards: expr, $funding_broadcastable: expr, $funding_locked: expr) => { {
908                 let mut htlc_forwards = None;
909                 let counterparty_node_id = $channel_entry.get().get_counterparty_node_id();
910
911                 let chanmon_update: Option<ChannelMonitorUpdate> = $chanmon_update; // Force type-checking to resolve
912                 let chanmon_update_is_none = chanmon_update.is_none();
913                 let res = loop {
914                         let forwards: Vec<(PendingHTLCInfo, u64)> = $pending_forwards; // Force type-checking to resolve
915                         if !forwards.is_empty() {
916                                 htlc_forwards = Some(($channel_entry.get().get_short_channel_id().expect("We can't have pending forwards before funding confirmation"),
917                                         $channel_entry.get().get_funding_txo().unwrap(), forwards));
918                         }
919
920                         if chanmon_update.is_some() {
921                                 // On reconnect, we, by definition, only resend a funding_locked if there have been
922                                 // no commitment updates, so the only channel monitor update which could also be
923                                 // associated with a funding_locked would be the funding_created/funding_signed
924                                 // monitor update. That monitor update failing implies that we won't send
925                                 // funding_locked until it's been updated, so we can't have a funding_locked and a
926                                 // monitor update here (so we don't bother to handle it correctly below).
927                                 assert!($funding_locked.is_none());
928                                 // A channel monitor update makes no sense without either a funding_locked or a
929                                 // commitment update to process after it. Since we can't have a funding_locked, we
930                                 // only bother to handle the monitor-update + commitment_update case below.
931                                 assert!($commitment_update.is_some());
932                         }
933
934                         if let Some(msg) = $funding_locked {
935                                 // Similar to the above, this implies that we're letting the funding_locked fly
936                                 // before it should be allowed to.
937                                 assert!(chanmon_update.is_none());
938                                 $channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingLocked {
939                                         node_id: counterparty_node_id,
940                                         msg,
941                                 });
942                                 if let Some(announcement_sigs) = $self.get_announcement_sigs($channel_entry.get()) {
943                                         $channel_state.pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
944                                                 node_id: counterparty_node_id,
945                                                 msg: announcement_sigs,
946                                         });
947                                 }
948                                 $channel_state.short_to_id.insert($channel_entry.get().get_short_channel_id().unwrap(), $channel_entry.get().channel_id());
949                         }
950
951                         let funding_broadcastable: Option<Transaction> = $funding_broadcastable; // Force type-checking to resolve
952                         if let Some(monitor_update) = chanmon_update {
953                                 // We only ever broadcast a funding transaction in response to a funding_signed
954                                 // message and the resulting monitor update. Thus, on channel_reestablish
955                                 // message handling we can't have a funding transaction to broadcast. When
956                                 // processing a monitor update finishing resulting in a funding broadcast, we
957                                 // cannot have a second monitor update, thus this case would indicate a bug.
958                                 assert!(funding_broadcastable.is_none());
959                                 // Given we were just reconnected or finished updating a channel monitor, the
960                                 // only case where we can get a new ChannelMonitorUpdate would be if we also
961                                 // have some commitment updates to send as well.
962                                 assert!($commitment_update.is_some());
963                                 if let Err(e) = $self.chain_monitor.update_channel($channel_entry.get().get_funding_txo().unwrap(), monitor_update) {
964                                         // channel_reestablish doesn't guarantee the order it returns is sensical
965                                         // for the messages it returns, but if we're setting what messages to
966                                         // re-transmit on monitor update success, we need to make sure it is sane.
967                                         let mut order = $order;
968                                         if $raa.is_none() {
969                                                 order = RAACommitmentOrder::CommitmentFirst;
970                                         }
971                                         break handle_monitor_err!($self, e, $channel_state, $channel_entry, order, $raa.is_some(), true);
972                                 }
973                         }
974
975                         macro_rules! handle_cs { () => {
976                                 if let Some(update) = $commitment_update {
977                                         $channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
978                                                 node_id: counterparty_node_id,
979                                                 updates: update,
980                                         });
981                                 }
982                         } }
983                         macro_rules! handle_raa { () => {
984                                 if let Some(revoke_and_ack) = $raa {
985                                         $channel_state.pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
986                                                 node_id: counterparty_node_id,
987                                                 msg: revoke_and_ack,
988                                         });
989                                 }
990                         } }
991                         match $order {
992                                 RAACommitmentOrder::CommitmentFirst => {
993                                         handle_cs!();
994                                         handle_raa!();
995                                 },
996                                 RAACommitmentOrder::RevokeAndACKFirst => {
997                                         handle_raa!();
998                                         handle_cs!();
999                                 },
1000                         }
1001                         if let Some(tx) = funding_broadcastable {
1002                                 log_info!($self.logger, "Broadcasting funding transaction with txid {}", tx.txid());
1003                                 $self.tx_broadcaster.broadcast_transaction(&tx);
1004                         }
1005                         break Ok(());
1006                 };
1007
1008                 if chanmon_update_is_none {
1009                         // If there was no ChannelMonitorUpdate, we should never generate an Err in the res loop
1010                         // above. Doing so would imply calling handle_err!() from channel_monitor_updated() which
1011                         // should *never* end up calling back to `chain_monitor.update_channel()`.
1012                         assert!(res.is_ok());
1013                 }
1014
1015                 (htlc_forwards, res, counterparty_node_id)
1016         } }
1017 }
1018
1019 macro_rules! post_handle_chan_restoration {
1020         ($self: ident, $locked_res: expr) => { {
1021                 let (htlc_forwards, res, counterparty_node_id) = $locked_res;
1022
1023                 let _ = handle_error!($self, res, counterparty_node_id);
1024
1025                 if let Some(forwards) = htlc_forwards {
1026                         $self.forward_htlcs(&mut [forwards][..]);
1027                 }
1028         } }
1029 }
1030
1031 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> ChannelManager<Signer, M, T, K, F, L>
1032         where M::Target: chain::Watch<Signer>,
1033         T::Target: BroadcasterInterface,
1034         K::Target: KeysInterface<Signer = Signer>,
1035         F::Target: FeeEstimator,
1036         L::Target: Logger,
1037 {
1038         /// Constructs a new ChannelManager to hold several channels and route between them.
1039         ///
1040         /// This is the main "logic hub" for all channel-related actions, and implements
1041         /// ChannelMessageHandler.
1042         ///
1043         /// Non-proportional fees are fixed according to our risk using the provided fee estimator.
1044         ///
1045         /// panics if channel_value_satoshis is >= `MAX_FUNDING_SATOSHIS`!
1046         ///
1047         /// Users need to notify the new ChannelManager when a new block is connected or
1048         /// disconnected using its `block_connected` and `block_disconnected` methods, starting
1049         /// from after `params.latest_hash`.
1050         pub fn new(fee_est: F, chain_monitor: M, tx_broadcaster: T, logger: L, keys_manager: K, config: UserConfig, params: ChainParameters) -> Self {
1051                 let mut secp_ctx = Secp256k1::new();
1052                 secp_ctx.seeded_randomize(&keys_manager.get_secure_random_bytes());
1053
1054                 ChannelManager {
1055                         default_configuration: config.clone(),
1056                         genesis_hash: genesis_block(params.network).header.block_hash(),
1057                         fee_estimator: fee_est,
1058                         chain_monitor,
1059                         tx_broadcaster,
1060
1061                         best_block: RwLock::new(params.best_block),
1062
1063                         channel_state: Mutex::new(ChannelHolder{
1064                                 by_id: HashMap::new(),
1065                                 short_to_id: HashMap::new(),
1066                                 forward_htlcs: HashMap::new(),
1067                                 claimable_htlcs: HashMap::new(),
1068                                 pending_msg_events: Vec::new(),
1069                         }),
1070                         pending_inbound_payments: Mutex::new(HashMap::new()),
1071                         pending_outbound_payments: Mutex::new(HashSet::new()),
1072
1073                         our_network_key: keys_manager.get_node_secret(),
1074                         our_network_pubkey: PublicKey::from_secret_key(&secp_ctx, &keys_manager.get_node_secret()),
1075                         secp_ctx,
1076
1077                         last_node_announcement_serial: AtomicUsize::new(0),
1078                         highest_seen_timestamp: AtomicUsize::new(0),
1079
1080                         per_peer_state: RwLock::new(HashMap::new()),
1081
1082                         pending_events: Mutex::new(Vec::new()),
1083                         pending_background_events: Mutex::new(Vec::new()),
1084                         total_consistency_lock: RwLock::new(()),
1085                         persistence_notifier: PersistenceNotifier::new(),
1086
1087                         keys_manager,
1088
1089                         logger,
1090                 }
1091         }
1092
1093         /// Gets the current configuration applied to all new channels,  as
1094         pub fn get_current_default_configuration(&self) -> &UserConfig {
1095                 &self.default_configuration
1096         }
1097
1098         /// Creates a new outbound channel to the given remote node and with the given value.
1099         ///
1100         /// user_id will be provided back as user_channel_id in FundingGenerationReady events to allow
1101         /// tracking of which events correspond with which create_channel call. Note that the
1102         /// user_channel_id defaults to 0 for inbound channels, so you may wish to avoid using 0 for
1103         /// user_id here. user_id has no meaning inside of LDK, it is simply copied to events and
1104         /// otherwise ignored.
1105         ///
1106         /// If successful, will generate a SendOpenChannel message event, so you should probably poll
1107         /// PeerManager::process_events afterwards.
1108         ///
1109         /// Raises APIError::APIMisuseError when channel_value_satoshis > 2**24 or push_msat is
1110         /// greater than channel_value_satoshis * 1k or channel_value_satoshis is < 1000.
1111         pub fn create_channel(&self, their_network_key: PublicKey, channel_value_satoshis: u64, push_msat: u64, user_id: u64, override_config: Option<UserConfig>) -> Result<(), APIError> {
1112                 if channel_value_satoshis < 1000 {
1113                         return Err(APIError::APIMisuseError { err: format!("Channel value must be at least 1000 satoshis. It was {}", channel_value_satoshis) });
1114                 }
1115
1116                 let config = if override_config.is_some() { override_config.as_ref().unwrap() } else { &self.default_configuration };
1117                 let channel = Channel::new_outbound(&self.fee_estimator, &self.keys_manager, their_network_key, channel_value_satoshis, push_msat, user_id, config)?;
1118                 let res = channel.get_open_channel(self.genesis_hash.clone());
1119
1120                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1121                 // We want to make sure the lock is actually acquired by PersistenceNotifierGuard.
1122                 debug_assert!(&self.total_consistency_lock.try_write().is_err());
1123
1124                 let mut channel_state = self.channel_state.lock().unwrap();
1125                 match channel_state.by_id.entry(channel.channel_id()) {
1126                         hash_map::Entry::Occupied(_) => {
1127                                 if cfg!(feature = "fuzztarget") {
1128                                         return Err(APIError::APIMisuseError { err: "Fuzzy bad RNG".to_owned() });
1129                                 } else {
1130                                         panic!("RNG is bad???");
1131                                 }
1132                         },
1133                         hash_map::Entry::Vacant(entry) => { entry.insert(channel); }
1134                 }
1135                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
1136                         node_id: their_network_key,
1137                         msg: res,
1138                 });
1139                 Ok(())
1140         }
1141
1142         fn list_channels_with_filter<Fn: FnMut(&(&[u8; 32], &Channel<Signer>)) -> bool>(&self, f: Fn) -> Vec<ChannelDetails> {
1143                 let mut res = Vec::new();
1144                 {
1145                         let channel_state = self.channel_state.lock().unwrap();
1146                         res.reserve(channel_state.by_id.len());
1147                         for (channel_id, channel) in channel_state.by_id.iter().filter(f) {
1148                                 let (inbound_capacity_msat, outbound_capacity_msat) = channel.get_inbound_outbound_available_balance_msat();
1149                                 res.push(ChannelDetails {
1150                                         channel_id: (*channel_id).clone(),
1151                                         funding_txo: channel.get_funding_txo(),
1152                                         short_channel_id: channel.get_short_channel_id(),
1153                                         remote_network_id: channel.get_counterparty_node_id(),
1154                                         counterparty_features: InitFeatures::empty(),
1155                                         channel_value_satoshis: channel.get_value_satoshis(),
1156                                         inbound_capacity_msat,
1157                                         outbound_capacity_msat,
1158                                         user_id: channel.get_user_id(),
1159                                         is_outbound: channel.is_outbound(),
1160                                         is_funding_locked: channel.is_usable(),
1161                                         is_usable: channel.is_live(),
1162                                         is_public: channel.should_announce(),
1163                                         counterparty_forwarding_info: channel.counterparty_forwarding_info(),
1164                                 });
1165                         }
1166                 }
1167                 let per_peer_state = self.per_peer_state.read().unwrap();
1168                 for chan in res.iter_mut() {
1169                         if let Some(peer_state) = per_peer_state.get(&chan.remote_network_id) {
1170                                 chan.counterparty_features = peer_state.lock().unwrap().latest_features.clone();
1171                         }
1172                 }
1173                 res
1174         }
1175
1176         /// Gets the list of open channels, in random order. See ChannelDetail field documentation for
1177         /// more information.
1178         pub fn list_channels(&self) -> Vec<ChannelDetails> {
1179                 self.list_channels_with_filter(|_| true)
1180         }
1181
1182         /// Gets the list of usable channels, in random order. Useful as an argument to
1183         /// get_route to ensure non-announced channels are used.
1184         ///
1185         /// These are guaranteed to have their [`ChannelDetails::is_usable`] value set to true, see the
1186         /// documentation for [`ChannelDetails::is_usable`] for more info on exactly what the criteria
1187         /// are.
1188         pub fn list_usable_channels(&self) -> Vec<ChannelDetails> {
1189                 // Note we use is_live here instead of usable which leads to somewhat confused
1190                 // internal/external nomenclature, but that's ok cause that's probably what the user
1191                 // really wanted anyway.
1192                 self.list_channels_with_filter(|&(_, ref channel)| channel.is_live())
1193         }
1194
1195         /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
1196         /// will be accepted on the given channel, and after additional timeout/the closing of all
1197         /// pending HTLCs, the channel will be closed on chain.
1198         ///
1199         /// May generate a SendShutdown message event on success, which should be relayed.
1200         pub fn close_channel(&self, channel_id: &[u8; 32]) -> Result<(), APIError> {
1201                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1202
1203                 let (mut failed_htlcs, chan_option) = {
1204                         let mut channel_state_lock = self.channel_state.lock().unwrap();
1205                         let channel_state = &mut *channel_state_lock;
1206                         match channel_state.by_id.entry(channel_id.clone()) {
1207                                 hash_map::Entry::Occupied(mut chan_entry) => {
1208                                         let (shutdown_msg, failed_htlcs) = chan_entry.get_mut().get_shutdown()?;
1209                                         channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
1210                                                 node_id: chan_entry.get().get_counterparty_node_id(),
1211                                                 msg: shutdown_msg
1212                                         });
1213                                         if chan_entry.get().is_shutdown() {
1214                                                 if let Some(short_id) = chan_entry.get().get_short_channel_id() {
1215                                                         channel_state.short_to_id.remove(&short_id);
1216                                                 }
1217                                                 (failed_htlcs, Some(chan_entry.remove_entry().1))
1218                                         } else { (failed_htlcs, None) }
1219                                 },
1220                                 hash_map::Entry::Vacant(_) => return Err(APIError::ChannelUnavailable{err: "No such channel".to_owned()})
1221                         }
1222                 };
1223                 for htlc_source in failed_htlcs.drain(..) {
1224                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
1225                 }
1226                 let chan_update = if let Some(chan) = chan_option {
1227                         if let Ok(update) = self.get_channel_update(&chan) {
1228                                 Some(update)
1229                         } else { None }
1230                 } else { None };
1231
1232                 if let Some(update) = chan_update {
1233                         let mut channel_state = self.channel_state.lock().unwrap();
1234                         channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
1235                                 msg: update
1236                         });
1237                 }
1238
1239                 Ok(())
1240         }
1241
1242         #[inline]
1243         fn finish_force_close_channel(&self, shutdown_res: ShutdownResult) {
1244                 let (monitor_update_option, mut failed_htlcs) = shutdown_res;
1245                 log_trace!(self.logger, "Finishing force-closure of channel {} HTLCs to fail", failed_htlcs.len());
1246                 for htlc_source in failed_htlcs.drain(..) {
1247                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
1248                 }
1249                 if let Some((funding_txo, monitor_update)) = monitor_update_option {
1250                         // There isn't anything we can do if we get an update failure - we're already
1251                         // force-closing. The monitor update on the required in-memory copy should broadcast
1252                         // the latest local state, which is the best we can do anyway. Thus, it is safe to
1253                         // ignore the result here.
1254                         let _ = self.chain_monitor.update_channel(funding_txo, monitor_update);
1255                 }
1256         }
1257
1258         fn force_close_channel_with_peer(&self, channel_id: &[u8; 32], peer_node_id: Option<&PublicKey>) -> Result<PublicKey, APIError> {
1259                 let mut chan = {
1260                         let mut channel_state_lock = self.channel_state.lock().unwrap();
1261                         let channel_state = &mut *channel_state_lock;
1262                         if let hash_map::Entry::Occupied(chan) = channel_state.by_id.entry(channel_id.clone()) {
1263                                 if let Some(node_id) = peer_node_id {
1264                                         if chan.get().get_counterparty_node_id() != *node_id {
1265                                                 return Err(APIError::ChannelUnavailable{err: "No such channel".to_owned()});
1266                                         }
1267                                 }
1268                                 if let Some(short_id) = chan.get().get_short_channel_id() {
1269                                         channel_state.short_to_id.remove(&short_id);
1270                                 }
1271                                 chan.remove_entry().1
1272                         } else {
1273                                 return Err(APIError::ChannelUnavailable{err: "No such channel".to_owned()});
1274                         }
1275                 };
1276                 log_trace!(self.logger, "Force-closing channel {}", log_bytes!(channel_id[..]));
1277                 self.finish_force_close_channel(chan.force_shutdown(true));
1278                 if let Ok(update) = self.get_channel_update(&chan) {
1279                         let mut channel_state = self.channel_state.lock().unwrap();
1280                         channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
1281                                 msg: update
1282                         });
1283                 }
1284
1285                 Ok(chan.get_counterparty_node_id())
1286         }
1287
1288         /// Force closes a channel, immediately broadcasting the latest local commitment transaction to
1289         /// the chain and rejecting new HTLCs on the given channel. Fails if channel_id is unknown to the manager.
1290         pub fn force_close_channel(&self, channel_id: &[u8; 32]) -> Result<(), APIError> {
1291                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1292                 match self.force_close_channel_with_peer(channel_id, None) {
1293                         Ok(counterparty_node_id) => {
1294                                 self.channel_state.lock().unwrap().pending_msg_events.push(
1295                                         events::MessageSendEvent::HandleError {
1296                                                 node_id: counterparty_node_id,
1297                                                 action: msgs::ErrorAction::SendErrorMessage {
1298                                                         msg: msgs::ErrorMessage { channel_id: *channel_id, data: "Channel force-closed".to_owned() }
1299                                                 },
1300                                         }
1301                                 );
1302                                 Ok(())
1303                         },
1304                         Err(e) => Err(e)
1305                 }
1306         }
1307
1308         /// Force close all channels, immediately broadcasting the latest local commitment transaction
1309         /// for each to the chain and rejecting new HTLCs on each.
1310         pub fn force_close_all_channels(&self) {
1311                 for chan in self.list_channels() {
1312                         let _ = self.force_close_channel(&chan.channel_id);
1313                 }
1314         }
1315
1316         fn decode_update_add_htlc_onion(&self, msg: &msgs::UpdateAddHTLC) -> (PendingHTLCStatus, MutexGuard<ChannelHolder<Signer>>) {
1317                 macro_rules! return_malformed_err {
1318                         ($msg: expr, $err_code: expr) => {
1319                                 {
1320                                         log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
1321                                         return (PendingHTLCStatus::Fail(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
1322                                                 channel_id: msg.channel_id,
1323                                                 htlc_id: msg.htlc_id,
1324                                                 sha256_of_onion: Sha256::hash(&msg.onion_routing_packet.hop_data).into_inner(),
1325                                                 failure_code: $err_code,
1326                                         })), self.channel_state.lock().unwrap());
1327                                 }
1328                         }
1329                 }
1330
1331                 if let Err(_) = msg.onion_routing_packet.public_key {
1332                         return_malformed_err!("invalid ephemeral pubkey", 0x8000 | 0x4000 | 6);
1333                 }
1334
1335                 let shared_secret = {
1336                         let mut arr = [0; 32];
1337                         arr.copy_from_slice(&SharedSecret::new(&msg.onion_routing_packet.public_key.unwrap(), &self.our_network_key)[..]);
1338                         arr
1339                 };
1340                 let (rho, mu) = onion_utils::gen_rho_mu_from_shared_secret(&shared_secret);
1341
1342                 if msg.onion_routing_packet.version != 0 {
1343                         //TODO: Spec doesn't indicate if we should only hash hop_data here (and in other
1344                         //sha256_of_onion error data packets), or the entire onion_routing_packet. Either way,
1345                         //the hash doesn't really serve any purpose - in the case of hashing all data, the
1346                         //receiving node would have to brute force to figure out which version was put in the
1347                         //packet by the node that send us the message, in the case of hashing the hop_data, the
1348                         //node knows the HMAC matched, so they already know what is there...
1349                         return_malformed_err!("Unknown onion packet version", 0x8000 | 0x4000 | 4);
1350                 }
1351
1352                 let mut hmac = HmacEngine::<Sha256>::new(&mu);
1353                 hmac.input(&msg.onion_routing_packet.hop_data);
1354                 hmac.input(&msg.payment_hash.0[..]);
1355                 if !fixed_time_eq(&Hmac::from_engine(hmac).into_inner(), &msg.onion_routing_packet.hmac) {
1356                         return_malformed_err!("HMAC Check failed", 0x8000 | 0x4000 | 5);
1357                 }
1358
1359                 let mut channel_state = None;
1360                 macro_rules! return_err {
1361                         ($msg: expr, $err_code: expr, $data: expr) => {
1362                                 {
1363                                         log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
1364                                         if channel_state.is_none() {
1365                                                 channel_state = Some(self.channel_state.lock().unwrap());
1366                                         }
1367                                         return (PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
1368                                                 channel_id: msg.channel_id,
1369                                                 htlc_id: msg.htlc_id,
1370                                                 reason: onion_utils::build_first_hop_failure_packet(&shared_secret, $err_code, $data),
1371                                         })), channel_state.unwrap());
1372                                 }
1373                         }
1374                 }
1375
1376                 let mut chacha = ChaCha20::new(&rho, &[0u8; 8]);
1377                 let mut chacha_stream = ChaChaReader { chacha: &mut chacha, read: Cursor::new(&msg.onion_routing_packet.hop_data[..]) };
1378                 let (next_hop_data, next_hop_hmac) = {
1379                         match msgs::OnionHopData::read(&mut chacha_stream) {
1380                                 Err(err) => {
1381                                         let error_code = match err {
1382                                                 msgs::DecodeError::UnknownVersion => 0x4000 | 1, // unknown realm byte
1383                                                 msgs::DecodeError::UnknownRequiredFeature|
1384                                                 msgs::DecodeError::InvalidValue|
1385                                                 msgs::DecodeError::ShortRead => 0x4000 | 22, // invalid_onion_payload
1386                                                 _ => 0x2000 | 2, // Should never happen
1387                                         };
1388                                         return_err!("Unable to decode our hop data", error_code, &[0;0]);
1389                                 },
1390                                 Ok(msg) => {
1391                                         let mut hmac = [0; 32];
1392                                         if let Err(_) = chacha_stream.read_exact(&mut hmac[..]) {
1393                                                 return_err!("Unable to decode hop data", 0x4000 | 22, &[0;0]);
1394                                         }
1395                                         (msg, hmac)
1396                                 },
1397                         }
1398                 };
1399
1400                 let pending_forward_info = if next_hop_hmac == [0; 32] {
1401                                 #[cfg(test)]
1402                                 {
1403                                         // In tests, make sure that the initial onion pcket data is, at least, non-0.
1404                                         // We could do some fancy randomness test here, but, ehh, whatever.
1405                                         // This checks for the issue where you can calculate the path length given the
1406                                         // onion data as all the path entries that the originator sent will be here
1407                                         // as-is (and were originally 0s).
1408                                         // Of course reverse path calculation is still pretty easy given naive routing
1409                                         // algorithms, but this fixes the most-obvious case.
1410                                         let mut next_bytes = [0; 32];
1411                                         chacha_stream.read_exact(&mut next_bytes).unwrap();
1412                                         assert_ne!(next_bytes[..], [0; 32][..]);
1413                                         chacha_stream.read_exact(&mut next_bytes).unwrap();
1414                                         assert_ne!(next_bytes[..], [0; 32][..]);
1415                                 }
1416
1417                                 // OUR PAYMENT!
1418                                 // final_expiry_too_soon
1419                                 // We have to have some headroom to broadcast on chain if we have the preimage, so make sure we have at least
1420                                 // HTLC_FAIL_BACK_BUFFER blocks to go.
1421                                 // Also, ensure that, in the case of an unknown payment hash, our payment logic has enough time to fail the HTLC backward
1422                                 // before our onchain logic triggers a channel closure (see HTLC_FAIL_BACK_BUFFER rational).
1423                                 if (msg.cltv_expiry as u64) <= self.best_block.read().unwrap().height() as u64 + HTLC_FAIL_BACK_BUFFER as u64 + 1 {
1424                                         return_err!("The final CLTV expiry is too soon to handle", 17, &[0;0]);
1425                                 }
1426                                 // final_incorrect_htlc_amount
1427                                 if next_hop_data.amt_to_forward > msg.amount_msat {
1428                                         return_err!("Upstream node sent less than we were supposed to receive in payment", 19, &byte_utils::be64_to_array(msg.amount_msat));
1429                                 }
1430                                 // final_incorrect_cltv_expiry
1431                                 if next_hop_data.outgoing_cltv_value != msg.cltv_expiry {
1432                                         return_err!("Upstream node set CLTV to the wrong value", 18, &byte_utils::be32_to_array(msg.cltv_expiry));
1433                                 }
1434
1435                                 let payment_data = match next_hop_data.format {
1436                                         msgs::OnionHopDataFormat::Legacy { .. } => None,
1437                                         msgs::OnionHopDataFormat::NonFinalNode { .. } => return_err!("Got non final data with an HMAC of 0", 0x4000 | 22, &[0;0]),
1438                                         msgs::OnionHopDataFormat::FinalNode { payment_data } => payment_data,
1439                                 };
1440
1441                                 if payment_data.is_none() {
1442                                         return_err!("We require payment_secrets", 0x4000|0x2000|3, &[0;0]);
1443                                 }
1444
1445                                 // Note that we could obviously respond immediately with an update_fulfill_htlc
1446                                 // message, however that would leak that we are the recipient of this payment, so
1447                                 // instead we stay symmetric with the forwarding case, only responding (after a
1448                                 // delay) once they've send us a commitment_signed!
1449
1450                                 PendingHTLCStatus::Forward(PendingHTLCInfo {
1451                                         routing: PendingHTLCRouting::Receive {
1452                                                 payment_data: payment_data.unwrap(),
1453                                                 incoming_cltv_expiry: msg.cltv_expiry,
1454                                         },
1455                                         payment_hash: msg.payment_hash.clone(),
1456                                         incoming_shared_secret: shared_secret,
1457                                         amt_to_forward: next_hop_data.amt_to_forward,
1458                                         outgoing_cltv_value: next_hop_data.outgoing_cltv_value,
1459                                 })
1460                         } else {
1461                                 let mut new_packet_data = [0; 20*65];
1462                                 let read_pos = chacha_stream.read(&mut new_packet_data).unwrap();
1463                                 #[cfg(debug_assertions)]
1464                                 {
1465                                         // Check two things:
1466                                         // a) that the behavior of our stream here will return Ok(0) even if the TLV
1467                                         //    read above emptied out our buffer and the unwrap() wont needlessly panic
1468                                         // b) that we didn't somehow magically end up with extra data.
1469                                         let mut t = [0; 1];
1470                                         debug_assert!(chacha_stream.read(&mut t).unwrap() == 0);
1471                                 }
1472                                 // Once we've emptied the set of bytes our peer gave us, encrypt 0 bytes until we
1473                                 // fill the onion hop data we'll forward to our next-hop peer.
1474                                 chacha_stream.chacha.process_in_place(&mut new_packet_data[read_pos..]);
1475
1476                                 let mut new_pubkey = msg.onion_routing_packet.public_key.unwrap();
1477
1478                                 let blinding_factor = {
1479                                         let mut sha = Sha256::engine();
1480                                         sha.input(&new_pubkey.serialize()[..]);
1481                                         sha.input(&shared_secret);
1482                                         Sha256::from_engine(sha).into_inner()
1483                                 };
1484
1485                                 let public_key = if let Err(e) = new_pubkey.mul_assign(&self.secp_ctx, &blinding_factor[..]) {
1486                                         Err(e)
1487                                 } else { Ok(new_pubkey) };
1488
1489                                 let outgoing_packet = msgs::OnionPacket {
1490                                         version: 0,
1491                                         public_key,
1492                                         hop_data: new_packet_data,
1493                                         hmac: next_hop_hmac.clone(),
1494                                 };
1495
1496                                 let short_channel_id = match next_hop_data.format {
1497                                         msgs::OnionHopDataFormat::Legacy { short_channel_id } => short_channel_id,
1498                                         msgs::OnionHopDataFormat::NonFinalNode { short_channel_id } => short_channel_id,
1499                                         msgs::OnionHopDataFormat::FinalNode { .. } => {
1500                                                 return_err!("Final Node OnionHopData provided for us as an intermediary node", 0x4000 | 22, &[0;0]);
1501                                         },
1502                                 };
1503
1504                                 PendingHTLCStatus::Forward(PendingHTLCInfo {
1505                                         routing: PendingHTLCRouting::Forward {
1506                                                 onion_packet: outgoing_packet,
1507                                                 short_channel_id,
1508                                         },
1509                                         payment_hash: msg.payment_hash.clone(),
1510                                         incoming_shared_secret: shared_secret,
1511                                         amt_to_forward: next_hop_data.amt_to_forward,
1512                                         outgoing_cltv_value: next_hop_data.outgoing_cltv_value,
1513                                 })
1514                         };
1515
1516                 channel_state = Some(self.channel_state.lock().unwrap());
1517                 if let &PendingHTLCStatus::Forward(PendingHTLCInfo { ref routing, ref amt_to_forward, ref outgoing_cltv_value, .. }) = &pending_forward_info {
1518                         // If short_channel_id is 0 here, we'll reject the HTLC as there cannot be a channel
1519                         // with a short_channel_id of 0. This is important as various things later assume
1520                         // short_channel_id is non-0 in any ::Forward.
1521                         if let &PendingHTLCRouting::Forward { ref short_channel_id, .. } = routing {
1522                                 let id_option = channel_state.as_ref().unwrap().short_to_id.get(&short_channel_id).cloned();
1523                                 let forwarding_id = match id_option {
1524                                         None => { // unknown_next_peer
1525                                                 return_err!("Don't have available channel for forwarding as requested.", 0x4000 | 10, &[0;0]);
1526                                         },
1527                                         Some(id) => id.clone(),
1528                                 };
1529                                 if let Some((err, code, chan_update)) = loop {
1530                                         let chan = channel_state.as_mut().unwrap().by_id.get_mut(&forwarding_id).unwrap();
1531
1532                                         // Note that we could technically not return an error yet here and just hope
1533                                         // that the connection is reestablished or monitor updated by the time we get
1534                                         // around to doing the actual forward, but better to fail early if we can and
1535                                         // hopefully an attacker trying to path-trace payments cannot make this occur
1536                                         // on a small/per-node/per-channel scale.
1537                                         if !chan.is_live() { // channel_disabled
1538                                                 break Some(("Forwarding channel is not in a ready state.", 0x1000 | 20, Some(self.get_channel_update(chan).unwrap())));
1539                                         }
1540                                         if *amt_to_forward < chan.get_counterparty_htlc_minimum_msat() { // amount_below_minimum
1541                                                 break Some(("HTLC amount was below the htlc_minimum_msat", 0x1000 | 11, Some(self.get_channel_update(chan).unwrap())));
1542                                         }
1543                                         let fee = amt_to_forward.checked_mul(chan.get_fee_proportional_millionths() as u64).and_then(|prop_fee| { (prop_fee / 1000000).checked_add(chan.get_holder_fee_base_msat(&self.fee_estimator) as u64) });
1544                                         if fee.is_none() || msg.amount_msat < fee.unwrap() || (msg.amount_msat - fee.unwrap()) < *amt_to_forward { // fee_insufficient
1545                                                 break Some(("Prior hop has deviated from specified fees parameters or origin node has obsolete ones", 0x1000 | 12, Some(self.get_channel_update(chan).unwrap())));
1546                                         }
1547                                         if (msg.cltv_expiry as u64) < (*outgoing_cltv_value) as u64 + chan.get_cltv_expiry_delta() as u64 { // incorrect_cltv_expiry
1548                                                 break Some(("Forwarding node has tampered with the intended HTLC values or origin node has an obsolete cltv_expiry_delta", 0x1000 | 13, Some(self.get_channel_update(chan).unwrap())));
1549                                         }
1550                                         let cur_height = self.best_block.read().unwrap().height() + 1;
1551                                         // Theoretically, channel counterparty shouldn't send us a HTLC expiring now, but we want to be robust wrt to counterparty
1552                                         // packet sanitization (see HTLC_FAIL_BACK_BUFFER rational)
1553                                         if msg.cltv_expiry <= cur_height + HTLC_FAIL_BACK_BUFFER as u32 { // expiry_too_soon
1554                                                 break Some(("CLTV expiry is too close", 0x1000 | 14, Some(self.get_channel_update(chan).unwrap())));
1555                                         }
1556                                         if msg.cltv_expiry > cur_height + CLTV_FAR_FAR_AWAY as u32 { // expiry_too_far
1557                                                 break Some(("CLTV expiry is too far in the future", 21, None));
1558                                         }
1559                                         // In theory, we would be safe against unitentional channel-closure, if we only required a margin of LATENCY_GRACE_PERIOD_BLOCKS.
1560                                         // But, to be safe against policy reception, we use a longuer delay.
1561                                         if (*outgoing_cltv_value) as u64 <= (cur_height + HTLC_FAIL_BACK_BUFFER) as u64 {
1562                                                 break Some(("Outgoing CLTV value is too soon", 0x1000 | 14, Some(self.get_channel_update(chan).unwrap())));
1563                                         }
1564
1565                                         break None;
1566                                 }
1567                                 {
1568                                         let mut res = Vec::with_capacity(8 + 128);
1569                                         if let Some(chan_update) = chan_update {
1570                                                 if code == 0x1000 | 11 || code == 0x1000 | 12 {
1571                                                         res.extend_from_slice(&byte_utils::be64_to_array(msg.amount_msat));
1572                                                 }
1573                                                 else if code == 0x1000 | 13 {
1574                                                         res.extend_from_slice(&byte_utils::be32_to_array(msg.cltv_expiry));
1575                                                 }
1576                                                 else if code == 0x1000 | 20 {
1577                                                         // TODO: underspecified, follow https://github.com/lightningnetwork/lightning-rfc/issues/791
1578                                                         res.extend_from_slice(&byte_utils::be16_to_array(0));
1579                                                 }
1580                                                 res.extend_from_slice(&chan_update.encode_with_len()[..]);
1581                                         }
1582                                         return_err!(err, code, &res[..]);
1583                                 }
1584                         }
1585                 }
1586
1587                 (pending_forward_info, channel_state.unwrap())
1588         }
1589
1590         /// only fails if the channel does not yet have an assigned short_id
1591         /// May be called with channel_state already locked!
1592         fn get_channel_update(&self, chan: &Channel<Signer>) -> Result<msgs::ChannelUpdate, LightningError> {
1593                 let short_channel_id = match chan.get_short_channel_id() {
1594                         None => return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError}),
1595                         Some(id) => id,
1596                 };
1597
1598                 let were_node_one = PublicKey::from_secret_key(&self.secp_ctx, &self.our_network_key).serialize()[..] < chan.get_counterparty_node_id().serialize()[..];
1599
1600                 let unsigned = msgs::UnsignedChannelUpdate {
1601                         chain_hash: self.genesis_hash,
1602                         short_channel_id,
1603                         timestamp: chan.get_update_time_counter(),
1604                         flags: (!were_node_one) as u8 | ((!chan.is_live() as u8) << 1),
1605                         cltv_expiry_delta: chan.get_cltv_expiry_delta(),
1606                         htlc_minimum_msat: chan.get_counterparty_htlc_minimum_msat(),
1607                         htlc_maximum_msat: OptionalField::Present(chan.get_announced_htlc_max_msat()),
1608                         fee_base_msat: chan.get_holder_fee_base_msat(&self.fee_estimator),
1609                         fee_proportional_millionths: chan.get_fee_proportional_millionths(),
1610                         excess_data: Vec::new(),
1611                 };
1612
1613                 let msg_hash = Sha256dHash::hash(&unsigned.encode()[..]);
1614                 let sig = self.secp_ctx.sign(&hash_to_message!(&msg_hash[..]), &self.our_network_key);
1615
1616                 Ok(msgs::ChannelUpdate {
1617                         signature: sig,
1618                         contents: unsigned
1619                 })
1620         }
1621
1622         // Only public for testing, this should otherwise never be called direcly
1623         pub(crate) fn send_payment_along_path(&self, path: &Vec<RouteHop>, payment_hash: &PaymentHash, payment_secret: &Option<PaymentSecret>, total_value: u64, cur_height: u32) -> Result<(), APIError> {
1624                 log_trace!(self.logger, "Attempting to send payment for path with next hop {}", path.first().unwrap().short_channel_id);
1625                 let prng_seed = self.keys_manager.get_secure_random_bytes();
1626                 let session_priv_bytes = self.keys_manager.get_secure_random_bytes();
1627                 let session_priv = SecretKey::from_slice(&session_priv_bytes[..]).expect("RNG is busted");
1628
1629                 let onion_keys = onion_utils::construct_onion_keys(&self.secp_ctx, &path, &session_priv)
1630                         .map_err(|_| APIError::RouteError{err: "Pubkey along hop was maliciously selected"})?;
1631                 let (onion_payloads, htlc_msat, htlc_cltv) = onion_utils::build_onion_payloads(path, total_value, payment_secret, cur_height)?;
1632                 if onion_utils::route_size_insane(&onion_payloads) {
1633                         return Err(APIError::RouteError{err: "Route size too large considering onion data"});
1634                 }
1635                 let onion_packet = onion_utils::construct_onion_packet(onion_payloads, onion_keys, prng_seed, payment_hash);
1636
1637                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1638                 assert!(self.pending_outbound_payments.lock().unwrap().insert(session_priv_bytes));
1639
1640                 let err: Result<(), _> = loop {
1641                         let mut channel_lock = self.channel_state.lock().unwrap();
1642                         let id = match channel_lock.short_to_id.get(&path.first().unwrap().short_channel_id) {
1643                                 None => return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()}),
1644                                 Some(id) => id.clone(),
1645                         };
1646
1647                         let channel_state = &mut *channel_lock;
1648                         if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(id) {
1649                                 match {
1650                                         if chan.get().get_counterparty_node_id() != path.first().unwrap().pubkey {
1651                                                 return Err(APIError::RouteError{err: "Node ID mismatch on first hop!"});
1652                                         }
1653                                         if !chan.get().is_live() {
1654                                                 return Err(APIError::ChannelUnavailable{err: "Peer for first hop currently disconnected/pending monitor update!".to_owned()});
1655                                         }
1656                                         break_chan_entry!(self, chan.get_mut().send_htlc_and_commit(htlc_msat, payment_hash.clone(), htlc_cltv, HTLCSource::OutboundRoute {
1657                                                 path: path.clone(),
1658                                                 session_priv: session_priv.clone(),
1659                                                 first_hop_htlc_msat: htlc_msat,
1660                                         }, onion_packet, &self.logger), channel_state, chan)
1661                                 } {
1662                                         Some((update_add, commitment_signed, monitor_update)) => {
1663                                                 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
1664                                                         maybe_break_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, true);
1665                                                         // Note that MonitorUpdateFailed here indicates (per function docs)
1666                                                         // that we will resend the commitment update once monitor updating
1667                                                         // is restored. Therefore, we must return an error indicating that
1668                                                         // it is unsafe to retry the payment wholesale, which we do in the
1669                                                         // send_payment check for MonitorUpdateFailed, below.
1670                                                         return Err(APIError::MonitorUpdateFailed);
1671                                                 }
1672
1673                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
1674                                                         node_id: path.first().unwrap().pubkey,
1675                                                         updates: msgs::CommitmentUpdate {
1676                                                                 update_add_htlcs: vec![update_add],
1677                                                                 update_fulfill_htlcs: Vec::new(),
1678                                                                 update_fail_htlcs: Vec::new(),
1679                                                                 update_fail_malformed_htlcs: Vec::new(),
1680                                                                 update_fee: None,
1681                                                                 commitment_signed,
1682                                                         },
1683                                                 });
1684                                         },
1685                                         None => {},
1686                                 }
1687                         } else { unreachable!(); }
1688                         return Ok(());
1689                 };
1690
1691                 match handle_error!(self, err, path.first().unwrap().pubkey) {
1692                         Ok(_) => unreachable!(),
1693                         Err(e) => {
1694                                 Err(APIError::ChannelUnavailable { err: e.err })
1695                         },
1696                 }
1697         }
1698
1699         /// Sends a payment along a given route.
1700         ///
1701         /// Value parameters are provided via the last hop in route, see documentation for RouteHop
1702         /// fields for more info.
1703         ///
1704         /// Note that if the payment_hash already exists elsewhere (eg you're sending a duplicative
1705         /// payment), we don't do anything to stop you! We always try to ensure that if the provided
1706         /// next hop knows the preimage to payment_hash they can claim an additional amount as
1707         /// specified in the last hop in the route! Thus, you should probably do your own
1708         /// payment_preimage tracking (which you should already be doing as they represent "proof of
1709         /// payment") and prevent double-sends yourself.
1710         ///
1711         /// May generate SendHTLCs message(s) event on success, which should be relayed.
1712         ///
1713         /// Each path may have a different return value, and PaymentSendValue may return a Vec with
1714         /// each entry matching the corresponding-index entry in the route paths, see
1715         /// PaymentSendFailure for more info.
1716         ///
1717         /// In general, a path may raise:
1718         ///  * APIError::RouteError when an invalid route or forwarding parameter (cltv_delta, fee,
1719         ///    node public key) is specified.
1720         ///  * APIError::ChannelUnavailable if the next-hop channel is not available for updates
1721         ///    (including due to previous monitor update failure or new permanent monitor update
1722         ///    failure).
1723         ///  * APIError::MonitorUpdateFailed if a new monitor update failure prevented sending the
1724         ///    relevant updates.
1725         ///
1726         /// Note that depending on the type of the PaymentSendFailure the HTLC may have been
1727         /// irrevocably committed to on our end. In such a case, do NOT retry the payment with a
1728         /// different route unless you intend to pay twice!
1729         ///
1730         /// payment_secret is unrelated to payment_hash (or PaymentPreimage) and exists to authenticate
1731         /// the sender to the recipient and prevent payment-probing (deanonymization) attacks. For
1732         /// newer nodes, it will be provided to you in the invoice. If you do not have one, the Route
1733         /// must not contain multiple paths as multi-path payments require a recipient-provided
1734         /// payment_secret.
1735         /// If a payment_secret *is* provided, we assume that the invoice had the payment_secret feature
1736         /// bit set (either as required or as available). If multiple paths are present in the Route,
1737         /// we assume the invoice had the basic_mpp feature set.
1738         pub fn send_payment(&self, route: &Route, payment_hash: PaymentHash, payment_secret: &Option<PaymentSecret>) -> Result<(), PaymentSendFailure> {
1739                 if route.paths.len() < 1 {
1740                         return Err(PaymentSendFailure::ParameterError(APIError::RouteError{err: "There must be at least one path to send over"}));
1741                 }
1742                 if route.paths.len() > 10 {
1743                         // This limit is completely arbitrary - there aren't any real fundamental path-count
1744                         // limits. After we support retrying individual paths we should likely bump this, but
1745                         // for now more than 10 paths likely carries too much one-path failure.
1746                         return Err(PaymentSendFailure::ParameterError(APIError::RouteError{err: "Sending over more than 10 paths is not currently supported"}));
1747                 }
1748                 let mut total_value = 0;
1749                 let our_node_id = self.get_our_node_id();
1750                 let mut path_errs = Vec::with_capacity(route.paths.len());
1751                 'path_check: for path in route.paths.iter() {
1752                         if path.len() < 1 || path.len() > 20 {
1753                                 path_errs.push(Err(APIError::RouteError{err: "Path didn't go anywhere/had bogus size"}));
1754                                 continue 'path_check;
1755                         }
1756                         for (idx, hop) in path.iter().enumerate() {
1757                                 if idx != path.len() - 1 && hop.pubkey == our_node_id {
1758                                         path_errs.push(Err(APIError::RouteError{err: "Path went through us but wasn't a simple rebalance loop to us"}));
1759                                         continue 'path_check;
1760                                 }
1761                         }
1762                         total_value += path.last().unwrap().fee_msat;
1763                         path_errs.push(Ok(()));
1764                 }
1765                 if path_errs.iter().any(|e| e.is_err()) {
1766                         return Err(PaymentSendFailure::PathParameterError(path_errs));
1767                 }
1768
1769                 let cur_height = self.best_block.read().unwrap().height() + 1;
1770                 let mut results = Vec::new();
1771                 for path in route.paths.iter() {
1772                         results.push(self.send_payment_along_path(&path, &payment_hash, payment_secret, total_value, cur_height));
1773                 }
1774                 let mut has_ok = false;
1775                 let mut has_err = false;
1776                 for res in results.iter() {
1777                         if res.is_ok() { has_ok = true; }
1778                         if res.is_err() { has_err = true; }
1779                         if let &Err(APIError::MonitorUpdateFailed) = res {
1780                                 // MonitorUpdateFailed is inherently unsafe to retry, so we call it a
1781                                 // PartialFailure.
1782                                 has_err = true;
1783                                 has_ok = true;
1784                                 break;
1785                         }
1786                 }
1787                 if has_err && has_ok {
1788                         Err(PaymentSendFailure::PartialFailure(results))
1789                 } else if has_err {
1790                         Err(PaymentSendFailure::AllFailedRetrySafe(results.drain(..).map(|r| r.unwrap_err()).collect()))
1791                 } else {
1792                         Ok(())
1793                 }
1794         }
1795
1796         /// Handles the generation of a funding transaction, optionally (for tests) with a function
1797         /// which checks the correctness of the funding transaction given the associated channel.
1798         fn funding_transaction_generated_intern<FundingOutput: Fn(&Channel<Signer>, &Transaction) -> Result<OutPoint, APIError>>
1799                         (&self, temporary_channel_id: &[u8; 32], funding_transaction: Transaction, find_funding_output: FundingOutput) -> Result<(), APIError> {
1800                 let (chan, msg) = {
1801                         let (res, chan) = match self.channel_state.lock().unwrap().by_id.remove(temporary_channel_id) {
1802                                 Some(mut chan) => {
1803                                         let funding_txo = find_funding_output(&chan, &funding_transaction)?;
1804
1805                                         (chan.get_outbound_funding_created(funding_transaction, funding_txo, &self.logger)
1806                                                 .map_err(|e| if let ChannelError::Close(msg) = e {
1807                                                         MsgHandleErrInternal::from_finish_shutdown(msg, chan.channel_id(), chan.force_shutdown(true), None)
1808                                                 } else { unreachable!(); })
1809                                         , chan)
1810                                 },
1811                                 None => { return Err(APIError::ChannelUnavailable { err: "No such channel".to_owned() }) },
1812                         };
1813                         match handle_error!(self, res, chan.get_counterparty_node_id()) {
1814                                 Ok(funding_msg) => {
1815                                         (chan, funding_msg)
1816                                 },
1817                                 Err(_) => { return Err(APIError::ChannelUnavailable {
1818                                         err: "Error deriving keys or signing initial commitment transactions - either our RNG or our counterparty's RNG is broken or the Signer refused to sign".to_owned()
1819                                 }) },
1820                         }
1821                 };
1822
1823                 let mut channel_state = self.channel_state.lock().unwrap();
1824                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingCreated {
1825                         node_id: chan.get_counterparty_node_id(),
1826                         msg,
1827                 });
1828                 match channel_state.by_id.entry(chan.channel_id()) {
1829                         hash_map::Entry::Occupied(_) => {
1830                                 panic!("Generated duplicate funding txid?");
1831                         },
1832                         hash_map::Entry::Vacant(e) => {
1833                                 e.insert(chan);
1834                         }
1835                 }
1836                 Ok(())
1837         }
1838
1839         #[cfg(test)]
1840         pub(crate) fn funding_transaction_generated_unchecked(&self, temporary_channel_id: &[u8; 32], funding_transaction: Transaction, output_index: u16) -> Result<(), APIError> {
1841                 self.funding_transaction_generated_intern(temporary_channel_id, funding_transaction, |_, tx| {
1842                         Ok(OutPoint { txid: tx.txid(), index: output_index })
1843                 })
1844         }
1845
1846         /// Call this upon creation of a funding transaction for the given channel.
1847         ///
1848         /// Returns an [`APIError::APIMisuseError`] if the funding_transaction spent non-SegWit outputs
1849         /// or if no output was found which matches the parameters in [`Event::FundingGenerationReady`].
1850         ///
1851         /// Panics if a funding transaction has already been provided for this channel.
1852         ///
1853         /// May panic if the output found in the funding transaction is duplicative with some other
1854         /// channel (note that this should be trivially prevented by using unique funding transaction
1855         /// keys per-channel).
1856         ///
1857         /// Do NOT broadcast the funding transaction yourself. When we have safely received our
1858         /// counterparty's signature the funding transaction will automatically be broadcast via the
1859         /// [`BroadcasterInterface`] provided when this `ChannelManager` was constructed.
1860         ///
1861         /// Note that this includes RBF or similar transaction replacement strategies - lightning does
1862         /// not currently support replacing a funding transaction on an existing channel. Instead,
1863         /// create a new channel with a conflicting funding transaction.
1864         ///
1865         /// [`Event::FundingGenerationReady`]: crate::util::events::Event::FundingGenerationReady
1866         pub fn funding_transaction_generated(&self, temporary_channel_id: &[u8; 32], funding_transaction: Transaction) -> Result<(), APIError> {
1867                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1868
1869                 for inp in funding_transaction.input.iter() {
1870                         if inp.witness.is_empty() {
1871                                 return Err(APIError::APIMisuseError {
1872                                         err: "Funding transaction must be fully signed and spend Segwit outputs".to_owned()
1873                                 });
1874                         }
1875                 }
1876                 self.funding_transaction_generated_intern(temporary_channel_id, funding_transaction, |chan, tx| {
1877                         let mut output_index = None;
1878                         let expected_spk = chan.get_funding_redeemscript().to_v0_p2wsh();
1879                         for (idx, outp) in tx.output.iter().enumerate() {
1880                                 if outp.script_pubkey == expected_spk && outp.value == chan.get_value_satoshis() {
1881                                         if output_index.is_some() {
1882                                                 return Err(APIError::APIMisuseError {
1883                                                         err: "Multiple outputs matched the expected script and value".to_owned()
1884                                                 });
1885                                         }
1886                                         if idx > u16::max_value() as usize {
1887                                                 return Err(APIError::APIMisuseError {
1888                                                         err: "Transaction had more than 2^16 outputs, which is not supported".to_owned()
1889                                                 });
1890                                         }
1891                                         output_index = Some(idx as u16);
1892                                 }
1893                         }
1894                         if output_index.is_none() {
1895                                 return Err(APIError::APIMisuseError {
1896                                         err: "No output matched the script_pubkey and value in the FundingGenerationReady event".to_owned()
1897                                 });
1898                         }
1899                         Ok(OutPoint { txid: tx.txid(), index: output_index.unwrap() })
1900                 })
1901         }
1902
1903         fn get_announcement_sigs(&self, chan: &Channel<Signer>) -> Option<msgs::AnnouncementSignatures> {
1904                 if !chan.should_announce() {
1905                         log_trace!(self.logger, "Can't send announcement_signatures for private channel {}", log_bytes!(chan.channel_id()));
1906                         return None
1907                 }
1908
1909                 let (announcement, our_bitcoin_sig) = match chan.get_channel_announcement(self.get_our_node_id(), self.genesis_hash.clone()) {
1910                         Ok(res) => res,
1911                         Err(_) => return None, // Only in case of state precondition violations eg channel is closing
1912                 };
1913                 let msghash = hash_to_message!(&Sha256dHash::hash(&announcement.encode()[..])[..]);
1914                 let our_node_sig = self.secp_ctx.sign(&msghash, &self.our_network_key);
1915
1916                 Some(msgs::AnnouncementSignatures {
1917                         channel_id: chan.channel_id(),
1918                         short_channel_id: chan.get_short_channel_id().unwrap(),
1919                         node_signature: our_node_sig,
1920                         bitcoin_signature: our_bitcoin_sig,
1921                 })
1922         }
1923
1924         #[allow(dead_code)]
1925         // Messages of up to 64KB should never end up more than half full with addresses, as that would
1926         // be absurd. We ensure this by checking that at least 500 (our stated public contract on when
1927         // broadcast_node_announcement panics) of the maximum-length addresses would fit in a 64KB
1928         // message...
1929         const HALF_MESSAGE_IS_ADDRS: u32 = ::core::u16::MAX as u32 / (NetAddress::MAX_LEN as u32 + 1) / 2;
1930         #[deny(const_err)]
1931         #[allow(dead_code)]
1932         // ...by failing to compile if the number of addresses that would be half of a message is
1933         // smaller than 500:
1934         const STATIC_ASSERT: u32 = Self::HALF_MESSAGE_IS_ADDRS - 500;
1935
1936         /// Generates a signed node_announcement from the given arguments and creates a
1937         /// BroadcastNodeAnnouncement event. Note that such messages will be ignored unless peers have
1938         /// seen a channel_announcement from us (ie unless we have public channels open).
1939         ///
1940         /// RGB is a node "color" and alias is a printable human-readable string to describe this node
1941         /// to humans. They carry no in-protocol meaning.
1942         ///
1943         /// addresses represent the set (possibly empty) of socket addresses on which this node accepts
1944         /// incoming connections. These will be broadcast to the network, publicly tying these
1945         /// addresses together. If you wish to preserve user privacy, addresses should likely contain
1946         /// only Tor Onion addresses.
1947         ///
1948         /// Panics if addresses is absurdly large (more than 500).
1949         pub fn broadcast_node_announcement(&self, rgb: [u8; 3], alias: [u8; 32], mut addresses: Vec<NetAddress>) {
1950                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1951
1952                 if addresses.len() > 500 {
1953                         panic!("More than half the message size was taken up by public addresses!");
1954                 }
1955
1956                 // While all existing nodes handle unsorted addresses just fine, the spec requires that
1957                 // addresses be sorted for future compatibility.
1958                 addresses.sort_by_key(|addr| addr.get_id());
1959
1960                 let announcement = msgs::UnsignedNodeAnnouncement {
1961                         features: NodeFeatures::known(),
1962                         timestamp: self.last_node_announcement_serial.fetch_add(1, Ordering::AcqRel) as u32,
1963                         node_id: self.get_our_node_id(),
1964                         rgb, alias, addresses,
1965                         excess_address_data: Vec::new(),
1966                         excess_data: Vec::new(),
1967                 };
1968                 let msghash = hash_to_message!(&Sha256dHash::hash(&announcement.encode()[..])[..]);
1969
1970                 let mut channel_state = self.channel_state.lock().unwrap();
1971                 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastNodeAnnouncement {
1972                         msg: msgs::NodeAnnouncement {
1973                                 signature: self.secp_ctx.sign(&msghash, &self.our_network_key),
1974                                 contents: announcement
1975                         },
1976                 });
1977         }
1978
1979         /// Processes HTLCs which are pending waiting on random forward delay.
1980         ///
1981         /// Should only really ever be called in response to a PendingHTLCsForwardable event.
1982         /// Will likely generate further events.
1983         pub fn process_pending_htlc_forwards(&self) {
1984                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1985
1986                 let mut new_events = Vec::new();
1987                 let mut failed_forwards = Vec::new();
1988                 let mut handle_errors = Vec::new();
1989                 {
1990                         let mut channel_state_lock = self.channel_state.lock().unwrap();
1991                         let channel_state = &mut *channel_state_lock;
1992
1993                         for (short_chan_id, mut pending_forwards) in channel_state.forward_htlcs.drain() {
1994                                 if short_chan_id != 0 {
1995                                         let forward_chan_id = match channel_state.short_to_id.get(&short_chan_id) {
1996                                                 Some(chan_id) => chan_id.clone(),
1997                                                 None => {
1998                                                         failed_forwards.reserve(pending_forwards.len());
1999                                                         for forward_info in pending_forwards.drain(..) {
2000                                                                 match forward_info {
2001                                                                         HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info,
2002                                                                                                    prev_funding_outpoint } => {
2003                                                                                 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
2004                                                                                         short_channel_id: prev_short_channel_id,
2005                                                                                         outpoint: prev_funding_outpoint,
2006                                                                                         htlc_id: prev_htlc_id,
2007                                                                                         incoming_packet_shared_secret: forward_info.incoming_shared_secret,
2008                                                                                 });
2009                                                                                 failed_forwards.push((htlc_source, forward_info.payment_hash,
2010                                                                                         HTLCFailReason::Reason { failure_code: 0x4000 | 10, data: Vec::new() }
2011                                                                                 ));
2012                                                                         },
2013                                                                         HTLCForwardInfo::FailHTLC { .. } => {
2014                                                                                 // Channel went away before we could fail it. This implies
2015                                                                                 // the channel is now on chain and our counterparty is
2016                                                                                 // trying to broadcast the HTLC-Timeout, but that's their
2017                                                                                 // problem, not ours.
2018                                                                         }
2019                                                                 }
2020                                                         }
2021                                                         continue;
2022                                                 }
2023                                         };
2024                                         if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(forward_chan_id) {
2025                                                 let mut add_htlc_msgs = Vec::new();
2026                                                 let mut fail_htlc_msgs = Vec::new();
2027                                                 for forward_info in pending_forwards.drain(..) {
2028                                                         match forward_info {
2029                                                                 HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info: PendingHTLCInfo {
2030                                                                                 routing: PendingHTLCRouting::Forward {
2031                                                                                         onion_packet, ..
2032                                                                                 }, incoming_shared_secret, payment_hash, amt_to_forward, outgoing_cltv_value },
2033                                                                                 prev_funding_outpoint } => {
2034                                                                         log_trace!(self.logger, "Adding HTLC from short id {} with payment_hash {} to channel with short id {} after delay", log_bytes!(payment_hash.0), prev_short_channel_id, short_chan_id);
2035                                                                         let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
2036                                                                                 short_channel_id: prev_short_channel_id,
2037                                                                                 outpoint: prev_funding_outpoint,
2038                                                                                 htlc_id: prev_htlc_id,
2039                                                                                 incoming_packet_shared_secret: incoming_shared_secret,
2040                                                                         });
2041                                                                         match chan.get_mut().send_htlc(amt_to_forward, payment_hash, outgoing_cltv_value, htlc_source.clone(), onion_packet) {
2042                                                                                 Err(e) => {
2043                                                                                         if let ChannelError::Ignore(msg) = e {
2044                                                                                                 log_trace!(self.logger, "Failed to forward HTLC with payment_hash {}: {}", log_bytes!(payment_hash.0), msg);
2045                                                                                         } else {
2046                                                                                                 panic!("Stated return value requirements in send_htlc() were not met");
2047                                                                                         }
2048                                                                                         let chan_update = self.get_channel_update(chan.get()).unwrap();
2049                                                                                         failed_forwards.push((htlc_source, payment_hash,
2050                                                                                                 HTLCFailReason::Reason { failure_code: 0x1000 | 7, data: chan_update.encode_with_len() }
2051                                                                                         ));
2052                                                                                         continue;
2053                                                                                 },
2054                                                                                 Ok(update_add) => {
2055                                                                                         match update_add {
2056                                                                                                 Some(msg) => { add_htlc_msgs.push(msg); },
2057                                                                                                 None => {
2058                                                                                                         // Nothing to do here...we're waiting on a remote
2059                                                                                                         // revoke_and_ack before we can add anymore HTLCs. The Channel
2060                                                                                                         // will automatically handle building the update_add_htlc and
2061                                                                                                         // commitment_signed messages when we can.
2062                                                                                                         // TODO: Do some kind of timer to set the channel as !is_live()
2063                                                                                                         // as we don't really want others relying on us relaying through
2064                                                                                                         // this channel currently :/.
2065                                                                                                 }
2066                                                                                         }
2067                                                                                 }
2068                                                                         }
2069                                                                 },
2070                                                                 HTLCForwardInfo::AddHTLC { .. } => {
2071                                                                         panic!("short_channel_id != 0 should imply any pending_forward entries are of type Forward");
2072                                                                 },
2073                                                                 HTLCForwardInfo::FailHTLC { htlc_id, err_packet } => {
2074                                                                         log_trace!(self.logger, "Failing HTLC back to channel with short id {} after delay", short_chan_id);
2075                                                                         match chan.get_mut().get_update_fail_htlc(htlc_id, err_packet, &self.logger) {
2076                                                                                 Err(e) => {
2077                                                                                         if let ChannelError::Ignore(msg) = e {
2078                                                                                                 log_trace!(self.logger, "Failed to fail backwards to short_id {}: {}", short_chan_id, msg);
2079                                                                                         } else {
2080                                                                                                 panic!("Stated return value requirements in get_update_fail_htlc() were not met");
2081                                                                                         }
2082                                                                                         // fail-backs are best-effort, we probably already have one
2083                                                                                         // pending, and if not that's OK, if not, the channel is on
2084                                                                                         // the chain and sending the HTLC-Timeout is their problem.
2085                                                                                         continue;
2086                                                                                 },
2087                                                                                 Ok(Some(msg)) => { fail_htlc_msgs.push(msg); },
2088                                                                                 Ok(None) => {
2089                                                                                         // Nothing to do here...we're waiting on a remote
2090                                                                                         // revoke_and_ack before we can update the commitment
2091                                                                                         // transaction. The Channel will automatically handle
2092                                                                                         // building the update_fail_htlc and commitment_signed
2093                                                                                         // messages when we can.
2094                                                                                         // We don't need any kind of timer here as they should fail
2095                                                                                         // the channel onto the chain if they can't get our
2096                                                                                         // update_fail_htlc in time, it's not our problem.
2097                                                                                 }
2098                                                                         }
2099                                                                 },
2100                                                         }
2101                                                 }
2102
2103                                                 if !add_htlc_msgs.is_empty() || !fail_htlc_msgs.is_empty() {
2104                                                         let (commitment_msg, monitor_update) = match chan.get_mut().send_commitment(&self.logger) {
2105                                                                 Ok(res) => res,
2106                                                                 Err(e) => {
2107                                                                         // We surely failed send_commitment due to bad keys, in that case
2108                                                                         // close channel and then send error message to peer.
2109                                                                         let counterparty_node_id = chan.get().get_counterparty_node_id();
2110                                                                         let err: Result<(), _>  = match e {
2111                                                                                 ChannelError::Ignore(_) => {
2112                                                                                         panic!("Stated return value requirements in send_commitment() were not met");
2113                                                                                 },
2114                                                                                 ChannelError::Close(msg) => {
2115                                                                                         log_trace!(self.logger, "Closing channel {} due to Close-required error: {}", log_bytes!(chan.key()[..]), msg);
2116                                                                                         let (channel_id, mut channel) = chan.remove_entry();
2117                                                                                         if let Some(short_id) = channel.get_short_channel_id() {
2118                                                                                                 channel_state.short_to_id.remove(&short_id);
2119                                                                                         }
2120                                                                                         Err(MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, channel.force_shutdown(true), self.get_channel_update(&channel).ok()))
2121                                                                                 },
2122                                                                                 ChannelError::CloseDelayBroadcast(_) => { panic!("Wait is only generated on receipt of channel_reestablish, which is handled by try_chan_entry, we don't bother to support it here"); }
2123                                                                         };
2124                                                                         handle_errors.push((counterparty_node_id, err));
2125                                                                         continue;
2126                                                                 }
2127                                                         };
2128                                                         if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
2129                                                                 handle_errors.push((chan.get().get_counterparty_node_id(), handle_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, true)));
2130                                                                 continue;
2131                                                         }
2132                                                         channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
2133                                                                 node_id: chan.get().get_counterparty_node_id(),
2134                                                                 updates: msgs::CommitmentUpdate {
2135                                                                         update_add_htlcs: add_htlc_msgs,
2136                                                                         update_fulfill_htlcs: Vec::new(),
2137                                                                         update_fail_htlcs: fail_htlc_msgs,
2138                                                                         update_fail_malformed_htlcs: Vec::new(),
2139                                                                         update_fee: None,
2140                                                                         commitment_signed: commitment_msg,
2141                                                                 },
2142                                                         });
2143                                                 }
2144                                         } else {
2145                                                 unreachable!();
2146                                         }
2147                                 } else {
2148                                         for forward_info in pending_forwards.drain(..) {
2149                                                 match forward_info {
2150                                                         HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info: PendingHTLCInfo {
2151                                                                         routing: PendingHTLCRouting::Receive { payment_data, incoming_cltv_expiry },
2152                                                                         incoming_shared_secret, payment_hash, amt_to_forward, .. },
2153                                                                         prev_funding_outpoint } => {
2154                                                                 let claimable_htlc = ClaimableHTLC {
2155                                                                         prev_hop: HTLCPreviousHopData {
2156                                                                                 short_channel_id: prev_short_channel_id,
2157                                                                                 outpoint: prev_funding_outpoint,
2158                                                                                 htlc_id: prev_htlc_id,
2159                                                                                 incoming_packet_shared_secret: incoming_shared_secret,
2160                                                                         },
2161                                                                         value: amt_to_forward,
2162                                                                         payment_data: payment_data.clone(),
2163                                                                         cltv_expiry: incoming_cltv_expiry,
2164                                                                 };
2165
2166                                                                 macro_rules! fail_htlc {
2167                                                                         ($htlc: expr) => {
2168                                                                                 let mut htlc_msat_height_data = byte_utils::be64_to_array($htlc.value).to_vec();
2169                                                                                 htlc_msat_height_data.extend_from_slice(
2170                                                                                         &byte_utils::be32_to_array(self.best_block.read().unwrap().height()),
2171                                                                                 );
2172                                                                                 failed_forwards.push((HTLCSource::PreviousHopData(HTLCPreviousHopData {
2173                                                                                                 short_channel_id: $htlc.prev_hop.short_channel_id,
2174                                                                                                 outpoint: prev_funding_outpoint,
2175                                                                                                 htlc_id: $htlc.prev_hop.htlc_id,
2176                                                                                                 incoming_packet_shared_secret: $htlc.prev_hop.incoming_packet_shared_secret,
2177                                                                                         }), payment_hash,
2178                                                                                         HTLCFailReason::Reason { failure_code: 0x4000 | 15, data: htlc_msat_height_data }
2179                                                                                 ));
2180                                                                         }
2181                                                                 }
2182
2183                                                                 // Check that the payment hash and secret are known. Note that we
2184                                                                 // MUST take care to handle the "unknown payment hash" and
2185                                                                 // "incorrect payment secret" cases here identically or we'd expose
2186                                                                 // that we are the ultimate recipient of the given payment hash.
2187                                                                 // Further, we must not expose whether we have any other HTLCs
2188                                                                 // associated with the same payment_hash pending or not.
2189                                                                 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
2190                                                                 match payment_secrets.entry(payment_hash) {
2191                                                                         hash_map::Entry::Vacant(_) => {
2192                                                                                 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as we didn't have a corresponding inbound payment.", log_bytes!(payment_hash.0));
2193                                                                                 fail_htlc!(claimable_htlc);
2194                                                                         },
2195                                                                         hash_map::Entry::Occupied(inbound_payment) => {
2196                                                                                 if inbound_payment.get().payment_secret != payment_data.payment_secret {
2197                                                                                         log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our expected payment secret.", log_bytes!(payment_hash.0));
2198                                                                                         fail_htlc!(claimable_htlc);
2199                                                                                 } else if inbound_payment.get().min_value_msat.is_some() && payment_data.total_msat < inbound_payment.get().min_value_msat.unwrap() {
2200                                                                                         log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our minimum value (had {}, needed {}).",
2201                                                                                                 log_bytes!(payment_hash.0), payment_data.total_msat, inbound_payment.get().min_value_msat.unwrap());
2202                                                                                         fail_htlc!(claimable_htlc);
2203                                                                                 } else {
2204                                                                                         let mut total_value = 0;
2205                                                                                         let htlcs = channel_state.claimable_htlcs.entry(payment_hash)
2206                                                                                                 .or_insert(Vec::new());
2207                                                                                         htlcs.push(claimable_htlc);
2208                                                                                         for htlc in htlcs.iter() {
2209                                                                                                 total_value += htlc.value;
2210                                                                                                 if htlc.payment_data.total_msat != payment_data.total_msat {
2211                                                                                                         log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the HTLCs had inconsistent total values (eg {} and {})",
2212                                                                                                                 log_bytes!(payment_hash.0), payment_data.total_msat, htlc.payment_data.total_msat);
2213                                                                                                         total_value = msgs::MAX_VALUE_MSAT;
2214                                                                                                 }
2215                                                                                                 if total_value >= msgs::MAX_VALUE_MSAT { break; }
2216                                                                                         }
2217                                                                                         if total_value >= msgs::MAX_VALUE_MSAT || total_value > payment_data.total_msat {
2218                                                                                                 log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the total value {} ran over expected value {} (or HTLCs were inconsistent)",
2219                                                                                                         log_bytes!(payment_hash.0), total_value, payment_data.total_msat);
2220                                                                                                 for htlc in htlcs.iter() {
2221                                                                                                         fail_htlc!(htlc);
2222                                                                                                 }
2223                                                                                         } else if total_value == payment_data.total_msat {
2224                                                                                                 new_events.push(events::Event::PaymentReceived {
2225                                                                                                         payment_hash,
2226                                                                                                         payment_preimage: inbound_payment.get().payment_preimage,
2227                                                                                                         payment_secret: payment_data.payment_secret,
2228                                                                                                         amt: total_value,
2229                                                                                                         user_payment_id: inbound_payment.get().user_payment_id,
2230                                                                                                 });
2231                                                                                                 // Only ever generate at most one PaymentReceived
2232                                                                                                 // per registered payment_hash, even if it isn't
2233                                                                                                 // claimed.
2234                                                                                                 inbound_payment.remove_entry();
2235                                                                                         } else {
2236                                                                                                 // Nothing to do - we haven't reached the total
2237                                                                                                 // payment value yet, wait until we receive more
2238                                                                                                 // MPP parts.
2239                                                                                         }
2240                                                                                 }
2241                                                                         },
2242                                                                 };
2243                                                         },
2244                                                         HTLCForwardInfo::AddHTLC { .. } => {
2245                                                                 panic!("short_channel_id == 0 should imply any pending_forward entries are of type Receive");
2246                                                         },
2247                                                         HTLCForwardInfo::FailHTLC { .. } => {
2248                                                                 panic!("Got pending fail of our own HTLC");
2249                                                         }
2250                                                 }
2251                                         }
2252                                 }
2253                         }
2254                 }
2255
2256                 for (htlc_source, payment_hash, failure_reason) in failed_forwards.drain(..) {
2257                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source, &payment_hash, failure_reason);
2258                 }
2259
2260                 for (counterparty_node_id, err) in handle_errors.drain(..) {
2261                         let _ = handle_error!(self, err, counterparty_node_id);
2262                 }
2263
2264                 if new_events.is_empty() { return }
2265                 let mut events = self.pending_events.lock().unwrap();
2266                 events.append(&mut new_events);
2267         }
2268
2269         /// Free the background events, generally called from timer_tick_occurred.
2270         ///
2271         /// Exposed for testing to allow us to process events quickly without generating accidental
2272         /// BroadcastChannelUpdate events in timer_tick_occurred.
2273         ///
2274         /// Expects the caller to have a total_consistency_lock read lock.
2275         fn process_background_events(&self) -> bool {
2276                 let mut background_events = Vec::new();
2277                 mem::swap(&mut *self.pending_background_events.lock().unwrap(), &mut background_events);
2278                 if background_events.is_empty() {
2279                         return false;
2280                 }
2281
2282                 for event in background_events.drain(..) {
2283                         match event {
2284                                 BackgroundEvent::ClosingMonitorUpdate((funding_txo, update)) => {
2285                                         // The channel has already been closed, so no use bothering to care about the
2286                                         // monitor updating completing.
2287                                         let _ = self.chain_monitor.update_channel(funding_txo, update);
2288                                 },
2289                         }
2290                 }
2291                 true
2292         }
2293
2294         #[cfg(any(test, feature = "_test_utils"))]
2295         pub(crate) fn test_process_background_events(&self) {
2296                 self.process_background_events();
2297         }
2298
2299         /// If a peer is disconnected we mark any channels with that peer as 'disabled'.
2300         /// After some time, if channels are still disabled we need to broadcast a ChannelUpdate
2301         /// to inform the network about the uselessness of these channels.
2302         ///
2303         /// This method handles all the details, and must be called roughly once per minute.
2304         ///
2305         /// Note that in some rare cases this may generate a `chain::Watch::update_channel` call.
2306         pub fn timer_tick_occurred(&self) {
2307                 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
2308                         let mut should_persist = NotifyOption::SkipPersist;
2309                         if self.process_background_events() { should_persist = NotifyOption::DoPersist; }
2310
2311                         let mut channel_state_lock = self.channel_state.lock().unwrap();
2312                         let channel_state = &mut *channel_state_lock;
2313                         for (_, chan) in channel_state.by_id.iter_mut() {
2314                                 match chan.channel_update_status() {
2315                                         ChannelUpdateStatus::Enabled if !chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::DisabledStaged),
2316                                         ChannelUpdateStatus::Disabled if chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::EnabledStaged),
2317                                         ChannelUpdateStatus::DisabledStaged if chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::Enabled),
2318                                         ChannelUpdateStatus::EnabledStaged if !chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::Disabled),
2319                                         ChannelUpdateStatus::DisabledStaged if !chan.is_live() => {
2320                                                 if let Ok(update) = self.get_channel_update(&chan) {
2321                                                         channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2322                                                                 msg: update
2323                                                         });
2324                                                 }
2325                                                 should_persist = NotifyOption::DoPersist;
2326                                                 chan.set_channel_update_status(ChannelUpdateStatus::Disabled);
2327                                         },
2328                                         ChannelUpdateStatus::EnabledStaged if chan.is_live() => {
2329                                                 if let Ok(update) = self.get_channel_update(&chan) {
2330                                                         channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2331                                                                 msg: update
2332                                                         });
2333                                                 }
2334                                                 should_persist = NotifyOption::DoPersist;
2335                                                 chan.set_channel_update_status(ChannelUpdateStatus::Enabled);
2336                                         },
2337                                         _ => {},
2338                                 }
2339                         }
2340
2341                         should_persist
2342                 });
2343         }
2344
2345         /// Indicates that the preimage for payment_hash is unknown or the received amount is incorrect
2346         /// after a PaymentReceived event, failing the HTLC back to its origin and freeing resources
2347         /// along the path (including in our own channel on which we received it).
2348         /// Returns false if no payment was found to fail backwards, true if the process of failing the
2349         /// HTLC backwards has been started.
2350         pub fn fail_htlc_backwards(&self, payment_hash: &PaymentHash) -> bool {
2351                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2352
2353                 let mut channel_state = Some(self.channel_state.lock().unwrap());
2354                 let removed_source = channel_state.as_mut().unwrap().claimable_htlcs.remove(payment_hash);
2355                 if let Some(mut sources) = removed_source {
2356                         for htlc in sources.drain(..) {
2357                                 if channel_state.is_none() { channel_state = Some(self.channel_state.lock().unwrap()); }
2358                                 let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec();
2359                                 htlc_msat_height_data.extend_from_slice(&byte_utils::be32_to_array(
2360                                                 self.best_block.read().unwrap().height()));
2361                                 self.fail_htlc_backwards_internal(channel_state.take().unwrap(),
2362                                                 HTLCSource::PreviousHopData(htlc.prev_hop), payment_hash,
2363                                                 HTLCFailReason::Reason { failure_code: 0x4000 | 15, data: htlc_msat_height_data });
2364                         }
2365                         true
2366                 } else { false }
2367         }
2368
2369         // Fail a list of HTLCs that were just freed from the holding cell. The HTLCs need to be
2370         // failed backwards or, if they were one of our outgoing HTLCs, then their failure needs to
2371         // be surfaced to the user.
2372         fn fail_holding_cell_htlcs(&self, mut htlcs_to_fail: Vec<(HTLCSource, PaymentHash)>, channel_id: [u8; 32]) {
2373                 for (htlc_src, payment_hash) in htlcs_to_fail.drain(..) {
2374                         match htlc_src {
2375                                 HTLCSource::PreviousHopData(HTLCPreviousHopData { .. }) => {
2376                                         let (failure_code, onion_failure_data) =
2377                                                 match self.channel_state.lock().unwrap().by_id.entry(channel_id) {
2378                                                         hash_map::Entry::Occupied(chan_entry) => {
2379                                                                 if let Ok(upd) = self.get_channel_update(&chan_entry.get()) {
2380                                                                         (0x1000|7, upd.encode_with_len())
2381                                                                 } else {
2382                                                                         (0x4000|10, Vec::new())
2383                                                                 }
2384                                                         },
2385                                                         hash_map::Entry::Vacant(_) => (0x4000|10, Vec::new())
2386                                                 };
2387                                         let channel_state = self.channel_state.lock().unwrap();
2388                                         self.fail_htlc_backwards_internal(channel_state,
2389                                                 htlc_src, &payment_hash, HTLCFailReason::Reason { failure_code, data: onion_failure_data});
2390                                 },
2391                                 HTLCSource::OutboundRoute { session_priv, .. } => {
2392                                         if {
2393                                                 let mut session_priv_bytes = [0; 32];
2394                                                 session_priv_bytes.copy_from_slice(&session_priv[..]);
2395                                                 self.pending_outbound_payments.lock().unwrap().remove(&session_priv_bytes)
2396                                         } {
2397                                                 self.pending_events.lock().unwrap().push(
2398                                                         events::Event::PaymentFailed {
2399                                                                 payment_hash,
2400                                                                 rejected_by_dest: false,
2401 #[cfg(test)]
2402                                                                 error_code: None,
2403 #[cfg(test)]
2404                                                                 error_data: None,
2405                                                         }
2406                                                 )
2407                                         } else {
2408                                                 log_trace!(self.logger, "Received duplicative fail for HTLC with payment_hash {}", log_bytes!(payment_hash.0));
2409                                         }
2410                                 },
2411                         };
2412                 }
2413         }
2414
2415         /// Fails an HTLC backwards to the sender of it to us.
2416         /// Note that while we take a channel_state lock as input, we do *not* assume consistency here.
2417         /// There are several callsites that do stupid things like loop over a list of payment_hashes
2418         /// to fail and take the channel_state lock for each iteration (as we take ownership and may
2419         /// drop it). In other words, no assumptions are made that entries in claimable_htlcs point to
2420         /// still-available channels.
2421         fn fail_htlc_backwards_internal(&self, mut channel_state_lock: MutexGuard<ChannelHolder<Signer>>, source: HTLCSource, payment_hash: &PaymentHash, onion_error: HTLCFailReason) {
2422                 //TODO: There is a timing attack here where if a node fails an HTLC back to us they can
2423                 //identify whether we sent it or not based on the (I presume) very different runtime
2424                 //between the branches here. We should make this async and move it into the forward HTLCs
2425                 //timer handling.
2426
2427                 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
2428                 // from block_connected which may run during initialization prior to the chain_monitor
2429                 // being fully configured. See the docs for `ChannelManagerReadArgs` for more.
2430                 match source {
2431                         HTLCSource::OutboundRoute { ref path, session_priv, .. } => {
2432                                 if {
2433                                         let mut session_priv_bytes = [0; 32];
2434                                         session_priv_bytes.copy_from_slice(&session_priv[..]);
2435                                         !self.pending_outbound_payments.lock().unwrap().remove(&session_priv_bytes)
2436                                 } {
2437                                         log_trace!(self.logger, "Received duplicative fail for HTLC with payment_hash {}", log_bytes!(payment_hash.0));
2438                                         return;
2439                                 }
2440                                 log_trace!(self.logger, "Failing outbound payment HTLC with payment_hash {}", log_bytes!(payment_hash.0));
2441                                 mem::drop(channel_state_lock);
2442                                 match &onion_error {
2443                                         &HTLCFailReason::LightningError { ref err } => {
2444 #[cfg(test)]
2445                                                 let (channel_update, payment_retryable, onion_error_code, onion_error_data) = onion_utils::process_onion_failure(&self.secp_ctx, &self.logger, &source, err.data.clone());
2446 #[cfg(not(test))]
2447                                                 let (channel_update, payment_retryable, _, _) = onion_utils::process_onion_failure(&self.secp_ctx, &self.logger, &source, err.data.clone());
2448                                                 // TODO: If we decided to blame ourselves (or one of our channels) in
2449                                                 // process_onion_failure we should close that channel as it implies our
2450                                                 // next-hop is needlessly blaming us!
2451                                                 if let Some(update) = channel_update {
2452                                                         self.channel_state.lock().unwrap().pending_msg_events.push(
2453                                                                 events::MessageSendEvent::PaymentFailureNetworkUpdate {
2454                                                                         update,
2455                                                                 }
2456                                                         );
2457                                                 }
2458                                                 self.pending_events.lock().unwrap().push(
2459                                                         events::Event::PaymentFailed {
2460                                                                 payment_hash: payment_hash.clone(),
2461                                                                 rejected_by_dest: !payment_retryable,
2462 #[cfg(test)]
2463                                                                 error_code: onion_error_code,
2464 #[cfg(test)]
2465                                                                 error_data: onion_error_data
2466                                                         }
2467                                                 );
2468                                         },
2469                                         &HTLCFailReason::Reason {
2470 #[cfg(test)]
2471                                                         ref failure_code,
2472 #[cfg(test)]
2473                                                         ref data,
2474                                                         .. } => {
2475                                                 // we get a fail_malformed_htlc from the first hop
2476                                                 // TODO: We'd like to generate a PaymentFailureNetworkUpdate for temporary
2477                                                 // failures here, but that would be insufficient as get_route
2478                                                 // generally ignores its view of our own channels as we provide them via
2479                                                 // ChannelDetails.
2480                                                 // TODO: For non-temporary failures, we really should be closing the
2481                                                 // channel here as we apparently can't relay through them anyway.
2482                                                 self.pending_events.lock().unwrap().push(
2483                                                         events::Event::PaymentFailed {
2484                                                                 payment_hash: payment_hash.clone(),
2485                                                                 rejected_by_dest: path.len() == 1,
2486 #[cfg(test)]
2487                                                                 error_code: Some(*failure_code),
2488 #[cfg(test)]
2489                                                                 error_data: Some(data.clone()),
2490                                                         }
2491                                                 );
2492                                         }
2493                                 }
2494                         },
2495                         HTLCSource::PreviousHopData(HTLCPreviousHopData { short_channel_id, htlc_id, incoming_packet_shared_secret, .. }) => {
2496                                 let err_packet = match onion_error {
2497                                         HTLCFailReason::Reason { failure_code, data } => {
2498                                                 log_trace!(self.logger, "Failing HTLC with payment_hash {} backwards from us with code {}", log_bytes!(payment_hash.0), failure_code);
2499                                                 let packet = onion_utils::build_failure_packet(&incoming_packet_shared_secret, failure_code, &data[..]).encode();
2500                                                 onion_utils::encrypt_failure_packet(&incoming_packet_shared_secret, &packet)
2501                                         },
2502                                         HTLCFailReason::LightningError { err } => {
2503                                                 log_trace!(self.logger, "Failing HTLC with payment_hash {} backwards with pre-built LightningError", log_bytes!(payment_hash.0));
2504                                                 onion_utils::encrypt_failure_packet(&incoming_packet_shared_secret, &err.data)
2505                                         }
2506                                 };
2507
2508                                 let mut forward_event = None;
2509                                 if channel_state_lock.forward_htlcs.is_empty() {
2510                                         forward_event = Some(Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS));
2511                                 }
2512                                 match channel_state_lock.forward_htlcs.entry(short_channel_id) {
2513                                         hash_map::Entry::Occupied(mut entry) => {
2514                                                 entry.get_mut().push(HTLCForwardInfo::FailHTLC { htlc_id, err_packet });
2515                                         },
2516                                         hash_map::Entry::Vacant(entry) => {
2517                                                 entry.insert(vec!(HTLCForwardInfo::FailHTLC { htlc_id, err_packet }));
2518                                         }
2519                                 }
2520                                 mem::drop(channel_state_lock);
2521                                 if let Some(time) = forward_event {
2522                                         let mut pending_events = self.pending_events.lock().unwrap();
2523                                         pending_events.push(events::Event::PendingHTLCsForwardable {
2524                                                 time_forwardable: time
2525                                         });
2526                                 }
2527                         },
2528                 }
2529         }
2530
2531         /// Provides a payment preimage in response to a PaymentReceived event, returning true and
2532         /// generating message events for the net layer to claim the payment, if possible. Thus, you
2533         /// should probably kick the net layer to go send messages if this returns true!
2534         ///
2535         /// Note that if you did not set an `amount_msat` when calling [`create_inbound_payment`] or
2536         /// [`create_inbound_payment_for_hash`] you must check that the amount in the `PaymentReceived`
2537         /// event matches your expectation. If you fail to do so and call this method, you may provide
2538         /// the sender "proof-of-payment" when they did not fulfill the full expected payment.
2539         ///
2540         /// May panic if called except in response to a PaymentReceived event.
2541         ///
2542         /// [`create_inbound_payment`]: Self::create_inbound_payment
2543         /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
2544         pub fn claim_funds(&self, payment_preimage: PaymentPreimage) -> bool {
2545                 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
2546
2547                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2548
2549                 let mut channel_state = Some(self.channel_state.lock().unwrap());
2550                 let removed_source = channel_state.as_mut().unwrap().claimable_htlcs.remove(&payment_hash);
2551                 if let Some(mut sources) = removed_source {
2552                         assert!(!sources.is_empty());
2553
2554                         // If we are claiming an MPP payment, we have to take special care to ensure that each
2555                         // channel exists before claiming all of the payments (inside one lock).
2556                         // Note that channel existance is sufficient as we should always get a monitor update
2557                         // which will take care of the real HTLC claim enforcement.
2558                         //
2559                         // If we find an HTLC which we would need to claim but for which we do not have a
2560                         // channel, we will fail all parts of the MPP payment. While we could wait and see if
2561                         // the sender retries the already-failed path(s), it should be a pretty rare case where
2562                         // we got all the HTLCs and then a channel closed while we were waiting for the user to
2563                         // provide the preimage, so worrying too much about the optimal handling isn't worth
2564                         // it.
2565                         let mut valid_mpp = true;
2566                         for htlc in sources.iter() {
2567                                 if let None = channel_state.as_ref().unwrap().short_to_id.get(&htlc.prev_hop.short_channel_id) {
2568                                         valid_mpp = false;
2569                                         break;
2570                                 }
2571                         }
2572
2573                         let mut errs = Vec::new();
2574                         let mut claimed_any_htlcs = false;
2575                         for htlc in sources.drain(..) {
2576                                 if !valid_mpp {
2577                                         if channel_state.is_none() { channel_state = Some(self.channel_state.lock().unwrap()); }
2578                                         let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec();
2579                                         htlc_msat_height_data.extend_from_slice(&byte_utils::be32_to_array(
2580                                                         self.best_block.read().unwrap().height()));
2581                                         self.fail_htlc_backwards_internal(channel_state.take().unwrap(),
2582                                                                          HTLCSource::PreviousHopData(htlc.prev_hop), &payment_hash,
2583                                                                          HTLCFailReason::Reason { failure_code: 0x4000|15, data: htlc_msat_height_data });
2584                                 } else {
2585                                         match self.claim_funds_from_hop(channel_state.as_mut().unwrap(), htlc.prev_hop, payment_preimage) {
2586                                                 Err(Some(e)) => {
2587                                                         if let msgs::ErrorAction::IgnoreError = e.1.err.action {
2588                                                                 // We got a temporary failure updating monitor, but will claim the
2589                                                                 // HTLC when the monitor updating is restored (or on chain).
2590                                                                 log_error!(self.logger, "Temporary failure claiming HTLC, treating as success: {}", e.1.err.err);
2591                                                                 claimed_any_htlcs = true;
2592                                                         } else { errs.push(e); }
2593                                                 },
2594                                                 Err(None) => unreachable!("We already checked for channel existence, we can't fail here!"),
2595                                                 Ok(()) => claimed_any_htlcs = true,
2596                                         }
2597                                 }
2598                         }
2599
2600                         // Now that we've done the entire above loop in one lock, we can handle any errors
2601                         // which were generated.
2602                         channel_state.take();
2603
2604                         for (counterparty_node_id, err) in errs.drain(..) {
2605                                 let res: Result<(), _> = Err(err);
2606                                 let _ = handle_error!(self, res, counterparty_node_id);
2607                         }
2608
2609                         claimed_any_htlcs
2610                 } else { false }
2611         }
2612
2613         fn claim_funds_from_hop(&self, channel_state_lock: &mut MutexGuard<ChannelHolder<Signer>>, prev_hop: HTLCPreviousHopData, payment_preimage: PaymentPreimage) -> Result<(), Option<(PublicKey, MsgHandleErrInternal)>> {
2614                 //TODO: Delay the claimed_funds relaying just like we do outbound relay!
2615                 let channel_state = &mut **channel_state_lock;
2616                 let chan_id = match channel_state.short_to_id.get(&prev_hop.short_channel_id) {
2617                         Some(chan_id) => chan_id.clone(),
2618                         None => {
2619                                 return Err(None)
2620                         }
2621                 };
2622
2623                 if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(chan_id) {
2624                         let was_frozen_for_monitor = chan.get().is_awaiting_monitor_update();
2625                         match chan.get_mut().get_update_fulfill_htlc_and_commit(prev_hop.htlc_id, payment_preimage, &self.logger) {
2626                                 Ok((msgs, monitor_option)) => {
2627                                         if let Some(monitor_update) = monitor_option {
2628                                                 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
2629                                                         if was_frozen_for_monitor {
2630                                                                 assert!(msgs.is_none());
2631                                                         } else {
2632                                                                 return Err(Some((chan.get().get_counterparty_node_id(), handle_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, msgs.is_some()).unwrap_err())));
2633                                                         }
2634                                                 }
2635                                         }
2636                                         if let Some((msg, commitment_signed)) = msgs {
2637                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
2638                                                         node_id: chan.get().get_counterparty_node_id(),
2639                                                         updates: msgs::CommitmentUpdate {
2640                                                                 update_add_htlcs: Vec::new(),
2641                                                                 update_fulfill_htlcs: vec![msg],
2642                                                                 update_fail_htlcs: Vec::new(),
2643                                                                 update_fail_malformed_htlcs: Vec::new(),
2644                                                                 update_fee: None,
2645                                                                 commitment_signed,
2646                                                         }
2647                                                 });
2648                                         }
2649                                         return Ok(())
2650                                 },
2651                                 Err(e) => {
2652                                         // TODO: Do something with e?
2653                                         // This should only occur if we are claiming an HTLC at the same time as the
2654                                         // HTLC is being failed (eg because a block is being connected and this caused
2655                                         // an HTLC to time out). This should, of course, only occur if the user is the
2656                                         // one doing the claiming (as it being a part of a peer claim would imply we're
2657                                         // about to lose funds) and only if the lock in claim_funds was dropped as a
2658                                         // previous HTLC was failed (thus not for an MPP payment).
2659                                         debug_assert!(false, "This shouldn't be reachable except in absurdly rare cases between monitor updates and HTLC timeouts: {:?}", e);
2660                                         return Err(None)
2661                                 },
2662                         }
2663                 } else { unreachable!(); }
2664         }
2665
2666         fn claim_funds_internal(&self, mut channel_state_lock: MutexGuard<ChannelHolder<Signer>>, source: HTLCSource, payment_preimage: PaymentPreimage) {
2667                 match source {
2668                         HTLCSource::OutboundRoute { session_priv, .. } => {
2669                                 mem::drop(channel_state_lock);
2670                                 if {
2671                                         let mut session_priv_bytes = [0; 32];
2672                                         session_priv_bytes.copy_from_slice(&session_priv[..]);
2673                                         self.pending_outbound_payments.lock().unwrap().remove(&session_priv_bytes)
2674                                 } {
2675                                         let mut pending_events = self.pending_events.lock().unwrap();
2676                                         pending_events.push(events::Event::PaymentSent {
2677                                                 payment_preimage
2678                                         });
2679                                 } else {
2680                                         log_trace!(self.logger, "Received duplicative fulfill for HTLC with payment_preimage {}", log_bytes!(payment_preimage.0));
2681                                 }
2682                         },
2683                         HTLCSource::PreviousHopData(hop_data) => {
2684                                 let prev_outpoint = hop_data.outpoint;
2685                                 if let Err((counterparty_node_id, err)) = match self.claim_funds_from_hop(&mut channel_state_lock, hop_data, payment_preimage) {
2686                                         Ok(()) => Ok(()),
2687                                         Err(None) => {
2688                                                 let preimage_update = ChannelMonitorUpdate {
2689                                                         update_id: CLOSED_CHANNEL_UPDATE_ID,
2690                                                         updates: vec![ChannelMonitorUpdateStep::PaymentPreimage {
2691                                                                 payment_preimage: payment_preimage.clone(),
2692                                                         }],
2693                                                 };
2694                                                 // We update the ChannelMonitor on the backward link, after
2695                                                 // receiving an offchain preimage event from the forward link (the
2696                                                 // event being update_fulfill_htlc).
2697                                                 if let Err(e) = self.chain_monitor.update_channel(prev_outpoint, preimage_update) {
2698                                                         log_error!(self.logger, "Critical error: failed to update channel monitor with preimage {:?}: {:?}",
2699                                                                    payment_preimage, e);
2700                                                 }
2701                                                 Ok(())
2702                                         },
2703                                         Err(Some(res)) => Err(res),
2704                                 } {
2705                                         mem::drop(channel_state_lock);
2706                                         let res: Result<(), _> = Err(err);
2707                                         let _ = handle_error!(self, res, counterparty_node_id);
2708                                 }
2709                         },
2710                 }
2711         }
2712
2713         /// Gets the node_id held by this ChannelManager
2714         pub fn get_our_node_id(&self) -> PublicKey {
2715                 self.our_network_pubkey.clone()
2716         }
2717
2718         /// Restores a single, given channel to normal operation after a
2719         /// ChannelMonitorUpdateErr::TemporaryFailure was returned from a channel monitor update
2720         /// operation.
2721         ///
2722         /// All ChannelMonitor updates up to and including highest_applied_update_id must have been
2723         /// fully committed in every copy of the given channels' ChannelMonitors.
2724         ///
2725         /// Note that there is no effect to calling with a highest_applied_update_id other than the
2726         /// current latest ChannelMonitorUpdate and one call to this function after multiple
2727         /// ChannelMonitorUpdateErr::TemporaryFailures is fine. The highest_applied_update_id field
2728         /// exists largely only to prevent races between this and concurrent update_monitor calls.
2729         ///
2730         /// Thus, the anticipated use is, at a high level:
2731         ///  1) You register a chain::Watch with this ChannelManager,
2732         ///  2) it stores each update to disk, and begins updating any remote (eg watchtower) copies of
2733         ///     said ChannelMonitors as it can, returning ChannelMonitorUpdateErr::TemporaryFailures
2734         ///     any time it cannot do so instantly,
2735         ///  3) update(s) are applied to each remote copy of a ChannelMonitor,
2736         ///  4) once all remote copies are updated, you call this function with the update_id that
2737         ///     completed, and once it is the latest the Channel will be re-enabled.
2738         pub fn channel_monitor_updated(&self, funding_txo: &OutPoint, highest_applied_update_id: u64) {
2739                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2740
2741                 let (mut pending_failures, chan_restoration_res) = {
2742                         let mut channel_lock = self.channel_state.lock().unwrap();
2743                         let channel_state = &mut *channel_lock;
2744                         let mut channel = match channel_state.by_id.entry(funding_txo.to_channel_id()) {
2745                                 hash_map::Entry::Occupied(chan) => chan,
2746                                 hash_map::Entry::Vacant(_) => return,
2747                         };
2748                         if !channel.get().is_awaiting_monitor_update() || channel.get().get_latest_monitor_update_id() != highest_applied_update_id {
2749                                 return;
2750                         }
2751
2752                         let (raa, commitment_update, order, pending_forwards, pending_failures, funding_broadcastable, funding_locked) = channel.get_mut().monitor_updating_restored(&self.logger);
2753                         (pending_failures, handle_chan_restoration_locked!(self, channel_lock, channel_state, channel, raa, commitment_update, order, None, pending_forwards, funding_broadcastable, funding_locked))
2754                 };
2755                 post_handle_chan_restoration!(self, chan_restoration_res);
2756                 for failure in pending_failures.drain(..) {
2757                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), failure.0, &failure.1, failure.2);
2758                 }
2759         }
2760
2761         fn internal_open_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::OpenChannel) -> Result<(), MsgHandleErrInternal> {
2762                 if msg.chain_hash != self.genesis_hash {
2763                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Unknown genesis block hash".to_owned(), msg.temporary_channel_id.clone()));
2764                 }
2765
2766                 let channel = Channel::new_from_req(&self.fee_estimator, &self.keys_manager, counterparty_node_id.clone(), their_features, msg, 0, &self.default_configuration)
2767                         .map_err(|e| MsgHandleErrInternal::from_chan_no_close(e, msg.temporary_channel_id))?;
2768                 let mut channel_state_lock = self.channel_state.lock().unwrap();
2769                 let channel_state = &mut *channel_state_lock;
2770                 match channel_state.by_id.entry(channel.channel_id()) {
2771                         hash_map::Entry::Occupied(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("temporary_channel_id collision!".to_owned(), msg.temporary_channel_id.clone())),
2772                         hash_map::Entry::Vacant(entry) => {
2773                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
2774                                         node_id: counterparty_node_id.clone(),
2775                                         msg: channel.get_accept_channel(),
2776                                 });
2777                                 entry.insert(channel);
2778                         }
2779                 }
2780                 Ok(())
2781         }
2782
2783         fn internal_accept_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::AcceptChannel) -> Result<(), MsgHandleErrInternal> {
2784                 let (value, output_script, user_id) = {
2785                         let mut channel_lock = self.channel_state.lock().unwrap();
2786                         let channel_state = &mut *channel_lock;
2787                         match channel_state.by_id.entry(msg.temporary_channel_id) {
2788                                 hash_map::Entry::Occupied(mut chan) => {
2789                                         if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2790                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.temporary_channel_id));
2791                                         }
2792                                         try_chan_entry!(self, chan.get_mut().accept_channel(&msg, &self.default_configuration, their_features), channel_state, chan);
2793                                         (chan.get().get_value_satoshis(), chan.get().get_funding_redeemscript().to_v0_p2wsh(), chan.get().get_user_id())
2794                                 },
2795                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.temporary_channel_id))
2796                         }
2797                 };
2798                 let mut pending_events = self.pending_events.lock().unwrap();
2799                 pending_events.push(events::Event::FundingGenerationReady {
2800                         temporary_channel_id: msg.temporary_channel_id,
2801                         channel_value_satoshis: value,
2802                         output_script,
2803                         user_channel_id: user_id,
2804                 });
2805                 Ok(())
2806         }
2807
2808         fn internal_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) -> Result<(), MsgHandleErrInternal> {
2809                 let ((funding_msg, monitor), mut chan) = {
2810                         let best_block = *self.best_block.read().unwrap();
2811                         let mut channel_lock = self.channel_state.lock().unwrap();
2812                         let channel_state = &mut *channel_lock;
2813                         match channel_state.by_id.entry(msg.temporary_channel_id.clone()) {
2814                                 hash_map::Entry::Occupied(mut chan) => {
2815                                         if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2816                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.temporary_channel_id));
2817                                         }
2818                                         (try_chan_entry!(self, chan.get_mut().funding_created(msg, best_block, &self.logger), channel_state, chan), chan.remove())
2819                                 },
2820                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.temporary_channel_id))
2821                         }
2822                 };
2823                 // Because we have exclusive ownership of the channel here we can release the channel_state
2824                 // lock before watch_channel
2825                 if let Err(e) = self.chain_monitor.watch_channel(monitor.get_funding_txo().0, monitor) {
2826                         match e {
2827                                 ChannelMonitorUpdateErr::PermanentFailure => {
2828                                         // Note that we reply with the new channel_id in error messages if we gave up on the
2829                                         // channel, not the temporary_channel_id. This is compatible with ourselves, but the
2830                                         // spec is somewhat ambiguous here. Not a huge deal since we'll send error messages for
2831                                         // any messages referencing a previously-closed channel anyway.
2832                                         // We do not do a force-close here as that would generate a monitor update for
2833                                         // a monitor that we didn't manage to store (and that we don't care about - we
2834                                         // don't respond with the funding_signed so the channel can never go on chain).
2835                                         let (_monitor_update, failed_htlcs) = chan.force_shutdown(true);
2836                                         assert!(failed_htlcs.is_empty());
2837                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("ChannelMonitor storage failure".to_owned(), funding_msg.channel_id));
2838                                 },
2839                                 ChannelMonitorUpdateErr::TemporaryFailure => {
2840                                         // There's no problem signing a counterparty's funding transaction if our monitor
2841                                         // hasn't persisted to disk yet - we can't lose money on a transaction that we haven't
2842                                         // accepted payment from yet. We do, however, need to wait to send our funding_locked
2843                                         // until we have persisted our monitor.
2844                                         chan.monitor_update_failed(false, false, Vec::new(), Vec::new());
2845                                 },
2846                         }
2847                 }
2848                 let mut channel_state_lock = self.channel_state.lock().unwrap();
2849                 let channel_state = &mut *channel_state_lock;
2850                 match channel_state.by_id.entry(funding_msg.channel_id) {
2851                         hash_map::Entry::Occupied(_) => {
2852                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Already had channel with the new channel_id".to_owned(), funding_msg.channel_id))
2853                         },
2854                         hash_map::Entry::Vacant(e) => {
2855                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingSigned {
2856                                         node_id: counterparty_node_id.clone(),
2857                                         msg: funding_msg,
2858                                 });
2859                                 e.insert(chan);
2860                         }
2861                 }
2862                 Ok(())
2863         }
2864
2865         fn internal_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) -> Result<(), MsgHandleErrInternal> {
2866                 let funding_tx = {
2867                         let best_block = *self.best_block.read().unwrap();
2868                         let mut channel_lock = self.channel_state.lock().unwrap();
2869                         let channel_state = &mut *channel_lock;
2870                         match channel_state.by_id.entry(msg.channel_id) {
2871                                 hash_map::Entry::Occupied(mut chan) => {
2872                                         if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2873                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2874                                         }
2875                                         let (monitor, funding_tx) = match chan.get_mut().funding_signed(&msg, best_block, &self.logger) {
2876                                                 Ok(update) => update,
2877                                                 Err(e) => try_chan_entry!(self, Err(e), channel_state, chan),
2878                                         };
2879                                         if let Err(e) = self.chain_monitor.watch_channel(chan.get().get_funding_txo().unwrap(), monitor) {
2880                                                 return_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::RevokeAndACKFirst, false, false);
2881                                         }
2882                                         funding_tx
2883                                 },
2884                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2885                         }
2886                 };
2887                 log_info!(self.logger, "Broadcasting funding transaction with txid {}", funding_tx.txid());
2888                 self.tx_broadcaster.broadcast_transaction(&funding_tx);
2889                 Ok(())
2890         }
2891
2892         fn internal_funding_locked(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingLocked) -> Result<(), MsgHandleErrInternal> {
2893                 let mut channel_state_lock = self.channel_state.lock().unwrap();
2894                 let channel_state = &mut *channel_state_lock;
2895                 match channel_state.by_id.entry(msg.channel_id) {
2896                         hash_map::Entry::Occupied(mut chan) => {
2897                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2898                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2899                                 }
2900                                 try_chan_entry!(self, chan.get_mut().funding_locked(&msg), channel_state, chan);
2901                                 if let Some(announcement_sigs) = self.get_announcement_sigs(chan.get()) {
2902                                         log_trace!(self.logger, "Sending announcement_signatures for {} in response to funding_locked", log_bytes!(chan.get().channel_id()));
2903                                         // If we see locking block before receiving remote funding_locked, we broadcast our
2904                                         // announcement_sigs at remote funding_locked reception. If we receive remote
2905                                         // funding_locked before seeing locking block, we broadcast our announcement_sigs at locking
2906                                         // block connection. We should guanrantee to broadcast announcement_sigs to our peer whatever
2907                                         // the order of the events but our peer may not receive it due to disconnection. The specs
2908                                         // lacking an acknowledgement for announcement_sigs we may have to re-send them at peer
2909                                         // connection in the future if simultaneous misses by both peers due to network/hardware
2910                                         // failures is an issue. Note, to achieve its goal, only one of the announcement_sigs needs
2911                                         // to be received, from then sigs are going to be flood to the whole network.
2912                                         channel_state.pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
2913                                                 node_id: counterparty_node_id.clone(),
2914                                                 msg: announcement_sigs,
2915                                         });
2916                                 }
2917                                 Ok(())
2918                         },
2919                         hash_map::Entry::Vacant(_) => Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2920                 }
2921         }
2922
2923         fn internal_shutdown(&self, counterparty_node_id: &PublicKey, their_features: &InitFeatures, msg: &msgs::Shutdown) -> Result<(), MsgHandleErrInternal> {
2924                 let (mut dropped_htlcs, chan_option) = {
2925                         let mut channel_state_lock = self.channel_state.lock().unwrap();
2926                         let channel_state = &mut *channel_state_lock;
2927
2928                         match channel_state.by_id.entry(msg.channel_id.clone()) {
2929                                 hash_map::Entry::Occupied(mut chan_entry) => {
2930                                         if chan_entry.get().get_counterparty_node_id() != *counterparty_node_id {
2931                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2932                                         }
2933                                         let (shutdown, closing_signed, dropped_htlcs) = try_chan_entry!(self, chan_entry.get_mut().shutdown(&self.fee_estimator, &their_features, &msg), channel_state, chan_entry);
2934                                         if let Some(msg) = shutdown {
2935                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
2936                                                         node_id: counterparty_node_id.clone(),
2937                                                         msg,
2938                                                 });
2939                                         }
2940                                         if let Some(msg) = closing_signed {
2941                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
2942                                                         node_id: counterparty_node_id.clone(),
2943                                                         msg,
2944                                                 });
2945                                         }
2946                                         if chan_entry.get().is_shutdown() {
2947                                                 if let Some(short_id) = chan_entry.get().get_short_channel_id() {
2948                                                         channel_state.short_to_id.remove(&short_id);
2949                                                 }
2950                                                 (dropped_htlcs, Some(chan_entry.remove_entry().1))
2951                                         } else { (dropped_htlcs, None) }
2952                                 },
2953                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2954                         }
2955                 };
2956                 for htlc_source in dropped_htlcs.drain(..) {
2957                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
2958                 }
2959                 if let Some(chan) = chan_option {
2960                         if let Ok(update) = self.get_channel_update(&chan) {
2961                                 let mut channel_state = self.channel_state.lock().unwrap();
2962                                 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2963                                         msg: update
2964                                 });
2965                         }
2966                 }
2967                 Ok(())
2968         }
2969
2970         fn internal_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) -> Result<(), MsgHandleErrInternal> {
2971                 let (tx, chan_option) = {
2972                         let mut channel_state_lock = self.channel_state.lock().unwrap();
2973                         let channel_state = &mut *channel_state_lock;
2974                         match channel_state.by_id.entry(msg.channel_id.clone()) {
2975                                 hash_map::Entry::Occupied(mut chan_entry) => {
2976                                         if chan_entry.get().get_counterparty_node_id() != *counterparty_node_id {
2977                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2978                                         }
2979                                         let (closing_signed, tx) = try_chan_entry!(self, chan_entry.get_mut().closing_signed(&self.fee_estimator, &msg), channel_state, chan_entry);
2980                                         if let Some(msg) = closing_signed {
2981                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
2982                                                         node_id: counterparty_node_id.clone(),
2983                                                         msg,
2984                                                 });
2985                                         }
2986                                         if tx.is_some() {
2987                                                 // We're done with this channel, we've got a signed closing transaction and
2988                                                 // will send the closing_signed back to the remote peer upon return. This
2989                                                 // also implies there are no pending HTLCs left on the channel, so we can
2990                                                 // fully delete it from tracking (the channel monitor is still around to
2991                                                 // watch for old state broadcasts)!
2992                                                 if let Some(short_id) = chan_entry.get().get_short_channel_id() {
2993                                                         channel_state.short_to_id.remove(&short_id);
2994                                                 }
2995                                                 (tx, Some(chan_entry.remove_entry().1))
2996                                         } else { (tx, None) }
2997                                 },
2998                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2999                         }
3000                 };
3001                 if let Some(broadcast_tx) = tx {
3002                         log_info!(self.logger, "Broadcasting {}", log_tx!(broadcast_tx));
3003                         self.tx_broadcaster.broadcast_transaction(&broadcast_tx);
3004                 }
3005                 if let Some(chan) = chan_option {
3006                         if let Ok(update) = self.get_channel_update(&chan) {
3007                                 let mut channel_state = self.channel_state.lock().unwrap();
3008                                 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
3009                                         msg: update
3010                                 });
3011                         }
3012                 }
3013                 Ok(())
3014         }
3015
3016         fn internal_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) -> Result<(), MsgHandleErrInternal> {
3017                 //TODO: BOLT 4 points out a specific attack where a peer may re-send an onion packet and
3018                 //determine the state of the payment based on our response/if we forward anything/the time
3019                 //we take to respond. We should take care to avoid allowing such an attack.
3020                 //
3021                 //TODO: There exists a further attack where a node may garble the onion data, forward it to
3022                 //us repeatedly garbled in different ways, and compare our error messages, which are
3023                 //encrypted with the same key. It's not immediately obvious how to usefully exploit that,
3024                 //but we should prevent it anyway.
3025
3026                 let (pending_forward_info, mut channel_state_lock) = self.decode_update_add_htlc_onion(msg);
3027                 let channel_state = &mut *channel_state_lock;
3028
3029                 match channel_state.by_id.entry(msg.channel_id) {
3030                         hash_map::Entry::Occupied(mut chan) => {
3031                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3032                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3033                                 }
3034
3035                                 let create_pending_htlc_status = |chan: &Channel<Signer>, pending_forward_info: PendingHTLCStatus, error_code: u16| {
3036                                         // Ensure error_code has the UPDATE flag set, since by default we send a
3037                                         // channel update along as part of failing the HTLC.
3038                                         assert!((error_code & 0x1000) != 0);
3039                                         // If the update_add is completely bogus, the call will Err and we will close,
3040                                         // but if we've sent a shutdown and they haven't acknowledged it yet, we just
3041                                         // want to reject the new HTLC and fail it backwards instead of forwarding.
3042                                         match pending_forward_info {
3043                                                 PendingHTLCStatus::Forward(PendingHTLCInfo { ref incoming_shared_secret, .. }) => {
3044                                                         let reason = if let Ok(upd) = self.get_channel_update(chan) {
3045                                                                 onion_utils::build_first_hop_failure_packet(incoming_shared_secret, error_code, &{
3046                                                                         let mut res = Vec::with_capacity(8 + 128);
3047                                                                         // TODO: underspecified, follow https://github.com/lightningnetwork/lightning-rfc/issues/791
3048                                                                         res.extend_from_slice(&byte_utils::be16_to_array(0));
3049                                                                         res.extend_from_slice(&upd.encode_with_len()[..]);
3050                                                                         res
3051                                                                 }[..])
3052                                                         } else {
3053                                                                 // The only case where we'd be unable to
3054                                                                 // successfully get a channel update is if the
3055                                                                 // channel isn't in the fully-funded state yet,
3056                                                                 // implying our counterparty is trying to route
3057                                                                 // payments over the channel back to themselves
3058                                                                 // (cause no one else should know the short_id
3059                                                                 // is a lightning channel yet). We should have
3060                                                                 // no problem just calling this
3061                                                                 // unknown_next_peer (0x4000|10).
3062                                                                 onion_utils::build_first_hop_failure_packet(incoming_shared_secret, 0x4000|10, &[])
3063                                                         };
3064                                                         let msg = msgs::UpdateFailHTLC {
3065                                                                 channel_id: msg.channel_id,
3066                                                                 htlc_id: msg.htlc_id,
3067                                                                 reason
3068                                                         };
3069                                                         PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msg))
3070                                                 },
3071                                                 _ => pending_forward_info
3072                                         }
3073                                 };
3074                                 try_chan_entry!(self, chan.get_mut().update_add_htlc(&msg, pending_forward_info, create_pending_htlc_status, &self.logger), channel_state, chan);
3075                         },
3076                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3077                 }
3078                 Ok(())
3079         }
3080
3081         fn internal_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) -> Result<(), MsgHandleErrInternal> {
3082                 let mut channel_lock = self.channel_state.lock().unwrap();
3083                 let htlc_source = {
3084                         let channel_state = &mut *channel_lock;
3085                         match channel_state.by_id.entry(msg.channel_id) {
3086                                 hash_map::Entry::Occupied(mut chan) => {
3087                                         if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3088                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3089                                         }
3090                                         try_chan_entry!(self, chan.get_mut().update_fulfill_htlc(&msg), channel_state, chan)
3091                                 },
3092                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3093                         }
3094                 };
3095                 self.claim_funds_internal(channel_lock, htlc_source, msg.payment_preimage.clone());
3096                 Ok(())
3097         }
3098
3099         fn internal_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) -> Result<(), MsgHandleErrInternal> {
3100                 let mut channel_lock = self.channel_state.lock().unwrap();
3101                 let channel_state = &mut *channel_lock;
3102                 match channel_state.by_id.entry(msg.channel_id) {
3103                         hash_map::Entry::Occupied(mut chan) => {
3104                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3105                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3106                                 }
3107                                 try_chan_entry!(self, chan.get_mut().update_fail_htlc(&msg, HTLCFailReason::LightningError { err: msg.reason.clone() }), channel_state, chan);
3108                         },
3109                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3110                 }
3111                 Ok(())
3112         }
3113
3114         fn internal_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) -> Result<(), MsgHandleErrInternal> {
3115                 let mut channel_lock = self.channel_state.lock().unwrap();
3116                 let channel_state = &mut *channel_lock;
3117                 match channel_state.by_id.entry(msg.channel_id) {
3118                         hash_map::Entry::Occupied(mut chan) => {
3119                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3120                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3121                                 }
3122                                 if (msg.failure_code & 0x8000) == 0 {
3123                                         let chan_err: ChannelError = ChannelError::Close("Got update_fail_malformed_htlc with BADONION not set".to_owned());
3124                                         try_chan_entry!(self, Err(chan_err), channel_state, chan);
3125                                 }
3126                                 try_chan_entry!(self, chan.get_mut().update_fail_malformed_htlc(&msg, HTLCFailReason::Reason { failure_code: msg.failure_code, data: Vec::new() }), channel_state, chan);
3127                                 Ok(())
3128                         },
3129                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3130                 }
3131         }
3132
3133         fn internal_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) -> Result<(), MsgHandleErrInternal> {
3134                 let mut channel_state_lock = self.channel_state.lock().unwrap();
3135                 let channel_state = &mut *channel_state_lock;
3136                 match channel_state.by_id.entry(msg.channel_id) {
3137                         hash_map::Entry::Occupied(mut chan) => {
3138                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3139                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3140                                 }
3141                                 let (revoke_and_ack, commitment_signed, closing_signed, monitor_update) =
3142                                         match chan.get_mut().commitment_signed(&msg, &self.fee_estimator, &self.logger) {
3143                                                 Err((None, e)) => try_chan_entry!(self, Err(e), channel_state, chan),
3144                                                 Err((Some(update), e)) => {
3145                                                         assert!(chan.get().is_awaiting_monitor_update());
3146                                                         let _ = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), update);
3147                                                         try_chan_entry!(self, Err(e), channel_state, chan);
3148                                                         unreachable!();
3149                                                 },
3150                                                 Ok(res) => res
3151                                         };
3152                                 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
3153                                         return_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::RevokeAndACKFirst, true, commitment_signed.is_some());
3154                                         //TODO: Rebroadcast closing_signed if present on monitor update restoration
3155                                 }
3156                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
3157                                         node_id: counterparty_node_id.clone(),
3158                                         msg: revoke_and_ack,
3159                                 });
3160                                 if let Some(msg) = commitment_signed {
3161                                         channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
3162                                                 node_id: counterparty_node_id.clone(),
3163                                                 updates: msgs::CommitmentUpdate {
3164                                                         update_add_htlcs: Vec::new(),
3165                                                         update_fulfill_htlcs: Vec::new(),
3166                                                         update_fail_htlcs: Vec::new(),
3167                                                         update_fail_malformed_htlcs: Vec::new(),
3168                                                         update_fee: None,
3169                                                         commitment_signed: msg,
3170                                                 },
3171                                         });
3172                                 }
3173                                 if let Some(msg) = closing_signed {
3174                                         channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
3175                                                 node_id: counterparty_node_id.clone(),
3176                                                 msg,
3177                                         });
3178                                 }
3179                                 Ok(())
3180                         },
3181                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3182                 }
3183         }
3184
3185         #[inline]
3186         fn forward_htlcs(&self, per_source_pending_forwards: &mut [(u64, OutPoint, Vec<(PendingHTLCInfo, u64)>)]) {
3187                 for &mut (prev_short_channel_id, prev_funding_outpoint, ref mut pending_forwards) in per_source_pending_forwards {
3188                         let mut forward_event = None;
3189                         if !pending_forwards.is_empty() {
3190                                 let mut channel_state = self.channel_state.lock().unwrap();
3191                                 if channel_state.forward_htlcs.is_empty() {
3192                                         forward_event = Some(Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS))
3193                                 }
3194                                 for (forward_info, prev_htlc_id) in pending_forwards.drain(..) {
3195                                         match channel_state.forward_htlcs.entry(match forward_info.routing {
3196                                                         PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
3197                                                         PendingHTLCRouting::Receive { .. } => 0,
3198                                         }) {
3199                                                 hash_map::Entry::Occupied(mut entry) => {
3200                                                         entry.get_mut().push(HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_funding_outpoint,
3201                                                                                                         prev_htlc_id, forward_info });
3202                                                 },
3203                                                 hash_map::Entry::Vacant(entry) => {
3204                                                         entry.insert(vec!(HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_funding_outpoint,
3205                                                                                                      prev_htlc_id, forward_info }));
3206                                                 }
3207                                         }
3208                                 }
3209                         }
3210                         match forward_event {
3211                                 Some(time) => {
3212                                         let mut pending_events = self.pending_events.lock().unwrap();
3213                                         pending_events.push(events::Event::PendingHTLCsForwardable {
3214                                                 time_forwardable: time
3215                                         });
3216                                 }
3217                                 None => {},
3218                         }
3219                 }
3220         }
3221
3222         fn internal_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) -> Result<(), MsgHandleErrInternal> {
3223                 let mut htlcs_to_fail = Vec::new();
3224                 let res = loop {
3225                         let mut channel_state_lock = self.channel_state.lock().unwrap();
3226                         let channel_state = &mut *channel_state_lock;
3227                         match channel_state.by_id.entry(msg.channel_id) {
3228                                 hash_map::Entry::Occupied(mut chan) => {
3229                                         if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3230                                                 break Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3231                                         }
3232                                         let was_frozen_for_monitor = chan.get().is_awaiting_monitor_update();
3233                                         let (commitment_update, pending_forwards, pending_failures, closing_signed, monitor_update, htlcs_to_fail_in) =
3234                                                 break_chan_entry!(self, chan.get_mut().revoke_and_ack(&msg, &self.fee_estimator, &self.logger), channel_state, chan);
3235                                         htlcs_to_fail = htlcs_to_fail_in;
3236                                         if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
3237                                                 if was_frozen_for_monitor {
3238                                                         assert!(commitment_update.is_none() && closing_signed.is_none() && pending_forwards.is_empty() && pending_failures.is_empty());
3239                                                         break Err(MsgHandleErrInternal::ignore_no_close("Previous monitor update failure prevented responses to RAA".to_owned()));
3240                                                 } else {
3241                                                         if let Err(e) = handle_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, commitment_update.is_some(), pending_forwards, pending_failures) {
3242                                                                 break Err(e);
3243                                                         } else { unreachable!(); }
3244                                                 }
3245                                         }
3246                                         if let Some(updates) = commitment_update {
3247                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
3248                                                         node_id: counterparty_node_id.clone(),
3249                                                         updates,
3250                                                 });
3251                                         }
3252                                         if let Some(msg) = closing_signed {
3253                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
3254                                                         node_id: counterparty_node_id.clone(),
3255                                                         msg,
3256                                                 });
3257                                         }
3258                                         break Ok((pending_forwards, pending_failures, chan.get().get_short_channel_id().expect("RAA should only work on a short-id-available channel"), chan.get().get_funding_txo().unwrap()))
3259                                 },
3260                                 hash_map::Entry::Vacant(_) => break Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3261                         }
3262                 };
3263                 self.fail_holding_cell_htlcs(htlcs_to_fail, msg.channel_id);
3264                 match res {
3265                         Ok((pending_forwards, mut pending_failures, short_channel_id, channel_outpoint)) => {
3266                                 for failure in pending_failures.drain(..) {
3267                                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), failure.0, &failure.1, failure.2);
3268                                 }
3269                                 self.forward_htlcs(&mut [(short_channel_id, channel_outpoint, pending_forwards)]);
3270                                 Ok(())
3271                         },
3272                         Err(e) => Err(e)
3273                 }
3274         }
3275
3276         fn internal_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) -> Result<(), MsgHandleErrInternal> {
3277                 let mut channel_lock = self.channel_state.lock().unwrap();
3278                 let channel_state = &mut *channel_lock;
3279                 match channel_state.by_id.entry(msg.channel_id) {
3280                         hash_map::Entry::Occupied(mut chan) => {
3281                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3282                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3283                                 }
3284                                 try_chan_entry!(self, chan.get_mut().update_fee(&self.fee_estimator, &msg), channel_state, chan);
3285                         },
3286                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3287                 }
3288                 Ok(())
3289         }
3290
3291         fn internal_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) -> Result<(), MsgHandleErrInternal> {
3292                 let mut channel_state_lock = self.channel_state.lock().unwrap();
3293                 let channel_state = &mut *channel_state_lock;
3294
3295                 match channel_state.by_id.entry(msg.channel_id) {
3296                         hash_map::Entry::Occupied(mut chan) => {
3297                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3298                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3299                                 }
3300                                 if !chan.get().is_usable() {
3301                                         return Err(MsgHandleErrInternal::from_no_close(LightningError{err: "Got an announcement_signatures before we were ready for it".to_owned(), action: msgs::ErrorAction::IgnoreError}));
3302                                 }
3303
3304                                 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
3305                                         msg: try_chan_entry!(self, chan.get_mut().announcement_signatures(&self.our_network_key, self.get_our_node_id(), self.genesis_hash.clone(), msg), channel_state, chan),
3306                                         update_msg: self.get_channel_update(chan.get()).unwrap(), // can only fail if we're not in a ready state
3307                                 });
3308                         },
3309                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3310                 }
3311                 Ok(())
3312         }
3313
3314         fn internal_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) -> Result<(), MsgHandleErrInternal> {
3315                 let mut channel_state_lock = self.channel_state.lock().unwrap();
3316                 let channel_state = &mut *channel_state_lock;
3317                 let chan_id = match channel_state.short_to_id.get(&msg.contents.short_channel_id) {
3318                         Some(chan_id) => chan_id.clone(),
3319                         None => {
3320                                 // It's not a local channel
3321                                 return Ok(())
3322                         }
3323                 };
3324                 match channel_state.by_id.entry(chan_id) {
3325                         hash_map::Entry::Occupied(mut chan) => {
3326                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3327                                         // TODO: see issue #153, need a consistent behavior on obnoxious behavior from random node
3328                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), chan_id));
3329                                 }
3330                                 try_chan_entry!(self, chan.get_mut().channel_update(&msg), channel_state, chan);
3331                         },
3332                         hash_map::Entry::Vacant(_) => unreachable!()
3333                 }
3334                 Ok(())
3335         }
3336
3337         fn internal_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) -> Result<(), MsgHandleErrInternal> {
3338                 let (htlcs_failed_forward, chan_restoration_res) = {
3339                         let mut channel_state_lock = self.channel_state.lock().unwrap();
3340                         let channel_state = &mut *channel_state_lock;
3341
3342                         match channel_state.by_id.entry(msg.channel_id) {
3343                                 hash_map::Entry::Occupied(mut chan) => {
3344                                         if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3345                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3346                                         }
3347                                         // Currently, we expect all holding cell update_adds to be dropped on peer
3348                                         // disconnect, so Channel's reestablish will never hand us any holding cell
3349                                         // freed HTLCs to fail backwards. If in the future we no longer drop pending
3350                                         // add-HTLCs on disconnect, we may be handed HTLCs to fail backwards here.
3351                                         let (funding_locked, revoke_and_ack, commitment_update, monitor_update_opt, order, htlcs_failed_forward, shutdown) =
3352                                                 try_chan_entry!(self, chan.get_mut().channel_reestablish(msg, &self.logger), channel_state, chan);
3353                                         if let Some(msg) = shutdown {
3354                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
3355                                                         node_id: counterparty_node_id.clone(),
3356                                                         msg,
3357                                                 });
3358                                         }
3359                                         (htlcs_failed_forward, handle_chan_restoration_locked!(self, channel_state_lock, channel_state, chan, revoke_and_ack, commitment_update, order, monitor_update_opt, Vec::new(), None, funding_locked))
3360                                 },
3361                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3362                         }
3363                 };
3364                 post_handle_chan_restoration!(self, chan_restoration_res);
3365                 self.fail_holding_cell_htlcs(htlcs_failed_forward, msg.channel_id);
3366                 Ok(())
3367         }
3368
3369         /// Begin Update fee process. Allowed only on an outbound channel.
3370         /// If successful, will generate a UpdateHTLCs event, so you should probably poll
3371         /// PeerManager::process_events afterwards.
3372         /// Note: This API is likely to change!
3373         /// (C-not exported) Cause its doc(hidden) anyway
3374         #[doc(hidden)]
3375         pub fn update_fee(&self, channel_id: [u8;32], feerate_per_kw: u32) -> Result<(), APIError> {
3376                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3377                 let counterparty_node_id;
3378                 let err: Result<(), _> = loop {
3379                         let mut channel_state_lock = self.channel_state.lock().unwrap();
3380                         let channel_state = &mut *channel_state_lock;
3381
3382                         match channel_state.by_id.entry(channel_id) {
3383                                 hash_map::Entry::Vacant(_) => return Err(APIError::APIMisuseError{err: format!("Failed to find corresponding channel for id {}", channel_id.to_hex())}),
3384                                 hash_map::Entry::Occupied(mut chan) => {
3385                                         if !chan.get().is_outbound() {
3386                                                 return Err(APIError::APIMisuseError{err: "update_fee cannot be sent for an inbound channel".to_owned()});
3387                                         }
3388                                         if chan.get().is_awaiting_monitor_update() {
3389                                                 return Err(APIError::MonitorUpdateFailed);
3390                                         }
3391                                         if !chan.get().is_live() {
3392                                                 return Err(APIError::ChannelUnavailable{err: "Channel is either not yet fully established or peer is currently disconnected".to_owned()});
3393                                         }
3394                                         counterparty_node_id = chan.get().get_counterparty_node_id();
3395                                         if let Some((update_fee, commitment_signed, monitor_update)) =
3396                                                         break_chan_entry!(self, chan.get_mut().send_update_fee_and_commit(feerate_per_kw, &self.logger), channel_state, chan)
3397                                         {
3398                                                 if let Err(_e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
3399                                                         unimplemented!();
3400                                                 }
3401                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
3402                                                         node_id: chan.get().get_counterparty_node_id(),
3403                                                         updates: msgs::CommitmentUpdate {
3404                                                                 update_add_htlcs: Vec::new(),
3405                                                                 update_fulfill_htlcs: Vec::new(),
3406                                                                 update_fail_htlcs: Vec::new(),
3407                                                                 update_fail_malformed_htlcs: Vec::new(),
3408                                                                 update_fee: Some(update_fee),
3409                                                                 commitment_signed,
3410                                                         },
3411                                                 });
3412                                         }
3413                                 },
3414                         }
3415                         return Ok(())
3416                 };
3417
3418                 match handle_error!(self, err, counterparty_node_id) {
3419                         Ok(_) => unreachable!(),
3420                         Err(e) => { Err(APIError::APIMisuseError { err: e.err })}
3421                 }
3422         }
3423
3424         /// Process pending events from the `chain::Watch`, returning whether any events were processed.
3425         fn process_pending_monitor_events(&self) -> bool {
3426                 let mut failed_channels = Vec::new();
3427                 let pending_monitor_events = self.chain_monitor.release_pending_monitor_events();
3428                 let has_pending_monitor_events = !pending_monitor_events.is_empty();
3429                 for monitor_event in pending_monitor_events {
3430                         match monitor_event {
3431                                 MonitorEvent::HTLCEvent(htlc_update) => {
3432                                         if let Some(preimage) = htlc_update.payment_preimage {
3433                                                 log_trace!(self.logger, "Claiming HTLC with preimage {} from our monitor", log_bytes!(preimage.0));
3434                                                 self.claim_funds_internal(self.channel_state.lock().unwrap(), htlc_update.source, preimage);
3435                                         } else {
3436                                                 log_trace!(self.logger, "Failing HTLC with hash {} from our monitor", log_bytes!(htlc_update.payment_hash.0));
3437                                                 self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_update.source, &htlc_update.payment_hash, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
3438                                         }
3439                                 },
3440                                 MonitorEvent::CommitmentTxBroadcasted(funding_outpoint) => {
3441                                         let mut channel_lock = self.channel_state.lock().unwrap();
3442                                         let channel_state = &mut *channel_lock;
3443                                         let by_id = &mut channel_state.by_id;
3444                                         let short_to_id = &mut channel_state.short_to_id;
3445                                         let pending_msg_events = &mut channel_state.pending_msg_events;
3446                                         if let Some(mut chan) = by_id.remove(&funding_outpoint.to_channel_id()) {
3447                                                 if let Some(short_id) = chan.get_short_channel_id() {
3448                                                         short_to_id.remove(&short_id);
3449                                                 }
3450                                                 failed_channels.push(chan.force_shutdown(false));
3451                                                 if let Ok(update) = self.get_channel_update(&chan) {
3452                                                         pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
3453                                                                 msg: update
3454                                                         });
3455                                                 }
3456                                                 pending_msg_events.push(events::MessageSendEvent::HandleError {
3457                                                         node_id: chan.get_counterparty_node_id(),
3458                                                         action: msgs::ErrorAction::SendErrorMessage {
3459                                                                 msg: msgs::ErrorMessage { channel_id: chan.channel_id(), data: "Channel force-closed".to_owned() }
3460                                                         },
3461                                                 });
3462                                         }
3463                                 },
3464                         }
3465                 }
3466
3467                 for failure in failed_channels.drain(..) {
3468                         self.finish_force_close_channel(failure);
3469                 }
3470
3471                 has_pending_monitor_events
3472         }
3473
3474         /// Check the holding cell in each channel and free any pending HTLCs in them if possible.
3475         /// Returns whether there were any updates such as if pending HTLCs were freed or a monitor
3476         /// update was applied.
3477         ///
3478         /// This should only apply to HTLCs which were added to the holding cell because we were
3479         /// waiting on a monitor update to finish. In that case, we don't want to free the holding cell
3480         /// directly in `channel_monitor_updated` as it may introduce deadlocks calling back into user
3481         /// code to inform them of a channel monitor update.
3482         fn check_free_holding_cells(&self) -> bool {
3483                 let mut has_monitor_update = false;
3484                 let mut failed_htlcs = Vec::new();
3485                 let mut handle_errors = Vec::new();
3486                 {
3487                         let mut channel_state_lock = self.channel_state.lock().unwrap();
3488                         let channel_state = &mut *channel_state_lock;
3489                         let by_id = &mut channel_state.by_id;
3490                         let short_to_id = &mut channel_state.short_to_id;
3491                         let pending_msg_events = &mut channel_state.pending_msg_events;
3492
3493                         by_id.retain(|channel_id, chan| {
3494                                 match chan.maybe_free_holding_cell_htlcs(&self.logger) {
3495                                         Ok((commitment_opt, holding_cell_failed_htlcs)) => {
3496                                                 if !holding_cell_failed_htlcs.is_empty() {
3497                                                         failed_htlcs.push((holding_cell_failed_htlcs, *channel_id));
3498                                                 }
3499                                                 if let Some((commitment_update, monitor_update)) = commitment_opt {
3500                                                         if let Err(e) = self.chain_monitor.update_channel(chan.get_funding_txo().unwrap(), monitor_update) {
3501                                                                 has_monitor_update = true;
3502                                                                 let (res, close_channel) = handle_monitor_err!(self, e, short_to_id, chan, RAACommitmentOrder::CommitmentFirst, false, true, Vec::new(), Vec::new(), channel_id);
3503                                                                 handle_errors.push((chan.get_counterparty_node_id(), res));
3504                                                                 if close_channel { return false; }
3505                                                         } else {
3506                                                                 pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
3507                                                                         node_id: chan.get_counterparty_node_id(),
3508                                                                         updates: commitment_update,
3509                                                                 });
3510                                                         }
3511                                                 }
3512                                                 true
3513                                         },
3514                                         Err(e) => {
3515                                                 let (close_channel, res) = convert_chan_err!(self, e, short_to_id, chan, channel_id);
3516                                                 handle_errors.push((chan.get_counterparty_node_id(), Err(res)));
3517                                                 !close_channel
3518                                         }
3519                                 }
3520                         });
3521                 }
3522
3523                 let has_update = has_monitor_update || !failed_htlcs.is_empty();
3524                 for (failures, channel_id) in failed_htlcs.drain(..) {
3525                         self.fail_holding_cell_htlcs(failures, channel_id);
3526                 }
3527
3528                 for (counterparty_node_id, err) in handle_errors.drain(..) {
3529                         let _ = handle_error!(self, err, counterparty_node_id);
3530                 }
3531
3532                 has_update
3533         }
3534
3535         /// Handle a list of channel failures during a block_connected or block_disconnected call,
3536         /// pushing the channel monitor update (if any) to the background events queue and removing the
3537         /// Channel object.
3538         fn handle_init_event_channel_failures(&self, mut failed_channels: Vec<ShutdownResult>) {
3539                 for mut failure in failed_channels.drain(..) {
3540                         // Either a commitment transactions has been confirmed on-chain or
3541                         // Channel::block_disconnected detected that the funding transaction has been
3542                         // reorganized out of the main chain.
3543                         // We cannot broadcast our latest local state via monitor update (as
3544                         // Channel::force_shutdown tries to make us do) as we may still be in initialization,
3545                         // so we track the update internally and handle it when the user next calls
3546                         // timer_tick_occurred, guaranteeing we're running normally.
3547                         if let Some((funding_txo, update)) = failure.0.take() {
3548                                 assert_eq!(update.updates.len(), 1);
3549                                 if let ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast } = update.updates[0] {
3550                                         assert!(should_broadcast);
3551                                 } else { unreachable!(); }
3552                                 self.pending_background_events.lock().unwrap().push(BackgroundEvent::ClosingMonitorUpdate((funding_txo, update)));
3553                         }
3554                         self.finish_force_close_channel(failure);
3555                 }
3556         }
3557
3558         fn set_payment_hash_secret_map(&self, payment_hash: PaymentHash, payment_preimage: Option<PaymentPreimage>, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32, user_payment_id: u64) -> Result<PaymentSecret, APIError> {
3559                 assert!(invoice_expiry_delta_secs <= 60*60*24*365); // Sadly bitcoin timestamps are u32s, so panic before 2106
3560
3561                 let payment_secret = PaymentSecret(self.keys_manager.get_secure_random_bytes());
3562
3563                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3564                 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
3565                 match payment_secrets.entry(payment_hash) {
3566                         hash_map::Entry::Vacant(e) => {
3567                                 e.insert(PendingInboundPayment {
3568                                         payment_secret, min_value_msat, user_payment_id, payment_preimage,
3569                                         // We assume that highest_seen_timestamp is pretty close to the current time -
3570                                         // its updated when we receive a new block with the maximum time we've seen in
3571                                         // a header. It should never be more than two hours in the future.
3572                                         // Thus, we add two hours here as a buffer to ensure we absolutely
3573                                         // never fail a payment too early.
3574                                         // Note that we assume that received blocks have reasonably up-to-date
3575                                         // timestamps.
3576                                         expiry_time: self.highest_seen_timestamp.load(Ordering::Acquire) as u64 + invoice_expiry_delta_secs as u64 + 7200,
3577                                 });
3578                         },
3579                         hash_map::Entry::Occupied(_) => return Err(APIError::APIMisuseError { err: "Duplicate payment hash".to_owned() }),
3580                 }
3581                 Ok(payment_secret)
3582         }
3583
3584         /// Gets a payment secret and payment hash for use in an invoice given to a third party wishing
3585         /// to pay us.
3586         ///
3587         /// This differs from [`create_inbound_payment_for_hash`] only in that it generates the
3588         /// [`PaymentHash`] and [`PaymentPreimage`] for you, returning the first and storing the second.
3589         ///
3590         /// The [`PaymentPreimage`] will ultimately be returned to you in the [`PaymentReceived`], which
3591         /// will have the [`PaymentReceived::payment_preimage`] field filled in. That should then be
3592         /// passed directly to [`claim_funds`].
3593         ///
3594         /// See [`create_inbound_payment_for_hash`] for detailed documentation on behavior and requirements.
3595         ///
3596         /// [`claim_funds`]: Self::claim_funds
3597         /// [`PaymentReceived`]: events::Event::PaymentReceived
3598         /// [`PaymentReceived::payment_preimage`]: events::Event::PaymentReceived::payment_preimage
3599         /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
3600         pub fn create_inbound_payment(&self, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32, user_payment_id: u64) -> (PaymentHash, PaymentSecret) {
3601                 let payment_preimage = PaymentPreimage(self.keys_manager.get_secure_random_bytes());
3602                 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
3603
3604                 (payment_hash,
3605                         self.set_payment_hash_secret_map(payment_hash, Some(payment_preimage), min_value_msat, invoice_expiry_delta_secs, user_payment_id)
3606                                 .expect("RNG Generated Duplicate PaymentHash"))
3607         }
3608
3609         /// Gets a [`PaymentSecret`] for a given [`PaymentHash`], for which the payment preimage is
3610         /// stored external to LDK.
3611         ///
3612         /// A [`PaymentReceived`] event will only be generated if the [`PaymentSecret`] matches a
3613         /// payment secret fetched via this method or [`create_inbound_payment`], and which is at least
3614         /// the `min_value_msat` provided here, if one is provided.
3615         ///
3616         /// The [`PaymentHash`] (and corresponding [`PaymentPreimage`]) must be globally unique. This
3617         /// method may return an Err if another payment with the same payment_hash is still pending.
3618         ///
3619         /// `user_payment_id` will be provided back in [`PaymentReceived::user_payment_id`] events to
3620         /// allow tracking of which events correspond with which calls to this and
3621         /// [`create_inbound_payment`]. `user_payment_id` has no meaning inside of LDK, it is simply
3622         /// copied to events and otherwise ignored. It may be used to correlate PaymentReceived events
3623         /// with invoice metadata stored elsewhere.
3624         ///
3625         /// `min_value_msat` should be set if the invoice being generated contains a value. Any payment
3626         /// received for the returned [`PaymentHash`] will be required to be at least `min_value_msat`
3627         /// before a [`PaymentReceived`] event will be generated, ensuring that we do not provide the
3628         /// sender "proof-of-payment" unless they have paid the required amount.
3629         ///
3630         /// `invoice_expiry_delta_secs` describes the number of seconds that the invoice is valid for
3631         /// in excess of the current time. This should roughly match the expiry time set in the invoice.
3632         /// After this many seconds, we will remove the inbound payment, resulting in any attempts to
3633         /// pay the invoice failing. The BOLT spec suggests 3,600 secs as a default validity time for
3634         /// invoices when no timeout is set.
3635         ///
3636         /// Note that we use block header time to time-out pending inbound payments (with some margin
3637         /// to compensate for the inaccuracy of block header timestamps). Thus, in practice we will
3638         /// accept a payment and generate a [`PaymentReceived`] event for some time after the expiry.
3639         /// If you need exact expiry semantics, you should enforce them upon receipt of
3640         /// [`PaymentReceived`].
3641         ///
3642         /// Pending inbound payments are stored in memory and in serialized versions of this
3643         /// [`ChannelManager`]. If potentially unbounded numbers of inbound payments may exist and
3644         /// space is limited, you may wish to rate-limit inbound payment creation.
3645         ///
3646         /// May panic if `invoice_expiry_delta_secs` is greater than one year.
3647         ///
3648         /// Note that invoices generated for inbound payments should have their `min_final_cltv_expiry`
3649         /// set to at least [`MIN_FINAL_CLTV_EXPIRY`].
3650         ///
3651         /// [`create_inbound_payment`]: Self::create_inbound_payment
3652         /// [`PaymentReceived`]: events::Event::PaymentReceived
3653         /// [`PaymentReceived::user_payment_id`]: events::Event::PaymentReceived::user_payment_id
3654         pub fn create_inbound_payment_for_hash(&self, payment_hash: PaymentHash, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32, user_payment_id: u64) -> Result<PaymentSecret, APIError> {
3655                 self.set_payment_hash_secret_map(payment_hash, None, min_value_msat, invoice_expiry_delta_secs, user_payment_id)
3656         }
3657
3658         #[cfg(any(test, feature = "fuzztarget", feature = "_test_utils"))]
3659         pub fn get_and_clear_pending_events(&self) -> Vec<events::Event> {
3660                 let events = std::cell::RefCell::new(Vec::new());
3661                 let event_handler = |event| events.borrow_mut().push(event);
3662                 self.process_pending_events(&event_handler);
3663                 events.into_inner()
3664         }
3665 }
3666
3667 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> MessageSendEventsProvider for ChannelManager<Signer, M, T, K, F, L>
3668         where M::Target: chain::Watch<Signer>,
3669         T::Target: BroadcasterInterface,
3670         K::Target: KeysInterface<Signer = Signer>,
3671         F::Target: FeeEstimator,
3672                                 L::Target: Logger,
3673 {
3674         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
3675                 let events = RefCell::new(Vec::new());
3676                 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
3677                         let mut result = NotifyOption::SkipPersist;
3678
3679                         // TODO: This behavior should be documented. It's unintuitive that we query
3680                         // ChannelMonitors when clearing other events.
3681                         if self.process_pending_monitor_events() {
3682                                 result = NotifyOption::DoPersist;
3683                         }
3684
3685                         if self.check_free_holding_cells() {
3686                                 result = NotifyOption::DoPersist;
3687                         }
3688
3689                         let mut pending_events = Vec::new();
3690                         let mut channel_state = self.channel_state.lock().unwrap();
3691                         mem::swap(&mut pending_events, &mut channel_state.pending_msg_events);
3692
3693                         if !pending_events.is_empty() {
3694                                 events.replace(pending_events);
3695                         }
3696
3697                         result
3698                 });
3699                 events.into_inner()
3700         }
3701 }
3702
3703 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> EventsProvider for ChannelManager<Signer, M, T, K, F, L>
3704 where
3705         M::Target: chain::Watch<Signer>,
3706         T::Target: BroadcasterInterface,
3707         K::Target: KeysInterface<Signer = Signer>,
3708         F::Target: FeeEstimator,
3709         L::Target: Logger,
3710 {
3711         /// Processes events that must be periodically handled.
3712         ///
3713         /// An [`EventHandler`] may safely call back to the provider in order to handle an event.
3714         /// However, it must not call [`Writeable::write`] as doing so would result in a deadlock.
3715         ///
3716         /// Pending events are persisted as part of [`ChannelManager`]. While these events are cleared
3717         /// when processed, an [`EventHandler`] must be able to handle previously seen events when
3718         /// restarting from an old state.
3719         fn process_pending_events<H: Deref>(&self, handler: H) where H::Target: EventHandler {
3720                 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
3721                         let mut result = NotifyOption::SkipPersist;
3722
3723                         // TODO: This behavior should be documented. It's unintuitive that we query
3724                         // ChannelMonitors when clearing other events.
3725                         if self.process_pending_monitor_events() {
3726                                 result = NotifyOption::DoPersist;
3727                         }
3728
3729                         let mut pending_events = std::mem::replace(&mut *self.pending_events.lock().unwrap(), vec![]);
3730                         if !pending_events.is_empty() {
3731                                 result = NotifyOption::DoPersist;
3732                         }
3733
3734                         for event in pending_events.drain(..) {
3735                                 handler.handle_event(event);
3736                         }
3737
3738                         result
3739                 });
3740         }
3741 }
3742
3743 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> chain::Listen for ChannelManager<Signer, M, T, K, F, L>
3744 where
3745         M::Target: chain::Watch<Signer>,
3746         T::Target: BroadcasterInterface,
3747         K::Target: KeysInterface<Signer = Signer>,
3748         F::Target: FeeEstimator,
3749         L::Target: Logger,
3750 {
3751         fn block_connected(&self, block: &Block, height: u32) {
3752                 {
3753                         let best_block = self.best_block.read().unwrap();
3754                         assert_eq!(best_block.block_hash(), block.header.prev_blockhash,
3755                                 "Blocks must be connected in chain-order - the connected header must build on the last connected header");
3756                         assert_eq!(best_block.height(), height - 1,
3757                                 "Blocks must be connected in chain-order - the connected block height must be one greater than the previous height");
3758                 }
3759
3760                 let txdata: Vec<_> = block.txdata.iter().enumerate().collect();
3761                 self.transactions_confirmed(&block.header, &txdata, height);
3762                 self.best_block_updated(&block.header, height);
3763         }
3764
3765         fn block_disconnected(&self, header: &BlockHeader, height: u32) {
3766                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3767                 let new_height = height - 1;
3768                 {
3769                         let mut best_block = self.best_block.write().unwrap();
3770                         assert_eq!(best_block.block_hash(), header.block_hash(),
3771                                 "Blocks must be disconnected in chain-order - the disconnected header must be the last connected header");
3772                         assert_eq!(best_block.height(), height,
3773                                 "Blocks must be disconnected in chain-order - the disconnected block must have the correct height");
3774                         *best_block = BestBlock::new(header.prev_blockhash, new_height)
3775                 }
3776
3777                 self.do_chain_event(Some(new_height), |channel| channel.best_block_updated(new_height, header.time));
3778         }
3779 }
3780
3781 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> chain::Confirm for ChannelManager<Signer, M, T, K, F, L>
3782 where
3783         M::Target: chain::Watch<Signer>,
3784         T::Target: BroadcasterInterface,
3785         K::Target: KeysInterface<Signer = Signer>,
3786         F::Target: FeeEstimator,
3787         L::Target: Logger,
3788 {
3789         fn transactions_confirmed(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
3790                 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
3791                 // during initialization prior to the chain_monitor being fully configured in some cases.
3792                 // See the docs for `ChannelManagerReadArgs` for more.
3793
3794                 let block_hash = header.block_hash();
3795                 log_trace!(self.logger, "{} transactions included in block {} at height {} provided", txdata.len(), block_hash, height);
3796
3797                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3798                 self.do_chain_event(Some(height), |channel| channel.transactions_confirmed(&block_hash, height, txdata, &self.logger).map(|a| (a, Vec::new())));
3799         }
3800
3801         fn best_block_updated(&self, header: &BlockHeader, height: u32) {
3802                 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
3803                 // during initialization prior to the chain_monitor being fully configured in some cases.
3804                 // See the docs for `ChannelManagerReadArgs` for more.
3805
3806                 let block_hash = header.block_hash();
3807                 log_trace!(self.logger, "New best block: {} at height {}", block_hash, height);
3808
3809                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3810
3811                 *self.best_block.write().unwrap() = BestBlock::new(block_hash, height);
3812
3813                 self.do_chain_event(Some(height), |channel| channel.best_block_updated(height, header.time));
3814
3815                 macro_rules! max_time {
3816                         ($timestamp: expr) => {
3817                                 loop {
3818                                         // Update $timestamp to be the max of its current value and the block
3819                                         // timestamp. This should keep us close to the current time without relying on
3820                                         // having an explicit local time source.
3821                                         // Just in case we end up in a race, we loop until we either successfully
3822                                         // update $timestamp or decide we don't need to.
3823                                         let old_serial = $timestamp.load(Ordering::Acquire);
3824                                         if old_serial >= header.time as usize { break; }
3825                                         if $timestamp.compare_exchange(old_serial, header.time as usize, Ordering::AcqRel, Ordering::Relaxed).is_ok() {
3826                                                 break;
3827                                         }
3828                                 }
3829                         }
3830                 }
3831                 max_time!(self.last_node_announcement_serial);
3832                 max_time!(self.highest_seen_timestamp);
3833                 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
3834                 payment_secrets.retain(|_, inbound_payment| {
3835                         inbound_payment.expiry_time > header.time as u64
3836                 });
3837         }
3838
3839         fn get_relevant_txids(&self) -> Vec<Txid> {
3840                 let channel_state = self.channel_state.lock().unwrap();
3841                 let mut res = Vec::with_capacity(channel_state.short_to_id.len());
3842                 for chan in channel_state.by_id.values() {
3843                         if let Some(funding_txo) = chan.get_funding_txo() {
3844                                 res.push(funding_txo.txid);
3845                         }
3846                 }
3847                 res
3848         }
3849
3850         fn transaction_unconfirmed(&self, txid: &Txid) {
3851                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3852                 self.do_chain_event(None, |channel| {
3853                         if let Some(funding_txo) = channel.get_funding_txo() {
3854                                 if funding_txo.txid == *txid {
3855                                         channel.funding_transaction_unconfirmed().map(|_| (None, Vec::new()))
3856                                 } else { Ok((None, Vec::new())) }
3857                         } else { Ok((None, Vec::new())) }
3858                 });
3859         }
3860 }
3861
3862 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> ChannelManager<Signer, M, T, K, F, L>
3863 where
3864         M::Target: chain::Watch<Signer>,
3865         T::Target: BroadcasterInterface,
3866         K::Target: KeysInterface<Signer = Signer>,
3867         F::Target: FeeEstimator,
3868         L::Target: Logger,
3869 {
3870         /// Calls a function which handles an on-chain event (blocks dis/connected, transactions
3871         /// un/confirmed, etc) on each channel, handling any resulting errors or messages generated by
3872         /// the function.
3873         fn do_chain_event<FN: Fn(&mut Channel<Signer>) -> Result<(Option<msgs::FundingLocked>, Vec<(HTLCSource, PaymentHash)>), msgs::ErrorMessage>>
3874                         (&self, height_opt: Option<u32>, f: FN) {
3875                 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
3876                 // during initialization prior to the chain_monitor being fully configured in some cases.
3877                 // See the docs for `ChannelManagerReadArgs` for more.
3878
3879                 let mut failed_channels = Vec::new();
3880                 let mut timed_out_htlcs = Vec::new();
3881                 {
3882                         let mut channel_lock = self.channel_state.lock().unwrap();
3883                         let channel_state = &mut *channel_lock;
3884                         let short_to_id = &mut channel_state.short_to_id;
3885                         let pending_msg_events = &mut channel_state.pending_msg_events;
3886                         channel_state.by_id.retain(|_, channel| {
3887                                 let res = f(channel);
3888                                 if let Ok((chan_res, mut timed_out_pending_htlcs)) = res {
3889                                         for (source, payment_hash) in timed_out_pending_htlcs.drain(..) {
3890                                                 let chan_update = self.get_channel_update(&channel).map(|u| u.encode_with_len()).unwrap(); // Cannot add/recv HTLCs before we have a short_id so unwrap is safe
3891                                                 timed_out_htlcs.push((source, payment_hash,  HTLCFailReason::Reason {
3892                                                         failure_code: 0x1000 | 14, // expiry_too_soon, or at least it is now
3893                                                         data: chan_update,
3894                                                 }));
3895                                         }
3896                                         if let Some(funding_locked) = chan_res {
3897                                                 pending_msg_events.push(events::MessageSendEvent::SendFundingLocked {
3898                                                         node_id: channel.get_counterparty_node_id(),
3899                                                         msg: funding_locked,
3900                                                 });
3901                                                 if let Some(announcement_sigs) = self.get_announcement_sigs(channel) {
3902                                                         log_trace!(self.logger, "Sending funding_locked and announcement_signatures for {}", log_bytes!(channel.channel_id()));
3903                                                         pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
3904                                                                 node_id: channel.get_counterparty_node_id(),
3905                                                                 msg: announcement_sigs,
3906                                                         });
3907                                                 } else {
3908                                                         log_trace!(self.logger, "Sending funding_locked WITHOUT announcement_signatures for {}", log_bytes!(channel.channel_id()));
3909                                                 }
3910                                                 short_to_id.insert(channel.get_short_channel_id().unwrap(), channel.channel_id());
3911                                         }
3912                                 } else if let Err(e) = res {
3913                                         if let Some(short_id) = channel.get_short_channel_id() {
3914                                                 short_to_id.remove(&short_id);
3915                                         }
3916                                         // It looks like our counterparty went on-chain or funding transaction was
3917                                         // reorged out of the main chain. Close the channel.
3918                                         failed_channels.push(channel.force_shutdown(true));
3919                                         if let Ok(update) = self.get_channel_update(&channel) {
3920                                                 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
3921                                                         msg: update
3922                                                 });
3923                                         }
3924                                         pending_msg_events.push(events::MessageSendEvent::HandleError {
3925                                                 node_id: channel.get_counterparty_node_id(),
3926                                                 action: msgs::ErrorAction::SendErrorMessage { msg: e },
3927                                         });
3928                                         return false;
3929                                 }
3930                                 true
3931                         });
3932
3933                         if let Some(height) = height_opt {
3934                                 channel_state.claimable_htlcs.retain(|payment_hash, htlcs| {
3935                                         htlcs.retain(|htlc| {
3936                                                 // If height is approaching the number of blocks we think it takes us to get
3937                                                 // our commitment transaction confirmed before the HTLC expires, plus the
3938                                                 // number of blocks we generally consider it to take to do a commitment update,
3939                                                 // just give up on it and fail the HTLC.
3940                                                 if height >= htlc.cltv_expiry - HTLC_FAIL_BACK_BUFFER {
3941                                                         let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec();
3942                                                         htlc_msat_height_data.extend_from_slice(&byte_utils::be32_to_array(height));
3943                                                         timed_out_htlcs.push((HTLCSource::PreviousHopData(htlc.prev_hop.clone()), payment_hash.clone(), HTLCFailReason::Reason {
3944                                                                 failure_code: 0x4000 | 15,
3945                                                                 data: htlc_msat_height_data
3946                                                         }));
3947                                                         false
3948                                                 } else { true }
3949                                         });
3950                                         !htlcs.is_empty() // Only retain this entry if htlcs has at least one entry.
3951                                 });
3952                         }
3953                 }
3954
3955                 self.handle_init_event_channel_failures(failed_channels);
3956
3957                 for (source, payment_hash, reason) in timed_out_htlcs.drain(..) {
3958                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), source, &payment_hash, reason);
3959                 }
3960         }
3961
3962         /// Blocks until ChannelManager needs to be persisted or a timeout is reached. It returns a bool
3963         /// indicating whether persistence is necessary. Only one listener on
3964         /// `await_persistable_update` or `await_persistable_update_timeout` is guaranteed to be woken
3965         /// up.
3966         /// Note that the feature `allow_wallclock_use` must be enabled to use this function.
3967         #[cfg(any(test, feature = "allow_wallclock_use"))]
3968         pub fn await_persistable_update_timeout(&self, max_wait: Duration) -> bool {
3969                 self.persistence_notifier.wait_timeout(max_wait)
3970         }
3971
3972         /// Blocks until ChannelManager needs to be persisted. Only one listener on
3973         /// `await_persistable_update` or `await_persistable_update_timeout` is guaranteed to be woken
3974         /// up.
3975         pub fn await_persistable_update(&self) {
3976                 self.persistence_notifier.wait()
3977         }
3978
3979         #[cfg(any(test, feature = "_test_utils"))]
3980         pub fn get_persistence_condvar_value(&self) -> bool {
3981                 let mutcond = &self.persistence_notifier.persistence_lock;
3982                 let &(ref mtx, _) = mutcond;
3983                 let guard = mtx.lock().unwrap();
3984                 *guard
3985         }
3986 }
3987
3988 impl<Signer: Sign, M: Deref , T: Deref , K: Deref , F: Deref , L: Deref >
3989         ChannelMessageHandler for ChannelManager<Signer, M, T, K, F, L>
3990         where M::Target: chain::Watch<Signer>,
3991         T::Target: BroadcasterInterface,
3992         K::Target: KeysInterface<Signer = Signer>,
3993         F::Target: FeeEstimator,
3994         L::Target: Logger,
3995 {
3996         fn handle_open_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::OpenChannel) {
3997                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3998                 let _ = handle_error!(self, self.internal_open_channel(counterparty_node_id, their_features, msg), *counterparty_node_id);
3999         }
4000
4001         fn handle_accept_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::AcceptChannel) {
4002                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4003                 let _ = handle_error!(self, self.internal_accept_channel(counterparty_node_id, their_features, msg), *counterparty_node_id);
4004         }
4005
4006         fn handle_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) {
4007                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4008                 let _ = handle_error!(self, self.internal_funding_created(counterparty_node_id, msg), *counterparty_node_id);
4009         }
4010
4011         fn handle_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) {
4012                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4013                 let _ = handle_error!(self, self.internal_funding_signed(counterparty_node_id, msg), *counterparty_node_id);
4014         }
4015
4016         fn handle_funding_locked(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingLocked) {
4017                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4018                 let _ = handle_error!(self, self.internal_funding_locked(counterparty_node_id, msg), *counterparty_node_id);
4019         }
4020
4021         fn handle_shutdown(&self, counterparty_node_id: &PublicKey, their_features: &InitFeatures, msg: &msgs::Shutdown) {
4022                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4023                 let _ = handle_error!(self, self.internal_shutdown(counterparty_node_id, their_features, msg), *counterparty_node_id);
4024         }
4025
4026         fn handle_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
4027                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4028                 let _ = handle_error!(self, self.internal_closing_signed(counterparty_node_id, msg), *counterparty_node_id);
4029         }
4030
4031         fn handle_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
4032                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4033                 let _ = handle_error!(self, self.internal_update_add_htlc(counterparty_node_id, msg), *counterparty_node_id);
4034         }
4035
4036         fn handle_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
4037                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4038                 let _ = handle_error!(self, self.internal_update_fulfill_htlc(counterparty_node_id, msg), *counterparty_node_id);
4039         }
4040
4041         fn handle_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
4042                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4043                 let _ = handle_error!(self, self.internal_update_fail_htlc(counterparty_node_id, msg), *counterparty_node_id);
4044         }
4045
4046         fn handle_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
4047                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4048                 let _ = handle_error!(self, self.internal_update_fail_malformed_htlc(counterparty_node_id, msg), *counterparty_node_id);
4049         }
4050
4051         fn handle_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
4052                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4053                 let _ = handle_error!(self, self.internal_commitment_signed(counterparty_node_id, msg), *counterparty_node_id);
4054         }
4055
4056         fn handle_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
4057                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4058                 let _ = handle_error!(self, self.internal_revoke_and_ack(counterparty_node_id, msg), *counterparty_node_id);
4059         }
4060
4061         fn handle_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) {
4062                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4063                 let _ = handle_error!(self, self.internal_update_fee(counterparty_node_id, msg), *counterparty_node_id);
4064         }
4065
4066         fn handle_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
4067                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4068                 let _ = handle_error!(self, self.internal_announcement_signatures(counterparty_node_id, msg), *counterparty_node_id);
4069         }
4070
4071         fn handle_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) {
4072                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4073                 let _ = handle_error!(self, self.internal_channel_update(counterparty_node_id, msg), *counterparty_node_id);
4074         }
4075
4076         fn handle_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
4077                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4078                 let _ = handle_error!(self, self.internal_channel_reestablish(counterparty_node_id, msg), *counterparty_node_id);
4079         }
4080
4081         fn peer_disconnected(&self, counterparty_node_id: &PublicKey, no_connection_possible: bool) {
4082                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4083                 let mut failed_channels = Vec::new();
4084                 let mut no_channels_remain = true;
4085                 {
4086                         let mut channel_state_lock = self.channel_state.lock().unwrap();
4087                         let channel_state = &mut *channel_state_lock;
4088                         let short_to_id = &mut channel_state.short_to_id;
4089                         let pending_msg_events = &mut channel_state.pending_msg_events;
4090                         if no_connection_possible {
4091                                 log_debug!(self.logger, "Failing all channels with {} due to no_connection_possible", log_pubkey!(counterparty_node_id));
4092                                 channel_state.by_id.retain(|_, chan| {
4093                                         if chan.get_counterparty_node_id() == *counterparty_node_id {
4094                                                 if let Some(short_id) = chan.get_short_channel_id() {
4095                                                         short_to_id.remove(&short_id);
4096                                                 }
4097                                                 failed_channels.push(chan.force_shutdown(true));
4098                                                 if let Ok(update) = self.get_channel_update(&chan) {
4099                                                         pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
4100                                                                 msg: update
4101                                                         });
4102                                                 }
4103                                                 false
4104                                         } else {
4105                                                 true
4106                                         }
4107                                 });
4108                         } else {
4109                                 log_debug!(self.logger, "Marking channels with {} disconnected and generating channel_updates", log_pubkey!(counterparty_node_id));
4110                                 channel_state.by_id.retain(|_, chan| {
4111                                         if chan.get_counterparty_node_id() == *counterparty_node_id {
4112                                                 chan.remove_uncommitted_htlcs_and_mark_paused(&self.logger);
4113                                                 if chan.is_shutdown() {
4114                                                         if let Some(short_id) = chan.get_short_channel_id() {
4115                                                                 short_to_id.remove(&short_id);
4116                                                         }
4117                                                         return false;
4118                                                 } else {
4119                                                         no_channels_remain = false;
4120                                                 }
4121                                         }
4122                                         true
4123                                 })
4124                         }
4125                         pending_msg_events.retain(|msg| {
4126                                 match msg {
4127                                         &events::MessageSendEvent::SendAcceptChannel { ref node_id, .. } => node_id != counterparty_node_id,
4128                                         &events::MessageSendEvent::SendOpenChannel { ref node_id, .. } => node_id != counterparty_node_id,
4129                                         &events::MessageSendEvent::SendFundingCreated { ref node_id, .. } => node_id != counterparty_node_id,
4130                                         &events::MessageSendEvent::SendFundingSigned { ref node_id, .. } => node_id != counterparty_node_id,
4131                                         &events::MessageSendEvent::SendFundingLocked { ref node_id, .. } => node_id != counterparty_node_id,
4132                                         &events::MessageSendEvent::SendAnnouncementSignatures { ref node_id, .. } => node_id != counterparty_node_id,
4133                                         &events::MessageSendEvent::UpdateHTLCs { ref node_id, .. } => node_id != counterparty_node_id,
4134                                         &events::MessageSendEvent::SendRevokeAndACK { ref node_id, .. } => node_id != counterparty_node_id,
4135                                         &events::MessageSendEvent::SendClosingSigned { ref node_id, .. } => node_id != counterparty_node_id,
4136                                         &events::MessageSendEvent::SendShutdown { ref node_id, .. } => node_id != counterparty_node_id,
4137                                         &events::MessageSendEvent::SendChannelReestablish { ref node_id, .. } => node_id != counterparty_node_id,
4138                                         &events::MessageSendEvent::BroadcastChannelAnnouncement { .. } => true,
4139                                         &events::MessageSendEvent::BroadcastNodeAnnouncement { .. } => true,
4140                                         &events::MessageSendEvent::BroadcastChannelUpdate { .. } => true,
4141                                         &events::MessageSendEvent::HandleError { ref node_id, .. } => node_id != counterparty_node_id,
4142                                         &events::MessageSendEvent::PaymentFailureNetworkUpdate { .. } => true,
4143                                         &events::MessageSendEvent::SendChannelRangeQuery { .. } => false,
4144                                         &events::MessageSendEvent::SendShortIdsQuery { .. } => false,
4145                                         &events::MessageSendEvent::SendReplyChannelRange { .. } => false,
4146                                 }
4147                         });
4148                 }
4149                 if no_channels_remain {
4150                         self.per_peer_state.write().unwrap().remove(counterparty_node_id);
4151                 }
4152
4153                 for failure in failed_channels.drain(..) {
4154                         self.finish_force_close_channel(failure);
4155                 }
4156         }
4157
4158         fn peer_connected(&self, counterparty_node_id: &PublicKey, init_msg: &msgs::Init) {
4159                 log_debug!(self.logger, "Generating channel_reestablish events for {}", log_pubkey!(counterparty_node_id));
4160
4161                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4162
4163                 {
4164                         let mut peer_state_lock = self.per_peer_state.write().unwrap();
4165                         match peer_state_lock.entry(counterparty_node_id.clone()) {
4166                                 hash_map::Entry::Vacant(e) => {
4167                                         e.insert(Mutex::new(PeerState {
4168                                                 latest_features: init_msg.features.clone(),
4169                                         }));
4170                                 },
4171                                 hash_map::Entry::Occupied(e) => {
4172                                         e.get().lock().unwrap().latest_features = init_msg.features.clone();
4173                                 },
4174                         }
4175                 }
4176
4177                 let mut channel_state_lock = self.channel_state.lock().unwrap();
4178                 let channel_state = &mut *channel_state_lock;
4179                 let pending_msg_events = &mut channel_state.pending_msg_events;
4180                 channel_state.by_id.retain(|_, chan| {
4181                         if chan.get_counterparty_node_id() == *counterparty_node_id {
4182                                 if !chan.have_received_message() {
4183                                         // If we created this (outbound) channel while we were disconnected from the
4184                                         // peer we probably failed to send the open_channel message, which is now
4185                                         // lost. We can't have had anything pending related to this channel, so we just
4186                                         // drop it.
4187                                         false
4188                                 } else {
4189                                         pending_msg_events.push(events::MessageSendEvent::SendChannelReestablish {
4190                                                 node_id: chan.get_counterparty_node_id(),
4191                                                 msg: chan.get_channel_reestablish(&self.logger),
4192                                         });
4193                                         true
4194                                 }
4195                         } else { true }
4196                 });
4197                 //TODO: Also re-broadcast announcement_signatures
4198         }
4199
4200         fn handle_error(&self, counterparty_node_id: &PublicKey, msg: &msgs::ErrorMessage) {
4201                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4202
4203                 if msg.channel_id == [0; 32] {
4204                         for chan in self.list_channels() {
4205                                 if chan.remote_network_id == *counterparty_node_id {
4206                                         // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
4207                                         let _ = self.force_close_channel_with_peer(&chan.channel_id, Some(counterparty_node_id));
4208                                 }
4209                         }
4210                 } else {
4211                         // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
4212                         let _ = self.force_close_channel_with_peer(&msg.channel_id, Some(counterparty_node_id));
4213                 }
4214         }
4215 }
4216
4217 /// Used to signal to the ChannelManager persister that the manager needs to be re-persisted to
4218 /// disk/backups, through `await_persistable_update_timeout` and `await_persistable_update`.
4219 struct PersistenceNotifier {
4220         /// Users won't access the persistence_lock directly, but rather wait on its bool using
4221         /// `wait_timeout` and `wait`.
4222         persistence_lock: (Mutex<bool>, Condvar),
4223 }
4224
4225 impl PersistenceNotifier {
4226         fn new() -> Self {
4227                 Self {
4228                         persistence_lock: (Mutex::new(false), Condvar::new()),
4229                 }
4230         }
4231
4232         fn wait(&self) {
4233                 loop {
4234                         let &(ref mtx, ref cvar) = &self.persistence_lock;
4235                         let mut guard = mtx.lock().unwrap();
4236                         if *guard {
4237                                 *guard = false;
4238                                 return;
4239                         }
4240                         guard = cvar.wait(guard).unwrap();
4241                         let result = *guard;
4242                         if result {
4243                                 *guard = false;
4244                                 return
4245                         }
4246                 }
4247         }
4248
4249         #[cfg(any(test, feature = "allow_wallclock_use"))]
4250         fn wait_timeout(&self, max_wait: Duration) -> bool {
4251                 let current_time = Instant::now();
4252                 loop {
4253                         let &(ref mtx, ref cvar) = &self.persistence_lock;
4254                         let mut guard = mtx.lock().unwrap();
4255                         if *guard {
4256                                 *guard = false;
4257                                 return true;
4258                         }
4259                         guard = cvar.wait_timeout(guard, max_wait).unwrap().0;
4260                         // Due to spurious wakeups that can happen on `wait_timeout`, here we need to check if the
4261                         // desired wait time has actually passed, and if not then restart the loop with a reduced wait
4262                         // time. Note that this logic can be highly simplified through the use of
4263                         // `Condvar::wait_while` and `Condvar::wait_timeout_while`, if and when our MSRV is raised to
4264                         // 1.42.0.
4265                         let elapsed = current_time.elapsed();
4266                         let result = *guard;
4267                         if result || elapsed >= max_wait {
4268                                 *guard = false;
4269                                 return result;
4270                         }
4271                         match max_wait.checked_sub(elapsed) {
4272                                 None => return result,
4273                                 Some(_) => continue
4274                         }
4275                 }
4276         }
4277
4278         // Signal to the ChannelManager persister that there are updates necessitating persisting to disk.
4279         fn notify(&self) {
4280                 let &(ref persist_mtx, ref cnd) = &self.persistence_lock;
4281                 let mut persistence_lock = persist_mtx.lock().unwrap();
4282                 *persistence_lock = true;
4283                 mem::drop(persistence_lock);
4284                 cnd.notify_all();
4285         }
4286 }
4287
4288 const SERIALIZATION_VERSION: u8 = 1;
4289 const MIN_SERIALIZATION_VERSION: u8 = 1;
4290
4291 impl Writeable for PendingHTLCInfo {
4292         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
4293                 match &self.routing {
4294                         &PendingHTLCRouting::Forward { ref onion_packet, ref short_channel_id } => {
4295                                 0u8.write(writer)?;
4296                                 onion_packet.write(writer)?;
4297                                 short_channel_id.write(writer)?;
4298                         },
4299                         &PendingHTLCRouting::Receive { ref payment_data, ref incoming_cltv_expiry } => {
4300                                 1u8.write(writer)?;
4301                                 payment_data.payment_secret.write(writer)?;
4302                                 payment_data.total_msat.write(writer)?;
4303                                 incoming_cltv_expiry.write(writer)?;
4304                         },
4305                 }
4306                 self.incoming_shared_secret.write(writer)?;
4307                 self.payment_hash.write(writer)?;
4308                 self.amt_to_forward.write(writer)?;
4309                 self.outgoing_cltv_value.write(writer)?;
4310                 Ok(())
4311         }
4312 }
4313
4314 impl Readable for PendingHTLCInfo {
4315         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<PendingHTLCInfo, DecodeError> {
4316                 Ok(PendingHTLCInfo {
4317                         routing: match Readable::read(reader)? {
4318                                 0u8 => PendingHTLCRouting::Forward {
4319                                         onion_packet: Readable::read(reader)?,
4320                                         short_channel_id: Readable::read(reader)?,
4321                                 },
4322                                 1u8 => PendingHTLCRouting::Receive {
4323                                         payment_data: msgs::FinalOnionHopData {
4324                                                 payment_secret: Readable::read(reader)?,
4325                                                 total_msat: Readable::read(reader)?,
4326                                         },
4327                                         incoming_cltv_expiry: Readable::read(reader)?,
4328                                 },
4329                                 _ => return Err(DecodeError::InvalidValue),
4330                         },
4331                         incoming_shared_secret: Readable::read(reader)?,
4332                         payment_hash: Readable::read(reader)?,
4333                         amt_to_forward: Readable::read(reader)?,
4334                         outgoing_cltv_value: Readable::read(reader)?,
4335                 })
4336         }
4337 }
4338
4339 impl Writeable for HTLCFailureMsg {
4340         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
4341                 match self {
4342                         &HTLCFailureMsg::Relay(ref fail_msg) => {
4343                                 0u8.write(writer)?;
4344                                 fail_msg.write(writer)?;
4345                         },
4346                         &HTLCFailureMsg::Malformed(ref fail_msg) => {
4347                                 1u8.write(writer)?;
4348                                 fail_msg.write(writer)?;
4349                         }
4350                 }
4351                 Ok(())
4352         }
4353 }
4354
4355 impl Readable for HTLCFailureMsg {
4356         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<HTLCFailureMsg, DecodeError> {
4357                 match <u8 as Readable>::read(reader)? {
4358                         0 => Ok(HTLCFailureMsg::Relay(Readable::read(reader)?)),
4359                         1 => Ok(HTLCFailureMsg::Malformed(Readable::read(reader)?)),
4360                         _ => Err(DecodeError::InvalidValue),
4361                 }
4362         }
4363 }
4364
4365 impl Writeable for PendingHTLCStatus {
4366         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
4367                 match self {
4368                         &PendingHTLCStatus::Forward(ref forward_info) => {
4369                                 0u8.write(writer)?;
4370                                 forward_info.write(writer)?;
4371                         },
4372                         &PendingHTLCStatus::Fail(ref fail_msg) => {
4373                                 1u8.write(writer)?;
4374                                 fail_msg.write(writer)?;
4375                         }
4376                 }
4377                 Ok(())
4378         }
4379 }
4380
4381 impl Readable for PendingHTLCStatus {
4382         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<PendingHTLCStatus, DecodeError> {
4383                 match <u8 as Readable>::read(reader)? {
4384                         0 => Ok(PendingHTLCStatus::Forward(Readable::read(reader)?)),
4385                         1 => Ok(PendingHTLCStatus::Fail(Readable::read(reader)?)),
4386                         _ => Err(DecodeError::InvalidValue),
4387                 }
4388         }
4389 }
4390
4391 impl_writeable!(HTLCPreviousHopData, 0, {
4392         short_channel_id,
4393         outpoint,
4394         htlc_id,
4395         incoming_packet_shared_secret
4396 });
4397
4398 impl Writeable for ClaimableHTLC {
4399         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
4400                 self.prev_hop.write(writer)?;
4401                 self.value.write(writer)?;
4402                 self.payment_data.payment_secret.write(writer)?;
4403                 self.payment_data.total_msat.write(writer)?;
4404                 self.cltv_expiry.write(writer)
4405         }
4406 }
4407
4408 impl Readable for ClaimableHTLC {
4409         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
4410                 Ok(ClaimableHTLC {
4411                         prev_hop: Readable::read(reader)?,
4412                         value: Readable::read(reader)?,
4413                         payment_data: msgs::FinalOnionHopData {
4414                                 payment_secret: Readable::read(reader)?,
4415                                 total_msat: Readable::read(reader)?,
4416                         },
4417                         cltv_expiry: Readable::read(reader)?,
4418                 })
4419         }
4420 }
4421
4422 impl Writeable for HTLCSource {
4423         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
4424                 match self {
4425                         &HTLCSource::PreviousHopData(ref hop_data) => {
4426                                 0u8.write(writer)?;
4427                                 hop_data.write(writer)?;
4428                         },
4429                         &HTLCSource::OutboundRoute { ref path, ref session_priv, ref first_hop_htlc_msat } => {
4430                                 1u8.write(writer)?;
4431                                 path.write(writer)?;
4432                                 session_priv.write(writer)?;
4433                                 first_hop_htlc_msat.write(writer)?;
4434                         }
4435                 }
4436                 Ok(())
4437         }
4438 }
4439
4440 impl Readable for HTLCSource {
4441         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<HTLCSource, DecodeError> {
4442                 match <u8 as Readable>::read(reader)? {
4443                         0 => Ok(HTLCSource::PreviousHopData(Readable::read(reader)?)),
4444                         1 => Ok(HTLCSource::OutboundRoute {
4445                                 path: Readable::read(reader)?,
4446                                 session_priv: Readable::read(reader)?,
4447                                 first_hop_htlc_msat: Readable::read(reader)?,
4448                         }),
4449                         _ => Err(DecodeError::InvalidValue),
4450                 }
4451         }
4452 }
4453
4454 impl Writeable for HTLCFailReason {
4455         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
4456                 match self {
4457                         &HTLCFailReason::LightningError { ref err } => {
4458                                 0u8.write(writer)?;
4459                                 err.write(writer)?;
4460                         },
4461                         &HTLCFailReason::Reason { ref failure_code, ref data } => {
4462                                 1u8.write(writer)?;
4463                                 failure_code.write(writer)?;
4464                                 data.write(writer)?;
4465                         }
4466                 }
4467                 Ok(())
4468         }
4469 }
4470
4471 impl Readable for HTLCFailReason {
4472         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<HTLCFailReason, DecodeError> {
4473                 match <u8 as Readable>::read(reader)? {
4474                         0 => Ok(HTLCFailReason::LightningError { err: Readable::read(reader)? }),
4475                         1 => Ok(HTLCFailReason::Reason {
4476                                 failure_code: Readable::read(reader)?,
4477                                 data: Readable::read(reader)?,
4478                         }),
4479                         _ => Err(DecodeError::InvalidValue),
4480                 }
4481         }
4482 }
4483
4484 impl Writeable for HTLCForwardInfo {
4485         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
4486                 match self {
4487                         &HTLCForwardInfo::AddHTLC { ref prev_short_channel_id, ref prev_funding_outpoint, ref prev_htlc_id, ref forward_info } => {
4488                                 0u8.write(writer)?;
4489                                 prev_short_channel_id.write(writer)?;
4490                                 prev_funding_outpoint.write(writer)?;
4491                                 prev_htlc_id.write(writer)?;
4492                                 forward_info.write(writer)?;
4493                         },
4494                         &HTLCForwardInfo::FailHTLC { ref htlc_id, ref err_packet } => {
4495                                 1u8.write(writer)?;
4496                                 htlc_id.write(writer)?;
4497                                 err_packet.write(writer)?;
4498                         },
4499                 }
4500                 Ok(())
4501         }
4502 }
4503
4504 impl Readable for HTLCForwardInfo {
4505         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<HTLCForwardInfo, DecodeError> {
4506                 match <u8 as Readable>::read(reader)? {
4507                         0 => Ok(HTLCForwardInfo::AddHTLC {
4508                                 prev_short_channel_id: Readable::read(reader)?,
4509                                 prev_funding_outpoint: Readable::read(reader)?,
4510                                 prev_htlc_id: Readable::read(reader)?,
4511                                 forward_info: Readable::read(reader)?,
4512                         }),
4513                         1 => Ok(HTLCForwardInfo::FailHTLC {
4514                                 htlc_id: Readable::read(reader)?,
4515                                 err_packet: Readable::read(reader)?,
4516                         }),
4517                         _ => Err(DecodeError::InvalidValue),
4518                 }
4519         }
4520 }
4521
4522 impl_writeable!(PendingInboundPayment, 0, {
4523         payment_secret,
4524         expiry_time,
4525         user_payment_id,
4526         payment_preimage,
4527         min_value_msat
4528 });
4529
4530 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> Writeable for ChannelManager<Signer, M, T, K, F, L>
4531         where M::Target: chain::Watch<Signer>,
4532         T::Target: BroadcasterInterface,
4533         K::Target: KeysInterface<Signer = Signer>,
4534         F::Target: FeeEstimator,
4535         L::Target: Logger,
4536 {
4537         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
4538                 let _consistency_lock = self.total_consistency_lock.write().unwrap();
4539
4540                 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
4541
4542                 self.genesis_hash.write(writer)?;
4543                 {
4544                         let best_block = self.best_block.read().unwrap();
4545                         best_block.height().write(writer)?;
4546                         best_block.block_hash().write(writer)?;
4547                 }
4548
4549                 let channel_state = self.channel_state.lock().unwrap();
4550                 let mut unfunded_channels = 0;
4551                 for (_, channel) in channel_state.by_id.iter() {
4552                         if !channel.is_funding_initiated() {
4553                                 unfunded_channels += 1;
4554                         }
4555                 }
4556                 ((channel_state.by_id.len() - unfunded_channels) as u64).write(writer)?;
4557                 for (_, channel) in channel_state.by_id.iter() {
4558                         if channel.is_funding_initiated() {
4559                                 channel.write(writer)?;
4560                         }
4561                 }
4562
4563                 (channel_state.forward_htlcs.len() as u64).write(writer)?;
4564                 for (short_channel_id, pending_forwards) in channel_state.forward_htlcs.iter() {
4565                         short_channel_id.write(writer)?;
4566                         (pending_forwards.len() as u64).write(writer)?;
4567                         for forward in pending_forwards {
4568                                 forward.write(writer)?;
4569                         }
4570                 }
4571
4572                 (channel_state.claimable_htlcs.len() as u64).write(writer)?;
4573                 for (payment_hash, previous_hops) in channel_state.claimable_htlcs.iter() {
4574                         payment_hash.write(writer)?;
4575                         (previous_hops.len() as u64).write(writer)?;
4576                         for htlc in previous_hops.iter() {
4577                                 htlc.write(writer)?;
4578                         }
4579                 }
4580
4581                 let per_peer_state = self.per_peer_state.write().unwrap();
4582                 (per_peer_state.len() as u64).write(writer)?;
4583                 for (peer_pubkey, peer_state_mutex) in per_peer_state.iter() {
4584                         peer_pubkey.write(writer)?;
4585                         let peer_state = peer_state_mutex.lock().unwrap();
4586                         peer_state.latest_features.write(writer)?;
4587                 }
4588
4589                 let events = self.pending_events.lock().unwrap();
4590                 (events.len() as u64).write(writer)?;
4591                 for event in events.iter() {
4592                         event.write(writer)?;
4593                 }
4594
4595                 let background_events = self.pending_background_events.lock().unwrap();
4596                 (background_events.len() as u64).write(writer)?;
4597                 for event in background_events.iter() {
4598                         match event {
4599                                 BackgroundEvent::ClosingMonitorUpdate((funding_txo, monitor_update)) => {
4600                                         0u8.write(writer)?;
4601                                         funding_txo.write(writer)?;
4602                                         monitor_update.write(writer)?;
4603                                 },
4604                         }
4605                 }
4606
4607                 (self.last_node_announcement_serial.load(Ordering::Acquire) as u32).write(writer)?;
4608                 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
4609
4610                 let pending_inbound_payments = self.pending_inbound_payments.lock().unwrap();
4611                 (pending_inbound_payments.len() as u64).write(writer)?;
4612                 for (hash, pending_payment) in pending_inbound_payments.iter() {
4613                         hash.write(writer)?;
4614                         pending_payment.write(writer)?;
4615                 }
4616
4617                 let pending_outbound_payments = self.pending_outbound_payments.lock().unwrap();
4618                 (pending_outbound_payments.len() as u64).write(writer)?;
4619                 for session_priv in pending_outbound_payments.iter() {
4620                         session_priv.write(writer)?;
4621                 }
4622
4623                 write_tlv_fields!(writer, {}, {});
4624
4625                 Ok(())
4626         }
4627 }
4628
4629 /// Arguments for the creation of a ChannelManager that are not deserialized.
4630 ///
4631 /// At a high-level, the process for deserializing a ChannelManager and resuming normal operation
4632 /// is:
4633 /// 1) Deserialize all stored ChannelMonitors.
4634 /// 2) Deserialize the ChannelManager by filling in this struct and calling:
4635 ///    <(BlockHash, ChannelManager)>::read(reader, args)
4636 ///    This may result in closing some Channels if the ChannelMonitor is newer than the stored
4637 ///    ChannelManager state to ensure no loss of funds. Thus, transactions may be broadcasted.
4638 /// 3) If you are not fetching full blocks, register all relevant ChannelMonitor outpoints the same
4639 ///    way you would handle a `chain::Filter` call using ChannelMonitor::get_outputs_to_watch() and
4640 ///    ChannelMonitor::get_funding_txo().
4641 /// 4) Reconnect blocks on your ChannelMonitors.
4642 /// 5) Disconnect/connect blocks on the ChannelManager.
4643 /// 6) Move the ChannelMonitors into your local chain::Watch.
4644 ///
4645 /// Note that the ordering of #4-6 is not of importance, however all three must occur before you
4646 /// call any other methods on the newly-deserialized ChannelManager.
4647 ///
4648 /// Note that because some channels may be closed during deserialization, it is critical that you
4649 /// always deserialize only the latest version of a ChannelManager and ChannelMonitors available to
4650 /// you. If you deserialize an old ChannelManager (during which force-closure transactions may be
4651 /// broadcast), and then later deserialize a newer version of the same ChannelManager (which will
4652 /// not force-close the same channels but consider them live), you may end up revoking a state for
4653 /// which you've already broadcasted the transaction.
4654 pub struct ChannelManagerReadArgs<'a, Signer: 'a + Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
4655         where M::Target: chain::Watch<Signer>,
4656         T::Target: BroadcasterInterface,
4657         K::Target: KeysInterface<Signer = Signer>,
4658         F::Target: FeeEstimator,
4659         L::Target: Logger,
4660 {
4661         /// The keys provider which will give us relevant keys. Some keys will be loaded during
4662         /// deserialization and KeysInterface::read_chan_signer will be used to read per-Channel
4663         /// signing data.
4664         pub keys_manager: K,
4665
4666         /// The fee_estimator for use in the ChannelManager in the future.
4667         ///
4668         /// No calls to the FeeEstimator will be made during deserialization.
4669         pub fee_estimator: F,
4670         /// The chain::Watch for use in the ChannelManager in the future.
4671         ///
4672         /// No calls to the chain::Watch will be made during deserialization. It is assumed that
4673         /// you have deserialized ChannelMonitors separately and will add them to your
4674         /// chain::Watch after deserializing this ChannelManager.
4675         pub chain_monitor: M,
4676
4677         /// The BroadcasterInterface which will be used in the ChannelManager in the future and may be
4678         /// used to broadcast the latest local commitment transactions of channels which must be
4679         /// force-closed during deserialization.
4680         pub tx_broadcaster: T,
4681         /// The Logger for use in the ChannelManager and which may be used to log information during
4682         /// deserialization.
4683         pub logger: L,
4684         /// Default settings used for new channels. Any existing channels will continue to use the
4685         /// runtime settings which were stored when the ChannelManager was serialized.
4686         pub default_config: UserConfig,
4687
4688         /// A map from channel funding outpoints to ChannelMonitors for those channels (ie
4689         /// value.get_funding_txo() should be the key).
4690         ///
4691         /// If a monitor is inconsistent with the channel state during deserialization the channel will
4692         /// be force-closed using the data in the ChannelMonitor and the channel will be dropped. This
4693         /// is true for missing channels as well. If there is a monitor missing for which we find
4694         /// channel data Err(DecodeError::InvalidValue) will be returned.
4695         ///
4696         /// In such cases the latest local transactions will be sent to the tx_broadcaster included in
4697         /// this struct.
4698         ///
4699         /// (C-not exported) because we have no HashMap bindings
4700         pub channel_monitors: HashMap<OutPoint, &'a mut ChannelMonitor<Signer>>,
4701 }
4702
4703 impl<'a, Signer: 'a + Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
4704                 ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>
4705         where M::Target: chain::Watch<Signer>,
4706                 T::Target: BroadcasterInterface,
4707                 K::Target: KeysInterface<Signer = Signer>,
4708                 F::Target: FeeEstimator,
4709                 L::Target: Logger,
4710         {
4711         /// Simple utility function to create a ChannelManagerReadArgs which creates the monitor
4712         /// HashMap for you. This is primarily useful for C bindings where it is not practical to
4713         /// populate a HashMap directly from C.
4714         pub fn new(keys_manager: K, fee_estimator: F, chain_monitor: M, tx_broadcaster: T, logger: L, default_config: UserConfig,
4715                         mut channel_monitors: Vec<&'a mut ChannelMonitor<Signer>>) -> Self {
4716                 Self {
4717                         keys_manager, fee_estimator, chain_monitor, tx_broadcaster, logger, default_config,
4718                         channel_monitors: channel_monitors.drain(..).map(|monitor| { (monitor.get_funding_txo().0, monitor) }).collect()
4719                 }
4720         }
4721 }
4722
4723 // Implement ReadableArgs for an Arc'd ChannelManager to make it a bit easier to work with the
4724 // SipmleArcChannelManager type:
4725 impl<'a, Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
4726         ReadableArgs<ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>> for (BlockHash, Arc<ChannelManager<Signer, M, T, K, F, L>>)
4727         where M::Target: chain::Watch<Signer>,
4728         T::Target: BroadcasterInterface,
4729         K::Target: KeysInterface<Signer = Signer>,
4730         F::Target: FeeEstimator,
4731         L::Target: Logger,
4732 {
4733         fn read<R: ::std::io::Read>(reader: &mut R, args: ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>) -> Result<Self, DecodeError> {
4734                 let (blockhash, chan_manager) = <(BlockHash, ChannelManager<Signer, M, T, K, F, L>)>::read(reader, args)?;
4735                 Ok((blockhash, Arc::new(chan_manager)))
4736         }
4737 }
4738
4739 impl<'a, Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
4740         ReadableArgs<ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>> for (BlockHash, ChannelManager<Signer, M, T, K, F, L>)
4741         where M::Target: chain::Watch<Signer>,
4742         T::Target: BroadcasterInterface,
4743         K::Target: KeysInterface<Signer = Signer>,
4744         F::Target: FeeEstimator,
4745         L::Target: Logger,
4746 {
4747         fn read<R: ::std::io::Read>(reader: &mut R, mut args: ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>) -> Result<Self, DecodeError> {
4748                 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
4749
4750                 let genesis_hash: BlockHash = Readable::read(reader)?;
4751                 let best_block_height: u32 = Readable::read(reader)?;
4752                 let best_block_hash: BlockHash = Readable::read(reader)?;
4753
4754                 let mut failed_htlcs = Vec::new();
4755
4756                 let channel_count: u64 = Readable::read(reader)?;
4757                 let mut funding_txo_set = HashSet::with_capacity(cmp::min(channel_count as usize, 128));
4758                 let mut by_id = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
4759                 let mut short_to_id = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
4760                 for _ in 0..channel_count {
4761                         let mut channel: Channel<Signer> = Channel::read(reader, &args.keys_manager)?;
4762                         let funding_txo = channel.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
4763                         funding_txo_set.insert(funding_txo.clone());
4764                         if let Some(ref mut monitor) = args.channel_monitors.get_mut(&funding_txo) {
4765                                 if channel.get_cur_holder_commitment_transaction_number() < monitor.get_cur_holder_commitment_number() ||
4766                                                 channel.get_revoked_counterparty_commitment_transaction_number() < monitor.get_min_seen_secret() ||
4767                                                 channel.get_cur_counterparty_commitment_transaction_number() < monitor.get_cur_counterparty_commitment_number() ||
4768                                                 channel.get_latest_monitor_update_id() > monitor.get_latest_update_id() {
4769                                         // If the channel is ahead of the monitor, return InvalidValue:
4770                                         return Err(DecodeError::InvalidValue);
4771                                 } else if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() ||
4772                                                 channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() ||
4773                                                 channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() ||
4774                                                 channel.get_latest_monitor_update_id() < monitor.get_latest_update_id() {
4775                                         // But if the channel is behind of the monitor, close the channel:
4776                                         let (_, mut new_failed_htlcs) = channel.force_shutdown(true);
4777                                         failed_htlcs.append(&mut new_failed_htlcs);
4778                                         monitor.broadcast_latest_holder_commitment_txn(&args.tx_broadcaster, &args.logger);
4779                                 } else {
4780                                         if let Some(short_channel_id) = channel.get_short_channel_id() {
4781                                                 short_to_id.insert(short_channel_id, channel.channel_id());
4782                                         }
4783                                         by_id.insert(channel.channel_id(), channel);
4784                                 }
4785                         } else {
4786                                 return Err(DecodeError::InvalidValue);
4787                         }
4788                 }
4789
4790                 for (ref funding_txo, ref mut monitor) in args.channel_monitors.iter_mut() {
4791                         if !funding_txo_set.contains(funding_txo) {
4792                                 monitor.broadcast_latest_holder_commitment_txn(&args.tx_broadcaster, &args.logger);
4793                         }
4794                 }
4795
4796                 const MAX_ALLOC_SIZE: usize = 1024 * 64;
4797                 let forward_htlcs_count: u64 = Readable::read(reader)?;
4798                 let mut forward_htlcs = HashMap::with_capacity(cmp::min(forward_htlcs_count as usize, 128));
4799                 for _ in 0..forward_htlcs_count {
4800                         let short_channel_id = Readable::read(reader)?;
4801                         let pending_forwards_count: u64 = Readable::read(reader)?;
4802                         let mut pending_forwards = Vec::with_capacity(cmp::min(pending_forwards_count as usize, MAX_ALLOC_SIZE/mem::size_of::<HTLCForwardInfo>()));
4803                         for _ in 0..pending_forwards_count {
4804                                 pending_forwards.push(Readable::read(reader)?);
4805                         }
4806                         forward_htlcs.insert(short_channel_id, pending_forwards);
4807                 }
4808
4809                 let claimable_htlcs_count: u64 = Readable::read(reader)?;
4810                 let mut claimable_htlcs = HashMap::with_capacity(cmp::min(claimable_htlcs_count as usize, 128));
4811                 for _ in 0..claimable_htlcs_count {
4812                         let payment_hash = Readable::read(reader)?;
4813                         let previous_hops_len: u64 = Readable::read(reader)?;
4814                         let mut previous_hops = Vec::with_capacity(cmp::min(previous_hops_len as usize, MAX_ALLOC_SIZE/mem::size_of::<ClaimableHTLC>()));
4815                         for _ in 0..previous_hops_len {
4816                                 previous_hops.push(Readable::read(reader)?);
4817                         }
4818                         claimable_htlcs.insert(payment_hash, previous_hops);
4819                 }
4820
4821                 let peer_count: u64 = Readable::read(reader)?;
4822                 let mut per_peer_state = HashMap::with_capacity(cmp::min(peer_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(PublicKey, Mutex<PeerState>)>()));
4823                 for _ in 0..peer_count {
4824                         let peer_pubkey = Readable::read(reader)?;
4825                         let peer_state = PeerState {
4826                                 latest_features: Readable::read(reader)?,
4827                         };
4828                         per_peer_state.insert(peer_pubkey, Mutex::new(peer_state));
4829                 }
4830
4831                 let event_count: u64 = Readable::read(reader)?;
4832                 let mut pending_events_read: Vec<events::Event> = Vec::with_capacity(cmp::min(event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<events::Event>()));
4833                 for _ in 0..event_count {
4834                         match MaybeReadable::read(reader)? {
4835                                 Some(event) => pending_events_read.push(event),
4836                                 None => continue,
4837                         }
4838                 }
4839
4840                 let background_event_count: u64 = Readable::read(reader)?;
4841                 let mut pending_background_events_read: Vec<BackgroundEvent> = Vec::with_capacity(cmp::min(background_event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<BackgroundEvent>()));
4842                 for _ in 0..background_event_count {
4843                         match <u8 as Readable>::read(reader)? {
4844                                 0 => pending_background_events_read.push(BackgroundEvent::ClosingMonitorUpdate((Readable::read(reader)?, Readable::read(reader)?))),
4845                                 _ => return Err(DecodeError::InvalidValue),
4846                         }
4847                 }
4848
4849                 let last_node_announcement_serial: u32 = Readable::read(reader)?;
4850                 let highest_seen_timestamp: u32 = Readable::read(reader)?;
4851
4852                 let pending_inbound_payment_count: u64 = Readable::read(reader)?;
4853                 let mut pending_inbound_payments: HashMap<PaymentHash, PendingInboundPayment> = HashMap::with_capacity(cmp::min(pending_inbound_payment_count as usize, MAX_ALLOC_SIZE/(3*32)));
4854                 for _ in 0..pending_inbound_payment_count {
4855                         if pending_inbound_payments.insert(Readable::read(reader)?, Readable::read(reader)?).is_some() {
4856                                 return Err(DecodeError::InvalidValue);
4857                         }
4858                 }
4859
4860                 let pending_outbound_payments_count: u64 = Readable::read(reader)?;
4861                 let mut pending_outbound_payments: HashSet<[u8; 32]> = HashSet::with_capacity(cmp::min(pending_outbound_payments_count as usize, MAX_ALLOC_SIZE/32));
4862                 for _ in 0..pending_outbound_payments_count {
4863                         if !pending_outbound_payments.insert(Readable::read(reader)?) {
4864                                 return Err(DecodeError::InvalidValue);
4865                         }
4866                 }
4867
4868                 read_tlv_fields!(reader, {}, {});
4869
4870                 let mut secp_ctx = Secp256k1::new();
4871                 secp_ctx.seeded_randomize(&args.keys_manager.get_secure_random_bytes());
4872
4873                 let channel_manager = ChannelManager {
4874                         genesis_hash,
4875                         fee_estimator: args.fee_estimator,
4876                         chain_monitor: args.chain_monitor,
4877                         tx_broadcaster: args.tx_broadcaster,
4878
4879                         best_block: RwLock::new(BestBlock::new(best_block_hash, best_block_height)),
4880
4881                         channel_state: Mutex::new(ChannelHolder {
4882                                 by_id,
4883                                 short_to_id,
4884                                 forward_htlcs,
4885                                 claimable_htlcs,
4886                                 pending_msg_events: Vec::new(),
4887                         }),
4888                         pending_inbound_payments: Mutex::new(pending_inbound_payments),
4889                         pending_outbound_payments: Mutex::new(pending_outbound_payments),
4890
4891                         our_network_key: args.keys_manager.get_node_secret(),
4892                         our_network_pubkey: PublicKey::from_secret_key(&secp_ctx, &args.keys_manager.get_node_secret()),
4893                         secp_ctx,
4894
4895                         last_node_announcement_serial: AtomicUsize::new(last_node_announcement_serial as usize),
4896                         highest_seen_timestamp: AtomicUsize::new(highest_seen_timestamp as usize),
4897
4898                         per_peer_state: RwLock::new(per_peer_state),
4899
4900                         pending_events: Mutex::new(pending_events_read),
4901                         pending_background_events: Mutex::new(pending_background_events_read),
4902                         total_consistency_lock: RwLock::new(()),
4903                         persistence_notifier: PersistenceNotifier::new(),
4904
4905                         keys_manager: args.keys_manager,
4906                         logger: args.logger,
4907                         default_configuration: args.default_config,
4908                 };
4909
4910                 for htlc_source in failed_htlcs.drain(..) {
4911                         channel_manager.fail_htlc_backwards_internal(channel_manager.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
4912                 }
4913
4914                 //TODO: Broadcast channel update for closed channels, but only after we've made a
4915                 //connection or two.
4916
4917                 Ok((best_block_hash.clone(), channel_manager))
4918         }
4919 }
4920
4921 #[cfg(test)]
4922 mod tests {
4923         use ln::channelmanager::PersistenceNotifier;
4924         use std::sync::Arc;
4925         use core::sync::atomic::{AtomicBool, Ordering};
4926         use std::thread;
4927         use core::time::Duration;
4928
4929         #[test]
4930         fn test_wait_timeout() {
4931                 let persistence_notifier = Arc::new(PersistenceNotifier::new());
4932                 let thread_notifier = Arc::clone(&persistence_notifier);
4933
4934                 let exit_thread = Arc::new(AtomicBool::new(false));
4935                 let exit_thread_clone = exit_thread.clone();
4936                 thread::spawn(move || {
4937                         loop {
4938                                 let &(ref persist_mtx, ref cnd) = &thread_notifier.persistence_lock;
4939                                 let mut persistence_lock = persist_mtx.lock().unwrap();
4940                                 *persistence_lock = true;
4941                                 cnd.notify_all();
4942
4943                                 if exit_thread_clone.load(Ordering::SeqCst) {
4944                                         break
4945                                 }
4946                         }
4947                 });
4948
4949                 // Check that we can block indefinitely until updates are available.
4950                 let _ = persistence_notifier.wait();
4951
4952                 // Check that the PersistenceNotifier will return after the given duration if updates are
4953                 // available.
4954                 loop {
4955                         if persistence_notifier.wait_timeout(Duration::from_millis(100)) {
4956                                 break
4957                         }
4958                 }
4959
4960                 exit_thread.store(true, Ordering::SeqCst);
4961
4962                 // Check that the PersistenceNotifier will return after the given duration even if no updates
4963                 // are available.
4964                 loop {
4965                         if !persistence_notifier.wait_timeout(Duration::from_millis(100)) {
4966                                 break
4967                         }
4968                 }
4969         }
4970 }
4971
4972 #[cfg(all(any(test, feature = "_test_utils"), feature = "unstable"))]
4973 pub mod bench {
4974         use chain::Listen;
4975         use chain::chainmonitor::ChainMonitor;
4976         use chain::channelmonitor::Persist;
4977         use chain::keysinterface::{KeysManager, InMemorySigner};
4978         use ln::channelmanager::{BestBlock, ChainParameters, ChannelManager, PaymentHash, PaymentPreimage};
4979         use ln::features::{InitFeatures, InvoiceFeatures};
4980         use ln::functional_test_utils::*;
4981         use ln::msgs::ChannelMessageHandler;
4982         use routing::network_graph::NetworkGraph;
4983         use routing::router::get_route;
4984         use util::test_utils;
4985         use util::config::UserConfig;
4986         use util::events::{Event, MessageSendEvent, MessageSendEventsProvider};
4987
4988         use bitcoin::hashes::Hash;
4989         use bitcoin::hashes::sha256::Hash as Sha256;
4990         use bitcoin::{Block, BlockHeader, Transaction, TxOut};
4991
4992         use std::sync::Mutex;
4993
4994         use test::Bencher;
4995
4996         struct NodeHolder<'a, P: Persist<InMemorySigner>> {
4997                 node: &'a ChannelManager<InMemorySigner,
4998                         &'a ChainMonitor<InMemorySigner, &'a test_utils::TestChainSource,
4999                                 &'a test_utils::TestBroadcaster, &'a test_utils::TestFeeEstimator,
5000                                 &'a test_utils::TestLogger, &'a P>,
5001                         &'a test_utils::TestBroadcaster, &'a KeysManager,
5002                         &'a test_utils::TestFeeEstimator, &'a test_utils::TestLogger>
5003         }
5004
5005         #[cfg(test)]
5006         #[bench]
5007         fn bench_sends(bench: &mut Bencher) {
5008                 bench_two_sends(bench, test_utils::TestPersister::new(), test_utils::TestPersister::new());
5009         }
5010
5011         pub fn bench_two_sends<P: Persist<InMemorySigner>>(bench: &mut Bencher, persister_a: P, persister_b: P) {
5012                 // Do a simple benchmark of sending a payment back and forth between two nodes.
5013                 // Note that this is unrealistic as each payment send will require at least two fsync
5014                 // calls per node.
5015                 let network = bitcoin::Network::Testnet;
5016                 let genesis_hash = bitcoin::blockdata::constants::genesis_block(network).header.block_hash();
5017
5018                 let tx_broadcaster = test_utils::TestBroadcaster{txn_broadcasted: Mutex::new(Vec::new())};
5019                 let fee_estimator = test_utils::TestFeeEstimator { sat_per_kw: 253 };
5020
5021                 let mut config: UserConfig = Default::default();
5022                 config.own_channel_config.minimum_depth = 1;
5023
5024                 let logger_a = test_utils::TestLogger::with_id("node a".to_owned());
5025                 let chain_monitor_a = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_a);
5026                 let seed_a = [1u8; 32];
5027                 let keys_manager_a = KeysManager::new(&seed_a, 42, 42);
5028                 let node_a = ChannelManager::new(&fee_estimator, &chain_monitor_a, &tx_broadcaster, &logger_a, &keys_manager_a, config.clone(), ChainParameters {
5029                         network,
5030                         best_block: BestBlock::from_genesis(network),
5031                 });
5032                 let node_a_holder = NodeHolder { node: &node_a };
5033
5034                 let logger_b = test_utils::TestLogger::with_id("node a".to_owned());
5035                 let chain_monitor_b = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_b);
5036                 let seed_b = [2u8; 32];
5037                 let keys_manager_b = KeysManager::new(&seed_b, 42, 42);
5038                 let node_b = ChannelManager::new(&fee_estimator, &chain_monitor_b, &tx_broadcaster, &logger_b, &keys_manager_b, config.clone(), ChainParameters {
5039                         network,
5040                         best_block: BestBlock::from_genesis(network),
5041                 });
5042                 let node_b_holder = NodeHolder { node: &node_b };
5043
5044                 node_a.create_channel(node_b.get_our_node_id(), 8_000_000, 100_000_000, 42, None).unwrap();
5045                 node_b.handle_open_channel(&node_a.get_our_node_id(), InitFeatures::known(), &get_event_msg!(node_a_holder, MessageSendEvent::SendOpenChannel, node_b.get_our_node_id()));
5046                 node_a.handle_accept_channel(&node_b.get_our_node_id(), InitFeatures::known(), &get_event_msg!(node_b_holder, MessageSendEvent::SendAcceptChannel, node_a.get_our_node_id()));
5047
5048                 let tx;
5049                 if let Event::FundingGenerationReady { temporary_channel_id, output_script, .. } = get_event!(node_a_holder, Event::FundingGenerationReady) {
5050                         tx = Transaction { version: 2, lock_time: 0, input: Vec::new(), output: vec![TxOut {
5051                                 value: 8_000_000, script_pubkey: output_script,
5052                         }]};
5053                         node_a.funding_transaction_generated(&temporary_channel_id, tx.clone()).unwrap();
5054                 } else { panic!(); }
5055
5056                 node_b.handle_funding_created(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendFundingCreated, node_b.get_our_node_id()));
5057                 node_a.handle_funding_signed(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendFundingSigned, node_a.get_our_node_id()));
5058
5059                 assert_eq!(&tx_broadcaster.txn_broadcasted.lock().unwrap()[..], &[tx.clone()]);
5060
5061                 let block = Block {
5062                         header: BlockHeader { version: 0x20000000, prev_blockhash: genesis_hash, merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 },
5063                         txdata: vec![tx],
5064                 };
5065                 Listen::block_connected(&node_a, &block, 1);
5066                 Listen::block_connected(&node_b, &block, 1);
5067
5068                 node_a.handle_funding_locked(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendFundingLocked, node_a.get_our_node_id()));
5069                 node_b.handle_funding_locked(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendFundingLocked, node_b.get_our_node_id()));
5070
5071                 let dummy_graph = NetworkGraph::new(genesis_hash);
5072
5073                 let mut payment_count: u64 = 0;
5074                 macro_rules! send_payment {
5075                         ($node_a: expr, $node_b: expr) => {
5076                                 let usable_channels = $node_a.list_usable_channels();
5077                                 let route = get_route(&$node_a.get_our_node_id(), &dummy_graph, &$node_b.get_our_node_id(), Some(InvoiceFeatures::known()),
5078                                         Some(&usable_channels.iter().map(|r| r).collect::<Vec<_>>()), &[], 10_000, TEST_FINAL_CLTV, &logger_a).unwrap();
5079
5080                                 let mut payment_preimage = PaymentPreimage([0; 32]);
5081                                 payment_preimage.0[0..8].copy_from_slice(&payment_count.to_le_bytes());
5082                                 payment_count += 1;
5083                                 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0[..]).into_inner());
5084                                 let payment_secret = $node_b.create_inbound_payment_for_hash(payment_hash, None, 7200, 0).unwrap();
5085
5086                                 $node_a.send_payment(&route, payment_hash, &Some(payment_secret)).unwrap();
5087                                 let payment_event = SendEvent::from_event($node_a.get_and_clear_pending_msg_events().pop().unwrap());
5088                                 $node_b.handle_update_add_htlc(&$node_a.get_our_node_id(), &payment_event.msgs[0]);
5089                                 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &payment_event.commitment_msg);
5090                                 let (raa, cs) = get_revoke_commit_msgs!(NodeHolder { node: &$node_b }, $node_a.get_our_node_id());
5091                                 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &raa);
5092                                 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &cs);
5093                                 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &get_event_msg!(NodeHolder { node: &$node_a }, MessageSendEvent::SendRevokeAndACK, $node_b.get_our_node_id()));
5094
5095                                 expect_pending_htlcs_forwardable!(NodeHolder { node: &$node_b });
5096                                 expect_payment_received!(NodeHolder { node: &$node_b }, payment_hash, payment_secret, 10_000);
5097                                 assert!($node_b.claim_funds(payment_preimage));
5098
5099                                 match $node_b.get_and_clear_pending_msg_events().pop().unwrap() {
5100                                         MessageSendEvent::UpdateHTLCs { node_id, updates } => {
5101                                                 assert_eq!(node_id, $node_a.get_our_node_id());
5102                                                 $node_a.handle_update_fulfill_htlc(&$node_b.get_our_node_id(), &updates.update_fulfill_htlcs[0]);
5103                                                 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &updates.commitment_signed);
5104                                         },
5105                                         _ => panic!("Failed to generate claim event"),
5106                                 }
5107
5108                                 let (raa, cs) = get_revoke_commit_msgs!(NodeHolder { node: &$node_a }, $node_b.get_our_node_id());
5109                                 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &raa);
5110                                 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &cs);
5111                                 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &get_event_msg!(NodeHolder { node: &$node_b }, MessageSendEvent::SendRevokeAndACK, $node_a.get_our_node_id()));
5112
5113                                 expect_payment_sent!(NodeHolder { node: &$node_a }, payment_preimage);
5114                         }
5115                 }
5116
5117                 bench.iter(|| {
5118                         send_payment!(node_a, node_b);
5119                         send_payment!(node_b, node_a);
5120                 });
5121         }
5122 }