Expand the fields exposed to users in `ChannelDetails`
[rust-lightning] / lightning / src / ln / channelmanager.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! The top-level channel management and payment tracking stuff lives here.
11 //!
12 //! The ChannelManager is the main chunk of logic implementing the lightning protocol and is
13 //! responsible for tracking which channels are open, HTLCs are in flight and reestablishing those
14 //! upon reconnect to the relevant peer(s).
15 //!
16 //! It does not manage routing logic (see routing::router::get_route for that) nor does it manage constructing
17 //! on-chain transactions (it only monitors the chain to watch for any force-closes that might
18 //! imply it needs to fail HTLCs/payments/channels it manages).
19 //!
20
21 use bitcoin::blockdata::block::{Block, BlockHeader};
22 use bitcoin::blockdata::transaction::Transaction;
23 use bitcoin::blockdata::constants::genesis_block;
24 use bitcoin::network::constants::Network;
25
26 use bitcoin::hashes::{Hash, HashEngine};
27 use bitcoin::hashes::hmac::{Hmac, HmacEngine};
28 use bitcoin::hashes::sha256::Hash as Sha256;
29 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
30 use bitcoin::hashes::cmp::fixed_time_eq;
31 use bitcoin::hash_types::{BlockHash, Txid};
32
33 use bitcoin::secp256k1::key::{SecretKey,PublicKey};
34 use bitcoin::secp256k1::Secp256k1;
35 use bitcoin::secp256k1::ecdh::SharedSecret;
36 use bitcoin::secp256k1;
37
38 use chain;
39 use chain::Confirm;
40 use chain::Watch;
41 use chain::chaininterface::{BroadcasterInterface, FeeEstimator};
42 use chain::channelmonitor::{ChannelMonitor, ChannelMonitorUpdate, ChannelMonitorUpdateStep, ChannelMonitorUpdateErr, HTLC_FAIL_BACK_BUFFER, CLTV_CLAIM_BUFFER, LATENCY_GRACE_PERIOD_BLOCKS, ANTI_REORG_DELAY, MonitorEvent, CLOSED_CHANNEL_UPDATE_ID};
43 use chain::transaction::{OutPoint, TransactionData};
44 // Since this struct is returned in `list_channels` methods, expose it here in case users want to
45 // construct one themselves.
46 use ln::{PaymentHash, PaymentPreimage, PaymentSecret};
47 pub use ln::channel::CounterpartyForwardingInfo;
48 use ln::channel::{Channel, ChannelError, ChannelUpdateStatus};
49 use ln::features::{InitFeatures, NodeFeatures};
50 use routing::router::{Route, RouteHop};
51 use ln::msgs;
52 use ln::msgs::NetAddress;
53 use ln::onion_utils;
54 use ln::msgs::{ChannelMessageHandler, DecodeError, LightningError, OptionalField};
55 use chain::keysinterface::{Sign, KeysInterface, KeysManager, InMemorySigner};
56 use util::config::UserConfig;
57 use util::events::{EventHandler, EventsProvider, MessageSendEvent, MessageSendEventsProvider};
58 use util::{byte_utils, events};
59 use util::ser::{Readable, ReadableArgs, MaybeReadable, Writeable, Writer};
60 use util::chacha20::{ChaCha20, ChaChaReader};
61 use util::logger::Logger;
62 use util::errors::APIError;
63
64 use prelude::*;
65 use core::{cmp, mem};
66 use core::cell::RefCell;
67 use std::io::{Cursor, Read};
68 use std::sync::{Arc, Condvar, Mutex, MutexGuard, RwLock, RwLockReadGuard};
69 use core::sync::atomic::{AtomicUsize, Ordering};
70 use core::time::Duration;
71 #[cfg(any(test, feature = "allow_wallclock_use"))]
72 use std::time::Instant;
73 use core::ops::Deref;
74 use bitcoin::hashes::hex::ToHex;
75
76 // We hold various information about HTLC relay in the HTLC objects in Channel itself:
77 //
78 // Upon receipt of an HTLC from a peer, we'll give it a PendingHTLCStatus indicating if it should
79 // forward the HTLC with information it will give back to us when it does so, or if it should Fail
80 // the HTLC with the relevant message for the Channel to handle giving to the remote peer.
81 //
82 // Once said HTLC is committed in the Channel, if the PendingHTLCStatus indicated Forward, the
83 // Channel will return the PendingHTLCInfo back to us, and we will create an HTLCForwardInfo
84 // with it to track where it came from (in case of onwards-forward error), waiting a random delay
85 // before we forward it.
86 //
87 // We will then use HTLCForwardInfo's PendingHTLCInfo to construct an outbound HTLC, with a
88 // relevant HTLCSource::PreviousHopData filled in to indicate where it came from (which we can use
89 // to either fail-backwards or fulfill the HTLC backwards along the relevant path).
90 // Alternatively, we can fill an outbound HTLC with a HTLCSource::OutboundRoute indicating this is
91 // our payment, which we can use to decode errors or inform the user that the payment was sent.
92
93 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
94 enum PendingHTLCRouting {
95         Forward {
96                 onion_packet: msgs::OnionPacket,
97                 short_channel_id: u64, // This should be NonZero<u64> eventually when we bump MSRV
98         },
99         Receive {
100                 payment_data: msgs::FinalOnionHopData,
101                 incoming_cltv_expiry: u32, // Used to track when we should expire pending HTLCs that go unclaimed
102         },
103 }
104
105 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
106 pub(super) struct PendingHTLCInfo {
107         routing: PendingHTLCRouting,
108         incoming_shared_secret: [u8; 32],
109         payment_hash: PaymentHash,
110         pub(super) amt_to_forward: u64,
111         pub(super) outgoing_cltv_value: u32,
112 }
113
114 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
115 pub(super) enum HTLCFailureMsg {
116         Relay(msgs::UpdateFailHTLC),
117         Malformed(msgs::UpdateFailMalformedHTLC),
118 }
119
120 /// Stores whether we can't forward an HTLC or relevant forwarding info
121 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
122 pub(super) enum PendingHTLCStatus {
123         Forward(PendingHTLCInfo),
124         Fail(HTLCFailureMsg),
125 }
126
127 pub(super) enum HTLCForwardInfo {
128         AddHTLC {
129                 forward_info: PendingHTLCInfo,
130
131                 // These fields are produced in `forward_htlcs()` and consumed in
132                 // `process_pending_htlc_forwards()` for constructing the
133                 // `HTLCSource::PreviousHopData` for failed and forwarded
134                 // HTLCs.
135                 prev_short_channel_id: u64,
136                 prev_htlc_id: u64,
137                 prev_funding_outpoint: OutPoint,
138         },
139         FailHTLC {
140                 htlc_id: u64,
141                 err_packet: msgs::OnionErrorPacket,
142         },
143 }
144
145 /// Tracks the inbound corresponding to an outbound HTLC
146 #[derive(Clone, PartialEq)]
147 pub(crate) struct HTLCPreviousHopData {
148         short_channel_id: u64,
149         htlc_id: u64,
150         incoming_packet_shared_secret: [u8; 32],
151
152         // This field is consumed by `claim_funds_from_hop()` when updating a force-closed backwards
153         // channel with a preimage provided by the forward channel.
154         outpoint: OutPoint,
155 }
156
157 struct ClaimableHTLC {
158         prev_hop: HTLCPreviousHopData,
159         value: u64,
160         /// Contains a total_msat (which may differ from value if this is a Multi-Path Payment) and a
161         /// payment_secret which prevents path-probing attacks and can associate different HTLCs which
162         /// are part of the same payment.
163         payment_data: msgs::FinalOnionHopData,
164         cltv_expiry: u32,
165 }
166
167 /// Tracks the inbound corresponding to an outbound HTLC
168 #[derive(Clone, PartialEq)]
169 pub(crate) enum HTLCSource {
170         PreviousHopData(HTLCPreviousHopData),
171         OutboundRoute {
172                 path: Vec<RouteHop>,
173                 session_priv: SecretKey,
174                 /// Technically we can recalculate this from the route, but we cache it here to avoid
175                 /// doing a double-pass on route when we get a failure back
176                 first_hop_htlc_msat: u64,
177         },
178 }
179 #[cfg(test)]
180 impl HTLCSource {
181         pub fn dummy() -> Self {
182                 HTLCSource::OutboundRoute {
183                         path: Vec::new(),
184                         session_priv: SecretKey::from_slice(&[1; 32]).unwrap(),
185                         first_hop_htlc_msat: 0,
186                 }
187         }
188 }
189
190 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
191 pub(super) enum HTLCFailReason {
192         LightningError {
193                 err: msgs::OnionErrorPacket,
194         },
195         Reason {
196                 failure_code: u16,
197                 data: Vec<u8>,
198         }
199 }
200
201 type ShutdownResult = (Option<(OutPoint, ChannelMonitorUpdate)>, Vec<(HTLCSource, PaymentHash)>);
202
203 /// Error type returned across the channel_state mutex boundary. When an Err is generated for a
204 /// Channel, we generally end up with a ChannelError::Close for which we have to close the channel
205 /// immediately (ie with no further calls on it made). Thus, this step happens inside a
206 /// channel_state lock. We then return the set of things that need to be done outside the lock in
207 /// this struct and call handle_error!() on it.
208
209 struct MsgHandleErrInternal {
210         err: msgs::LightningError,
211         shutdown_finish: Option<(ShutdownResult, Option<msgs::ChannelUpdate>)>,
212 }
213 impl MsgHandleErrInternal {
214         #[inline]
215         fn send_err_msg_no_close(err: String, channel_id: [u8; 32]) -> Self {
216                 Self {
217                         err: LightningError {
218                                 err: err.clone(),
219                                 action: msgs::ErrorAction::SendErrorMessage {
220                                         msg: msgs::ErrorMessage {
221                                                 channel_id,
222                                                 data: err
223                                         },
224                                 },
225                         },
226                         shutdown_finish: None,
227                 }
228         }
229         #[inline]
230         fn ignore_no_close(err: String) -> Self {
231                 Self {
232                         err: LightningError {
233                                 err,
234                                 action: msgs::ErrorAction::IgnoreError,
235                         },
236                         shutdown_finish: None,
237                 }
238         }
239         #[inline]
240         fn from_no_close(err: msgs::LightningError) -> Self {
241                 Self { err, shutdown_finish: None }
242         }
243         #[inline]
244         fn from_finish_shutdown(err: String, channel_id: [u8; 32], shutdown_res: ShutdownResult, channel_update: Option<msgs::ChannelUpdate>) -> Self {
245                 Self {
246                         err: LightningError {
247                                 err: err.clone(),
248                                 action: msgs::ErrorAction::SendErrorMessage {
249                                         msg: msgs::ErrorMessage {
250                                                 channel_id,
251                                                 data: err
252                                         },
253                                 },
254                         },
255                         shutdown_finish: Some((shutdown_res, channel_update)),
256                 }
257         }
258         #[inline]
259         fn from_chan_no_close(err: ChannelError, channel_id: [u8; 32]) -> Self {
260                 Self {
261                         err: match err {
262                                 ChannelError::Ignore(msg) => LightningError {
263                                         err: msg,
264                                         action: msgs::ErrorAction::IgnoreError,
265                                 },
266                                 ChannelError::Close(msg) => LightningError {
267                                         err: msg.clone(),
268                                         action: msgs::ErrorAction::SendErrorMessage {
269                                                 msg: msgs::ErrorMessage {
270                                                         channel_id,
271                                                         data: msg
272                                                 },
273                                         },
274                                 },
275                                 ChannelError::CloseDelayBroadcast(msg) => LightningError {
276                                         err: msg.clone(),
277                                         action: msgs::ErrorAction::SendErrorMessage {
278                                                 msg: msgs::ErrorMessage {
279                                                         channel_id,
280                                                         data: msg
281                                                 },
282                                         },
283                                 },
284                         },
285                         shutdown_finish: None,
286                 }
287         }
288 }
289
290 /// We hold back HTLCs we intend to relay for a random interval greater than this (see
291 /// Event::PendingHTLCsForwardable for the API guidelines indicating how long should be waited).
292 /// This provides some limited amount of privacy. Ideally this would range from somewhere like one
293 /// second to 30 seconds, but people expect lightning to be, you know, kinda fast, sadly.
294 const MIN_HTLC_RELAY_HOLDING_CELL_MILLIS: u64 = 100;
295
296 /// For events which result in both a RevokeAndACK and a CommitmentUpdate, by default they should
297 /// be sent in the order they appear in the return value, however sometimes the order needs to be
298 /// variable at runtime (eg Channel::channel_reestablish needs to re-send messages in the order
299 /// they were originally sent). In those cases, this enum is also returned.
300 #[derive(Clone, PartialEq)]
301 pub(super) enum RAACommitmentOrder {
302         /// Send the CommitmentUpdate messages first
303         CommitmentFirst,
304         /// Send the RevokeAndACK message first
305         RevokeAndACKFirst,
306 }
307
308 // Note this is only exposed in cfg(test):
309 pub(super) struct ChannelHolder<Signer: Sign> {
310         pub(super) by_id: HashMap<[u8; 32], Channel<Signer>>,
311         pub(super) short_to_id: HashMap<u64, [u8; 32]>,
312         /// short channel id -> forward infos. Key of 0 means payments received
313         /// Note that while this is held in the same mutex as the channels themselves, no consistency
314         /// guarantees are made about the existence of a channel with the short id here, nor the short
315         /// ids in the PendingHTLCInfo!
316         pub(super) forward_htlcs: HashMap<u64, Vec<HTLCForwardInfo>>,
317         /// Map from payment hash to any HTLCs which are to us and can be failed/claimed by the user.
318         /// Note that while this is held in the same mutex as the channels themselves, no consistency
319         /// guarantees are made about the channels given here actually existing anymore by the time you
320         /// go to read them!
321         claimable_htlcs: HashMap<PaymentHash, Vec<ClaimableHTLC>>,
322         /// Messages to send to peers - pushed to in the same lock that they are generated in (except
323         /// for broadcast messages, where ordering isn't as strict).
324         pub(super) pending_msg_events: Vec<MessageSendEvent>,
325 }
326
327 /// Events which we process internally but cannot be procsesed immediately at the generation site
328 /// for some reason. They are handled in timer_tick_occurred, so may be processed with
329 /// quite some time lag.
330 enum BackgroundEvent {
331         /// Handle a ChannelMonitorUpdate that closes a channel, broadcasting its current latest holder
332         /// commitment transaction.
333         ClosingMonitorUpdate((OutPoint, ChannelMonitorUpdate)),
334 }
335
336 /// State we hold per-peer. In the future we should put channels in here, but for now we only hold
337 /// the latest Init features we heard from the peer.
338 struct PeerState {
339         latest_features: InitFeatures,
340 }
341
342 /// Stores a PaymentSecret and any other data we may need to validate an inbound payment is
343 /// actually ours and not some duplicate HTLC sent to us by a node along the route.
344 ///
345 /// For users who don't want to bother doing their own payment preimage storage, we also store that
346 /// here.
347 struct PendingInboundPayment {
348         /// The payment secret that the sender must use for us to accept this payment
349         payment_secret: PaymentSecret,
350         /// Time at which this HTLC expires - blocks with a header time above this value will result in
351         /// this payment being removed.
352         expiry_time: u64,
353         /// Arbitrary identifier the user specifies (or not)
354         user_payment_id: u64,
355         // Other required attributes of the payment, optionally enforced:
356         payment_preimage: Option<PaymentPreimage>,
357         min_value_msat: Option<u64>,
358 }
359
360 /// SimpleArcChannelManager is useful when you need a ChannelManager with a static lifetime, e.g.
361 /// when you're using lightning-net-tokio (since tokio::spawn requires parameters with static
362 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
363 /// SimpleRefChannelManager is the more appropriate type. Defining these type aliases prevents
364 /// issues such as overly long function definitions. Note that the ChannelManager can take any
365 /// type that implements KeysInterface for its keys manager, but this type alias chooses the
366 /// concrete type of the KeysManager.
367 pub type SimpleArcChannelManager<M, T, F, L> = ChannelManager<InMemorySigner, Arc<M>, Arc<T>, Arc<KeysManager>, Arc<F>, Arc<L>>;
368
369 /// SimpleRefChannelManager is a type alias for a ChannelManager reference, and is the reference
370 /// counterpart to the SimpleArcChannelManager type alias. Use this type by default when you don't
371 /// need a ChannelManager with a static lifetime. You'll need a static lifetime in cases such as
372 /// usage of lightning-net-tokio (since tokio::spawn requires parameters with static lifetimes).
373 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
374 /// helps with issues such as long function definitions. Note that the ChannelManager can take any
375 /// type that implements KeysInterface for its keys manager, but this type alias chooses the
376 /// concrete type of the KeysManager.
377 pub type SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, M, T, F, L> = ChannelManager<InMemorySigner, &'a M, &'b T, &'c KeysManager, &'d F, &'e L>;
378
379 /// Manager which keeps track of a number of channels and sends messages to the appropriate
380 /// channel, also tracking HTLC preimages and forwarding onion packets appropriately.
381 ///
382 /// Implements ChannelMessageHandler, handling the multi-channel parts and passing things through
383 /// to individual Channels.
384 ///
385 /// Implements Writeable to write out all channel state to disk. Implies peer_disconnected() for
386 /// all peers during write/read (though does not modify this instance, only the instance being
387 /// serialized). This will result in any channels which have not yet exchanged funding_created (ie
388 /// called funding_transaction_generated for outbound channels).
389 ///
390 /// Note that you can be a bit lazier about writing out ChannelManager than you can be with
391 /// ChannelMonitors. With ChannelMonitors you MUST write each monitor update out to disk before
392 /// returning from chain::Watch::watch_/update_channel, with ChannelManagers, writing updates
393 /// happens out-of-band (and will prevent any other ChannelManager operations from occurring during
394 /// the serialization process). If the deserialized version is out-of-date compared to the
395 /// ChannelMonitors passed by reference to read(), those channels will be force-closed based on the
396 /// ChannelMonitor state and no funds will be lost (mod on-chain transaction fees).
397 ///
398 /// Note that the deserializer is only implemented for (BlockHash, ChannelManager), which
399 /// tells you the last block hash which was block_connect()ed. You MUST rescan any blocks along
400 /// the "reorg path" (ie call block_disconnected() until you get to a common block and then call
401 /// block_connected() to step towards your best block) upon deserialization before using the
402 /// object!
403 ///
404 /// Note that ChannelManager is responsible for tracking liveness of its channels and generating
405 /// ChannelUpdate messages informing peers that the channel is temporarily disabled. To avoid
406 /// spam due to quick disconnection/reconnection, updates are not sent until the channel has been
407 /// offline for a full minute. In order to track this, you must call
408 /// timer_tick_occurred roughly once per minute, though it doesn't have to be perfect.
409 ///
410 /// Rather than using a plain ChannelManager, it is preferable to use either a SimpleArcChannelManager
411 /// a SimpleRefChannelManager, for conciseness. See their documentation for more details, but
412 /// essentially you should default to using a SimpleRefChannelManager, and use a
413 /// SimpleArcChannelManager when you require a ChannelManager with a static lifetime, such as when
414 /// you're using lightning-net-tokio.
415 pub struct ChannelManager<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
416         where M::Target: chain::Watch<Signer>,
417         T::Target: BroadcasterInterface,
418         K::Target: KeysInterface<Signer = Signer>,
419         F::Target: FeeEstimator,
420                                 L::Target: Logger,
421 {
422         default_configuration: UserConfig,
423         genesis_hash: BlockHash,
424         fee_estimator: F,
425         chain_monitor: M,
426         tx_broadcaster: T,
427
428         #[cfg(test)]
429         pub(super) best_block: RwLock<BestBlock>,
430         #[cfg(not(test))]
431         best_block: RwLock<BestBlock>,
432         secp_ctx: Secp256k1<secp256k1::All>,
433
434         #[cfg(any(test, feature = "_test_utils"))]
435         pub(super) channel_state: Mutex<ChannelHolder<Signer>>,
436         #[cfg(not(any(test, feature = "_test_utils")))]
437         channel_state: Mutex<ChannelHolder<Signer>>,
438
439         /// Storage for PaymentSecrets and any requirements on future inbound payments before we will
440         /// expose them to users via a PaymentReceived event. HTLCs which do not meet the requirements
441         /// here are failed when we process them as pending-forwardable-HTLCs, and entries are removed
442         /// after we generate a PaymentReceived upon receipt of all MPP parts or when they time out.
443         /// Locked *after* channel_state.
444         pending_inbound_payments: Mutex<HashMap<PaymentHash, PendingInboundPayment>>,
445
446         /// The session_priv bytes of outbound payments which are pending resolution.
447         /// The authoritative state of these HTLCs resides either within Channels or ChannelMonitors
448         /// (if the channel has been force-closed), however we track them here to prevent duplicative
449         /// PaymentSent/PaymentFailed events. Specifically, in the case of a duplicative
450         /// update_fulfill_htlc message after a reconnect, we may "claim" a payment twice.
451         /// Additionally, because ChannelMonitors are often not re-serialized after connecting block(s)
452         /// which may generate a claim event, we may receive similar duplicate claim/fail MonitorEvents
453         /// after reloading from disk while replaying blocks against ChannelMonitors.
454         ///
455         /// Locked *after* channel_state.
456         pending_outbound_payments: Mutex<HashSet<[u8; 32]>>,
457
458         our_network_key: SecretKey,
459         our_network_pubkey: PublicKey,
460
461         /// Used to track the last value sent in a node_announcement "timestamp" field. We ensure this
462         /// value increases strictly since we don't assume access to a time source.
463         last_node_announcement_serial: AtomicUsize,
464
465         /// The highest block timestamp we've seen, which is usually a good guess at the current time.
466         /// Assuming most miners are generating blocks with reasonable timestamps, this shouldn't be
467         /// very far in the past, and can only ever be up to two hours in the future.
468         highest_seen_timestamp: AtomicUsize,
469
470         /// The bulk of our storage will eventually be here (channels and message queues and the like).
471         /// If we are connected to a peer we always at least have an entry here, even if no channels
472         /// are currently open with that peer.
473         /// Because adding or removing an entry is rare, we usually take an outer read lock and then
474         /// operate on the inner value freely. Sadly, this prevents parallel operation when opening a
475         /// new channel.
476         per_peer_state: RwLock<HashMap<PublicKey, Mutex<PeerState>>>,
477
478         pending_events: Mutex<Vec<events::Event>>,
479         pending_background_events: Mutex<Vec<BackgroundEvent>>,
480         /// Used when we have to take a BIG lock to make sure everything is self-consistent.
481         /// Essentially just when we're serializing ourselves out.
482         /// Taken first everywhere where we are making changes before any other locks.
483         /// When acquiring this lock in read mode, rather than acquiring it directly, call
484         /// `PersistenceNotifierGuard::notify_on_drop(..)` and pass the lock to it, to ensure the
485         /// PersistenceNotifier the lock contains sends out a notification when the lock is released.
486         total_consistency_lock: RwLock<()>,
487
488         persistence_notifier: PersistenceNotifier,
489
490         keys_manager: K,
491
492         logger: L,
493 }
494
495 /// Chain-related parameters used to construct a new `ChannelManager`.
496 ///
497 /// Typically, the block-specific parameters are derived from the best block hash for the network,
498 /// as a newly constructed `ChannelManager` will not have created any channels yet. These parameters
499 /// are not needed when deserializing a previously constructed `ChannelManager`.
500 #[derive(Clone, Copy, PartialEq)]
501 pub struct ChainParameters {
502         /// The network for determining the `chain_hash` in Lightning messages.
503         pub network: Network,
504
505         /// The hash and height of the latest block successfully connected.
506         ///
507         /// Used to track on-chain channel funding outputs and send payments with reliable timelocks.
508         pub best_block: BestBlock,
509 }
510
511 /// The best known block as identified by its hash and height.
512 #[derive(Clone, Copy, PartialEq)]
513 pub struct BestBlock {
514         block_hash: BlockHash,
515         height: u32,
516 }
517
518 impl BestBlock {
519         /// Returns the best block from the genesis of the given network.
520         pub fn from_genesis(network: Network) -> Self {
521                 BestBlock {
522                         block_hash: genesis_block(network).header.block_hash(),
523                         height: 0,
524                 }
525         }
526
527         /// Returns the best block as identified by the given block hash and height.
528         pub fn new(block_hash: BlockHash, height: u32) -> Self {
529                 BestBlock { block_hash, height }
530         }
531
532         /// Returns the best block hash.
533         pub fn block_hash(&self) -> BlockHash { self.block_hash }
534
535         /// Returns the best block height.
536         pub fn height(&self) -> u32 { self.height }
537 }
538
539 #[derive(Copy, Clone, PartialEq)]
540 enum NotifyOption {
541         DoPersist,
542         SkipPersist,
543 }
544
545 /// Whenever we release the `ChannelManager`'s `total_consistency_lock`, from read mode, it is
546 /// desirable to notify any listeners on `await_persistable_update_timeout`/
547 /// `await_persistable_update` when new updates are available for persistence. Therefore, this
548 /// struct is responsible for locking the total consistency lock and, upon going out of scope,
549 /// sending the aforementioned notification (since the lock being released indicates that the
550 /// updates are ready for persistence).
551 ///
552 /// We allow callers to either always notify by constructing with `notify_on_drop` or choose to
553 /// notify or not based on whether relevant changes have been made, providing a closure to
554 /// `optionally_notify` which returns a `NotifyOption`.
555 struct PersistenceNotifierGuard<'a, F: Fn() -> NotifyOption> {
556         persistence_notifier: &'a PersistenceNotifier,
557         should_persist: F,
558         // We hold onto this result so the lock doesn't get released immediately.
559         _read_guard: RwLockReadGuard<'a, ()>,
560 }
561
562 impl<'a> PersistenceNotifierGuard<'a, fn() -> NotifyOption> { // We don't care what the concrete F is here, it's unused
563         fn notify_on_drop(lock: &'a RwLock<()>, notifier: &'a PersistenceNotifier) -> PersistenceNotifierGuard<'a, impl Fn() -> NotifyOption> {
564                 PersistenceNotifierGuard::optionally_notify(lock, notifier, || -> NotifyOption { NotifyOption::DoPersist })
565         }
566
567         fn optionally_notify<F: Fn() -> NotifyOption>(lock: &'a RwLock<()>, notifier: &'a PersistenceNotifier, persist_check: F) -> PersistenceNotifierGuard<'a, F> {
568                 let read_guard = lock.read().unwrap();
569
570                 PersistenceNotifierGuard {
571                         persistence_notifier: notifier,
572                         should_persist: persist_check,
573                         _read_guard: read_guard,
574                 }
575         }
576 }
577
578 impl<'a, F: Fn() -> NotifyOption> Drop for PersistenceNotifierGuard<'a, F> {
579         fn drop(&mut self) {
580                 if (self.should_persist)() == NotifyOption::DoPersist {
581                         self.persistence_notifier.notify();
582                 }
583         }
584 }
585
586 /// The amount of time in blocks we require our counterparty wait to claim their money (ie time
587 /// between when we, or our watchtower, must check for them having broadcast a theft transaction).
588 ///
589 /// This can be increased (but not decreased) through [`ChannelHandshakeConfig::our_to_self_delay`]
590 ///
591 /// [`ChannelHandshakeConfig::our_to_self_delay`]: crate::util::config::ChannelHandshakeConfig::our_to_self_delay
592 pub const BREAKDOWN_TIMEOUT: u16 = 6 * 24;
593 /// The amount of time in blocks we're willing to wait to claim money back to us. This matches
594 /// the maximum required amount in lnd as of March 2021.
595 pub(crate) const MAX_LOCAL_BREAKDOWN_TIMEOUT: u16 = 2 * 6 * 24 * 7;
596
597 /// The minimum number of blocks between an inbound HTLC's CLTV and the corresponding outbound
598 /// HTLC's CLTV. The current default represents roughly seven hours of blocks at six blocks/hour.
599 ///
600 /// This can be increased (but not decreased) through [`ChannelConfig::cltv_expiry_delta`]
601 ///
602 /// [`ChannelConfig::cltv_expiry_delta`]: crate::util::config::ChannelConfig::cltv_expiry_delta
603 // This should always be a few blocks greater than channelmonitor::CLTV_CLAIM_BUFFER,
604 // i.e. the node we forwarded the payment on to should always have enough room to reliably time out
605 // the HTLC via a full update_fail_htlc/commitment_signed dance before we hit the
606 // CLTV_CLAIM_BUFFER point (we static assert that it's at least 3 blocks more).
607 pub const MIN_CLTV_EXPIRY_DELTA: u16 = 6*7;
608 pub(super) const CLTV_FAR_FAR_AWAY: u32 = 6 * 24 * 7; //TODO?
609
610 /// Minimum CLTV difference between the current block height and received inbound payments.
611 /// Invoices generated for payment to us must set their `min_final_cltv_expiry` field to at least
612 /// this value.
613 // Note that we fail if exactly HTLC_FAIL_BACK_BUFFER + 1 was used, so we need to add one for
614 // any payments to succeed. Further, we don't want payments to fail if a block was found while
615 // a payment was being routed, so we add an extra block to be safe.
616 pub const MIN_FINAL_CLTV_EXPIRY: u32 = HTLC_FAIL_BACK_BUFFER + 3;
617
618 // Check that our CLTV_EXPIRY is at least CLTV_CLAIM_BUFFER + ANTI_REORG_DELAY + LATENCY_GRACE_PERIOD_BLOCKS,
619 // ie that if the next-hop peer fails the HTLC within
620 // LATENCY_GRACE_PERIOD_BLOCKS then we'll still have CLTV_CLAIM_BUFFER left to timeout it onchain,
621 // then waiting ANTI_REORG_DELAY to be reorg-safe on the outbound HLTC and
622 // failing the corresponding htlc backward, and us now seeing the last block of ANTI_REORG_DELAY before
623 // LATENCY_GRACE_PERIOD_BLOCKS.
624 #[deny(const_err)]
625 #[allow(dead_code)]
626 const CHECK_CLTV_EXPIRY_SANITY: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - CLTV_CLAIM_BUFFER - ANTI_REORG_DELAY - LATENCY_GRACE_PERIOD_BLOCKS;
627
628 // Check for ability of an attacker to make us fail on-chain by delaying an HTLC claim. See
629 // ChannelMonitor::should_broadcast_holder_commitment_txn for a description of why this is needed.
630 #[deny(const_err)]
631 #[allow(dead_code)]
632 const CHECK_CLTV_EXPIRY_SANITY_2: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - 2*CLTV_CLAIM_BUFFER;
633
634 /// Details of a channel, as returned by ChannelManager::list_channels and ChannelManager::list_usable_channels
635 #[derive(Clone, Debug, PartialEq)]
636 pub struct ChannelDetails {
637         /// The channel's ID (prior to funding transaction generation, this is a random 32 bytes,
638         /// thereafter this is the txid of the funding transaction xor the funding transaction output).
639         /// Note that this means this value is *not* persistent - it can change once during the
640         /// lifetime of the channel.
641         pub channel_id: [u8; 32],
642         /// The Channel's funding transaction output, if we've negotiated the funding transaction with
643         /// our counterparty already.
644         ///
645         /// Note that, if this has been set, `channel_id` will be equivalent to
646         /// `funding_txo.unwrap().to_channel_id()`.
647         pub funding_txo: Option<OutPoint>,
648         /// The position of the funding transaction in the chain. None if the funding transaction has
649         /// not yet been confirmed and the channel fully opened.
650         pub short_channel_id: Option<u64>,
651         /// The node_id of our counterparty
652         pub remote_network_id: PublicKey,
653         /// The Features the channel counterparty provided upon last connection.
654         /// Useful for routing as it is the most up-to-date copy of the counterparty's features and
655         /// many routing-relevant features are present in the init context.
656         pub counterparty_features: InitFeatures,
657         /// The value, in satoshis, of this channel as appears in the funding output
658         pub channel_value_satoshis: u64,
659         /// The value, in satoshis, that must always be held in the channel for us. This value ensures
660         /// that if we broadcast a revoked state, our counterparty can punish us by claiming at least
661         /// this value on chain.
662         ///
663         /// This value is not included in [`outbound_capacity_msat`] as it can never be spent.
664         ///
665         /// This value will be `None` for outbound channels until the counterparty accepts the channel.
666         ///
667         /// [`outbound_capacity_msat`]: ChannelDetails::outbound_capacity_msat
668         pub to_self_reserve_satoshis: Option<u64>,
669         /// The value, in satoshis, that must always be held in the channel for our counterparty. This
670         /// value ensures that if our counterparty broadcasts a revoked state, we can punish them by
671         /// claiming at least this value on chain.
672         ///
673         /// This value is not included in [`inbound_capacity_msat`] as it can never be spent.
674         ///
675         /// [`inbound_capacity_msat`]: ChannelDetails::inbound_capacity_msat
676         pub to_remote_reserve_satoshis: u64,
677         /// The user_id passed in to create_channel, or 0 if the channel was inbound.
678         pub user_id: u64,
679         /// The available outbound capacity for sending HTLCs to the remote peer. This does not include
680         /// any pending HTLCs which are not yet fully resolved (and, thus, who's balance is not
681         /// available for inclusion in new outbound HTLCs). This further does not include any pending
682         /// outgoing HTLCs which are awaiting some other resolution to be sent.
683         ///
684         /// This value is not exact. Due to various in-flight changes, feerate changes, and our
685         /// conflict-avoidance policy, exactly this amount is not likely to be spendable. However, we
686         /// should be able to spend nearly this amount.
687         pub outbound_capacity_msat: u64,
688         /// The available inbound capacity for the remote peer to send HTLCs to us. This does not
689         /// include any pending HTLCs which are not yet fully resolved (and, thus, who's balance is not
690         /// available for inclusion in new inbound HTLCs).
691         /// Note that there are some corner cases not fully handled here, so the actual available
692         /// inbound capacity may be slightly higher than this.
693         ///
694         /// This value is not exact. Due to various in-flight changes, feerate changes, and our
695         /// counterparty's conflict-avoidance policy, exactly this amount is not likely to be spendable.
696         /// However, our counterparty should be able to spend nearly this amount.
697         pub inbound_capacity_msat: u64,
698         /// The number of required confirmations on the funding transaction before the funding will be
699         /// considered "locked". This number is selected by the channel fundee (i.e. us if
700         /// [`is_outbound`] is *not* set), and can be selected for inbound channels with
701         /// [`ChannelHandshakeConfig::minimum_depth`] or limited for outbound channels with
702         /// [`ChannelHandshakeLimits::max_minimum_depth`].
703         ///
704         /// This value will be `None` for outbound channels until the counterparty accepts the channel.
705         ///
706         /// [`is_outbound`]: ChannelDetails::is_outbound
707         /// [`ChannelHandshakeConfig::minimum_depth`]: crate::util::config::ChannelHandshakeConfig::minimum_depth
708         /// [`ChannelHandshakeLimits::max_minimum_depth`]: crate::util::config::ChannelHandshakeLimits::max_minimum_depth
709         pub confirmations_required: Option<u32>,
710         /// The number of blocks (after our commitment transaction confirms) that we will need to wait
711         /// until we can claim our funds after we force-close the channel. During this time our
712         /// counterparty is allowed to punish us if we broadcasted a stale state. If our counterparty
713         /// force-closes the channel and broadcasts a commitment transaction we do not have to wait any
714         /// time to claim our non-HTLC-encumbered funds.
715         ///
716         /// This value will be `None` for outbound channels until the counterparty accepts the channel.
717         pub spend_csv_on_our_commitment_funds: Option<u16>,
718         /// True if the channel was initiated (and thus funded) by us.
719         pub is_outbound: bool,
720         /// True if the channel is confirmed, funding_locked messages have been exchanged, and the
721         /// channel is not currently being shut down. `funding_locked` message exchange implies the
722         /// required confirmation count has been reached (and we were connected to the peer at some
723         /// point after the funding transaction received enough confirmations). The required
724         /// confirmation count is provided in [`confirmations_required`].
725         ///
726         /// [`confirmations_required`]: ChannelDetails::confirmations_required
727         pub is_funding_locked: bool,
728         /// True if the channel is (a) confirmed and funding_locked messages have been exchanged, (b)
729         /// the peer is connected, and (c) the channel is not currently negotiating a shutdown.
730         ///
731         /// This is a strict superset of `is_funding_locked`.
732         pub is_usable: bool,
733         /// True if this channel is (or will be) publicly-announced.
734         pub is_public: bool,
735         /// Information on the fees and requirements that the counterparty requires when forwarding
736         /// payments to us through this channel.
737         pub counterparty_forwarding_info: Option<CounterpartyForwardingInfo>,
738 }
739
740 /// If a payment fails to send, it can be in one of several states. This enum is returned as the
741 /// Err() type describing which state the payment is in, see the description of individual enum
742 /// states for more.
743 #[derive(Clone, Debug)]
744 pub enum PaymentSendFailure {
745         /// A parameter which was passed to send_payment was invalid, preventing us from attempting to
746         /// send the payment at all. No channel state has been changed or messages sent to peers, and
747         /// once you've changed the parameter at error, you can freely retry the payment in full.
748         ParameterError(APIError),
749         /// A parameter in a single path which was passed to send_payment was invalid, preventing us
750         /// from attempting to send the payment at all. No channel state has been changed or messages
751         /// sent to peers, and once you've changed the parameter at error, you can freely retry the
752         /// payment in full.
753         ///
754         /// The results here are ordered the same as the paths in the route object which was passed to
755         /// send_payment.
756         PathParameterError(Vec<Result<(), APIError>>),
757         /// All paths which were attempted failed to send, with no channel state change taking place.
758         /// You can freely retry the payment in full (though you probably want to do so over different
759         /// paths than the ones selected).
760         AllFailedRetrySafe(Vec<APIError>),
761         /// Some paths which were attempted failed to send, though possibly not all. At least some
762         /// paths have irrevocably committed to the HTLC and retrying the payment in full would result
763         /// in over-/re-payment.
764         ///
765         /// The results here are ordered the same as the paths in the route object which was passed to
766         /// send_payment, and any Errs which are not APIError::MonitorUpdateFailed can be safely
767         /// retried (though there is currently no API with which to do so).
768         ///
769         /// Any entries which contain Err(APIError::MonitorUpdateFailed) or Ok(()) MUST NOT be retried
770         /// as they will result in over-/re-payment. These HTLCs all either successfully sent (in the
771         /// case of Ok(())) or will send once channel_monitor_updated is called on the next-hop channel
772         /// with the latest update_id.
773         PartialFailure(Vec<Result<(), APIError>>),
774 }
775
776 macro_rules! handle_error {
777         ($self: ident, $internal: expr, $counterparty_node_id: expr) => {
778                 match $internal {
779                         Ok(msg) => Ok(msg),
780                         Err(MsgHandleErrInternal { err, shutdown_finish }) => {
781                                 #[cfg(debug_assertions)]
782                                 {
783                                         // In testing, ensure there are no deadlocks where the lock is already held upon
784                                         // entering the macro.
785                                         assert!($self.channel_state.try_lock().is_ok());
786                                 }
787
788                                 let mut msg_events = Vec::with_capacity(2);
789
790                                 if let Some((shutdown_res, update_option)) = shutdown_finish {
791                                         $self.finish_force_close_channel(shutdown_res);
792                                         if let Some(update) = update_option {
793                                                 msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
794                                                         msg: update
795                                                 });
796                                         }
797                                 }
798
799                                 log_error!($self.logger, "{}", err.err);
800                                 if let msgs::ErrorAction::IgnoreError = err.action {
801                                 } else {
802                                         msg_events.push(events::MessageSendEvent::HandleError {
803                                                 node_id: $counterparty_node_id,
804                                                 action: err.action.clone()
805                                         });
806                                 }
807
808                                 if !msg_events.is_empty() {
809                                         $self.channel_state.lock().unwrap().pending_msg_events.append(&mut msg_events);
810                                 }
811
812                                 // Return error in case higher-API need one
813                                 Err(err)
814                         },
815                 }
816         }
817 }
818
819 /// Returns (boolean indicating if we should remove the Channel object from memory, a mapped error)
820 macro_rules! convert_chan_err {
821         ($self: ident, $err: expr, $short_to_id: expr, $channel: expr, $channel_id: expr) => {
822                 match $err {
823                         ChannelError::Ignore(msg) => {
824                                 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore(msg), $channel_id.clone()))
825                         },
826                         ChannelError::Close(msg) => {
827                                 log_error!($self.logger, "Closing channel {} due to close-required error: {}", log_bytes!($channel_id[..]), msg);
828                                 if let Some(short_id) = $channel.get_short_channel_id() {
829                                         $short_to_id.remove(&short_id);
830                                 }
831                                 let shutdown_res = $channel.force_shutdown(true);
832                                 (true, MsgHandleErrInternal::from_finish_shutdown(msg, *$channel_id, shutdown_res, $self.get_channel_update(&$channel).ok()))
833                         },
834                         ChannelError::CloseDelayBroadcast(msg) => {
835                                 log_error!($self.logger, "Channel {} need to be shutdown but closing transactions not broadcast due to {}", log_bytes!($channel_id[..]), msg);
836                                 if let Some(short_id) = $channel.get_short_channel_id() {
837                                         $short_to_id.remove(&short_id);
838                                 }
839                                 let shutdown_res = $channel.force_shutdown(false);
840                                 (true, MsgHandleErrInternal::from_finish_shutdown(msg, *$channel_id, shutdown_res, $self.get_channel_update(&$channel).ok()))
841                         }
842                 }
843         }
844 }
845
846 macro_rules! break_chan_entry {
847         ($self: ident, $res: expr, $channel_state: expr, $entry: expr) => {
848                 match $res {
849                         Ok(res) => res,
850                         Err(e) => {
851                                 let (drop, res) = convert_chan_err!($self, e, $channel_state.short_to_id, $entry.get_mut(), $entry.key());
852                                 if drop {
853                                         $entry.remove_entry();
854                                 }
855                                 break Err(res);
856                         }
857                 }
858         }
859 }
860
861 macro_rules! try_chan_entry {
862         ($self: ident, $res: expr, $channel_state: expr, $entry: expr) => {
863                 match $res {
864                         Ok(res) => res,
865                         Err(e) => {
866                                 let (drop, res) = convert_chan_err!($self, e, $channel_state.short_to_id, $entry.get_mut(), $entry.key());
867                                 if drop {
868                                         $entry.remove_entry();
869                                 }
870                                 return Err(res);
871                         }
872                 }
873         }
874 }
875
876 macro_rules! handle_monitor_err {
877         ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => {
878                 handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment, Vec::new(), Vec::new())
879         };
880         ($self: ident, $err: expr, $short_to_id: expr, $chan: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr, $failed_forwards: expr, $failed_fails: expr, $chan_id: expr) => {
881                 match $err {
882                         ChannelMonitorUpdateErr::PermanentFailure => {
883                                 log_error!($self.logger, "Closing channel {} due to monitor update ChannelMonitorUpdateErr::PermanentFailure", log_bytes!($chan_id[..]));
884                                 if let Some(short_id) = $chan.get_short_channel_id() {
885                                         $short_to_id.remove(&short_id);
886                                 }
887                                 // TODO: $failed_fails is dropped here, which will cause other channels to hit the
888                                 // chain in a confused state! We need to move them into the ChannelMonitor which
889                                 // will be responsible for failing backwards once things confirm on-chain.
890                                 // It's ok that we drop $failed_forwards here - at this point we'd rather they
891                                 // broadcast HTLC-Timeout and pay the associated fees to get their funds back than
892                                 // us bother trying to claim it just to forward on to another peer. If we're
893                                 // splitting hairs we'd prefer to claim payments that were to us, but we haven't
894                                 // given up the preimage yet, so might as well just wait until the payment is
895                                 // retried, avoiding the on-chain fees.
896                                 let res: Result<(), _> = Err(MsgHandleErrInternal::from_finish_shutdown("ChannelMonitor storage failure".to_owned(), *$chan_id, $chan.force_shutdown(true), $self.get_channel_update(&$chan).ok()));
897                                 (res, true)
898                         },
899                         ChannelMonitorUpdateErr::TemporaryFailure => {
900                                 log_info!($self.logger, "Disabling channel {} due to monitor update TemporaryFailure. On restore will send {} and process {} forwards and {} fails",
901                                                 log_bytes!($chan_id[..]),
902                                                 if $resend_commitment && $resend_raa {
903                                                                 match $action_type {
904                                                                         RAACommitmentOrder::CommitmentFirst => { "commitment then RAA" },
905                                                                         RAACommitmentOrder::RevokeAndACKFirst => { "RAA then commitment" },
906                                                                 }
907                                                         } else if $resend_commitment { "commitment" }
908                                                         else if $resend_raa { "RAA" }
909                                                         else { "nothing" },
910                                                 (&$failed_forwards as &Vec<(PendingHTLCInfo, u64)>).len(),
911                                                 (&$failed_fails as &Vec<(HTLCSource, PaymentHash, HTLCFailReason)>).len());
912                                 if !$resend_commitment {
913                                         debug_assert!($action_type == RAACommitmentOrder::RevokeAndACKFirst || !$resend_raa);
914                                 }
915                                 if !$resend_raa {
916                                         debug_assert!($action_type == RAACommitmentOrder::CommitmentFirst || !$resend_commitment);
917                                 }
918                                 $chan.monitor_update_failed($resend_raa, $resend_commitment, $failed_forwards, $failed_fails);
919                                 (Err(MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore("Failed to update ChannelMonitor".to_owned()), *$chan_id)), false)
920                         },
921                 }
922         };
923         ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr, $failed_forwards: expr, $failed_fails: expr) => { {
924                 let (res, drop) = handle_monitor_err!($self, $err, $channel_state.short_to_id, $entry.get_mut(), $action_type, $resend_raa, $resend_commitment, $failed_forwards, $failed_fails, $entry.key());
925                 if drop {
926                         $entry.remove_entry();
927                 }
928                 res
929         } };
930 }
931
932 macro_rules! return_monitor_err {
933         ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => {
934                 return handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment);
935         };
936         ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr, $failed_forwards: expr, $failed_fails: expr) => {
937                 return handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment, $failed_forwards, $failed_fails);
938         }
939 }
940
941 // Does not break in case of TemporaryFailure!
942 macro_rules! maybe_break_monitor_err {
943         ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => {
944                 match (handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment), $err) {
945                         (e, ChannelMonitorUpdateErr::PermanentFailure) => {
946                                 break e;
947                         },
948                         (_, ChannelMonitorUpdateErr::TemporaryFailure) => { },
949                 }
950         }
951 }
952
953 macro_rules! handle_chan_restoration_locked {
954         ($self: ident, $channel_lock: expr, $channel_state: expr, $channel_entry: expr,
955          $raa: expr, $commitment_update: expr, $order: expr, $chanmon_update: expr,
956          $pending_forwards: expr, $funding_broadcastable: expr, $funding_locked: expr) => { {
957                 let mut htlc_forwards = None;
958                 let counterparty_node_id = $channel_entry.get().get_counterparty_node_id();
959
960                 let chanmon_update: Option<ChannelMonitorUpdate> = $chanmon_update; // Force type-checking to resolve
961                 let chanmon_update_is_none = chanmon_update.is_none();
962                 let res = loop {
963                         let forwards: Vec<(PendingHTLCInfo, u64)> = $pending_forwards; // Force type-checking to resolve
964                         if !forwards.is_empty() {
965                                 htlc_forwards = Some(($channel_entry.get().get_short_channel_id().expect("We can't have pending forwards before funding confirmation"),
966                                         $channel_entry.get().get_funding_txo().unwrap(), forwards));
967                         }
968
969                         if chanmon_update.is_some() {
970                                 // On reconnect, we, by definition, only resend a funding_locked if there have been
971                                 // no commitment updates, so the only channel monitor update which could also be
972                                 // associated with a funding_locked would be the funding_created/funding_signed
973                                 // monitor update. That monitor update failing implies that we won't send
974                                 // funding_locked until it's been updated, so we can't have a funding_locked and a
975                                 // monitor update here (so we don't bother to handle it correctly below).
976                                 assert!($funding_locked.is_none());
977                                 // A channel monitor update makes no sense without either a funding_locked or a
978                                 // commitment update to process after it. Since we can't have a funding_locked, we
979                                 // only bother to handle the monitor-update + commitment_update case below.
980                                 assert!($commitment_update.is_some());
981                         }
982
983                         if let Some(msg) = $funding_locked {
984                                 // Similar to the above, this implies that we're letting the funding_locked fly
985                                 // before it should be allowed to.
986                                 assert!(chanmon_update.is_none());
987                                 $channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingLocked {
988                                         node_id: counterparty_node_id,
989                                         msg,
990                                 });
991                                 if let Some(announcement_sigs) = $self.get_announcement_sigs($channel_entry.get()) {
992                                         $channel_state.pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
993                                                 node_id: counterparty_node_id,
994                                                 msg: announcement_sigs,
995                                         });
996                                 }
997                                 $channel_state.short_to_id.insert($channel_entry.get().get_short_channel_id().unwrap(), $channel_entry.get().channel_id());
998                         }
999
1000                         let funding_broadcastable: Option<Transaction> = $funding_broadcastable; // Force type-checking to resolve
1001                         if let Some(monitor_update) = chanmon_update {
1002                                 // We only ever broadcast a funding transaction in response to a funding_signed
1003                                 // message and the resulting monitor update. Thus, on channel_reestablish
1004                                 // message handling we can't have a funding transaction to broadcast. When
1005                                 // processing a monitor update finishing resulting in a funding broadcast, we
1006                                 // cannot have a second monitor update, thus this case would indicate a bug.
1007                                 assert!(funding_broadcastable.is_none());
1008                                 // Given we were just reconnected or finished updating a channel monitor, the
1009                                 // only case where we can get a new ChannelMonitorUpdate would be if we also
1010                                 // have some commitment updates to send as well.
1011                                 assert!($commitment_update.is_some());
1012                                 if let Err(e) = $self.chain_monitor.update_channel($channel_entry.get().get_funding_txo().unwrap(), monitor_update) {
1013                                         // channel_reestablish doesn't guarantee the order it returns is sensical
1014                                         // for the messages it returns, but if we're setting what messages to
1015                                         // re-transmit on monitor update success, we need to make sure it is sane.
1016                                         let mut order = $order;
1017                                         if $raa.is_none() {
1018                                                 order = RAACommitmentOrder::CommitmentFirst;
1019                                         }
1020                                         break handle_monitor_err!($self, e, $channel_state, $channel_entry, order, $raa.is_some(), true);
1021                                 }
1022                         }
1023
1024                         macro_rules! handle_cs { () => {
1025                                 if let Some(update) = $commitment_update {
1026                                         $channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
1027                                                 node_id: counterparty_node_id,
1028                                                 updates: update,
1029                                         });
1030                                 }
1031                         } }
1032                         macro_rules! handle_raa { () => {
1033                                 if let Some(revoke_and_ack) = $raa {
1034                                         $channel_state.pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
1035                                                 node_id: counterparty_node_id,
1036                                                 msg: revoke_and_ack,
1037                                         });
1038                                 }
1039                         } }
1040                         match $order {
1041                                 RAACommitmentOrder::CommitmentFirst => {
1042                                         handle_cs!();
1043                                         handle_raa!();
1044                                 },
1045                                 RAACommitmentOrder::RevokeAndACKFirst => {
1046                                         handle_raa!();
1047                                         handle_cs!();
1048                                 },
1049                         }
1050                         if let Some(tx) = funding_broadcastable {
1051                                 log_info!($self.logger, "Broadcasting funding transaction with txid {}", tx.txid());
1052                                 $self.tx_broadcaster.broadcast_transaction(&tx);
1053                         }
1054                         break Ok(());
1055                 };
1056
1057                 if chanmon_update_is_none {
1058                         // If there was no ChannelMonitorUpdate, we should never generate an Err in the res loop
1059                         // above. Doing so would imply calling handle_err!() from channel_monitor_updated() which
1060                         // should *never* end up calling back to `chain_monitor.update_channel()`.
1061                         assert!(res.is_ok());
1062                 }
1063
1064                 (htlc_forwards, res, counterparty_node_id)
1065         } }
1066 }
1067
1068 macro_rules! post_handle_chan_restoration {
1069         ($self: ident, $locked_res: expr) => { {
1070                 let (htlc_forwards, res, counterparty_node_id) = $locked_res;
1071
1072                 let _ = handle_error!($self, res, counterparty_node_id);
1073
1074                 if let Some(forwards) = htlc_forwards {
1075                         $self.forward_htlcs(&mut [forwards][..]);
1076                 }
1077         } }
1078 }
1079
1080 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> ChannelManager<Signer, M, T, K, F, L>
1081         where M::Target: chain::Watch<Signer>,
1082         T::Target: BroadcasterInterface,
1083         K::Target: KeysInterface<Signer = Signer>,
1084         F::Target: FeeEstimator,
1085         L::Target: Logger,
1086 {
1087         /// Constructs a new ChannelManager to hold several channels and route between them.
1088         ///
1089         /// This is the main "logic hub" for all channel-related actions, and implements
1090         /// ChannelMessageHandler.
1091         ///
1092         /// Non-proportional fees are fixed according to our risk using the provided fee estimator.
1093         ///
1094         /// panics if channel_value_satoshis is >= `MAX_FUNDING_SATOSHIS`!
1095         ///
1096         /// Users need to notify the new ChannelManager when a new block is connected or
1097         /// disconnected using its `block_connected` and `block_disconnected` methods, starting
1098         /// from after `params.latest_hash`.
1099         pub fn new(fee_est: F, chain_monitor: M, tx_broadcaster: T, logger: L, keys_manager: K, config: UserConfig, params: ChainParameters) -> Self {
1100                 let mut secp_ctx = Secp256k1::new();
1101                 secp_ctx.seeded_randomize(&keys_manager.get_secure_random_bytes());
1102
1103                 ChannelManager {
1104                         default_configuration: config.clone(),
1105                         genesis_hash: genesis_block(params.network).header.block_hash(),
1106                         fee_estimator: fee_est,
1107                         chain_monitor,
1108                         tx_broadcaster,
1109
1110                         best_block: RwLock::new(params.best_block),
1111
1112                         channel_state: Mutex::new(ChannelHolder{
1113                                 by_id: HashMap::new(),
1114                                 short_to_id: HashMap::new(),
1115                                 forward_htlcs: HashMap::new(),
1116                                 claimable_htlcs: HashMap::new(),
1117                                 pending_msg_events: Vec::new(),
1118                         }),
1119                         pending_inbound_payments: Mutex::new(HashMap::new()),
1120                         pending_outbound_payments: Mutex::new(HashSet::new()),
1121
1122                         our_network_key: keys_manager.get_node_secret(),
1123                         our_network_pubkey: PublicKey::from_secret_key(&secp_ctx, &keys_manager.get_node_secret()),
1124                         secp_ctx,
1125
1126                         last_node_announcement_serial: AtomicUsize::new(0),
1127                         highest_seen_timestamp: AtomicUsize::new(0),
1128
1129                         per_peer_state: RwLock::new(HashMap::new()),
1130
1131                         pending_events: Mutex::new(Vec::new()),
1132                         pending_background_events: Mutex::new(Vec::new()),
1133                         total_consistency_lock: RwLock::new(()),
1134                         persistence_notifier: PersistenceNotifier::new(),
1135
1136                         keys_manager,
1137
1138                         logger,
1139                 }
1140         }
1141
1142         /// Gets the current configuration applied to all new channels,  as
1143         pub fn get_current_default_configuration(&self) -> &UserConfig {
1144                 &self.default_configuration
1145         }
1146
1147         /// Creates a new outbound channel to the given remote node and with the given value.
1148         ///
1149         /// user_id will be provided back as user_channel_id in FundingGenerationReady events to allow
1150         /// tracking of which events correspond with which create_channel call. Note that the
1151         /// user_channel_id defaults to 0 for inbound channels, so you may wish to avoid using 0 for
1152         /// user_id here. user_id has no meaning inside of LDK, it is simply copied to events and
1153         /// otherwise ignored.
1154         ///
1155         /// If successful, will generate a SendOpenChannel message event, so you should probably poll
1156         /// PeerManager::process_events afterwards.
1157         ///
1158         /// Raises APIError::APIMisuseError when channel_value_satoshis > 2**24 or push_msat is
1159         /// greater than channel_value_satoshis * 1k or channel_value_satoshis is < 1000.
1160         pub fn create_channel(&self, their_network_key: PublicKey, channel_value_satoshis: u64, push_msat: u64, user_id: u64, override_config: Option<UserConfig>) -> Result<(), APIError> {
1161                 if channel_value_satoshis < 1000 {
1162                         return Err(APIError::APIMisuseError { err: format!("Channel value must be at least 1000 satoshis. It was {}", channel_value_satoshis) });
1163                 }
1164
1165                 let config = if override_config.is_some() { override_config.as_ref().unwrap() } else { &self.default_configuration };
1166                 let channel = Channel::new_outbound(&self.fee_estimator, &self.keys_manager, their_network_key, channel_value_satoshis, push_msat, user_id, config)?;
1167                 let res = channel.get_open_channel(self.genesis_hash.clone());
1168
1169                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1170                 // We want to make sure the lock is actually acquired by PersistenceNotifierGuard.
1171                 debug_assert!(&self.total_consistency_lock.try_write().is_err());
1172
1173                 let mut channel_state = self.channel_state.lock().unwrap();
1174                 match channel_state.by_id.entry(channel.channel_id()) {
1175                         hash_map::Entry::Occupied(_) => {
1176                                 if cfg!(feature = "fuzztarget") {
1177                                         return Err(APIError::APIMisuseError { err: "Fuzzy bad RNG".to_owned() });
1178                                 } else {
1179                                         panic!("RNG is bad???");
1180                                 }
1181                         },
1182                         hash_map::Entry::Vacant(entry) => { entry.insert(channel); }
1183                 }
1184                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
1185                         node_id: their_network_key,
1186                         msg: res,
1187                 });
1188                 Ok(())
1189         }
1190
1191         fn list_channels_with_filter<Fn: FnMut(&(&[u8; 32], &Channel<Signer>)) -> bool>(&self, f: Fn) -> Vec<ChannelDetails> {
1192                 let mut res = Vec::new();
1193                 {
1194                         let channel_state = self.channel_state.lock().unwrap();
1195                         res.reserve(channel_state.by_id.len());
1196                         for (channel_id, channel) in channel_state.by_id.iter().filter(f) {
1197                                 let (inbound_capacity_msat, outbound_capacity_msat) = channel.get_inbound_outbound_available_balance_msat();
1198                                 let (to_remote_reserve_satoshis, to_self_reserve_satoshis) =
1199                                         channel.get_holder_counterparty_selected_channel_reserve_satoshis();
1200                                 res.push(ChannelDetails {
1201                                         channel_id: (*channel_id).clone(),
1202                                         funding_txo: channel.get_funding_txo(),
1203                                         short_channel_id: channel.get_short_channel_id(),
1204                                         remote_network_id: channel.get_counterparty_node_id(),
1205                                         counterparty_features: InitFeatures::empty(),
1206                                         channel_value_satoshis: channel.get_value_satoshis(),
1207                                         to_self_reserve_satoshis,
1208                                         to_remote_reserve_satoshis,
1209                                         inbound_capacity_msat,
1210                                         outbound_capacity_msat,
1211                                         user_id: channel.get_user_id(),
1212                                         confirmations_required: channel.minimum_depth(),
1213                                         spend_csv_on_our_commitment_funds: channel.get_counterparty_selected_contest_delay(),
1214                                         is_outbound: channel.is_outbound(),
1215                                         is_funding_locked: channel.is_usable(),
1216                                         is_usable: channel.is_live(),
1217                                         is_public: channel.should_announce(),
1218                                         counterparty_forwarding_info: channel.counterparty_forwarding_info(),
1219                                 });
1220                         }
1221                 }
1222                 let per_peer_state = self.per_peer_state.read().unwrap();
1223                 for chan in res.iter_mut() {
1224                         if let Some(peer_state) = per_peer_state.get(&chan.remote_network_id) {
1225                                 chan.counterparty_features = peer_state.lock().unwrap().latest_features.clone();
1226                         }
1227                 }
1228                 res
1229         }
1230
1231         /// Gets the list of open channels, in random order. See ChannelDetail field documentation for
1232         /// more information.
1233         pub fn list_channels(&self) -> Vec<ChannelDetails> {
1234                 self.list_channels_with_filter(|_| true)
1235         }
1236
1237         /// Gets the list of usable channels, in random order. Useful as an argument to
1238         /// get_route to ensure non-announced channels are used.
1239         ///
1240         /// These are guaranteed to have their [`ChannelDetails::is_usable`] value set to true, see the
1241         /// documentation for [`ChannelDetails::is_usable`] for more info on exactly what the criteria
1242         /// are.
1243         pub fn list_usable_channels(&self) -> Vec<ChannelDetails> {
1244                 // Note we use is_live here instead of usable which leads to somewhat confused
1245                 // internal/external nomenclature, but that's ok cause that's probably what the user
1246                 // really wanted anyway.
1247                 self.list_channels_with_filter(|&(_, ref channel)| channel.is_live())
1248         }
1249
1250         /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
1251         /// will be accepted on the given channel, and after additional timeout/the closing of all
1252         /// pending HTLCs, the channel will be closed on chain.
1253         ///
1254         /// May generate a SendShutdown message event on success, which should be relayed.
1255         pub fn close_channel(&self, channel_id: &[u8; 32]) -> Result<(), APIError> {
1256                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1257
1258                 let (mut failed_htlcs, chan_option) = {
1259                         let mut channel_state_lock = self.channel_state.lock().unwrap();
1260                         let channel_state = &mut *channel_state_lock;
1261                         match channel_state.by_id.entry(channel_id.clone()) {
1262                                 hash_map::Entry::Occupied(mut chan_entry) => {
1263                                         let (shutdown_msg, failed_htlcs) = chan_entry.get_mut().get_shutdown()?;
1264                                         channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
1265                                                 node_id: chan_entry.get().get_counterparty_node_id(),
1266                                                 msg: shutdown_msg
1267                                         });
1268                                         if chan_entry.get().is_shutdown() {
1269                                                 if let Some(short_id) = chan_entry.get().get_short_channel_id() {
1270                                                         channel_state.short_to_id.remove(&short_id);
1271                                                 }
1272                                                 (failed_htlcs, Some(chan_entry.remove_entry().1))
1273                                         } else { (failed_htlcs, None) }
1274                                 },
1275                                 hash_map::Entry::Vacant(_) => return Err(APIError::ChannelUnavailable{err: "No such channel".to_owned()})
1276                         }
1277                 };
1278                 for htlc_source in failed_htlcs.drain(..) {
1279                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
1280                 }
1281                 let chan_update = if let Some(chan) = chan_option {
1282                         if let Ok(update) = self.get_channel_update(&chan) {
1283                                 Some(update)
1284                         } else { None }
1285                 } else { None };
1286
1287                 if let Some(update) = chan_update {
1288                         let mut channel_state = self.channel_state.lock().unwrap();
1289                         channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
1290                                 msg: update
1291                         });
1292                 }
1293
1294                 Ok(())
1295         }
1296
1297         #[inline]
1298         fn finish_force_close_channel(&self, shutdown_res: ShutdownResult) {
1299                 let (monitor_update_option, mut failed_htlcs) = shutdown_res;
1300                 log_debug!(self.logger, "Finishing force-closure of channel with {} HTLCs to fail", failed_htlcs.len());
1301                 for htlc_source in failed_htlcs.drain(..) {
1302                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
1303                 }
1304                 if let Some((funding_txo, monitor_update)) = monitor_update_option {
1305                         // There isn't anything we can do if we get an update failure - we're already
1306                         // force-closing. The monitor update on the required in-memory copy should broadcast
1307                         // the latest local state, which is the best we can do anyway. Thus, it is safe to
1308                         // ignore the result here.
1309                         let _ = self.chain_monitor.update_channel(funding_txo, monitor_update);
1310                 }
1311         }
1312
1313         fn force_close_channel_with_peer(&self, channel_id: &[u8; 32], peer_node_id: Option<&PublicKey>) -> Result<PublicKey, APIError> {
1314                 let mut chan = {
1315                         let mut channel_state_lock = self.channel_state.lock().unwrap();
1316                         let channel_state = &mut *channel_state_lock;
1317                         if let hash_map::Entry::Occupied(chan) = channel_state.by_id.entry(channel_id.clone()) {
1318                                 if let Some(node_id) = peer_node_id {
1319                                         if chan.get().get_counterparty_node_id() != *node_id {
1320                                                 return Err(APIError::ChannelUnavailable{err: "No such channel".to_owned()});
1321                                         }
1322                                 }
1323                                 if let Some(short_id) = chan.get().get_short_channel_id() {
1324                                         channel_state.short_to_id.remove(&short_id);
1325                                 }
1326                                 chan.remove_entry().1
1327                         } else {
1328                                 return Err(APIError::ChannelUnavailable{err: "No such channel".to_owned()});
1329                         }
1330                 };
1331                 log_error!(self.logger, "Force-closing channel {}", log_bytes!(channel_id[..]));
1332                 self.finish_force_close_channel(chan.force_shutdown(true));
1333                 if let Ok(update) = self.get_channel_update(&chan) {
1334                         let mut channel_state = self.channel_state.lock().unwrap();
1335                         channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
1336                                 msg: update
1337                         });
1338                 }
1339
1340                 Ok(chan.get_counterparty_node_id())
1341         }
1342
1343         /// Force closes a channel, immediately broadcasting the latest local commitment transaction to
1344         /// the chain and rejecting new HTLCs on the given channel. Fails if channel_id is unknown to the manager.
1345         pub fn force_close_channel(&self, channel_id: &[u8; 32]) -> Result<(), APIError> {
1346                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1347                 match self.force_close_channel_with_peer(channel_id, None) {
1348                         Ok(counterparty_node_id) => {
1349                                 self.channel_state.lock().unwrap().pending_msg_events.push(
1350                                         events::MessageSendEvent::HandleError {
1351                                                 node_id: counterparty_node_id,
1352                                                 action: msgs::ErrorAction::SendErrorMessage {
1353                                                         msg: msgs::ErrorMessage { channel_id: *channel_id, data: "Channel force-closed".to_owned() }
1354                                                 },
1355                                         }
1356                                 );
1357                                 Ok(())
1358                         },
1359                         Err(e) => Err(e)
1360                 }
1361         }
1362
1363         /// Force close all channels, immediately broadcasting the latest local commitment transaction
1364         /// for each to the chain and rejecting new HTLCs on each.
1365         pub fn force_close_all_channels(&self) {
1366                 for chan in self.list_channels() {
1367                         let _ = self.force_close_channel(&chan.channel_id);
1368                 }
1369         }
1370
1371         fn decode_update_add_htlc_onion(&self, msg: &msgs::UpdateAddHTLC) -> (PendingHTLCStatus, MutexGuard<ChannelHolder<Signer>>) {
1372                 macro_rules! return_malformed_err {
1373                         ($msg: expr, $err_code: expr) => {
1374                                 {
1375                                         log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
1376                                         return (PendingHTLCStatus::Fail(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
1377                                                 channel_id: msg.channel_id,
1378                                                 htlc_id: msg.htlc_id,
1379                                                 sha256_of_onion: Sha256::hash(&msg.onion_routing_packet.hop_data).into_inner(),
1380                                                 failure_code: $err_code,
1381                                         })), self.channel_state.lock().unwrap());
1382                                 }
1383                         }
1384                 }
1385
1386                 if let Err(_) = msg.onion_routing_packet.public_key {
1387                         return_malformed_err!("invalid ephemeral pubkey", 0x8000 | 0x4000 | 6);
1388                 }
1389
1390                 let shared_secret = {
1391                         let mut arr = [0; 32];
1392                         arr.copy_from_slice(&SharedSecret::new(&msg.onion_routing_packet.public_key.unwrap(), &self.our_network_key)[..]);
1393                         arr
1394                 };
1395                 let (rho, mu) = onion_utils::gen_rho_mu_from_shared_secret(&shared_secret);
1396
1397                 if msg.onion_routing_packet.version != 0 {
1398                         //TODO: Spec doesn't indicate if we should only hash hop_data here (and in other
1399                         //sha256_of_onion error data packets), or the entire onion_routing_packet. Either way,
1400                         //the hash doesn't really serve any purpose - in the case of hashing all data, the
1401                         //receiving node would have to brute force to figure out which version was put in the
1402                         //packet by the node that send us the message, in the case of hashing the hop_data, the
1403                         //node knows the HMAC matched, so they already know what is there...
1404                         return_malformed_err!("Unknown onion packet version", 0x8000 | 0x4000 | 4);
1405                 }
1406
1407                 let mut hmac = HmacEngine::<Sha256>::new(&mu);
1408                 hmac.input(&msg.onion_routing_packet.hop_data);
1409                 hmac.input(&msg.payment_hash.0[..]);
1410                 if !fixed_time_eq(&Hmac::from_engine(hmac).into_inner(), &msg.onion_routing_packet.hmac) {
1411                         return_malformed_err!("HMAC Check failed", 0x8000 | 0x4000 | 5);
1412                 }
1413
1414                 let mut channel_state = None;
1415                 macro_rules! return_err {
1416                         ($msg: expr, $err_code: expr, $data: expr) => {
1417                                 {
1418                                         log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
1419                                         if channel_state.is_none() {
1420                                                 channel_state = Some(self.channel_state.lock().unwrap());
1421                                         }
1422                                         return (PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
1423                                                 channel_id: msg.channel_id,
1424                                                 htlc_id: msg.htlc_id,
1425                                                 reason: onion_utils::build_first_hop_failure_packet(&shared_secret, $err_code, $data),
1426                                         })), channel_state.unwrap());
1427                                 }
1428                         }
1429                 }
1430
1431                 let mut chacha = ChaCha20::new(&rho, &[0u8; 8]);
1432                 let mut chacha_stream = ChaChaReader { chacha: &mut chacha, read: Cursor::new(&msg.onion_routing_packet.hop_data[..]) };
1433                 let (next_hop_data, next_hop_hmac) = {
1434                         match msgs::OnionHopData::read(&mut chacha_stream) {
1435                                 Err(err) => {
1436                                         let error_code = match err {
1437                                                 msgs::DecodeError::UnknownVersion => 0x4000 | 1, // unknown realm byte
1438                                                 msgs::DecodeError::UnknownRequiredFeature|
1439                                                 msgs::DecodeError::InvalidValue|
1440                                                 msgs::DecodeError::ShortRead => 0x4000 | 22, // invalid_onion_payload
1441                                                 _ => 0x2000 | 2, // Should never happen
1442                                         };
1443                                         return_err!("Unable to decode our hop data", error_code, &[0;0]);
1444                                 },
1445                                 Ok(msg) => {
1446                                         let mut hmac = [0; 32];
1447                                         if let Err(_) = chacha_stream.read_exact(&mut hmac[..]) {
1448                                                 return_err!("Unable to decode hop data", 0x4000 | 22, &[0;0]);
1449                                         }
1450                                         (msg, hmac)
1451                                 },
1452                         }
1453                 };
1454
1455                 let pending_forward_info = if next_hop_hmac == [0; 32] {
1456                                 #[cfg(test)]
1457                                 {
1458                                         // In tests, make sure that the initial onion pcket data is, at least, non-0.
1459                                         // We could do some fancy randomness test here, but, ehh, whatever.
1460                                         // This checks for the issue where you can calculate the path length given the
1461                                         // onion data as all the path entries that the originator sent will be here
1462                                         // as-is (and were originally 0s).
1463                                         // Of course reverse path calculation is still pretty easy given naive routing
1464                                         // algorithms, but this fixes the most-obvious case.
1465                                         let mut next_bytes = [0; 32];
1466                                         chacha_stream.read_exact(&mut next_bytes).unwrap();
1467                                         assert_ne!(next_bytes[..], [0; 32][..]);
1468                                         chacha_stream.read_exact(&mut next_bytes).unwrap();
1469                                         assert_ne!(next_bytes[..], [0; 32][..]);
1470                                 }
1471
1472                                 // OUR PAYMENT!
1473                                 // final_expiry_too_soon
1474                                 // We have to have some headroom to broadcast on chain if we have the preimage, so make sure we have at least
1475                                 // HTLC_FAIL_BACK_BUFFER blocks to go.
1476                                 // Also, ensure that, in the case of an unknown payment hash, our payment logic has enough time to fail the HTLC backward
1477                                 // before our onchain logic triggers a channel closure (see HTLC_FAIL_BACK_BUFFER rational).
1478                                 if (msg.cltv_expiry as u64) <= self.best_block.read().unwrap().height() as u64 + HTLC_FAIL_BACK_BUFFER as u64 + 1 {
1479                                         return_err!("The final CLTV expiry is too soon to handle", 17, &[0;0]);
1480                                 }
1481                                 // final_incorrect_htlc_amount
1482                                 if next_hop_data.amt_to_forward > msg.amount_msat {
1483                                         return_err!("Upstream node sent less than we were supposed to receive in payment", 19, &byte_utils::be64_to_array(msg.amount_msat));
1484                                 }
1485                                 // final_incorrect_cltv_expiry
1486                                 if next_hop_data.outgoing_cltv_value != msg.cltv_expiry {
1487                                         return_err!("Upstream node set CLTV to the wrong value", 18, &byte_utils::be32_to_array(msg.cltv_expiry));
1488                                 }
1489
1490                                 let payment_data = match next_hop_data.format {
1491                                         msgs::OnionHopDataFormat::Legacy { .. } => None,
1492                                         msgs::OnionHopDataFormat::NonFinalNode { .. } => return_err!("Got non final data with an HMAC of 0", 0x4000 | 22, &[0;0]),
1493                                         msgs::OnionHopDataFormat::FinalNode { payment_data } => payment_data,
1494                                 };
1495
1496                                 if payment_data.is_none() {
1497                                         return_err!("We require payment_secrets", 0x4000|0x2000|3, &[0;0]);
1498                                 }
1499
1500                                 // Note that we could obviously respond immediately with an update_fulfill_htlc
1501                                 // message, however that would leak that we are the recipient of this payment, so
1502                                 // instead we stay symmetric with the forwarding case, only responding (after a
1503                                 // delay) once they've send us a commitment_signed!
1504
1505                                 PendingHTLCStatus::Forward(PendingHTLCInfo {
1506                                         routing: PendingHTLCRouting::Receive {
1507                                                 payment_data: payment_data.unwrap(),
1508                                                 incoming_cltv_expiry: msg.cltv_expiry,
1509                                         },
1510                                         payment_hash: msg.payment_hash.clone(),
1511                                         incoming_shared_secret: shared_secret,
1512                                         amt_to_forward: next_hop_data.amt_to_forward,
1513                                         outgoing_cltv_value: next_hop_data.outgoing_cltv_value,
1514                                 })
1515                         } else {
1516                                 let mut new_packet_data = [0; 20*65];
1517                                 let read_pos = chacha_stream.read(&mut new_packet_data).unwrap();
1518                                 #[cfg(debug_assertions)]
1519                                 {
1520                                         // Check two things:
1521                                         // a) that the behavior of our stream here will return Ok(0) even if the TLV
1522                                         //    read above emptied out our buffer and the unwrap() wont needlessly panic
1523                                         // b) that we didn't somehow magically end up with extra data.
1524                                         let mut t = [0; 1];
1525                                         debug_assert!(chacha_stream.read(&mut t).unwrap() == 0);
1526                                 }
1527                                 // Once we've emptied the set of bytes our peer gave us, encrypt 0 bytes until we
1528                                 // fill the onion hop data we'll forward to our next-hop peer.
1529                                 chacha_stream.chacha.process_in_place(&mut new_packet_data[read_pos..]);
1530
1531                                 let mut new_pubkey = msg.onion_routing_packet.public_key.unwrap();
1532
1533                                 let blinding_factor = {
1534                                         let mut sha = Sha256::engine();
1535                                         sha.input(&new_pubkey.serialize()[..]);
1536                                         sha.input(&shared_secret);
1537                                         Sha256::from_engine(sha).into_inner()
1538                                 };
1539
1540                                 let public_key = if let Err(e) = new_pubkey.mul_assign(&self.secp_ctx, &blinding_factor[..]) {
1541                                         Err(e)
1542                                 } else { Ok(new_pubkey) };
1543
1544                                 let outgoing_packet = msgs::OnionPacket {
1545                                         version: 0,
1546                                         public_key,
1547                                         hop_data: new_packet_data,
1548                                         hmac: next_hop_hmac.clone(),
1549                                 };
1550
1551                                 let short_channel_id = match next_hop_data.format {
1552                                         msgs::OnionHopDataFormat::Legacy { short_channel_id } => short_channel_id,
1553                                         msgs::OnionHopDataFormat::NonFinalNode { short_channel_id } => short_channel_id,
1554                                         msgs::OnionHopDataFormat::FinalNode { .. } => {
1555                                                 return_err!("Final Node OnionHopData provided for us as an intermediary node", 0x4000 | 22, &[0;0]);
1556                                         },
1557                                 };
1558
1559                                 PendingHTLCStatus::Forward(PendingHTLCInfo {
1560                                         routing: PendingHTLCRouting::Forward {
1561                                                 onion_packet: outgoing_packet,
1562                                                 short_channel_id,
1563                                         },
1564                                         payment_hash: msg.payment_hash.clone(),
1565                                         incoming_shared_secret: shared_secret,
1566                                         amt_to_forward: next_hop_data.amt_to_forward,
1567                                         outgoing_cltv_value: next_hop_data.outgoing_cltv_value,
1568                                 })
1569                         };
1570
1571                 channel_state = Some(self.channel_state.lock().unwrap());
1572                 if let &PendingHTLCStatus::Forward(PendingHTLCInfo { ref routing, ref amt_to_forward, ref outgoing_cltv_value, .. }) = &pending_forward_info {
1573                         // If short_channel_id is 0 here, we'll reject the HTLC as there cannot be a channel
1574                         // with a short_channel_id of 0. This is important as various things later assume
1575                         // short_channel_id is non-0 in any ::Forward.
1576                         if let &PendingHTLCRouting::Forward { ref short_channel_id, .. } = routing {
1577                                 let id_option = channel_state.as_ref().unwrap().short_to_id.get(&short_channel_id).cloned();
1578                                 let forwarding_id = match id_option {
1579                                         None => { // unknown_next_peer
1580                                                 return_err!("Don't have available channel for forwarding as requested.", 0x4000 | 10, &[0;0]);
1581                                         },
1582                                         Some(id) => id.clone(),
1583                                 };
1584                                 if let Some((err, code, chan_update)) = loop {
1585                                         let chan = channel_state.as_mut().unwrap().by_id.get_mut(&forwarding_id).unwrap();
1586
1587                                         // Note that we could technically not return an error yet here and just hope
1588                                         // that the connection is reestablished or monitor updated by the time we get
1589                                         // around to doing the actual forward, but better to fail early if we can and
1590                                         // hopefully an attacker trying to path-trace payments cannot make this occur
1591                                         // on a small/per-node/per-channel scale.
1592                                         if !chan.is_live() { // channel_disabled
1593                                                 break Some(("Forwarding channel is not in a ready state.", 0x1000 | 20, Some(self.get_channel_update(chan).unwrap())));
1594                                         }
1595                                         if *amt_to_forward < chan.get_counterparty_htlc_minimum_msat() { // amount_below_minimum
1596                                                 break Some(("HTLC amount was below the htlc_minimum_msat", 0x1000 | 11, Some(self.get_channel_update(chan).unwrap())));
1597                                         }
1598                                         let fee = amt_to_forward.checked_mul(chan.get_fee_proportional_millionths() as u64).and_then(|prop_fee| { (prop_fee / 1000000).checked_add(chan.get_holder_fee_base_msat(&self.fee_estimator) as u64) });
1599                                         if fee.is_none() || msg.amount_msat < fee.unwrap() || (msg.amount_msat - fee.unwrap()) < *amt_to_forward { // fee_insufficient
1600                                                 break Some(("Prior hop has deviated from specified fees parameters or origin node has obsolete ones", 0x1000 | 12, Some(self.get_channel_update(chan).unwrap())));
1601                                         }
1602                                         if (msg.cltv_expiry as u64) < (*outgoing_cltv_value) as u64 + chan.get_cltv_expiry_delta() as u64 { // incorrect_cltv_expiry
1603                                                 break Some(("Forwarding node has tampered with the intended HTLC values or origin node has an obsolete cltv_expiry_delta", 0x1000 | 13, Some(self.get_channel_update(chan).unwrap())));
1604                                         }
1605                                         let cur_height = self.best_block.read().unwrap().height() + 1;
1606                                         // Theoretically, channel counterparty shouldn't send us a HTLC expiring now, but we want to be robust wrt to counterparty
1607                                         // packet sanitization (see HTLC_FAIL_BACK_BUFFER rational)
1608                                         if msg.cltv_expiry <= cur_height + HTLC_FAIL_BACK_BUFFER as u32 { // expiry_too_soon
1609                                                 break Some(("CLTV expiry is too close", 0x1000 | 14, Some(self.get_channel_update(chan).unwrap())));
1610                                         }
1611                                         if msg.cltv_expiry > cur_height + CLTV_FAR_FAR_AWAY as u32 { // expiry_too_far
1612                                                 break Some(("CLTV expiry is too far in the future", 21, None));
1613                                         }
1614                                         // In theory, we would be safe against unitentional channel-closure, if we only required a margin of LATENCY_GRACE_PERIOD_BLOCKS.
1615                                         // But, to be safe against policy reception, we use a longuer delay.
1616                                         if (*outgoing_cltv_value) as u64 <= (cur_height + HTLC_FAIL_BACK_BUFFER) as u64 {
1617                                                 break Some(("Outgoing CLTV value is too soon", 0x1000 | 14, Some(self.get_channel_update(chan).unwrap())));
1618                                         }
1619
1620                                         break None;
1621                                 }
1622                                 {
1623                                         let mut res = Vec::with_capacity(8 + 128);
1624                                         if let Some(chan_update) = chan_update {
1625                                                 if code == 0x1000 | 11 || code == 0x1000 | 12 {
1626                                                         res.extend_from_slice(&byte_utils::be64_to_array(msg.amount_msat));
1627                                                 }
1628                                                 else if code == 0x1000 | 13 {
1629                                                         res.extend_from_slice(&byte_utils::be32_to_array(msg.cltv_expiry));
1630                                                 }
1631                                                 else if code == 0x1000 | 20 {
1632                                                         // TODO: underspecified, follow https://github.com/lightningnetwork/lightning-rfc/issues/791
1633                                                         res.extend_from_slice(&byte_utils::be16_to_array(0));
1634                                                 }
1635                                                 res.extend_from_slice(&chan_update.encode_with_len()[..]);
1636                                         }
1637                                         return_err!(err, code, &res[..]);
1638                                 }
1639                         }
1640                 }
1641
1642                 (pending_forward_info, channel_state.unwrap())
1643         }
1644
1645         /// only fails if the channel does not yet have an assigned short_id
1646         /// May be called with channel_state already locked!
1647         fn get_channel_update(&self, chan: &Channel<Signer>) -> Result<msgs::ChannelUpdate, LightningError> {
1648                 let short_channel_id = match chan.get_short_channel_id() {
1649                         None => return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError}),
1650                         Some(id) => id,
1651                 };
1652
1653                 let were_node_one = PublicKey::from_secret_key(&self.secp_ctx, &self.our_network_key).serialize()[..] < chan.get_counterparty_node_id().serialize()[..];
1654
1655                 let unsigned = msgs::UnsignedChannelUpdate {
1656                         chain_hash: self.genesis_hash,
1657                         short_channel_id,
1658                         timestamp: chan.get_update_time_counter(),
1659                         flags: (!were_node_one) as u8 | ((!chan.is_live() as u8) << 1),
1660                         cltv_expiry_delta: chan.get_cltv_expiry_delta(),
1661                         htlc_minimum_msat: chan.get_counterparty_htlc_minimum_msat(),
1662                         htlc_maximum_msat: OptionalField::Present(chan.get_announced_htlc_max_msat()),
1663                         fee_base_msat: chan.get_holder_fee_base_msat(&self.fee_estimator),
1664                         fee_proportional_millionths: chan.get_fee_proportional_millionths(),
1665                         excess_data: Vec::new(),
1666                 };
1667
1668                 let msg_hash = Sha256dHash::hash(&unsigned.encode()[..]);
1669                 let sig = self.secp_ctx.sign(&hash_to_message!(&msg_hash[..]), &self.our_network_key);
1670
1671                 Ok(msgs::ChannelUpdate {
1672                         signature: sig,
1673                         contents: unsigned
1674                 })
1675         }
1676
1677         // Only public for testing, this should otherwise never be called direcly
1678         pub(crate) fn send_payment_along_path(&self, path: &Vec<RouteHop>, payment_hash: &PaymentHash, payment_secret: &Option<PaymentSecret>, total_value: u64, cur_height: u32) -> Result<(), APIError> {
1679                 log_trace!(self.logger, "Attempting to send payment for path with next hop {}", path.first().unwrap().short_channel_id);
1680                 let prng_seed = self.keys_manager.get_secure_random_bytes();
1681                 let session_priv_bytes = self.keys_manager.get_secure_random_bytes();
1682                 let session_priv = SecretKey::from_slice(&session_priv_bytes[..]).expect("RNG is busted");
1683
1684                 let onion_keys = onion_utils::construct_onion_keys(&self.secp_ctx, &path, &session_priv)
1685                         .map_err(|_| APIError::RouteError{err: "Pubkey along hop was maliciously selected"})?;
1686                 let (onion_payloads, htlc_msat, htlc_cltv) = onion_utils::build_onion_payloads(path, total_value, payment_secret, cur_height)?;
1687                 if onion_utils::route_size_insane(&onion_payloads) {
1688                         return Err(APIError::RouteError{err: "Route size too large considering onion data"});
1689                 }
1690                 let onion_packet = onion_utils::construct_onion_packet(onion_payloads, onion_keys, prng_seed, payment_hash);
1691
1692                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1693                 assert!(self.pending_outbound_payments.lock().unwrap().insert(session_priv_bytes));
1694
1695                 let err: Result<(), _> = loop {
1696                         let mut channel_lock = self.channel_state.lock().unwrap();
1697                         let id = match channel_lock.short_to_id.get(&path.first().unwrap().short_channel_id) {
1698                                 None => return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()}),
1699                                 Some(id) => id.clone(),
1700                         };
1701
1702                         let channel_state = &mut *channel_lock;
1703                         if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(id) {
1704                                 match {
1705                                         if chan.get().get_counterparty_node_id() != path.first().unwrap().pubkey {
1706                                                 return Err(APIError::RouteError{err: "Node ID mismatch on first hop!"});
1707                                         }
1708                                         if !chan.get().is_live() {
1709                                                 return Err(APIError::ChannelUnavailable{err: "Peer for first hop currently disconnected/pending monitor update!".to_owned()});
1710                                         }
1711                                         break_chan_entry!(self, chan.get_mut().send_htlc_and_commit(htlc_msat, payment_hash.clone(), htlc_cltv, HTLCSource::OutboundRoute {
1712                                                 path: path.clone(),
1713                                                 session_priv: session_priv.clone(),
1714                                                 first_hop_htlc_msat: htlc_msat,
1715                                         }, onion_packet, &self.logger), channel_state, chan)
1716                                 } {
1717                                         Some((update_add, commitment_signed, monitor_update)) => {
1718                                                 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
1719                                                         maybe_break_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, true);
1720                                                         // Note that MonitorUpdateFailed here indicates (per function docs)
1721                                                         // that we will resend the commitment update once monitor updating
1722                                                         // is restored. Therefore, we must return an error indicating that
1723                                                         // it is unsafe to retry the payment wholesale, which we do in the
1724                                                         // send_payment check for MonitorUpdateFailed, below.
1725                                                         return Err(APIError::MonitorUpdateFailed);
1726                                                 }
1727
1728                                                 log_debug!(self.logger, "Sending payment along path resulted in a commitment_signed for channel {}", log_bytes!(chan.get().channel_id()));
1729                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
1730                                                         node_id: path.first().unwrap().pubkey,
1731                                                         updates: msgs::CommitmentUpdate {
1732                                                                 update_add_htlcs: vec![update_add],
1733                                                                 update_fulfill_htlcs: Vec::new(),
1734                                                                 update_fail_htlcs: Vec::new(),
1735                                                                 update_fail_malformed_htlcs: Vec::new(),
1736                                                                 update_fee: None,
1737                                                                 commitment_signed,
1738                                                         },
1739                                                 });
1740                                         },
1741                                         None => {},
1742                                 }
1743                         } else { unreachable!(); }
1744                         return Ok(());
1745                 };
1746
1747                 match handle_error!(self, err, path.first().unwrap().pubkey) {
1748                         Ok(_) => unreachable!(),
1749                         Err(e) => {
1750                                 Err(APIError::ChannelUnavailable { err: e.err })
1751                         },
1752                 }
1753         }
1754
1755         /// Sends a payment along a given route.
1756         ///
1757         /// Value parameters are provided via the last hop in route, see documentation for RouteHop
1758         /// fields for more info.
1759         ///
1760         /// Note that if the payment_hash already exists elsewhere (eg you're sending a duplicative
1761         /// payment), we don't do anything to stop you! We always try to ensure that if the provided
1762         /// next hop knows the preimage to payment_hash they can claim an additional amount as
1763         /// specified in the last hop in the route! Thus, you should probably do your own
1764         /// payment_preimage tracking (which you should already be doing as they represent "proof of
1765         /// payment") and prevent double-sends yourself.
1766         ///
1767         /// May generate SendHTLCs message(s) event on success, which should be relayed.
1768         ///
1769         /// Each path may have a different return value, and PaymentSendValue may return a Vec with
1770         /// each entry matching the corresponding-index entry in the route paths, see
1771         /// PaymentSendFailure for more info.
1772         ///
1773         /// In general, a path may raise:
1774         ///  * APIError::RouteError when an invalid route or forwarding parameter (cltv_delta, fee,
1775         ///    node public key) is specified.
1776         ///  * APIError::ChannelUnavailable if the next-hop channel is not available for updates
1777         ///    (including due to previous monitor update failure or new permanent monitor update
1778         ///    failure).
1779         ///  * APIError::MonitorUpdateFailed if a new monitor update failure prevented sending the
1780         ///    relevant updates.
1781         ///
1782         /// Note that depending on the type of the PaymentSendFailure the HTLC may have been
1783         /// irrevocably committed to on our end. In such a case, do NOT retry the payment with a
1784         /// different route unless you intend to pay twice!
1785         ///
1786         /// payment_secret is unrelated to payment_hash (or PaymentPreimage) and exists to authenticate
1787         /// the sender to the recipient and prevent payment-probing (deanonymization) attacks. For
1788         /// newer nodes, it will be provided to you in the invoice. If you do not have one, the Route
1789         /// must not contain multiple paths as multi-path payments require a recipient-provided
1790         /// payment_secret.
1791         /// If a payment_secret *is* provided, we assume that the invoice had the payment_secret feature
1792         /// bit set (either as required or as available). If multiple paths are present in the Route,
1793         /// we assume the invoice had the basic_mpp feature set.
1794         pub fn send_payment(&self, route: &Route, payment_hash: PaymentHash, payment_secret: &Option<PaymentSecret>) -> Result<(), PaymentSendFailure> {
1795                 if route.paths.len() < 1 {
1796                         return Err(PaymentSendFailure::ParameterError(APIError::RouteError{err: "There must be at least one path to send over"}));
1797                 }
1798                 if route.paths.len() > 10 {
1799                         // This limit is completely arbitrary - there aren't any real fundamental path-count
1800                         // limits. After we support retrying individual paths we should likely bump this, but
1801                         // for now more than 10 paths likely carries too much one-path failure.
1802                         return Err(PaymentSendFailure::ParameterError(APIError::RouteError{err: "Sending over more than 10 paths is not currently supported"}));
1803                 }
1804                 let mut total_value = 0;
1805                 let our_node_id = self.get_our_node_id();
1806                 let mut path_errs = Vec::with_capacity(route.paths.len());
1807                 'path_check: for path in route.paths.iter() {
1808                         if path.len() < 1 || path.len() > 20 {
1809                                 path_errs.push(Err(APIError::RouteError{err: "Path didn't go anywhere/had bogus size"}));
1810                                 continue 'path_check;
1811                         }
1812                         for (idx, hop) in path.iter().enumerate() {
1813                                 if idx != path.len() - 1 && hop.pubkey == our_node_id {
1814                                         path_errs.push(Err(APIError::RouteError{err: "Path went through us but wasn't a simple rebalance loop to us"}));
1815                                         continue 'path_check;
1816                                 }
1817                         }
1818                         total_value += path.last().unwrap().fee_msat;
1819                         path_errs.push(Ok(()));
1820                 }
1821                 if path_errs.iter().any(|e| e.is_err()) {
1822                         return Err(PaymentSendFailure::PathParameterError(path_errs));
1823                 }
1824
1825                 let cur_height = self.best_block.read().unwrap().height() + 1;
1826                 let mut results = Vec::new();
1827                 for path in route.paths.iter() {
1828                         results.push(self.send_payment_along_path(&path, &payment_hash, payment_secret, total_value, cur_height));
1829                 }
1830                 let mut has_ok = false;
1831                 let mut has_err = false;
1832                 for res in results.iter() {
1833                         if res.is_ok() { has_ok = true; }
1834                         if res.is_err() { has_err = true; }
1835                         if let &Err(APIError::MonitorUpdateFailed) = res {
1836                                 // MonitorUpdateFailed is inherently unsafe to retry, so we call it a
1837                                 // PartialFailure.
1838                                 has_err = true;
1839                                 has_ok = true;
1840                                 break;
1841                         }
1842                 }
1843                 if has_err && has_ok {
1844                         Err(PaymentSendFailure::PartialFailure(results))
1845                 } else if has_err {
1846                         Err(PaymentSendFailure::AllFailedRetrySafe(results.drain(..).map(|r| r.unwrap_err()).collect()))
1847                 } else {
1848                         Ok(())
1849                 }
1850         }
1851
1852         /// Handles the generation of a funding transaction, optionally (for tests) with a function
1853         /// which checks the correctness of the funding transaction given the associated channel.
1854         fn funding_transaction_generated_intern<FundingOutput: Fn(&Channel<Signer>, &Transaction) -> Result<OutPoint, APIError>>
1855                         (&self, temporary_channel_id: &[u8; 32], funding_transaction: Transaction, find_funding_output: FundingOutput) -> Result<(), APIError> {
1856                 let (chan, msg) = {
1857                         let (res, chan) = match self.channel_state.lock().unwrap().by_id.remove(temporary_channel_id) {
1858                                 Some(mut chan) => {
1859                                         let funding_txo = find_funding_output(&chan, &funding_transaction)?;
1860
1861                                         (chan.get_outbound_funding_created(funding_transaction, funding_txo, &self.logger)
1862                                                 .map_err(|e| if let ChannelError::Close(msg) = e {
1863                                                         MsgHandleErrInternal::from_finish_shutdown(msg, chan.channel_id(), chan.force_shutdown(true), None)
1864                                                 } else { unreachable!(); })
1865                                         , chan)
1866                                 },
1867                                 None => { return Err(APIError::ChannelUnavailable { err: "No such channel".to_owned() }) },
1868                         };
1869                         match handle_error!(self, res, chan.get_counterparty_node_id()) {
1870                                 Ok(funding_msg) => {
1871                                         (chan, funding_msg)
1872                                 },
1873                                 Err(_) => { return Err(APIError::ChannelUnavailable {
1874                                         err: "Error deriving keys or signing initial commitment transactions - either our RNG or our counterparty's RNG is broken or the Signer refused to sign".to_owned()
1875                                 }) },
1876                         }
1877                 };
1878
1879                 let mut channel_state = self.channel_state.lock().unwrap();
1880                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingCreated {
1881                         node_id: chan.get_counterparty_node_id(),
1882                         msg,
1883                 });
1884                 match channel_state.by_id.entry(chan.channel_id()) {
1885                         hash_map::Entry::Occupied(_) => {
1886                                 panic!("Generated duplicate funding txid?");
1887                         },
1888                         hash_map::Entry::Vacant(e) => {
1889                                 e.insert(chan);
1890                         }
1891                 }
1892                 Ok(())
1893         }
1894
1895         #[cfg(test)]
1896         pub(crate) fn funding_transaction_generated_unchecked(&self, temporary_channel_id: &[u8; 32], funding_transaction: Transaction, output_index: u16) -> Result<(), APIError> {
1897                 self.funding_transaction_generated_intern(temporary_channel_id, funding_transaction, |_, tx| {
1898                         Ok(OutPoint { txid: tx.txid(), index: output_index })
1899                 })
1900         }
1901
1902         /// Call this upon creation of a funding transaction for the given channel.
1903         ///
1904         /// Returns an [`APIError::APIMisuseError`] if the funding_transaction spent non-SegWit outputs
1905         /// or if no output was found which matches the parameters in [`Event::FundingGenerationReady`].
1906         ///
1907         /// Panics if a funding transaction has already been provided for this channel.
1908         ///
1909         /// May panic if the output found in the funding transaction is duplicative with some other
1910         /// channel (note that this should be trivially prevented by using unique funding transaction
1911         /// keys per-channel).
1912         ///
1913         /// Do NOT broadcast the funding transaction yourself. When we have safely received our
1914         /// counterparty's signature the funding transaction will automatically be broadcast via the
1915         /// [`BroadcasterInterface`] provided when this `ChannelManager` was constructed.
1916         ///
1917         /// Note that this includes RBF or similar transaction replacement strategies - lightning does
1918         /// not currently support replacing a funding transaction on an existing channel. Instead,
1919         /// create a new channel with a conflicting funding transaction.
1920         ///
1921         /// [`Event::FundingGenerationReady`]: crate::util::events::Event::FundingGenerationReady
1922         pub fn funding_transaction_generated(&self, temporary_channel_id: &[u8; 32], funding_transaction: Transaction) -> Result<(), APIError> {
1923                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1924
1925                 for inp in funding_transaction.input.iter() {
1926                         if inp.witness.is_empty() {
1927                                 return Err(APIError::APIMisuseError {
1928                                         err: "Funding transaction must be fully signed and spend Segwit outputs".to_owned()
1929                                 });
1930                         }
1931                 }
1932                 self.funding_transaction_generated_intern(temporary_channel_id, funding_transaction, |chan, tx| {
1933                         let mut output_index = None;
1934                         let expected_spk = chan.get_funding_redeemscript().to_v0_p2wsh();
1935                         for (idx, outp) in tx.output.iter().enumerate() {
1936                                 if outp.script_pubkey == expected_spk && outp.value == chan.get_value_satoshis() {
1937                                         if output_index.is_some() {
1938                                                 return Err(APIError::APIMisuseError {
1939                                                         err: "Multiple outputs matched the expected script and value".to_owned()
1940                                                 });
1941                                         }
1942                                         if idx > u16::max_value() as usize {
1943                                                 return Err(APIError::APIMisuseError {
1944                                                         err: "Transaction had more than 2^16 outputs, which is not supported".to_owned()
1945                                                 });
1946                                         }
1947                                         output_index = Some(idx as u16);
1948                                 }
1949                         }
1950                         if output_index.is_none() {
1951                                 return Err(APIError::APIMisuseError {
1952                                         err: "No output matched the script_pubkey and value in the FundingGenerationReady event".to_owned()
1953                                 });
1954                         }
1955                         Ok(OutPoint { txid: tx.txid(), index: output_index.unwrap() })
1956                 })
1957         }
1958
1959         fn get_announcement_sigs(&self, chan: &Channel<Signer>) -> Option<msgs::AnnouncementSignatures> {
1960                 if !chan.should_announce() {
1961                         log_trace!(self.logger, "Can't send announcement_signatures for private channel {}", log_bytes!(chan.channel_id()));
1962                         return None
1963                 }
1964
1965                 let (announcement, our_bitcoin_sig) = match chan.get_channel_announcement(self.get_our_node_id(), self.genesis_hash.clone()) {
1966                         Ok(res) => res,
1967                         Err(_) => return None, // Only in case of state precondition violations eg channel is closing
1968                 };
1969                 let msghash = hash_to_message!(&Sha256dHash::hash(&announcement.encode()[..])[..]);
1970                 let our_node_sig = self.secp_ctx.sign(&msghash, &self.our_network_key);
1971
1972                 Some(msgs::AnnouncementSignatures {
1973                         channel_id: chan.channel_id(),
1974                         short_channel_id: chan.get_short_channel_id().unwrap(),
1975                         node_signature: our_node_sig,
1976                         bitcoin_signature: our_bitcoin_sig,
1977                 })
1978         }
1979
1980         #[allow(dead_code)]
1981         // Messages of up to 64KB should never end up more than half full with addresses, as that would
1982         // be absurd. We ensure this by checking that at least 500 (our stated public contract on when
1983         // broadcast_node_announcement panics) of the maximum-length addresses would fit in a 64KB
1984         // message...
1985         const HALF_MESSAGE_IS_ADDRS: u32 = ::core::u16::MAX as u32 / (NetAddress::MAX_LEN as u32 + 1) / 2;
1986         #[deny(const_err)]
1987         #[allow(dead_code)]
1988         // ...by failing to compile if the number of addresses that would be half of a message is
1989         // smaller than 500:
1990         const STATIC_ASSERT: u32 = Self::HALF_MESSAGE_IS_ADDRS - 500;
1991
1992         /// Regenerates channel_announcements and generates a signed node_announcement from the given
1993         /// arguments, providing them in corresponding events via
1994         /// [`get_and_clear_pending_msg_events`], if at least one public channel has been confirmed
1995         /// on-chain. This effectively re-broadcasts all channel announcements and sends our node
1996         /// announcement to ensure that the lightning P2P network is aware of the channels we have and
1997         /// our network addresses.
1998         ///
1999         /// `rgb` is a node "color" and `alias` is a printable human-readable string to describe this
2000         /// node to humans. They carry no in-protocol meaning.
2001         ///
2002         /// `addresses` represent the set (possibly empty) of socket addresses on which this node
2003         /// accepts incoming connections. These will be included in the node_announcement, publicly
2004         /// tying these addresses together and to this node. If you wish to preserve user privacy,
2005         /// addresses should likely contain only Tor Onion addresses.
2006         ///
2007         /// Panics if `addresses` is absurdly large (more than 500).
2008         ///
2009         /// [`get_and_clear_pending_msg_events`]: MessageSendEventsProvider::get_and_clear_pending_msg_events
2010         pub fn broadcast_node_announcement(&self, rgb: [u8; 3], alias: [u8; 32], mut addresses: Vec<NetAddress>) {
2011                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2012
2013                 if addresses.len() > 500 {
2014                         panic!("More than half the message size was taken up by public addresses!");
2015                 }
2016
2017                 // While all existing nodes handle unsorted addresses just fine, the spec requires that
2018                 // addresses be sorted for future compatibility.
2019                 addresses.sort_by_key(|addr| addr.get_id());
2020
2021                 let announcement = msgs::UnsignedNodeAnnouncement {
2022                         features: NodeFeatures::known(),
2023                         timestamp: self.last_node_announcement_serial.fetch_add(1, Ordering::AcqRel) as u32,
2024                         node_id: self.get_our_node_id(),
2025                         rgb, alias, addresses,
2026                         excess_address_data: Vec::new(),
2027                         excess_data: Vec::new(),
2028                 };
2029                 let msghash = hash_to_message!(&Sha256dHash::hash(&announcement.encode()[..])[..]);
2030                 let node_announce_sig = self.secp_ctx.sign(&msghash, &self.our_network_key);
2031
2032                 let mut channel_state_lock = self.channel_state.lock().unwrap();
2033                 let channel_state = &mut *channel_state_lock;
2034
2035                 let mut announced_chans = false;
2036                 for (_, chan) in channel_state.by_id.iter() {
2037                         if let Some(msg) = chan.get_signed_channel_announcement(&self.our_network_key, self.get_our_node_id(), self.genesis_hash.clone()) {
2038                                 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
2039                                         msg,
2040                                         update_msg: match self.get_channel_update(chan) {
2041                                                 Ok(msg) => msg,
2042                                                 Err(_) => continue,
2043                                         },
2044                                 });
2045                                 announced_chans = true;
2046                         } else {
2047                                 // If the channel is not public or has not yet reached funding_locked, check the
2048                                 // next channel. If we don't yet have any public channels, we'll skip the broadcast
2049                                 // below as peers may not accept it without channels on chain first.
2050                         }
2051                 }
2052
2053                 if announced_chans {
2054                         channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastNodeAnnouncement {
2055                                 msg: msgs::NodeAnnouncement {
2056                                         signature: node_announce_sig,
2057                                         contents: announcement
2058                                 },
2059                         });
2060                 }
2061         }
2062
2063         /// Processes HTLCs which are pending waiting on random forward delay.
2064         ///
2065         /// Should only really ever be called in response to a PendingHTLCsForwardable event.
2066         /// Will likely generate further events.
2067         pub fn process_pending_htlc_forwards(&self) {
2068                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2069
2070                 let mut new_events = Vec::new();
2071                 let mut failed_forwards = Vec::new();
2072                 let mut handle_errors = Vec::new();
2073                 {
2074                         let mut channel_state_lock = self.channel_state.lock().unwrap();
2075                         let channel_state = &mut *channel_state_lock;
2076
2077                         for (short_chan_id, mut pending_forwards) in channel_state.forward_htlcs.drain() {
2078                                 if short_chan_id != 0 {
2079                                         let forward_chan_id = match channel_state.short_to_id.get(&short_chan_id) {
2080                                                 Some(chan_id) => chan_id.clone(),
2081                                                 None => {
2082                                                         failed_forwards.reserve(pending_forwards.len());
2083                                                         for forward_info in pending_forwards.drain(..) {
2084                                                                 match forward_info {
2085                                                                         HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info,
2086                                                                                                    prev_funding_outpoint } => {
2087                                                                                 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
2088                                                                                         short_channel_id: prev_short_channel_id,
2089                                                                                         outpoint: prev_funding_outpoint,
2090                                                                                         htlc_id: prev_htlc_id,
2091                                                                                         incoming_packet_shared_secret: forward_info.incoming_shared_secret,
2092                                                                                 });
2093                                                                                 failed_forwards.push((htlc_source, forward_info.payment_hash,
2094                                                                                         HTLCFailReason::Reason { failure_code: 0x4000 | 10, data: Vec::new() }
2095                                                                                 ));
2096                                                                         },
2097                                                                         HTLCForwardInfo::FailHTLC { .. } => {
2098                                                                                 // Channel went away before we could fail it. This implies
2099                                                                                 // the channel is now on chain and our counterparty is
2100                                                                                 // trying to broadcast the HTLC-Timeout, but that's their
2101                                                                                 // problem, not ours.
2102                                                                         }
2103                                                                 }
2104                                                         }
2105                                                         continue;
2106                                                 }
2107                                         };
2108                                         if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(forward_chan_id) {
2109                                                 let mut add_htlc_msgs = Vec::new();
2110                                                 let mut fail_htlc_msgs = Vec::new();
2111                                                 for forward_info in pending_forwards.drain(..) {
2112                                                         match forward_info {
2113                                                                 HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info: PendingHTLCInfo {
2114                                                                                 routing: PendingHTLCRouting::Forward {
2115                                                                                         onion_packet, ..
2116                                                                                 }, incoming_shared_secret, payment_hash, amt_to_forward, outgoing_cltv_value },
2117                                                                                 prev_funding_outpoint } => {
2118                                                                         log_trace!(self.logger, "Adding HTLC from short id {} with payment_hash {} to channel with short id {} after delay", prev_short_channel_id, log_bytes!(payment_hash.0), short_chan_id);
2119                                                                         let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
2120                                                                                 short_channel_id: prev_short_channel_id,
2121                                                                                 outpoint: prev_funding_outpoint,
2122                                                                                 htlc_id: prev_htlc_id,
2123                                                                                 incoming_packet_shared_secret: incoming_shared_secret,
2124                                                                         });
2125                                                                         match chan.get_mut().send_htlc(amt_to_forward, payment_hash, outgoing_cltv_value, htlc_source.clone(), onion_packet) {
2126                                                                                 Err(e) => {
2127                                                                                         if let ChannelError::Ignore(msg) = e {
2128                                                                                                 log_trace!(self.logger, "Failed to forward HTLC with payment_hash {}: {}", log_bytes!(payment_hash.0), msg);
2129                                                                                         } else {
2130                                                                                                 panic!("Stated return value requirements in send_htlc() were not met");
2131                                                                                         }
2132                                                                                         let chan_update = self.get_channel_update(chan.get()).unwrap();
2133                                                                                         failed_forwards.push((htlc_source, payment_hash,
2134                                                                                                 HTLCFailReason::Reason { failure_code: 0x1000 | 7, data: chan_update.encode_with_len() }
2135                                                                                         ));
2136                                                                                         continue;
2137                                                                                 },
2138                                                                                 Ok(update_add) => {
2139                                                                                         match update_add {
2140                                                                                                 Some(msg) => { add_htlc_msgs.push(msg); },
2141                                                                                                 None => {
2142                                                                                                         // Nothing to do here...we're waiting on a remote
2143                                                                                                         // revoke_and_ack before we can add anymore HTLCs. The Channel
2144                                                                                                         // will automatically handle building the update_add_htlc and
2145                                                                                                         // commitment_signed messages when we can.
2146                                                                                                         // TODO: Do some kind of timer to set the channel as !is_live()
2147                                                                                                         // as we don't really want others relying on us relaying through
2148                                                                                                         // this channel currently :/.
2149                                                                                                 }
2150                                                                                         }
2151                                                                                 }
2152                                                                         }
2153                                                                 },
2154                                                                 HTLCForwardInfo::AddHTLC { .. } => {
2155                                                                         panic!("short_channel_id != 0 should imply any pending_forward entries are of type Forward");
2156                                                                 },
2157                                                                 HTLCForwardInfo::FailHTLC { htlc_id, err_packet } => {
2158                                                                         log_trace!(self.logger, "Failing HTLC back to channel with short id {} (backward HTLC ID {}) after delay", short_chan_id, htlc_id);
2159                                                                         match chan.get_mut().get_update_fail_htlc(htlc_id, err_packet, &self.logger) {
2160                                                                                 Err(e) => {
2161                                                                                         if let ChannelError::Ignore(msg) = e {
2162                                                                                                 log_trace!(self.logger, "Failed to fail HTLC with ID {} backwards to short_id {}: {}", htlc_id, short_chan_id, msg);
2163                                                                                         } else {
2164                                                                                                 panic!("Stated return value requirements in get_update_fail_htlc() were not met");
2165                                                                                         }
2166                                                                                         // fail-backs are best-effort, we probably already have one
2167                                                                                         // pending, and if not that's OK, if not, the channel is on
2168                                                                                         // the chain and sending the HTLC-Timeout is their problem.
2169                                                                                         continue;
2170                                                                                 },
2171                                                                                 Ok(Some(msg)) => { fail_htlc_msgs.push(msg); },
2172                                                                                 Ok(None) => {
2173                                                                                         // Nothing to do here...we're waiting on a remote
2174                                                                                         // revoke_and_ack before we can update the commitment
2175                                                                                         // transaction. The Channel will automatically handle
2176                                                                                         // building the update_fail_htlc and commitment_signed
2177                                                                                         // messages when we can.
2178                                                                                         // We don't need any kind of timer here as they should fail
2179                                                                                         // the channel onto the chain if they can't get our
2180                                                                                         // update_fail_htlc in time, it's not our problem.
2181                                                                                 }
2182                                                                         }
2183                                                                 },
2184                                                         }
2185                                                 }
2186
2187                                                 if !add_htlc_msgs.is_empty() || !fail_htlc_msgs.is_empty() {
2188                                                         let (commitment_msg, monitor_update) = match chan.get_mut().send_commitment(&self.logger) {
2189                                                                 Ok(res) => res,
2190                                                                 Err(e) => {
2191                                                                         // We surely failed send_commitment due to bad keys, in that case
2192                                                                         // close channel and then send error message to peer.
2193                                                                         let counterparty_node_id = chan.get().get_counterparty_node_id();
2194                                                                         let err: Result<(), _>  = match e {
2195                                                                                 ChannelError::Ignore(_) => {
2196                                                                                         panic!("Stated return value requirements in send_commitment() were not met");
2197                                                                                 },
2198                                                                                 ChannelError::Close(msg) => {
2199                                                                                         log_trace!(self.logger, "Closing channel {} due to Close-required error: {}", log_bytes!(chan.key()[..]), msg);
2200                                                                                         let (channel_id, mut channel) = chan.remove_entry();
2201                                                                                         if let Some(short_id) = channel.get_short_channel_id() {
2202                                                                                                 channel_state.short_to_id.remove(&short_id);
2203                                                                                         }
2204                                                                                         Err(MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, channel.force_shutdown(true), self.get_channel_update(&channel).ok()))
2205                                                                                 },
2206                                                                                 ChannelError::CloseDelayBroadcast(_) => { panic!("Wait is only generated on receipt of channel_reestablish, which is handled by try_chan_entry, we don't bother to support it here"); }
2207                                                                         };
2208                                                                         handle_errors.push((counterparty_node_id, err));
2209                                                                         continue;
2210                                                                 }
2211                                                         };
2212                                                         if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
2213                                                                 handle_errors.push((chan.get().get_counterparty_node_id(), handle_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, true)));
2214                                                                 continue;
2215                                                         }
2216                                                         log_debug!(self.logger, "Forwarding HTLCs resulted in a commitment update with {} HTLCs added and {} HTLCs failed for channel {}",
2217                                                                 add_htlc_msgs.len(), fail_htlc_msgs.len(), log_bytes!(chan.get().channel_id()));
2218                                                         channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
2219                                                                 node_id: chan.get().get_counterparty_node_id(),
2220                                                                 updates: msgs::CommitmentUpdate {
2221                                                                         update_add_htlcs: add_htlc_msgs,
2222                                                                         update_fulfill_htlcs: Vec::new(),
2223                                                                         update_fail_htlcs: fail_htlc_msgs,
2224                                                                         update_fail_malformed_htlcs: Vec::new(),
2225                                                                         update_fee: None,
2226                                                                         commitment_signed: commitment_msg,
2227                                                                 },
2228                                                         });
2229                                                 }
2230                                         } else {
2231                                                 unreachable!();
2232                                         }
2233                                 } else {
2234                                         for forward_info in pending_forwards.drain(..) {
2235                                                 match forward_info {
2236                                                         HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info: PendingHTLCInfo {
2237                                                                         routing: PendingHTLCRouting::Receive { payment_data, incoming_cltv_expiry },
2238                                                                         incoming_shared_secret, payment_hash, amt_to_forward, .. },
2239                                                                         prev_funding_outpoint } => {
2240                                                                 let claimable_htlc = ClaimableHTLC {
2241                                                                         prev_hop: HTLCPreviousHopData {
2242                                                                                 short_channel_id: prev_short_channel_id,
2243                                                                                 outpoint: prev_funding_outpoint,
2244                                                                                 htlc_id: prev_htlc_id,
2245                                                                                 incoming_packet_shared_secret: incoming_shared_secret,
2246                                                                         },
2247                                                                         value: amt_to_forward,
2248                                                                         payment_data: payment_data.clone(),
2249                                                                         cltv_expiry: incoming_cltv_expiry,
2250                                                                 };
2251
2252                                                                 macro_rules! fail_htlc {
2253                                                                         ($htlc: expr) => {
2254                                                                                 let mut htlc_msat_height_data = byte_utils::be64_to_array($htlc.value).to_vec();
2255                                                                                 htlc_msat_height_data.extend_from_slice(
2256                                                                                         &byte_utils::be32_to_array(self.best_block.read().unwrap().height()),
2257                                                                                 );
2258                                                                                 failed_forwards.push((HTLCSource::PreviousHopData(HTLCPreviousHopData {
2259                                                                                                 short_channel_id: $htlc.prev_hop.short_channel_id,
2260                                                                                                 outpoint: prev_funding_outpoint,
2261                                                                                                 htlc_id: $htlc.prev_hop.htlc_id,
2262                                                                                                 incoming_packet_shared_secret: $htlc.prev_hop.incoming_packet_shared_secret,
2263                                                                                         }), payment_hash,
2264                                                                                         HTLCFailReason::Reason { failure_code: 0x4000 | 15, data: htlc_msat_height_data }
2265                                                                                 ));
2266                                                                         }
2267                                                                 }
2268
2269                                                                 // Check that the payment hash and secret are known. Note that we
2270                                                                 // MUST take care to handle the "unknown payment hash" and
2271                                                                 // "incorrect payment secret" cases here identically or we'd expose
2272                                                                 // that we are the ultimate recipient of the given payment hash.
2273                                                                 // Further, we must not expose whether we have any other HTLCs
2274                                                                 // associated with the same payment_hash pending or not.
2275                                                                 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
2276                                                                 match payment_secrets.entry(payment_hash) {
2277                                                                         hash_map::Entry::Vacant(_) => {
2278                                                                                 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as we didn't have a corresponding inbound payment.", log_bytes!(payment_hash.0));
2279                                                                                 fail_htlc!(claimable_htlc);
2280                                                                         },
2281                                                                         hash_map::Entry::Occupied(inbound_payment) => {
2282                                                                                 if inbound_payment.get().payment_secret != payment_data.payment_secret {
2283                                                                                         log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our expected payment secret.", log_bytes!(payment_hash.0));
2284                                                                                         fail_htlc!(claimable_htlc);
2285                                                                                 } else if inbound_payment.get().min_value_msat.is_some() && payment_data.total_msat < inbound_payment.get().min_value_msat.unwrap() {
2286                                                                                         log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our minimum value (had {}, needed {}).",
2287                                                                                                 log_bytes!(payment_hash.0), payment_data.total_msat, inbound_payment.get().min_value_msat.unwrap());
2288                                                                                         fail_htlc!(claimable_htlc);
2289                                                                                 } else {
2290                                                                                         let mut total_value = 0;
2291                                                                                         let htlcs = channel_state.claimable_htlcs.entry(payment_hash)
2292                                                                                                 .or_insert(Vec::new());
2293                                                                                         htlcs.push(claimable_htlc);
2294                                                                                         for htlc in htlcs.iter() {
2295                                                                                                 total_value += htlc.value;
2296                                                                                                 if htlc.payment_data.total_msat != payment_data.total_msat {
2297                                                                                                         log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the HTLCs had inconsistent total values (eg {} and {})",
2298                                                                                                                 log_bytes!(payment_hash.0), payment_data.total_msat, htlc.payment_data.total_msat);
2299                                                                                                         total_value = msgs::MAX_VALUE_MSAT;
2300                                                                                                 }
2301                                                                                                 if total_value >= msgs::MAX_VALUE_MSAT { break; }
2302                                                                                         }
2303                                                                                         if total_value >= msgs::MAX_VALUE_MSAT || total_value > payment_data.total_msat {
2304                                                                                                 log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the total value {} ran over expected value {} (or HTLCs were inconsistent)",
2305                                                                                                         log_bytes!(payment_hash.0), total_value, payment_data.total_msat);
2306                                                                                                 for htlc in htlcs.iter() {
2307                                                                                                         fail_htlc!(htlc);
2308                                                                                                 }
2309                                                                                         } else if total_value == payment_data.total_msat {
2310                                                                                                 new_events.push(events::Event::PaymentReceived {
2311                                                                                                         payment_hash,
2312                                                                                                         payment_preimage: inbound_payment.get().payment_preimage,
2313                                                                                                         payment_secret: payment_data.payment_secret,
2314                                                                                                         amt: total_value,
2315                                                                                                         user_payment_id: inbound_payment.get().user_payment_id,
2316                                                                                                 });
2317                                                                                                 // Only ever generate at most one PaymentReceived
2318                                                                                                 // per registered payment_hash, even if it isn't
2319                                                                                                 // claimed.
2320                                                                                                 inbound_payment.remove_entry();
2321                                                                                         } else {
2322                                                                                                 // Nothing to do - we haven't reached the total
2323                                                                                                 // payment value yet, wait until we receive more
2324                                                                                                 // MPP parts.
2325                                                                                         }
2326                                                                                 }
2327                                                                         },
2328                                                                 };
2329                                                         },
2330                                                         HTLCForwardInfo::AddHTLC { .. } => {
2331                                                                 panic!("short_channel_id == 0 should imply any pending_forward entries are of type Receive");
2332                                                         },
2333                                                         HTLCForwardInfo::FailHTLC { .. } => {
2334                                                                 panic!("Got pending fail of our own HTLC");
2335                                                         }
2336                                                 }
2337                                         }
2338                                 }
2339                         }
2340                 }
2341
2342                 for (htlc_source, payment_hash, failure_reason) in failed_forwards.drain(..) {
2343                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source, &payment_hash, failure_reason);
2344                 }
2345
2346                 for (counterparty_node_id, err) in handle_errors.drain(..) {
2347                         let _ = handle_error!(self, err, counterparty_node_id);
2348                 }
2349
2350                 if new_events.is_empty() { return }
2351                 let mut events = self.pending_events.lock().unwrap();
2352                 events.append(&mut new_events);
2353         }
2354
2355         /// Free the background events, generally called from timer_tick_occurred.
2356         ///
2357         /// Exposed for testing to allow us to process events quickly without generating accidental
2358         /// BroadcastChannelUpdate events in timer_tick_occurred.
2359         ///
2360         /// Expects the caller to have a total_consistency_lock read lock.
2361         fn process_background_events(&self) -> bool {
2362                 let mut background_events = Vec::new();
2363                 mem::swap(&mut *self.pending_background_events.lock().unwrap(), &mut background_events);
2364                 if background_events.is_empty() {
2365                         return false;
2366                 }
2367
2368                 for event in background_events.drain(..) {
2369                         match event {
2370                                 BackgroundEvent::ClosingMonitorUpdate((funding_txo, update)) => {
2371                                         // The channel has already been closed, so no use bothering to care about the
2372                                         // monitor updating completing.
2373                                         let _ = self.chain_monitor.update_channel(funding_txo, update);
2374                                 },
2375                         }
2376                 }
2377                 true
2378         }
2379
2380         #[cfg(any(test, feature = "_test_utils"))]
2381         /// Process background events, for functional testing
2382         pub fn test_process_background_events(&self) {
2383                 self.process_background_events();
2384         }
2385
2386         /// If a peer is disconnected we mark any channels with that peer as 'disabled'.
2387         /// After some time, if channels are still disabled we need to broadcast a ChannelUpdate
2388         /// to inform the network about the uselessness of these channels.
2389         ///
2390         /// This method handles all the details, and must be called roughly once per minute.
2391         ///
2392         /// Note that in some rare cases this may generate a `chain::Watch::update_channel` call.
2393         pub fn timer_tick_occurred(&self) {
2394                 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
2395                         let mut should_persist = NotifyOption::SkipPersist;
2396                         if self.process_background_events() { should_persist = NotifyOption::DoPersist; }
2397
2398                         let mut channel_state_lock = self.channel_state.lock().unwrap();
2399                         let channel_state = &mut *channel_state_lock;
2400                         for (_, chan) in channel_state.by_id.iter_mut() {
2401                                 match chan.channel_update_status() {
2402                                         ChannelUpdateStatus::Enabled if !chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::DisabledStaged),
2403                                         ChannelUpdateStatus::Disabled if chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::EnabledStaged),
2404                                         ChannelUpdateStatus::DisabledStaged if chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::Enabled),
2405                                         ChannelUpdateStatus::EnabledStaged if !chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::Disabled),
2406                                         ChannelUpdateStatus::DisabledStaged if !chan.is_live() => {
2407                                                 if let Ok(update) = self.get_channel_update(&chan) {
2408                                                         channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2409                                                                 msg: update
2410                                                         });
2411                                                 }
2412                                                 should_persist = NotifyOption::DoPersist;
2413                                                 chan.set_channel_update_status(ChannelUpdateStatus::Disabled);
2414                                         },
2415                                         ChannelUpdateStatus::EnabledStaged if chan.is_live() => {
2416                                                 if let Ok(update) = self.get_channel_update(&chan) {
2417                                                         channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2418                                                                 msg: update
2419                                                         });
2420                                                 }
2421                                                 should_persist = NotifyOption::DoPersist;
2422                                                 chan.set_channel_update_status(ChannelUpdateStatus::Enabled);
2423                                         },
2424                                         _ => {},
2425                                 }
2426                         }
2427
2428                         should_persist
2429                 });
2430         }
2431
2432         /// Indicates that the preimage for payment_hash is unknown or the received amount is incorrect
2433         /// after a PaymentReceived event, failing the HTLC back to its origin and freeing resources
2434         /// along the path (including in our own channel on which we received it).
2435         /// Returns false if no payment was found to fail backwards, true if the process of failing the
2436         /// HTLC backwards has been started.
2437         pub fn fail_htlc_backwards(&self, payment_hash: &PaymentHash) -> bool {
2438                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2439
2440                 let mut channel_state = Some(self.channel_state.lock().unwrap());
2441                 let removed_source = channel_state.as_mut().unwrap().claimable_htlcs.remove(payment_hash);
2442                 if let Some(mut sources) = removed_source {
2443                         for htlc in sources.drain(..) {
2444                                 if channel_state.is_none() { channel_state = Some(self.channel_state.lock().unwrap()); }
2445                                 let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec();
2446                                 htlc_msat_height_data.extend_from_slice(&byte_utils::be32_to_array(
2447                                                 self.best_block.read().unwrap().height()));
2448                                 self.fail_htlc_backwards_internal(channel_state.take().unwrap(),
2449                                                 HTLCSource::PreviousHopData(htlc.prev_hop), payment_hash,
2450                                                 HTLCFailReason::Reason { failure_code: 0x4000 | 15, data: htlc_msat_height_data });
2451                         }
2452                         true
2453                 } else { false }
2454         }
2455
2456         // Fail a list of HTLCs that were just freed from the holding cell. The HTLCs need to be
2457         // failed backwards or, if they were one of our outgoing HTLCs, then their failure needs to
2458         // be surfaced to the user.
2459         fn fail_holding_cell_htlcs(&self, mut htlcs_to_fail: Vec<(HTLCSource, PaymentHash)>, channel_id: [u8; 32]) {
2460                 for (htlc_src, payment_hash) in htlcs_to_fail.drain(..) {
2461                         match htlc_src {
2462                                 HTLCSource::PreviousHopData(HTLCPreviousHopData { .. }) => {
2463                                         let (failure_code, onion_failure_data) =
2464                                                 match self.channel_state.lock().unwrap().by_id.entry(channel_id) {
2465                                                         hash_map::Entry::Occupied(chan_entry) => {
2466                                                                 if let Ok(upd) = self.get_channel_update(&chan_entry.get()) {
2467                                                                         (0x1000|7, upd.encode_with_len())
2468                                                                 } else {
2469                                                                         (0x4000|10, Vec::new())
2470                                                                 }
2471                                                         },
2472                                                         hash_map::Entry::Vacant(_) => (0x4000|10, Vec::new())
2473                                                 };
2474                                         let channel_state = self.channel_state.lock().unwrap();
2475                                         self.fail_htlc_backwards_internal(channel_state,
2476                                                 htlc_src, &payment_hash, HTLCFailReason::Reason { failure_code, data: onion_failure_data});
2477                                 },
2478                                 HTLCSource::OutboundRoute { session_priv, .. } => {
2479                                         if {
2480                                                 let mut session_priv_bytes = [0; 32];
2481                                                 session_priv_bytes.copy_from_slice(&session_priv[..]);
2482                                                 self.pending_outbound_payments.lock().unwrap().remove(&session_priv_bytes)
2483                                         } {
2484                                                 self.pending_events.lock().unwrap().push(
2485                                                         events::Event::PaymentFailed {
2486                                                                 payment_hash,
2487                                                                 rejected_by_dest: false,
2488 #[cfg(test)]
2489                                                                 error_code: None,
2490 #[cfg(test)]
2491                                                                 error_data: None,
2492                                                         }
2493                                                 )
2494                                         } else {
2495                                                 log_trace!(self.logger, "Received duplicative fail for HTLC with payment_hash {}", log_bytes!(payment_hash.0));
2496                                         }
2497                                 },
2498                         };
2499                 }
2500         }
2501
2502         /// Fails an HTLC backwards to the sender of it to us.
2503         /// Note that while we take a channel_state lock as input, we do *not* assume consistency here.
2504         /// There are several callsites that do stupid things like loop over a list of payment_hashes
2505         /// to fail and take the channel_state lock for each iteration (as we take ownership and may
2506         /// drop it). In other words, no assumptions are made that entries in claimable_htlcs point to
2507         /// still-available channels.
2508         fn fail_htlc_backwards_internal(&self, mut channel_state_lock: MutexGuard<ChannelHolder<Signer>>, source: HTLCSource, payment_hash: &PaymentHash, onion_error: HTLCFailReason) {
2509                 //TODO: There is a timing attack here where if a node fails an HTLC back to us they can
2510                 //identify whether we sent it or not based on the (I presume) very different runtime
2511                 //between the branches here. We should make this async and move it into the forward HTLCs
2512                 //timer handling.
2513
2514                 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
2515                 // from block_connected which may run during initialization prior to the chain_monitor
2516                 // being fully configured. See the docs for `ChannelManagerReadArgs` for more.
2517                 match source {
2518                         HTLCSource::OutboundRoute { ref path, session_priv, .. } => {
2519                                 if {
2520                                         let mut session_priv_bytes = [0; 32];
2521                                         session_priv_bytes.copy_from_slice(&session_priv[..]);
2522                                         !self.pending_outbound_payments.lock().unwrap().remove(&session_priv_bytes)
2523                                 } {
2524                                         log_trace!(self.logger, "Received duplicative fail for HTLC with payment_hash {}", log_bytes!(payment_hash.0));
2525                                         return;
2526                                 }
2527                                 log_trace!(self.logger, "Failing outbound payment HTLC with payment_hash {}", log_bytes!(payment_hash.0));
2528                                 mem::drop(channel_state_lock);
2529                                 match &onion_error {
2530                                         &HTLCFailReason::LightningError { ref err } => {
2531 #[cfg(test)]
2532                                                 let (channel_update, payment_retryable, onion_error_code, onion_error_data) = onion_utils::process_onion_failure(&self.secp_ctx, &self.logger, &source, err.data.clone());
2533 #[cfg(not(test))]
2534                                                 let (channel_update, payment_retryable, _, _) = onion_utils::process_onion_failure(&self.secp_ctx, &self.logger, &source, err.data.clone());
2535                                                 // TODO: If we decided to blame ourselves (or one of our channels) in
2536                                                 // process_onion_failure we should close that channel as it implies our
2537                                                 // next-hop is needlessly blaming us!
2538                                                 if let Some(update) = channel_update {
2539                                                         self.channel_state.lock().unwrap().pending_msg_events.push(
2540                                                                 events::MessageSendEvent::PaymentFailureNetworkUpdate {
2541                                                                         update,
2542                                                                 }
2543                                                         );
2544                                                 }
2545                                                 self.pending_events.lock().unwrap().push(
2546                                                         events::Event::PaymentFailed {
2547                                                                 payment_hash: payment_hash.clone(),
2548                                                                 rejected_by_dest: !payment_retryable,
2549 #[cfg(test)]
2550                                                                 error_code: onion_error_code,
2551 #[cfg(test)]
2552                                                                 error_data: onion_error_data
2553                                                         }
2554                                                 );
2555                                         },
2556                                         &HTLCFailReason::Reason {
2557 #[cfg(test)]
2558                                                         ref failure_code,
2559 #[cfg(test)]
2560                                                         ref data,
2561                                                         .. } => {
2562                                                 // we get a fail_malformed_htlc from the first hop
2563                                                 // TODO: We'd like to generate a PaymentFailureNetworkUpdate for temporary
2564                                                 // failures here, but that would be insufficient as get_route
2565                                                 // generally ignores its view of our own channels as we provide them via
2566                                                 // ChannelDetails.
2567                                                 // TODO: For non-temporary failures, we really should be closing the
2568                                                 // channel here as we apparently can't relay through them anyway.
2569                                                 self.pending_events.lock().unwrap().push(
2570                                                         events::Event::PaymentFailed {
2571                                                                 payment_hash: payment_hash.clone(),
2572                                                                 rejected_by_dest: path.len() == 1,
2573 #[cfg(test)]
2574                                                                 error_code: Some(*failure_code),
2575 #[cfg(test)]
2576                                                                 error_data: Some(data.clone()),
2577                                                         }
2578                                                 );
2579                                         }
2580                                 }
2581                         },
2582                         HTLCSource::PreviousHopData(HTLCPreviousHopData { short_channel_id, htlc_id, incoming_packet_shared_secret, .. }) => {
2583                                 let err_packet = match onion_error {
2584                                         HTLCFailReason::Reason { failure_code, data } => {
2585                                                 log_trace!(self.logger, "Failing HTLC with payment_hash {} backwards from us with code {}", log_bytes!(payment_hash.0), failure_code);
2586                                                 let packet = onion_utils::build_failure_packet(&incoming_packet_shared_secret, failure_code, &data[..]).encode();
2587                                                 onion_utils::encrypt_failure_packet(&incoming_packet_shared_secret, &packet)
2588                                         },
2589                                         HTLCFailReason::LightningError { err } => {
2590                                                 log_trace!(self.logger, "Failing HTLC with payment_hash {} backwards with pre-built LightningError", log_bytes!(payment_hash.0));
2591                                                 onion_utils::encrypt_failure_packet(&incoming_packet_shared_secret, &err.data)
2592                                         }
2593                                 };
2594
2595                                 let mut forward_event = None;
2596                                 if channel_state_lock.forward_htlcs.is_empty() {
2597                                         forward_event = Some(Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS));
2598                                 }
2599                                 match channel_state_lock.forward_htlcs.entry(short_channel_id) {
2600                                         hash_map::Entry::Occupied(mut entry) => {
2601                                                 entry.get_mut().push(HTLCForwardInfo::FailHTLC { htlc_id, err_packet });
2602                                         },
2603                                         hash_map::Entry::Vacant(entry) => {
2604                                                 entry.insert(vec!(HTLCForwardInfo::FailHTLC { htlc_id, err_packet }));
2605                                         }
2606                                 }
2607                                 mem::drop(channel_state_lock);
2608                                 if let Some(time) = forward_event {
2609                                         let mut pending_events = self.pending_events.lock().unwrap();
2610                                         pending_events.push(events::Event::PendingHTLCsForwardable {
2611                                                 time_forwardable: time
2612                                         });
2613                                 }
2614                         },
2615                 }
2616         }
2617
2618         /// Provides a payment preimage in response to a PaymentReceived event, returning true and
2619         /// generating message events for the net layer to claim the payment, if possible. Thus, you
2620         /// should probably kick the net layer to go send messages if this returns true!
2621         ///
2622         /// Note that if you did not set an `amount_msat` when calling [`create_inbound_payment`] or
2623         /// [`create_inbound_payment_for_hash`] you must check that the amount in the `PaymentReceived`
2624         /// event matches your expectation. If you fail to do so and call this method, you may provide
2625         /// the sender "proof-of-payment" when they did not fulfill the full expected payment.
2626         ///
2627         /// May panic if called except in response to a PaymentReceived event.
2628         ///
2629         /// [`create_inbound_payment`]: Self::create_inbound_payment
2630         /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
2631         pub fn claim_funds(&self, payment_preimage: PaymentPreimage) -> bool {
2632                 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
2633
2634                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2635
2636                 let mut channel_state = Some(self.channel_state.lock().unwrap());
2637                 let removed_source = channel_state.as_mut().unwrap().claimable_htlcs.remove(&payment_hash);
2638                 if let Some(mut sources) = removed_source {
2639                         assert!(!sources.is_empty());
2640
2641                         // If we are claiming an MPP payment, we have to take special care to ensure that each
2642                         // channel exists before claiming all of the payments (inside one lock).
2643                         // Note that channel existance is sufficient as we should always get a monitor update
2644                         // which will take care of the real HTLC claim enforcement.
2645                         //
2646                         // If we find an HTLC which we would need to claim but for which we do not have a
2647                         // channel, we will fail all parts of the MPP payment. While we could wait and see if
2648                         // the sender retries the already-failed path(s), it should be a pretty rare case where
2649                         // we got all the HTLCs and then a channel closed while we were waiting for the user to
2650                         // provide the preimage, so worrying too much about the optimal handling isn't worth
2651                         // it.
2652                         let mut valid_mpp = true;
2653                         for htlc in sources.iter() {
2654                                 if let None = channel_state.as_ref().unwrap().short_to_id.get(&htlc.prev_hop.short_channel_id) {
2655                                         valid_mpp = false;
2656                                         break;
2657                                 }
2658                         }
2659
2660                         let mut errs = Vec::new();
2661                         let mut claimed_any_htlcs = false;
2662                         for htlc in sources.drain(..) {
2663                                 if !valid_mpp {
2664                                         if channel_state.is_none() { channel_state = Some(self.channel_state.lock().unwrap()); }
2665                                         let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec();
2666                                         htlc_msat_height_data.extend_from_slice(&byte_utils::be32_to_array(
2667                                                         self.best_block.read().unwrap().height()));
2668                                         self.fail_htlc_backwards_internal(channel_state.take().unwrap(),
2669                                                                          HTLCSource::PreviousHopData(htlc.prev_hop), &payment_hash,
2670                                                                          HTLCFailReason::Reason { failure_code: 0x4000|15, data: htlc_msat_height_data });
2671                                 } else {
2672                                         match self.claim_funds_from_hop(channel_state.as_mut().unwrap(), htlc.prev_hop, payment_preimage) {
2673                                                 Err(Some(e)) => {
2674                                                         if let msgs::ErrorAction::IgnoreError = e.1.err.action {
2675                                                                 // We got a temporary failure updating monitor, but will claim the
2676                                                                 // HTLC when the monitor updating is restored (or on chain).
2677                                                                 log_error!(self.logger, "Temporary failure claiming HTLC, treating as success: {}", e.1.err.err);
2678                                                                 claimed_any_htlcs = true;
2679                                                         } else { errs.push(e); }
2680                                                 },
2681                                                 Err(None) => unreachable!("We already checked for channel existence, we can't fail here!"),
2682                                                 Ok(()) => claimed_any_htlcs = true,
2683                                         }
2684                                 }
2685                         }
2686
2687                         // Now that we've done the entire above loop in one lock, we can handle any errors
2688                         // which were generated.
2689                         channel_state.take();
2690
2691                         for (counterparty_node_id, err) in errs.drain(..) {
2692                                 let res: Result<(), _> = Err(err);
2693                                 let _ = handle_error!(self, res, counterparty_node_id);
2694                         }
2695
2696                         claimed_any_htlcs
2697                 } else { false }
2698         }
2699
2700         fn claim_funds_from_hop(&self, channel_state_lock: &mut MutexGuard<ChannelHolder<Signer>>, prev_hop: HTLCPreviousHopData, payment_preimage: PaymentPreimage) -> Result<(), Option<(PublicKey, MsgHandleErrInternal)>> {
2701                 //TODO: Delay the claimed_funds relaying just like we do outbound relay!
2702                 let channel_state = &mut **channel_state_lock;
2703                 let chan_id = match channel_state.short_to_id.get(&prev_hop.short_channel_id) {
2704                         Some(chan_id) => chan_id.clone(),
2705                         None => {
2706                                 return Err(None)
2707                         }
2708                 };
2709
2710                 if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(chan_id) {
2711                         let was_frozen_for_monitor = chan.get().is_awaiting_monitor_update();
2712                         match chan.get_mut().get_update_fulfill_htlc_and_commit(prev_hop.htlc_id, payment_preimage, &self.logger) {
2713                                 Ok((msgs, monitor_option)) => {
2714                                         if let Some(monitor_update) = monitor_option {
2715                                                 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
2716                                                         if was_frozen_for_monitor {
2717                                                                 assert!(msgs.is_none());
2718                                                         } else {
2719                                                                 return Err(Some((chan.get().get_counterparty_node_id(), handle_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, msgs.is_some()).unwrap_err())));
2720                                                         }
2721                                                 }
2722                                         }
2723                                         if let Some((msg, commitment_signed)) = msgs {
2724                                                 log_debug!(self.logger, "Claiming funds for HTLC with preimage {} resulted in a commitment_signed for channel {}",
2725                                                         log_bytes!(payment_preimage.0), log_bytes!(chan.get().channel_id()));
2726                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
2727                                                         node_id: chan.get().get_counterparty_node_id(),
2728                                                         updates: msgs::CommitmentUpdate {
2729                                                                 update_add_htlcs: Vec::new(),
2730                                                                 update_fulfill_htlcs: vec![msg],
2731                                                                 update_fail_htlcs: Vec::new(),
2732                                                                 update_fail_malformed_htlcs: Vec::new(),
2733                                                                 update_fee: None,
2734                                                                 commitment_signed,
2735                                                         }
2736                                                 });
2737                                         }
2738                                         return Ok(())
2739                                 },
2740                                 Err(e) => {
2741                                         // TODO: Do something with e?
2742                                         // This should only occur if we are claiming an HTLC at the same time as the
2743                                         // HTLC is being failed (eg because a block is being connected and this caused
2744                                         // an HTLC to time out). This should, of course, only occur if the user is the
2745                                         // one doing the claiming (as it being a part of a peer claim would imply we're
2746                                         // about to lose funds) and only if the lock in claim_funds was dropped as a
2747                                         // previous HTLC was failed (thus not for an MPP payment).
2748                                         debug_assert!(false, "This shouldn't be reachable except in absurdly rare cases between monitor updates and HTLC timeouts: {:?}", e);
2749                                         return Err(None)
2750                                 },
2751                         }
2752                 } else { unreachable!(); }
2753         }
2754
2755         fn claim_funds_internal(&self, mut channel_state_lock: MutexGuard<ChannelHolder<Signer>>, source: HTLCSource, payment_preimage: PaymentPreimage) {
2756                 match source {
2757                         HTLCSource::OutboundRoute { session_priv, .. } => {
2758                                 mem::drop(channel_state_lock);
2759                                 if {
2760                                         let mut session_priv_bytes = [0; 32];
2761                                         session_priv_bytes.copy_from_slice(&session_priv[..]);
2762                                         self.pending_outbound_payments.lock().unwrap().remove(&session_priv_bytes)
2763                                 } {
2764                                         let mut pending_events = self.pending_events.lock().unwrap();
2765                                         pending_events.push(events::Event::PaymentSent {
2766                                                 payment_preimage
2767                                         });
2768                                 } else {
2769                                         log_trace!(self.logger, "Received duplicative fulfill for HTLC with payment_preimage {}", log_bytes!(payment_preimage.0));
2770                                 }
2771                         },
2772                         HTLCSource::PreviousHopData(hop_data) => {
2773                                 let prev_outpoint = hop_data.outpoint;
2774                                 if let Err((counterparty_node_id, err)) = match self.claim_funds_from_hop(&mut channel_state_lock, hop_data, payment_preimage) {
2775                                         Ok(()) => Ok(()),
2776                                         Err(None) => {
2777                                                 let preimage_update = ChannelMonitorUpdate {
2778                                                         update_id: CLOSED_CHANNEL_UPDATE_ID,
2779                                                         updates: vec![ChannelMonitorUpdateStep::PaymentPreimage {
2780                                                                 payment_preimage: payment_preimage.clone(),
2781                                                         }],
2782                                                 };
2783                                                 // We update the ChannelMonitor on the backward link, after
2784                                                 // receiving an offchain preimage event from the forward link (the
2785                                                 // event being update_fulfill_htlc).
2786                                                 if let Err(e) = self.chain_monitor.update_channel(prev_outpoint, preimage_update) {
2787                                                         log_error!(self.logger, "Critical error: failed to update channel monitor with preimage {:?}: {:?}",
2788                                                                    payment_preimage, e);
2789                                                 }
2790                                                 Ok(())
2791                                         },
2792                                         Err(Some(res)) => Err(res),
2793                                 } {
2794                                         mem::drop(channel_state_lock);
2795                                         let res: Result<(), _> = Err(err);
2796                                         let _ = handle_error!(self, res, counterparty_node_id);
2797                                 }
2798                         },
2799                 }
2800         }
2801
2802         /// Gets the node_id held by this ChannelManager
2803         pub fn get_our_node_id(&self) -> PublicKey {
2804                 self.our_network_pubkey.clone()
2805         }
2806
2807         /// Restores a single, given channel to normal operation after a
2808         /// ChannelMonitorUpdateErr::TemporaryFailure was returned from a channel monitor update
2809         /// operation.
2810         ///
2811         /// All ChannelMonitor updates up to and including highest_applied_update_id must have been
2812         /// fully committed in every copy of the given channels' ChannelMonitors.
2813         ///
2814         /// Note that there is no effect to calling with a highest_applied_update_id other than the
2815         /// current latest ChannelMonitorUpdate and one call to this function after multiple
2816         /// ChannelMonitorUpdateErr::TemporaryFailures is fine. The highest_applied_update_id field
2817         /// exists largely only to prevent races between this and concurrent update_monitor calls.
2818         ///
2819         /// Thus, the anticipated use is, at a high level:
2820         ///  1) You register a chain::Watch with this ChannelManager,
2821         ///  2) it stores each update to disk, and begins updating any remote (eg watchtower) copies of
2822         ///     said ChannelMonitors as it can, returning ChannelMonitorUpdateErr::TemporaryFailures
2823         ///     any time it cannot do so instantly,
2824         ///  3) update(s) are applied to each remote copy of a ChannelMonitor,
2825         ///  4) once all remote copies are updated, you call this function with the update_id that
2826         ///     completed, and once it is the latest the Channel will be re-enabled.
2827         pub fn channel_monitor_updated(&self, funding_txo: &OutPoint, highest_applied_update_id: u64) {
2828                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2829
2830                 let (mut pending_failures, chan_restoration_res) = {
2831                         let mut channel_lock = self.channel_state.lock().unwrap();
2832                         let channel_state = &mut *channel_lock;
2833                         let mut channel = match channel_state.by_id.entry(funding_txo.to_channel_id()) {
2834                                 hash_map::Entry::Occupied(chan) => chan,
2835                                 hash_map::Entry::Vacant(_) => return,
2836                         };
2837                         if !channel.get().is_awaiting_monitor_update() || channel.get().get_latest_monitor_update_id() != highest_applied_update_id {
2838                                 return;
2839                         }
2840
2841                         let (raa, commitment_update, order, pending_forwards, pending_failures, funding_broadcastable, funding_locked) = channel.get_mut().monitor_updating_restored(&self.logger);
2842                         (pending_failures, handle_chan_restoration_locked!(self, channel_lock, channel_state, channel, raa, commitment_update, order, None, pending_forwards, funding_broadcastable, funding_locked))
2843                 };
2844                 post_handle_chan_restoration!(self, chan_restoration_res);
2845                 for failure in pending_failures.drain(..) {
2846                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), failure.0, &failure.1, failure.2);
2847                 }
2848         }
2849
2850         fn internal_open_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::OpenChannel) -> Result<(), MsgHandleErrInternal> {
2851                 if msg.chain_hash != self.genesis_hash {
2852                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Unknown genesis block hash".to_owned(), msg.temporary_channel_id.clone()));
2853                 }
2854
2855                 let channel = Channel::new_from_req(&self.fee_estimator, &self.keys_manager, counterparty_node_id.clone(), their_features, msg, 0, &self.default_configuration)
2856                         .map_err(|e| MsgHandleErrInternal::from_chan_no_close(e, msg.temporary_channel_id))?;
2857                 let mut channel_state_lock = self.channel_state.lock().unwrap();
2858                 let channel_state = &mut *channel_state_lock;
2859                 match channel_state.by_id.entry(channel.channel_id()) {
2860                         hash_map::Entry::Occupied(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("temporary_channel_id collision!".to_owned(), msg.temporary_channel_id.clone())),
2861                         hash_map::Entry::Vacant(entry) => {
2862                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
2863                                         node_id: counterparty_node_id.clone(),
2864                                         msg: channel.get_accept_channel(),
2865                                 });
2866                                 entry.insert(channel);
2867                         }
2868                 }
2869                 Ok(())
2870         }
2871
2872         fn internal_accept_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::AcceptChannel) -> Result<(), MsgHandleErrInternal> {
2873                 let (value, output_script, user_id) = {
2874                         let mut channel_lock = self.channel_state.lock().unwrap();
2875                         let channel_state = &mut *channel_lock;
2876                         match channel_state.by_id.entry(msg.temporary_channel_id) {
2877                                 hash_map::Entry::Occupied(mut chan) => {
2878                                         if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2879                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.temporary_channel_id));
2880                                         }
2881                                         try_chan_entry!(self, chan.get_mut().accept_channel(&msg, &self.default_configuration, their_features), channel_state, chan);
2882                                         (chan.get().get_value_satoshis(), chan.get().get_funding_redeemscript().to_v0_p2wsh(), chan.get().get_user_id())
2883                                 },
2884                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.temporary_channel_id))
2885                         }
2886                 };
2887                 let mut pending_events = self.pending_events.lock().unwrap();
2888                 pending_events.push(events::Event::FundingGenerationReady {
2889                         temporary_channel_id: msg.temporary_channel_id,
2890                         channel_value_satoshis: value,
2891                         output_script,
2892                         user_channel_id: user_id,
2893                 });
2894                 Ok(())
2895         }
2896
2897         fn internal_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) -> Result<(), MsgHandleErrInternal> {
2898                 let ((funding_msg, monitor), mut chan) = {
2899                         let best_block = *self.best_block.read().unwrap();
2900                         let mut channel_lock = self.channel_state.lock().unwrap();
2901                         let channel_state = &mut *channel_lock;
2902                         match channel_state.by_id.entry(msg.temporary_channel_id.clone()) {
2903                                 hash_map::Entry::Occupied(mut chan) => {
2904                                         if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2905                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.temporary_channel_id));
2906                                         }
2907                                         (try_chan_entry!(self, chan.get_mut().funding_created(msg, best_block, &self.logger), channel_state, chan), chan.remove())
2908                                 },
2909                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.temporary_channel_id))
2910                         }
2911                 };
2912                 // Because we have exclusive ownership of the channel here we can release the channel_state
2913                 // lock before watch_channel
2914                 if let Err(e) = self.chain_monitor.watch_channel(monitor.get_funding_txo().0, monitor) {
2915                         match e {
2916                                 ChannelMonitorUpdateErr::PermanentFailure => {
2917                                         // Note that we reply with the new channel_id in error messages if we gave up on the
2918                                         // channel, not the temporary_channel_id. This is compatible with ourselves, but the
2919                                         // spec is somewhat ambiguous here. Not a huge deal since we'll send error messages for
2920                                         // any messages referencing a previously-closed channel anyway.
2921                                         // We do not do a force-close here as that would generate a monitor update for
2922                                         // a monitor that we didn't manage to store (and that we don't care about - we
2923                                         // don't respond with the funding_signed so the channel can never go on chain).
2924                                         let (_monitor_update, failed_htlcs) = chan.force_shutdown(true);
2925                                         assert!(failed_htlcs.is_empty());
2926                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("ChannelMonitor storage failure".to_owned(), funding_msg.channel_id));
2927                                 },
2928                                 ChannelMonitorUpdateErr::TemporaryFailure => {
2929                                         // There's no problem signing a counterparty's funding transaction if our monitor
2930                                         // hasn't persisted to disk yet - we can't lose money on a transaction that we haven't
2931                                         // accepted payment from yet. We do, however, need to wait to send our funding_locked
2932                                         // until we have persisted our monitor.
2933                                         chan.monitor_update_failed(false, false, Vec::new(), Vec::new());
2934                                 },
2935                         }
2936                 }
2937                 let mut channel_state_lock = self.channel_state.lock().unwrap();
2938                 let channel_state = &mut *channel_state_lock;
2939                 match channel_state.by_id.entry(funding_msg.channel_id) {
2940                         hash_map::Entry::Occupied(_) => {
2941                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Already had channel with the new channel_id".to_owned(), funding_msg.channel_id))
2942                         },
2943                         hash_map::Entry::Vacant(e) => {
2944                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingSigned {
2945                                         node_id: counterparty_node_id.clone(),
2946                                         msg: funding_msg,
2947                                 });
2948                                 e.insert(chan);
2949                         }
2950                 }
2951                 Ok(())
2952         }
2953
2954         fn internal_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) -> Result<(), MsgHandleErrInternal> {
2955                 let funding_tx = {
2956                         let best_block = *self.best_block.read().unwrap();
2957                         let mut channel_lock = self.channel_state.lock().unwrap();
2958                         let channel_state = &mut *channel_lock;
2959                         match channel_state.by_id.entry(msg.channel_id) {
2960                                 hash_map::Entry::Occupied(mut chan) => {
2961                                         if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2962                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2963                                         }
2964                                         let (monitor, funding_tx) = match chan.get_mut().funding_signed(&msg, best_block, &self.logger) {
2965                                                 Ok(update) => update,
2966                                                 Err(e) => try_chan_entry!(self, Err(e), channel_state, chan),
2967                                         };
2968                                         if let Err(e) = self.chain_monitor.watch_channel(chan.get().get_funding_txo().unwrap(), monitor) {
2969                                                 return_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::RevokeAndACKFirst, false, false);
2970                                         }
2971                                         funding_tx
2972                                 },
2973                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2974                         }
2975                 };
2976                 log_info!(self.logger, "Broadcasting funding transaction with txid {}", funding_tx.txid());
2977                 self.tx_broadcaster.broadcast_transaction(&funding_tx);
2978                 Ok(())
2979         }
2980
2981         fn internal_funding_locked(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingLocked) -> Result<(), MsgHandleErrInternal> {
2982                 let mut channel_state_lock = self.channel_state.lock().unwrap();
2983                 let channel_state = &mut *channel_state_lock;
2984                 match channel_state.by_id.entry(msg.channel_id) {
2985                         hash_map::Entry::Occupied(mut chan) => {
2986                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2987                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2988                                 }
2989                                 try_chan_entry!(self, chan.get_mut().funding_locked(&msg, &self.logger), channel_state, chan);
2990                                 if let Some(announcement_sigs) = self.get_announcement_sigs(chan.get()) {
2991                                         log_trace!(self.logger, "Sending announcement_signatures for {} in response to funding_locked", log_bytes!(chan.get().channel_id()));
2992                                         // If we see locking block before receiving remote funding_locked, we broadcast our
2993                                         // announcement_sigs at remote funding_locked reception. If we receive remote
2994                                         // funding_locked before seeing locking block, we broadcast our announcement_sigs at locking
2995                                         // block connection. We should guanrantee to broadcast announcement_sigs to our peer whatever
2996                                         // the order of the events but our peer may not receive it due to disconnection. The specs
2997                                         // lacking an acknowledgement for announcement_sigs we may have to re-send them at peer
2998                                         // connection in the future if simultaneous misses by both peers due to network/hardware
2999                                         // failures is an issue. Note, to achieve its goal, only one of the announcement_sigs needs
3000                                         // to be received, from then sigs are going to be flood to the whole network.
3001                                         channel_state.pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
3002                                                 node_id: counterparty_node_id.clone(),
3003                                                 msg: announcement_sigs,
3004                                         });
3005                                 }
3006                                 Ok(())
3007                         },
3008                         hash_map::Entry::Vacant(_) => Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3009                 }
3010         }
3011
3012         fn internal_shutdown(&self, counterparty_node_id: &PublicKey, their_features: &InitFeatures, msg: &msgs::Shutdown) -> Result<(), MsgHandleErrInternal> {
3013                 let (mut dropped_htlcs, chan_option) = {
3014                         let mut channel_state_lock = self.channel_state.lock().unwrap();
3015                         let channel_state = &mut *channel_state_lock;
3016
3017                         match channel_state.by_id.entry(msg.channel_id.clone()) {
3018                                 hash_map::Entry::Occupied(mut chan_entry) => {
3019                                         if chan_entry.get().get_counterparty_node_id() != *counterparty_node_id {
3020                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3021                                         }
3022                                         let (shutdown, closing_signed, dropped_htlcs) = try_chan_entry!(self, chan_entry.get_mut().shutdown(&self.fee_estimator, &their_features, &msg), channel_state, chan_entry);
3023                                         if let Some(msg) = shutdown {
3024                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
3025                                                         node_id: counterparty_node_id.clone(),
3026                                                         msg,
3027                                                 });
3028                                         }
3029                                         if let Some(msg) = closing_signed {
3030                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
3031                                                         node_id: counterparty_node_id.clone(),
3032                                                         msg,
3033                                                 });
3034                                         }
3035                                         if chan_entry.get().is_shutdown() {
3036                                                 if let Some(short_id) = chan_entry.get().get_short_channel_id() {
3037                                                         channel_state.short_to_id.remove(&short_id);
3038                                                 }
3039                                                 (dropped_htlcs, Some(chan_entry.remove_entry().1))
3040                                         } else { (dropped_htlcs, None) }
3041                                 },
3042                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3043                         }
3044                 };
3045                 for htlc_source in dropped_htlcs.drain(..) {
3046                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
3047                 }
3048                 if let Some(chan) = chan_option {
3049                         if let Ok(update) = self.get_channel_update(&chan) {
3050                                 let mut channel_state = self.channel_state.lock().unwrap();
3051                                 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
3052                                         msg: update
3053                                 });
3054                         }
3055                 }
3056                 Ok(())
3057         }
3058
3059         fn internal_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) -> Result<(), MsgHandleErrInternal> {
3060                 let (tx, chan_option) = {
3061                         let mut channel_state_lock = self.channel_state.lock().unwrap();
3062                         let channel_state = &mut *channel_state_lock;
3063                         match channel_state.by_id.entry(msg.channel_id.clone()) {
3064                                 hash_map::Entry::Occupied(mut chan_entry) => {
3065                                         if chan_entry.get().get_counterparty_node_id() != *counterparty_node_id {
3066                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3067                                         }
3068                                         let (closing_signed, tx) = try_chan_entry!(self, chan_entry.get_mut().closing_signed(&self.fee_estimator, &msg), channel_state, chan_entry);
3069                                         if let Some(msg) = closing_signed {
3070                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
3071                                                         node_id: counterparty_node_id.clone(),
3072                                                         msg,
3073                                                 });
3074                                         }
3075                                         if tx.is_some() {
3076                                                 // We're done with this channel, we've got a signed closing transaction and
3077                                                 // will send the closing_signed back to the remote peer upon return. This
3078                                                 // also implies there are no pending HTLCs left on the channel, so we can
3079                                                 // fully delete it from tracking (the channel monitor is still around to
3080                                                 // watch for old state broadcasts)!
3081                                                 if let Some(short_id) = chan_entry.get().get_short_channel_id() {
3082                                                         channel_state.short_to_id.remove(&short_id);
3083                                                 }
3084                                                 (tx, Some(chan_entry.remove_entry().1))
3085                                         } else { (tx, None) }
3086                                 },
3087                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3088                         }
3089                 };
3090                 if let Some(broadcast_tx) = tx {
3091                         log_info!(self.logger, "Broadcasting {}", log_tx!(broadcast_tx));
3092                         self.tx_broadcaster.broadcast_transaction(&broadcast_tx);
3093                 }
3094                 if let Some(chan) = chan_option {
3095                         if let Ok(update) = self.get_channel_update(&chan) {
3096                                 let mut channel_state = self.channel_state.lock().unwrap();
3097                                 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
3098                                         msg: update
3099                                 });
3100                         }
3101                 }
3102                 Ok(())
3103         }
3104
3105         fn internal_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) -> Result<(), MsgHandleErrInternal> {
3106                 //TODO: BOLT 4 points out a specific attack where a peer may re-send an onion packet and
3107                 //determine the state of the payment based on our response/if we forward anything/the time
3108                 //we take to respond. We should take care to avoid allowing such an attack.
3109                 //
3110                 //TODO: There exists a further attack where a node may garble the onion data, forward it to
3111                 //us repeatedly garbled in different ways, and compare our error messages, which are
3112                 //encrypted with the same key. It's not immediately obvious how to usefully exploit that,
3113                 //but we should prevent it anyway.
3114
3115                 let (pending_forward_info, mut channel_state_lock) = self.decode_update_add_htlc_onion(msg);
3116                 let channel_state = &mut *channel_state_lock;
3117
3118                 match channel_state.by_id.entry(msg.channel_id) {
3119                         hash_map::Entry::Occupied(mut chan) => {
3120                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3121                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3122                                 }
3123
3124                                 let create_pending_htlc_status = |chan: &Channel<Signer>, pending_forward_info: PendingHTLCStatus, error_code: u16| {
3125                                         // Ensure error_code has the UPDATE flag set, since by default we send a
3126                                         // channel update along as part of failing the HTLC.
3127                                         assert!((error_code & 0x1000) != 0);
3128                                         // If the update_add is completely bogus, the call will Err and we will close,
3129                                         // but if we've sent a shutdown and they haven't acknowledged it yet, we just
3130                                         // want to reject the new HTLC and fail it backwards instead of forwarding.
3131                                         match pending_forward_info {
3132                                                 PendingHTLCStatus::Forward(PendingHTLCInfo { ref incoming_shared_secret, .. }) => {
3133                                                         let reason = if let Ok(upd) = self.get_channel_update(chan) {
3134                                                                 onion_utils::build_first_hop_failure_packet(incoming_shared_secret, error_code, &{
3135                                                                         let mut res = Vec::with_capacity(8 + 128);
3136                                                                         // TODO: underspecified, follow https://github.com/lightningnetwork/lightning-rfc/issues/791
3137                                                                         res.extend_from_slice(&byte_utils::be16_to_array(0));
3138                                                                         res.extend_from_slice(&upd.encode_with_len()[..]);
3139                                                                         res
3140                                                                 }[..])
3141                                                         } else {
3142                                                                 // The only case where we'd be unable to
3143                                                                 // successfully get a channel update is if the
3144                                                                 // channel isn't in the fully-funded state yet,
3145                                                                 // implying our counterparty is trying to route
3146                                                                 // payments over the channel back to themselves
3147                                                                 // (cause no one else should know the short_id
3148                                                                 // is a lightning channel yet). We should have
3149                                                                 // no problem just calling this
3150                                                                 // unknown_next_peer (0x4000|10).
3151                                                                 onion_utils::build_first_hop_failure_packet(incoming_shared_secret, 0x4000|10, &[])
3152                                                         };
3153                                                         let msg = msgs::UpdateFailHTLC {
3154                                                                 channel_id: msg.channel_id,
3155                                                                 htlc_id: msg.htlc_id,
3156                                                                 reason
3157                                                         };
3158                                                         PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msg))
3159                                                 },
3160                                                 _ => pending_forward_info
3161                                         }
3162                                 };
3163                                 try_chan_entry!(self, chan.get_mut().update_add_htlc(&msg, pending_forward_info, create_pending_htlc_status, &self.logger), channel_state, chan);
3164                         },
3165                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3166                 }
3167                 Ok(())
3168         }
3169
3170         fn internal_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) -> Result<(), MsgHandleErrInternal> {
3171                 let mut channel_lock = self.channel_state.lock().unwrap();
3172                 let htlc_source = {
3173                         let channel_state = &mut *channel_lock;
3174                         match channel_state.by_id.entry(msg.channel_id) {
3175                                 hash_map::Entry::Occupied(mut chan) => {
3176                                         if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3177                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3178                                         }
3179                                         try_chan_entry!(self, chan.get_mut().update_fulfill_htlc(&msg), channel_state, chan)
3180                                 },
3181                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3182                         }
3183                 };
3184                 self.claim_funds_internal(channel_lock, htlc_source, msg.payment_preimage.clone());
3185                 Ok(())
3186         }
3187
3188         fn internal_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) -> Result<(), MsgHandleErrInternal> {
3189                 let mut channel_lock = self.channel_state.lock().unwrap();
3190                 let channel_state = &mut *channel_lock;
3191                 match channel_state.by_id.entry(msg.channel_id) {
3192                         hash_map::Entry::Occupied(mut chan) => {
3193                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3194                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3195                                 }
3196                                 try_chan_entry!(self, chan.get_mut().update_fail_htlc(&msg, HTLCFailReason::LightningError { err: msg.reason.clone() }), channel_state, chan);
3197                         },
3198                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3199                 }
3200                 Ok(())
3201         }
3202
3203         fn internal_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) -> Result<(), MsgHandleErrInternal> {
3204                 let mut channel_lock = self.channel_state.lock().unwrap();
3205                 let channel_state = &mut *channel_lock;
3206                 match channel_state.by_id.entry(msg.channel_id) {
3207                         hash_map::Entry::Occupied(mut chan) => {
3208                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3209                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3210                                 }
3211                                 if (msg.failure_code & 0x8000) == 0 {
3212                                         let chan_err: ChannelError = ChannelError::Close("Got update_fail_malformed_htlc with BADONION not set".to_owned());
3213                                         try_chan_entry!(self, Err(chan_err), channel_state, chan);
3214                                 }
3215                                 try_chan_entry!(self, chan.get_mut().update_fail_malformed_htlc(&msg, HTLCFailReason::Reason { failure_code: msg.failure_code, data: Vec::new() }), channel_state, chan);
3216                                 Ok(())
3217                         },
3218                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3219                 }
3220         }
3221
3222         fn internal_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) -> Result<(), MsgHandleErrInternal> {
3223                 let mut channel_state_lock = self.channel_state.lock().unwrap();
3224                 let channel_state = &mut *channel_state_lock;
3225                 match channel_state.by_id.entry(msg.channel_id) {
3226                         hash_map::Entry::Occupied(mut chan) => {
3227                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3228                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3229                                 }
3230                                 let (revoke_and_ack, commitment_signed, closing_signed, monitor_update) =
3231                                         match chan.get_mut().commitment_signed(&msg, &self.fee_estimator, &self.logger) {
3232                                                 Err((None, e)) => try_chan_entry!(self, Err(e), channel_state, chan),
3233                                                 Err((Some(update), e)) => {
3234                                                         assert!(chan.get().is_awaiting_monitor_update());
3235                                                         let _ = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), update);
3236                                                         try_chan_entry!(self, Err(e), channel_state, chan);
3237                                                         unreachable!();
3238                                                 },
3239                                                 Ok(res) => res
3240                                         };
3241                                 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
3242                                         return_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::RevokeAndACKFirst, true, commitment_signed.is_some());
3243                                         //TODO: Rebroadcast closing_signed if present on monitor update restoration
3244                                 }
3245                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
3246                                         node_id: counterparty_node_id.clone(),
3247                                         msg: revoke_and_ack,
3248                                 });
3249                                 if let Some(msg) = commitment_signed {
3250                                         channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
3251                                                 node_id: counterparty_node_id.clone(),
3252                                                 updates: msgs::CommitmentUpdate {
3253                                                         update_add_htlcs: Vec::new(),
3254                                                         update_fulfill_htlcs: Vec::new(),
3255                                                         update_fail_htlcs: Vec::new(),
3256                                                         update_fail_malformed_htlcs: Vec::new(),
3257                                                         update_fee: None,
3258                                                         commitment_signed: msg,
3259                                                 },
3260                                         });
3261                                 }
3262                                 if let Some(msg) = closing_signed {
3263                                         channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
3264                                                 node_id: counterparty_node_id.clone(),
3265                                                 msg,
3266                                         });
3267                                 }
3268                                 Ok(())
3269                         },
3270                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3271                 }
3272         }
3273
3274         #[inline]
3275         fn forward_htlcs(&self, per_source_pending_forwards: &mut [(u64, OutPoint, Vec<(PendingHTLCInfo, u64)>)]) {
3276                 for &mut (prev_short_channel_id, prev_funding_outpoint, ref mut pending_forwards) in per_source_pending_forwards {
3277                         let mut forward_event = None;
3278                         if !pending_forwards.is_empty() {
3279                                 let mut channel_state = self.channel_state.lock().unwrap();
3280                                 if channel_state.forward_htlcs.is_empty() {
3281                                         forward_event = Some(Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS))
3282                                 }
3283                                 for (forward_info, prev_htlc_id) in pending_forwards.drain(..) {
3284                                         match channel_state.forward_htlcs.entry(match forward_info.routing {
3285                                                         PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
3286                                                         PendingHTLCRouting::Receive { .. } => 0,
3287                                         }) {
3288                                                 hash_map::Entry::Occupied(mut entry) => {
3289                                                         entry.get_mut().push(HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_funding_outpoint,
3290                                                                                                         prev_htlc_id, forward_info });
3291                                                 },
3292                                                 hash_map::Entry::Vacant(entry) => {
3293                                                         entry.insert(vec!(HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_funding_outpoint,
3294                                                                                                      prev_htlc_id, forward_info }));
3295                                                 }
3296                                         }
3297                                 }
3298                         }
3299                         match forward_event {
3300                                 Some(time) => {
3301                                         let mut pending_events = self.pending_events.lock().unwrap();
3302                                         pending_events.push(events::Event::PendingHTLCsForwardable {
3303                                                 time_forwardable: time
3304                                         });
3305                                 }
3306                                 None => {},
3307                         }
3308                 }
3309         }
3310
3311         fn internal_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) -> Result<(), MsgHandleErrInternal> {
3312                 let mut htlcs_to_fail = Vec::new();
3313                 let res = loop {
3314                         let mut channel_state_lock = self.channel_state.lock().unwrap();
3315                         let channel_state = &mut *channel_state_lock;
3316                         match channel_state.by_id.entry(msg.channel_id) {
3317                                 hash_map::Entry::Occupied(mut chan) => {
3318                                         if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3319                                                 break Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3320                                         }
3321                                         let was_frozen_for_monitor = chan.get().is_awaiting_monitor_update();
3322                                         let (commitment_update, pending_forwards, pending_failures, closing_signed, monitor_update, htlcs_to_fail_in) =
3323                                                 break_chan_entry!(self, chan.get_mut().revoke_and_ack(&msg, &self.fee_estimator, &self.logger), channel_state, chan);
3324                                         htlcs_to_fail = htlcs_to_fail_in;
3325                                         if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
3326                                                 if was_frozen_for_monitor {
3327                                                         assert!(commitment_update.is_none() && closing_signed.is_none() && pending_forwards.is_empty() && pending_failures.is_empty());
3328                                                         break Err(MsgHandleErrInternal::ignore_no_close("Previous monitor update failure prevented responses to RAA".to_owned()));
3329                                                 } else {
3330                                                         if let Err(e) = handle_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, commitment_update.is_some(), pending_forwards, pending_failures) {
3331                                                                 break Err(e);
3332                                                         } else { unreachable!(); }
3333                                                 }
3334                                         }
3335                                         if let Some(updates) = commitment_update {
3336                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
3337                                                         node_id: counterparty_node_id.clone(),
3338                                                         updates,
3339                                                 });
3340                                         }
3341                                         if let Some(msg) = closing_signed {
3342                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
3343                                                         node_id: counterparty_node_id.clone(),
3344                                                         msg,
3345                                                 });
3346                                         }
3347                                         break Ok((pending_forwards, pending_failures, chan.get().get_short_channel_id().expect("RAA should only work on a short-id-available channel"), chan.get().get_funding_txo().unwrap()))
3348                                 },
3349                                 hash_map::Entry::Vacant(_) => break Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3350                         }
3351                 };
3352                 self.fail_holding_cell_htlcs(htlcs_to_fail, msg.channel_id);
3353                 match res {
3354                         Ok((pending_forwards, mut pending_failures, short_channel_id, channel_outpoint)) => {
3355                                 for failure in pending_failures.drain(..) {
3356                                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), failure.0, &failure.1, failure.2);
3357                                 }
3358                                 self.forward_htlcs(&mut [(short_channel_id, channel_outpoint, pending_forwards)]);
3359                                 Ok(())
3360                         },
3361                         Err(e) => Err(e)
3362                 }
3363         }
3364
3365         fn internal_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) -> Result<(), MsgHandleErrInternal> {
3366                 let mut channel_lock = self.channel_state.lock().unwrap();
3367                 let channel_state = &mut *channel_lock;
3368                 match channel_state.by_id.entry(msg.channel_id) {
3369                         hash_map::Entry::Occupied(mut chan) => {
3370                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3371                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3372                                 }
3373                                 try_chan_entry!(self, chan.get_mut().update_fee(&self.fee_estimator, &msg), channel_state, chan);
3374                         },
3375                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3376                 }
3377                 Ok(())
3378         }
3379
3380         fn internal_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) -> Result<(), MsgHandleErrInternal> {
3381                 let mut channel_state_lock = self.channel_state.lock().unwrap();
3382                 let channel_state = &mut *channel_state_lock;
3383
3384                 match channel_state.by_id.entry(msg.channel_id) {
3385                         hash_map::Entry::Occupied(mut chan) => {
3386                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3387                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3388                                 }
3389                                 if !chan.get().is_usable() {
3390                                         return Err(MsgHandleErrInternal::from_no_close(LightningError{err: "Got an announcement_signatures before we were ready for it".to_owned(), action: msgs::ErrorAction::IgnoreError}));
3391                                 }
3392
3393                                 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
3394                                         msg: try_chan_entry!(self, chan.get_mut().announcement_signatures(&self.our_network_key, self.get_our_node_id(), self.genesis_hash.clone(), msg), channel_state, chan),
3395                                         update_msg: self.get_channel_update(chan.get()).unwrap(), // can only fail if we're not in a ready state
3396                                 });
3397                         },
3398                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3399                 }
3400                 Ok(())
3401         }
3402
3403         /// Returns ShouldPersist if anything changed, otherwise either SkipPersist or an Err.
3404         fn internal_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) -> Result<NotifyOption, MsgHandleErrInternal> {
3405                 let mut channel_state_lock = self.channel_state.lock().unwrap();
3406                 let channel_state = &mut *channel_state_lock;
3407                 let chan_id = match channel_state.short_to_id.get(&msg.contents.short_channel_id) {
3408                         Some(chan_id) => chan_id.clone(),
3409                         None => {
3410                                 // It's not a local channel
3411                                 return Ok(NotifyOption::SkipPersist)
3412                         }
3413                 };
3414                 match channel_state.by_id.entry(chan_id) {
3415                         hash_map::Entry::Occupied(mut chan) => {
3416                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3417                                         if chan.get().should_announce() {
3418                                                 // If the announcement is about a channel of ours which is public, some
3419                                                 // other peer may simply be forwarding all its gossip to us. Don't provide
3420                                                 // a scary-looking error message and return Ok instead.
3421                                                 return Ok(NotifyOption::SkipPersist);
3422                                         }
3423                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a channel_update for a channel from the wrong node - it shouldn't know about our private channels!".to_owned(), chan_id));
3424                                 }
3425                                 try_chan_entry!(self, chan.get_mut().channel_update(&msg), channel_state, chan);
3426                         },
3427                         hash_map::Entry::Vacant(_) => unreachable!()
3428                 }
3429                 Ok(NotifyOption::DoPersist)
3430         }
3431
3432         fn internal_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) -> Result<(), MsgHandleErrInternal> {
3433                 let (htlcs_failed_forward, need_lnd_workaround, chan_restoration_res) = {
3434                         let mut channel_state_lock = self.channel_state.lock().unwrap();
3435                         let channel_state = &mut *channel_state_lock;
3436
3437                         match channel_state.by_id.entry(msg.channel_id) {
3438                                 hash_map::Entry::Occupied(mut chan) => {
3439                                         if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3440                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3441                                         }
3442                                         // Currently, we expect all holding cell update_adds to be dropped on peer
3443                                         // disconnect, so Channel's reestablish will never hand us any holding cell
3444                                         // freed HTLCs to fail backwards. If in the future we no longer drop pending
3445                                         // add-HTLCs on disconnect, we may be handed HTLCs to fail backwards here.
3446                                         let (funding_locked, revoke_and_ack, commitment_update, monitor_update_opt, order, htlcs_failed_forward, shutdown) =
3447                                                 try_chan_entry!(self, chan.get_mut().channel_reestablish(msg, &self.logger), channel_state, chan);
3448                                         if let Some(msg) = shutdown {
3449                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
3450                                                         node_id: counterparty_node_id.clone(),
3451                                                         msg,
3452                                                 });
3453                                         }
3454                                         let need_lnd_workaround = chan.get_mut().workaround_lnd_bug_4006.take();
3455                                         (htlcs_failed_forward, need_lnd_workaround,
3456                                                 handle_chan_restoration_locked!(self, channel_state_lock, channel_state, chan, revoke_and_ack, commitment_update, order, monitor_update_opt, Vec::new(), None, funding_locked))
3457                                 },
3458                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3459                         }
3460                 };
3461                 post_handle_chan_restoration!(self, chan_restoration_res);
3462                 self.fail_holding_cell_htlcs(htlcs_failed_forward, msg.channel_id);
3463
3464                 if let Some(funding_locked_msg) = need_lnd_workaround {
3465                         self.internal_funding_locked(counterparty_node_id, &funding_locked_msg)?;
3466                 }
3467                 Ok(())
3468         }
3469
3470         /// Begin Update fee process. Allowed only on an outbound channel.
3471         /// If successful, will generate a UpdateHTLCs event, so you should probably poll
3472         /// PeerManager::process_events afterwards.
3473         /// Note: This API is likely to change!
3474         /// (C-not exported) Cause its doc(hidden) anyway
3475         #[doc(hidden)]
3476         pub fn update_fee(&self, channel_id: [u8;32], feerate_per_kw: u32) -> Result<(), APIError> {
3477                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3478                 let counterparty_node_id;
3479                 let err: Result<(), _> = loop {
3480                         let mut channel_state_lock = self.channel_state.lock().unwrap();
3481                         let channel_state = &mut *channel_state_lock;
3482
3483                         match channel_state.by_id.entry(channel_id) {
3484                                 hash_map::Entry::Vacant(_) => return Err(APIError::APIMisuseError{err: format!("Failed to find corresponding channel for id {}", channel_id.to_hex())}),
3485                                 hash_map::Entry::Occupied(mut chan) => {
3486                                         if !chan.get().is_outbound() {
3487                                                 return Err(APIError::APIMisuseError{err: "update_fee cannot be sent for an inbound channel".to_owned()});
3488                                         }
3489                                         if chan.get().is_awaiting_monitor_update() {
3490                                                 return Err(APIError::MonitorUpdateFailed);
3491                                         }
3492                                         if !chan.get().is_live() {
3493                                                 return Err(APIError::ChannelUnavailable{err: "Channel is either not yet fully established or peer is currently disconnected".to_owned()});
3494                                         }
3495                                         counterparty_node_id = chan.get().get_counterparty_node_id();
3496                                         if let Some((update_fee, commitment_signed, monitor_update)) =
3497                                                         break_chan_entry!(self, chan.get_mut().send_update_fee_and_commit(feerate_per_kw, &self.logger), channel_state, chan)
3498                                         {
3499                                                 if let Err(_e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
3500                                                         unimplemented!();
3501                                                 }
3502                                                 log_debug!(self.logger, "Updating fee resulted in a commitment_signed for channel {}", log_bytes!(chan.get().channel_id()));
3503                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
3504                                                         node_id: chan.get().get_counterparty_node_id(),
3505                                                         updates: msgs::CommitmentUpdate {
3506                                                                 update_add_htlcs: Vec::new(),
3507                                                                 update_fulfill_htlcs: Vec::new(),
3508                                                                 update_fail_htlcs: Vec::new(),
3509                                                                 update_fail_malformed_htlcs: Vec::new(),
3510                                                                 update_fee: Some(update_fee),
3511                                                                 commitment_signed,
3512                                                         },
3513                                                 });
3514                                         }
3515                                 },
3516                         }
3517                         return Ok(())
3518                 };
3519
3520                 match handle_error!(self, err, counterparty_node_id) {
3521                         Ok(_) => unreachable!(),
3522                         Err(e) => { Err(APIError::APIMisuseError { err: e.err })}
3523                 }
3524         }
3525
3526         /// Process pending events from the `chain::Watch`, returning whether any events were processed.
3527         fn process_pending_monitor_events(&self) -> bool {
3528                 let mut failed_channels = Vec::new();
3529                 let pending_monitor_events = self.chain_monitor.release_pending_monitor_events();
3530                 let has_pending_monitor_events = !pending_monitor_events.is_empty();
3531                 for monitor_event in pending_monitor_events {
3532                         match monitor_event {
3533                                 MonitorEvent::HTLCEvent(htlc_update) => {
3534                                         if let Some(preimage) = htlc_update.payment_preimage {
3535                                                 log_trace!(self.logger, "Claiming HTLC with preimage {} from our monitor", log_bytes!(preimage.0));
3536                                                 self.claim_funds_internal(self.channel_state.lock().unwrap(), htlc_update.source, preimage);
3537                                         } else {
3538                                                 log_trace!(self.logger, "Failing HTLC with hash {} from our monitor", log_bytes!(htlc_update.payment_hash.0));
3539                                                 self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_update.source, &htlc_update.payment_hash, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
3540                                         }
3541                                 },
3542                                 MonitorEvent::CommitmentTxBroadcasted(funding_outpoint) => {
3543                                         let mut channel_lock = self.channel_state.lock().unwrap();
3544                                         let channel_state = &mut *channel_lock;
3545                                         let by_id = &mut channel_state.by_id;
3546                                         let short_to_id = &mut channel_state.short_to_id;
3547                                         let pending_msg_events = &mut channel_state.pending_msg_events;
3548                                         if let Some(mut chan) = by_id.remove(&funding_outpoint.to_channel_id()) {
3549                                                 if let Some(short_id) = chan.get_short_channel_id() {
3550                                                         short_to_id.remove(&short_id);
3551                                                 }
3552                                                 failed_channels.push(chan.force_shutdown(false));
3553                                                 if let Ok(update) = self.get_channel_update(&chan) {
3554                                                         pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
3555                                                                 msg: update
3556                                                         });
3557                                                 }
3558                                                 pending_msg_events.push(events::MessageSendEvent::HandleError {
3559                                                         node_id: chan.get_counterparty_node_id(),
3560                                                         action: msgs::ErrorAction::SendErrorMessage {
3561                                                                 msg: msgs::ErrorMessage { channel_id: chan.channel_id(), data: "Channel force-closed".to_owned() }
3562                                                         },
3563                                                 });
3564                                         }
3565                                 },
3566                         }
3567                 }
3568
3569                 for failure in failed_channels.drain(..) {
3570                         self.finish_force_close_channel(failure);
3571                 }
3572
3573                 has_pending_monitor_events
3574         }
3575
3576         /// Check the holding cell in each channel and free any pending HTLCs in them if possible.
3577         /// Returns whether there were any updates such as if pending HTLCs were freed or a monitor
3578         /// update was applied.
3579         ///
3580         /// This should only apply to HTLCs which were added to the holding cell because we were
3581         /// waiting on a monitor update to finish. In that case, we don't want to free the holding cell
3582         /// directly in `channel_monitor_updated` as it may introduce deadlocks calling back into user
3583         /// code to inform them of a channel monitor update.
3584         fn check_free_holding_cells(&self) -> bool {
3585                 let mut has_monitor_update = false;
3586                 let mut failed_htlcs = Vec::new();
3587                 let mut handle_errors = Vec::new();
3588                 {
3589                         let mut channel_state_lock = self.channel_state.lock().unwrap();
3590                         let channel_state = &mut *channel_state_lock;
3591                         let by_id = &mut channel_state.by_id;
3592                         let short_to_id = &mut channel_state.short_to_id;
3593                         let pending_msg_events = &mut channel_state.pending_msg_events;
3594
3595                         by_id.retain(|channel_id, chan| {
3596                                 match chan.maybe_free_holding_cell_htlcs(&self.logger) {
3597                                         Ok((commitment_opt, holding_cell_failed_htlcs)) => {
3598                                                 if !holding_cell_failed_htlcs.is_empty() {
3599                                                         failed_htlcs.push((holding_cell_failed_htlcs, *channel_id));
3600                                                 }
3601                                                 if let Some((commitment_update, monitor_update)) = commitment_opt {
3602                                                         if let Err(e) = self.chain_monitor.update_channel(chan.get_funding_txo().unwrap(), monitor_update) {
3603                                                                 has_monitor_update = true;
3604                                                                 let (res, close_channel) = handle_monitor_err!(self, e, short_to_id, chan, RAACommitmentOrder::CommitmentFirst, false, true, Vec::new(), Vec::new(), channel_id);
3605                                                                 handle_errors.push((chan.get_counterparty_node_id(), res));
3606                                                                 if close_channel { return false; }
3607                                                         } else {
3608                                                                 pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
3609                                                                         node_id: chan.get_counterparty_node_id(),
3610                                                                         updates: commitment_update,
3611                                                                 });
3612                                                         }
3613                                                 }
3614                                                 true
3615                                         },
3616                                         Err(e) => {
3617                                                 let (close_channel, res) = convert_chan_err!(self, e, short_to_id, chan, channel_id);
3618                                                 handle_errors.push((chan.get_counterparty_node_id(), Err(res)));
3619                                                 !close_channel
3620                                         }
3621                                 }
3622                         });
3623                 }
3624
3625                 let has_update = has_monitor_update || !failed_htlcs.is_empty();
3626                 for (failures, channel_id) in failed_htlcs.drain(..) {
3627                         self.fail_holding_cell_htlcs(failures, channel_id);
3628                 }
3629
3630                 for (counterparty_node_id, err) in handle_errors.drain(..) {
3631                         let _ = handle_error!(self, err, counterparty_node_id);
3632                 }
3633
3634                 has_update
3635         }
3636
3637         /// Handle a list of channel failures during a block_connected or block_disconnected call,
3638         /// pushing the channel monitor update (if any) to the background events queue and removing the
3639         /// Channel object.
3640         fn handle_init_event_channel_failures(&self, mut failed_channels: Vec<ShutdownResult>) {
3641                 for mut failure in failed_channels.drain(..) {
3642                         // Either a commitment transactions has been confirmed on-chain or
3643                         // Channel::block_disconnected detected that the funding transaction has been
3644                         // reorganized out of the main chain.
3645                         // We cannot broadcast our latest local state via monitor update (as
3646                         // Channel::force_shutdown tries to make us do) as we may still be in initialization,
3647                         // so we track the update internally and handle it when the user next calls
3648                         // timer_tick_occurred, guaranteeing we're running normally.
3649                         if let Some((funding_txo, update)) = failure.0.take() {
3650                                 assert_eq!(update.updates.len(), 1);
3651                                 if let ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast } = update.updates[0] {
3652                                         assert!(should_broadcast);
3653                                 } else { unreachable!(); }
3654                                 self.pending_background_events.lock().unwrap().push(BackgroundEvent::ClosingMonitorUpdate((funding_txo, update)));
3655                         }
3656                         self.finish_force_close_channel(failure);
3657                 }
3658         }
3659
3660         fn set_payment_hash_secret_map(&self, payment_hash: PaymentHash, payment_preimage: Option<PaymentPreimage>, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32, user_payment_id: u64) -> Result<PaymentSecret, APIError> {
3661                 assert!(invoice_expiry_delta_secs <= 60*60*24*365); // Sadly bitcoin timestamps are u32s, so panic before 2106
3662
3663                 let payment_secret = PaymentSecret(self.keys_manager.get_secure_random_bytes());
3664
3665                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3666                 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
3667                 match payment_secrets.entry(payment_hash) {
3668                         hash_map::Entry::Vacant(e) => {
3669                                 e.insert(PendingInboundPayment {
3670                                         payment_secret, min_value_msat, user_payment_id, payment_preimage,
3671                                         // We assume that highest_seen_timestamp is pretty close to the current time -
3672                                         // its updated when we receive a new block with the maximum time we've seen in
3673                                         // a header. It should never be more than two hours in the future.
3674                                         // Thus, we add two hours here as a buffer to ensure we absolutely
3675                                         // never fail a payment too early.
3676                                         // Note that we assume that received blocks have reasonably up-to-date
3677                                         // timestamps.
3678                                         expiry_time: self.highest_seen_timestamp.load(Ordering::Acquire) as u64 + invoice_expiry_delta_secs as u64 + 7200,
3679                                 });
3680                         },
3681                         hash_map::Entry::Occupied(_) => return Err(APIError::APIMisuseError { err: "Duplicate payment hash".to_owned() }),
3682                 }
3683                 Ok(payment_secret)
3684         }
3685
3686         /// Gets a payment secret and payment hash for use in an invoice given to a third party wishing
3687         /// to pay us.
3688         ///
3689         /// This differs from [`create_inbound_payment_for_hash`] only in that it generates the
3690         /// [`PaymentHash`] and [`PaymentPreimage`] for you, returning the first and storing the second.
3691         ///
3692         /// The [`PaymentPreimage`] will ultimately be returned to you in the [`PaymentReceived`], which
3693         /// will have the [`PaymentReceived::payment_preimage`] field filled in. That should then be
3694         /// passed directly to [`claim_funds`].
3695         ///
3696         /// See [`create_inbound_payment_for_hash`] for detailed documentation on behavior and requirements.
3697         ///
3698         /// [`claim_funds`]: Self::claim_funds
3699         /// [`PaymentReceived`]: events::Event::PaymentReceived
3700         /// [`PaymentReceived::payment_preimage`]: events::Event::PaymentReceived::payment_preimage
3701         /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
3702         pub fn create_inbound_payment(&self, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32, user_payment_id: u64) -> (PaymentHash, PaymentSecret) {
3703                 let payment_preimage = PaymentPreimage(self.keys_manager.get_secure_random_bytes());
3704                 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
3705
3706                 (payment_hash,
3707                         self.set_payment_hash_secret_map(payment_hash, Some(payment_preimage), min_value_msat, invoice_expiry_delta_secs, user_payment_id)
3708                                 .expect("RNG Generated Duplicate PaymentHash"))
3709         }
3710
3711         /// Gets a [`PaymentSecret`] for a given [`PaymentHash`], for which the payment preimage is
3712         /// stored external to LDK.
3713         ///
3714         /// A [`PaymentReceived`] event will only be generated if the [`PaymentSecret`] matches a
3715         /// payment secret fetched via this method or [`create_inbound_payment`], and which is at least
3716         /// the `min_value_msat` provided here, if one is provided.
3717         ///
3718         /// The [`PaymentHash`] (and corresponding [`PaymentPreimage`]) must be globally unique. This
3719         /// method may return an Err if another payment with the same payment_hash is still pending.
3720         ///
3721         /// `user_payment_id` will be provided back in [`PaymentReceived::user_payment_id`] events to
3722         /// allow tracking of which events correspond with which calls to this and
3723         /// [`create_inbound_payment`]. `user_payment_id` has no meaning inside of LDK, it is simply
3724         /// copied to events and otherwise ignored. It may be used to correlate PaymentReceived events
3725         /// with invoice metadata stored elsewhere.
3726         ///
3727         /// `min_value_msat` should be set if the invoice being generated contains a value. Any payment
3728         /// received for the returned [`PaymentHash`] will be required to be at least `min_value_msat`
3729         /// before a [`PaymentReceived`] event will be generated, ensuring that we do not provide the
3730         /// sender "proof-of-payment" unless they have paid the required amount.
3731         ///
3732         /// `invoice_expiry_delta_secs` describes the number of seconds that the invoice is valid for
3733         /// in excess of the current time. This should roughly match the expiry time set in the invoice.
3734         /// After this many seconds, we will remove the inbound payment, resulting in any attempts to
3735         /// pay the invoice failing. The BOLT spec suggests 3,600 secs as a default validity time for
3736         /// invoices when no timeout is set.
3737         ///
3738         /// Note that we use block header time to time-out pending inbound payments (with some margin
3739         /// to compensate for the inaccuracy of block header timestamps). Thus, in practice we will
3740         /// accept a payment and generate a [`PaymentReceived`] event for some time after the expiry.
3741         /// If you need exact expiry semantics, you should enforce them upon receipt of
3742         /// [`PaymentReceived`].
3743         ///
3744         /// Pending inbound payments are stored in memory and in serialized versions of this
3745         /// [`ChannelManager`]. If potentially unbounded numbers of inbound payments may exist and
3746         /// space is limited, you may wish to rate-limit inbound payment creation.
3747         ///
3748         /// May panic if `invoice_expiry_delta_secs` is greater than one year.
3749         ///
3750         /// Note that invoices generated for inbound payments should have their `min_final_cltv_expiry`
3751         /// set to at least [`MIN_FINAL_CLTV_EXPIRY`].
3752         ///
3753         /// [`create_inbound_payment`]: Self::create_inbound_payment
3754         /// [`PaymentReceived`]: events::Event::PaymentReceived
3755         /// [`PaymentReceived::user_payment_id`]: events::Event::PaymentReceived::user_payment_id
3756         pub fn create_inbound_payment_for_hash(&self, payment_hash: PaymentHash, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32, user_payment_id: u64) -> Result<PaymentSecret, APIError> {
3757                 self.set_payment_hash_secret_map(payment_hash, None, min_value_msat, invoice_expiry_delta_secs, user_payment_id)
3758         }
3759
3760         #[cfg(any(test, feature = "fuzztarget", feature = "_test_utils"))]
3761         pub fn get_and_clear_pending_events(&self) -> Vec<events::Event> {
3762                 let events = core::cell::RefCell::new(Vec::new());
3763                 let event_handler = |event| events.borrow_mut().push(event);
3764                 self.process_pending_events(&event_handler);
3765                 events.into_inner()
3766         }
3767 }
3768
3769 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> MessageSendEventsProvider for ChannelManager<Signer, M, T, K, F, L>
3770         where M::Target: chain::Watch<Signer>,
3771         T::Target: BroadcasterInterface,
3772         K::Target: KeysInterface<Signer = Signer>,
3773         F::Target: FeeEstimator,
3774                                 L::Target: Logger,
3775 {
3776         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
3777                 let events = RefCell::new(Vec::new());
3778                 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
3779                         let mut result = NotifyOption::SkipPersist;
3780
3781                         // TODO: This behavior should be documented. It's unintuitive that we query
3782                         // ChannelMonitors when clearing other events.
3783                         if self.process_pending_monitor_events() {
3784                                 result = NotifyOption::DoPersist;
3785                         }
3786
3787                         if self.check_free_holding_cells() {
3788                                 result = NotifyOption::DoPersist;
3789                         }
3790
3791                         let mut pending_events = Vec::new();
3792                         let mut channel_state = self.channel_state.lock().unwrap();
3793                         mem::swap(&mut pending_events, &mut channel_state.pending_msg_events);
3794
3795                         if !pending_events.is_empty() {
3796                                 events.replace(pending_events);
3797                         }
3798
3799                         result
3800                 });
3801                 events.into_inner()
3802         }
3803 }
3804
3805 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> EventsProvider for ChannelManager<Signer, M, T, K, F, L>
3806 where
3807         M::Target: chain::Watch<Signer>,
3808         T::Target: BroadcasterInterface,
3809         K::Target: KeysInterface<Signer = Signer>,
3810         F::Target: FeeEstimator,
3811         L::Target: Logger,
3812 {
3813         /// Processes events that must be periodically handled.
3814         ///
3815         /// An [`EventHandler`] may safely call back to the provider in order to handle an event.
3816         /// However, it must not call [`Writeable::write`] as doing so would result in a deadlock.
3817         ///
3818         /// Pending events are persisted as part of [`ChannelManager`]. While these events are cleared
3819         /// when processed, an [`EventHandler`] must be able to handle previously seen events when
3820         /// restarting from an old state.
3821         fn process_pending_events<H: Deref>(&self, handler: H) where H::Target: EventHandler {
3822                 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
3823                         let mut result = NotifyOption::SkipPersist;
3824
3825                         // TODO: This behavior should be documented. It's unintuitive that we query
3826                         // ChannelMonitors when clearing other events.
3827                         if self.process_pending_monitor_events() {
3828                                 result = NotifyOption::DoPersist;
3829                         }
3830
3831                         let mut pending_events = std::mem::replace(&mut *self.pending_events.lock().unwrap(), vec![]);
3832                         if !pending_events.is_empty() {
3833                                 result = NotifyOption::DoPersist;
3834                         }
3835
3836                         for event in pending_events.drain(..) {
3837                                 handler.handle_event(event);
3838                         }
3839
3840                         result
3841                 });
3842         }
3843 }
3844
3845 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> chain::Listen for ChannelManager<Signer, M, T, K, F, L>
3846 where
3847         M::Target: chain::Watch<Signer>,
3848         T::Target: BroadcasterInterface,
3849         K::Target: KeysInterface<Signer = Signer>,
3850         F::Target: FeeEstimator,
3851         L::Target: Logger,
3852 {
3853         fn block_connected(&self, block: &Block, height: u32) {
3854                 {
3855                         let best_block = self.best_block.read().unwrap();
3856                         assert_eq!(best_block.block_hash(), block.header.prev_blockhash,
3857                                 "Blocks must be connected in chain-order - the connected header must build on the last connected header");
3858                         assert_eq!(best_block.height(), height - 1,
3859                                 "Blocks must be connected in chain-order - the connected block height must be one greater than the previous height");
3860                 }
3861
3862                 let txdata: Vec<_> = block.txdata.iter().enumerate().collect();
3863                 self.transactions_confirmed(&block.header, &txdata, height);
3864                 self.best_block_updated(&block.header, height);
3865         }
3866
3867         fn block_disconnected(&self, header: &BlockHeader, height: u32) {
3868                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3869                 let new_height = height - 1;
3870                 {
3871                         let mut best_block = self.best_block.write().unwrap();
3872                         assert_eq!(best_block.block_hash(), header.block_hash(),
3873                                 "Blocks must be disconnected in chain-order - the disconnected header must be the last connected header");
3874                         assert_eq!(best_block.height(), height,
3875                                 "Blocks must be disconnected in chain-order - the disconnected block must have the correct height");
3876                         *best_block = BestBlock::new(header.prev_blockhash, new_height)
3877                 }
3878
3879                 self.do_chain_event(Some(new_height), |channel| channel.best_block_updated(new_height, header.time, &self.logger));
3880         }
3881 }
3882
3883 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> chain::Confirm for ChannelManager<Signer, M, T, K, F, L>
3884 where
3885         M::Target: chain::Watch<Signer>,
3886         T::Target: BroadcasterInterface,
3887         K::Target: KeysInterface<Signer = Signer>,
3888         F::Target: FeeEstimator,
3889         L::Target: Logger,
3890 {
3891         fn transactions_confirmed(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
3892                 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
3893                 // during initialization prior to the chain_monitor being fully configured in some cases.
3894                 // See the docs for `ChannelManagerReadArgs` for more.
3895
3896                 let block_hash = header.block_hash();
3897                 log_trace!(self.logger, "{} transactions included in block {} at height {} provided", txdata.len(), block_hash, height);
3898
3899                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3900                 self.do_chain_event(Some(height), |channel| channel.transactions_confirmed(&block_hash, height, txdata, &self.logger).map(|a| (a, Vec::new())));
3901         }
3902
3903         fn best_block_updated(&self, header: &BlockHeader, height: u32) {
3904                 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
3905                 // during initialization prior to the chain_monitor being fully configured in some cases.
3906                 // See the docs for `ChannelManagerReadArgs` for more.
3907
3908                 let block_hash = header.block_hash();
3909                 log_trace!(self.logger, "New best block: {} at height {}", block_hash, height);
3910
3911                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3912
3913                 *self.best_block.write().unwrap() = BestBlock::new(block_hash, height);
3914
3915                 self.do_chain_event(Some(height), |channel| channel.best_block_updated(height, header.time, &self.logger));
3916
3917                 macro_rules! max_time {
3918                         ($timestamp: expr) => {
3919                                 loop {
3920                                         // Update $timestamp to be the max of its current value and the block
3921                                         // timestamp. This should keep us close to the current time without relying on
3922                                         // having an explicit local time source.
3923                                         // Just in case we end up in a race, we loop until we either successfully
3924                                         // update $timestamp or decide we don't need to.
3925                                         let old_serial = $timestamp.load(Ordering::Acquire);
3926                                         if old_serial >= header.time as usize { break; }
3927                                         if $timestamp.compare_exchange(old_serial, header.time as usize, Ordering::AcqRel, Ordering::Relaxed).is_ok() {
3928                                                 break;
3929                                         }
3930                                 }
3931                         }
3932                 }
3933                 max_time!(self.last_node_announcement_serial);
3934                 max_time!(self.highest_seen_timestamp);
3935                 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
3936                 payment_secrets.retain(|_, inbound_payment| {
3937                         inbound_payment.expiry_time > header.time as u64
3938                 });
3939         }
3940
3941         fn get_relevant_txids(&self) -> Vec<Txid> {
3942                 let channel_state = self.channel_state.lock().unwrap();
3943                 let mut res = Vec::with_capacity(channel_state.short_to_id.len());
3944                 for chan in channel_state.by_id.values() {
3945                         if let Some(funding_txo) = chan.get_funding_txo() {
3946                                 res.push(funding_txo.txid);
3947                         }
3948                 }
3949                 res
3950         }
3951
3952         fn transaction_unconfirmed(&self, txid: &Txid) {
3953                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3954                 self.do_chain_event(None, |channel| {
3955                         if let Some(funding_txo) = channel.get_funding_txo() {
3956                                 if funding_txo.txid == *txid {
3957                                         channel.funding_transaction_unconfirmed(&self.logger).map(|_| (None, Vec::new()))
3958                                 } else { Ok((None, Vec::new())) }
3959                         } else { Ok((None, Vec::new())) }
3960                 });
3961         }
3962 }
3963
3964 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> ChannelManager<Signer, M, T, K, F, L>
3965 where
3966         M::Target: chain::Watch<Signer>,
3967         T::Target: BroadcasterInterface,
3968         K::Target: KeysInterface<Signer = Signer>,
3969         F::Target: FeeEstimator,
3970         L::Target: Logger,
3971 {
3972         /// Calls a function which handles an on-chain event (blocks dis/connected, transactions
3973         /// un/confirmed, etc) on each channel, handling any resulting errors or messages generated by
3974         /// the function.
3975         fn do_chain_event<FN: Fn(&mut Channel<Signer>) -> Result<(Option<msgs::FundingLocked>, Vec<(HTLCSource, PaymentHash)>), msgs::ErrorMessage>>
3976                         (&self, height_opt: Option<u32>, f: FN) {
3977                 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
3978                 // during initialization prior to the chain_monitor being fully configured in some cases.
3979                 // See the docs for `ChannelManagerReadArgs` for more.
3980
3981                 let mut failed_channels = Vec::new();
3982                 let mut timed_out_htlcs = Vec::new();
3983                 {
3984                         let mut channel_lock = self.channel_state.lock().unwrap();
3985                         let channel_state = &mut *channel_lock;
3986                         let short_to_id = &mut channel_state.short_to_id;
3987                         let pending_msg_events = &mut channel_state.pending_msg_events;
3988                         channel_state.by_id.retain(|_, channel| {
3989                                 let res = f(channel);
3990                                 if let Ok((chan_res, mut timed_out_pending_htlcs)) = res {
3991                                         for (source, payment_hash) in timed_out_pending_htlcs.drain(..) {
3992                                                 let chan_update = self.get_channel_update(&channel).map(|u| u.encode_with_len()).unwrap(); // Cannot add/recv HTLCs before we have a short_id so unwrap is safe
3993                                                 timed_out_htlcs.push((source, payment_hash,  HTLCFailReason::Reason {
3994                                                         failure_code: 0x1000 | 14, // expiry_too_soon, or at least it is now
3995                                                         data: chan_update,
3996                                                 }));
3997                                         }
3998                                         if let Some(funding_locked) = chan_res {
3999                                                 pending_msg_events.push(events::MessageSendEvent::SendFundingLocked {
4000                                                         node_id: channel.get_counterparty_node_id(),
4001                                                         msg: funding_locked,
4002                                                 });
4003                                                 if let Some(announcement_sigs) = self.get_announcement_sigs(channel) {
4004                                                         log_trace!(self.logger, "Sending funding_locked and announcement_signatures for {}", log_bytes!(channel.channel_id()));
4005                                                         pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
4006                                                                 node_id: channel.get_counterparty_node_id(),
4007                                                                 msg: announcement_sigs,
4008                                                         });
4009                                                 } else {
4010                                                         log_trace!(self.logger, "Sending funding_locked WITHOUT announcement_signatures for {}", log_bytes!(channel.channel_id()));
4011                                                 }
4012                                                 short_to_id.insert(channel.get_short_channel_id().unwrap(), channel.channel_id());
4013                                         }
4014                                 } else if let Err(e) = res {
4015                                         if let Some(short_id) = channel.get_short_channel_id() {
4016                                                 short_to_id.remove(&short_id);
4017                                         }
4018                                         // It looks like our counterparty went on-chain or funding transaction was
4019                                         // reorged out of the main chain. Close the channel.
4020                                         failed_channels.push(channel.force_shutdown(true));
4021                                         if let Ok(update) = self.get_channel_update(&channel) {
4022                                                 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
4023                                                         msg: update
4024                                                 });
4025                                         }
4026                                         pending_msg_events.push(events::MessageSendEvent::HandleError {
4027                                                 node_id: channel.get_counterparty_node_id(),
4028                                                 action: msgs::ErrorAction::SendErrorMessage { msg: e },
4029                                         });
4030                                         return false;
4031                                 }
4032                                 true
4033                         });
4034
4035                         if let Some(height) = height_opt {
4036                                 channel_state.claimable_htlcs.retain(|payment_hash, htlcs| {
4037                                         htlcs.retain(|htlc| {
4038                                                 // If height is approaching the number of blocks we think it takes us to get
4039                                                 // our commitment transaction confirmed before the HTLC expires, plus the
4040                                                 // number of blocks we generally consider it to take to do a commitment update,
4041                                                 // just give up on it and fail the HTLC.
4042                                                 if height >= htlc.cltv_expiry - HTLC_FAIL_BACK_BUFFER {
4043                                                         let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec();
4044                                                         htlc_msat_height_data.extend_from_slice(&byte_utils::be32_to_array(height));
4045                                                         timed_out_htlcs.push((HTLCSource::PreviousHopData(htlc.prev_hop.clone()), payment_hash.clone(), HTLCFailReason::Reason {
4046                                                                 failure_code: 0x4000 | 15,
4047                                                                 data: htlc_msat_height_data
4048                                                         }));
4049                                                         false
4050                                                 } else { true }
4051                                         });
4052                                         !htlcs.is_empty() // Only retain this entry if htlcs has at least one entry.
4053                                 });
4054                         }
4055                 }
4056
4057                 self.handle_init_event_channel_failures(failed_channels);
4058
4059                 for (source, payment_hash, reason) in timed_out_htlcs.drain(..) {
4060                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), source, &payment_hash, reason);
4061                 }
4062         }
4063
4064         /// Blocks until ChannelManager needs to be persisted or a timeout is reached. It returns a bool
4065         /// indicating whether persistence is necessary. Only one listener on
4066         /// `await_persistable_update` or `await_persistable_update_timeout` is guaranteed to be woken
4067         /// up.
4068         /// Note that the feature `allow_wallclock_use` must be enabled to use this function.
4069         #[cfg(any(test, feature = "allow_wallclock_use"))]
4070         pub fn await_persistable_update_timeout(&self, max_wait: Duration) -> bool {
4071                 self.persistence_notifier.wait_timeout(max_wait)
4072         }
4073
4074         /// Blocks until ChannelManager needs to be persisted. Only one listener on
4075         /// `await_persistable_update` or `await_persistable_update_timeout` is guaranteed to be woken
4076         /// up.
4077         pub fn await_persistable_update(&self) {
4078                 self.persistence_notifier.wait()
4079         }
4080
4081         #[cfg(any(test, feature = "_test_utils"))]
4082         pub fn get_persistence_condvar_value(&self) -> bool {
4083                 let mutcond = &self.persistence_notifier.persistence_lock;
4084                 let &(ref mtx, _) = mutcond;
4085                 let guard = mtx.lock().unwrap();
4086                 *guard
4087         }
4088 }
4089
4090 impl<Signer: Sign, M: Deref , T: Deref , K: Deref , F: Deref , L: Deref >
4091         ChannelMessageHandler for ChannelManager<Signer, M, T, K, F, L>
4092         where M::Target: chain::Watch<Signer>,
4093         T::Target: BroadcasterInterface,
4094         K::Target: KeysInterface<Signer = Signer>,
4095         F::Target: FeeEstimator,
4096         L::Target: Logger,
4097 {
4098         fn handle_open_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::OpenChannel) {
4099                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4100                 let _ = handle_error!(self, self.internal_open_channel(counterparty_node_id, their_features, msg), *counterparty_node_id);
4101         }
4102
4103         fn handle_accept_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::AcceptChannel) {
4104                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4105                 let _ = handle_error!(self, self.internal_accept_channel(counterparty_node_id, their_features, msg), *counterparty_node_id);
4106         }
4107
4108         fn handle_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) {
4109                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4110                 let _ = handle_error!(self, self.internal_funding_created(counterparty_node_id, msg), *counterparty_node_id);
4111         }
4112
4113         fn handle_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) {
4114                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4115                 let _ = handle_error!(self, self.internal_funding_signed(counterparty_node_id, msg), *counterparty_node_id);
4116         }
4117
4118         fn handle_funding_locked(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingLocked) {
4119                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4120                 let _ = handle_error!(self, self.internal_funding_locked(counterparty_node_id, msg), *counterparty_node_id);
4121         }
4122
4123         fn handle_shutdown(&self, counterparty_node_id: &PublicKey, their_features: &InitFeatures, msg: &msgs::Shutdown) {
4124                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4125                 let _ = handle_error!(self, self.internal_shutdown(counterparty_node_id, their_features, msg), *counterparty_node_id);
4126         }
4127
4128         fn handle_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
4129                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4130                 let _ = handle_error!(self, self.internal_closing_signed(counterparty_node_id, msg), *counterparty_node_id);
4131         }
4132
4133         fn handle_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
4134                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4135                 let _ = handle_error!(self, self.internal_update_add_htlc(counterparty_node_id, msg), *counterparty_node_id);
4136         }
4137
4138         fn handle_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
4139                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4140                 let _ = handle_error!(self, self.internal_update_fulfill_htlc(counterparty_node_id, msg), *counterparty_node_id);
4141         }
4142
4143         fn handle_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
4144                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4145                 let _ = handle_error!(self, self.internal_update_fail_htlc(counterparty_node_id, msg), *counterparty_node_id);
4146         }
4147
4148         fn handle_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
4149                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4150                 let _ = handle_error!(self, self.internal_update_fail_malformed_htlc(counterparty_node_id, msg), *counterparty_node_id);
4151         }
4152
4153         fn handle_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
4154                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4155                 let _ = handle_error!(self, self.internal_commitment_signed(counterparty_node_id, msg), *counterparty_node_id);
4156         }
4157
4158         fn handle_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
4159                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4160                 let _ = handle_error!(self, self.internal_revoke_and_ack(counterparty_node_id, msg), *counterparty_node_id);
4161         }
4162
4163         fn handle_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) {
4164                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4165                 let _ = handle_error!(self, self.internal_update_fee(counterparty_node_id, msg), *counterparty_node_id);
4166         }
4167
4168         fn handle_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
4169                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4170                 let _ = handle_error!(self, self.internal_announcement_signatures(counterparty_node_id, msg), *counterparty_node_id);
4171         }
4172
4173         fn handle_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) {
4174                 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
4175                         if let Ok(persist) = handle_error!(self, self.internal_channel_update(counterparty_node_id, msg), *counterparty_node_id) {
4176                                 persist
4177                         } else {
4178                                 NotifyOption::SkipPersist
4179                         }
4180                 });
4181         }
4182
4183         fn handle_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
4184                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4185                 let _ = handle_error!(self, self.internal_channel_reestablish(counterparty_node_id, msg), *counterparty_node_id);
4186         }
4187
4188         fn peer_disconnected(&self, counterparty_node_id: &PublicKey, no_connection_possible: bool) {
4189                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4190                 let mut failed_channels = Vec::new();
4191                 let mut no_channels_remain = true;
4192                 {
4193                         let mut channel_state_lock = self.channel_state.lock().unwrap();
4194                         let channel_state = &mut *channel_state_lock;
4195                         let short_to_id = &mut channel_state.short_to_id;
4196                         let pending_msg_events = &mut channel_state.pending_msg_events;
4197                         if no_connection_possible {
4198                                 log_debug!(self.logger, "Failing all channels with {} due to no_connection_possible", log_pubkey!(counterparty_node_id));
4199                                 channel_state.by_id.retain(|_, chan| {
4200                                         if chan.get_counterparty_node_id() == *counterparty_node_id {
4201                                                 if let Some(short_id) = chan.get_short_channel_id() {
4202                                                         short_to_id.remove(&short_id);
4203                                                 }
4204                                                 failed_channels.push(chan.force_shutdown(true));
4205                                                 if let Ok(update) = self.get_channel_update(&chan) {
4206                                                         pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
4207                                                                 msg: update
4208                                                         });
4209                                                 }
4210                                                 false
4211                                         } else {
4212                                                 true
4213                                         }
4214                                 });
4215                         } else {
4216                                 log_debug!(self.logger, "Marking channels with {} disconnected and generating channel_updates", log_pubkey!(counterparty_node_id));
4217                                 channel_state.by_id.retain(|_, chan| {
4218                                         if chan.get_counterparty_node_id() == *counterparty_node_id {
4219                                                 chan.remove_uncommitted_htlcs_and_mark_paused(&self.logger);
4220                                                 if chan.is_shutdown() {
4221                                                         if let Some(short_id) = chan.get_short_channel_id() {
4222                                                                 short_to_id.remove(&short_id);
4223                                                         }
4224                                                         return false;
4225                                                 } else {
4226                                                         no_channels_remain = false;
4227                                                 }
4228                                         }
4229                                         true
4230                                 })
4231                         }
4232                         pending_msg_events.retain(|msg| {
4233                                 match msg {
4234                                         &events::MessageSendEvent::SendAcceptChannel { ref node_id, .. } => node_id != counterparty_node_id,
4235                                         &events::MessageSendEvent::SendOpenChannel { ref node_id, .. } => node_id != counterparty_node_id,
4236                                         &events::MessageSendEvent::SendFundingCreated { ref node_id, .. } => node_id != counterparty_node_id,
4237                                         &events::MessageSendEvent::SendFundingSigned { ref node_id, .. } => node_id != counterparty_node_id,
4238                                         &events::MessageSendEvent::SendFundingLocked { ref node_id, .. } => node_id != counterparty_node_id,
4239                                         &events::MessageSendEvent::SendAnnouncementSignatures { ref node_id, .. } => node_id != counterparty_node_id,
4240                                         &events::MessageSendEvent::UpdateHTLCs { ref node_id, .. } => node_id != counterparty_node_id,
4241                                         &events::MessageSendEvent::SendRevokeAndACK { ref node_id, .. } => node_id != counterparty_node_id,
4242                                         &events::MessageSendEvent::SendClosingSigned { ref node_id, .. } => node_id != counterparty_node_id,
4243                                         &events::MessageSendEvent::SendShutdown { ref node_id, .. } => node_id != counterparty_node_id,
4244                                         &events::MessageSendEvent::SendChannelReestablish { ref node_id, .. } => node_id != counterparty_node_id,
4245                                         &events::MessageSendEvent::BroadcastChannelAnnouncement { .. } => true,
4246                                         &events::MessageSendEvent::BroadcastNodeAnnouncement { .. } => true,
4247                                         &events::MessageSendEvent::BroadcastChannelUpdate { .. } => true,
4248                                         &events::MessageSendEvent::HandleError { ref node_id, .. } => node_id != counterparty_node_id,
4249                                         &events::MessageSendEvent::PaymentFailureNetworkUpdate { .. } => true,
4250                                         &events::MessageSendEvent::SendChannelRangeQuery { .. } => false,
4251                                         &events::MessageSendEvent::SendShortIdsQuery { .. } => false,
4252                                         &events::MessageSendEvent::SendReplyChannelRange { .. } => false,
4253                                 }
4254                         });
4255                 }
4256                 if no_channels_remain {
4257                         self.per_peer_state.write().unwrap().remove(counterparty_node_id);
4258                 }
4259
4260                 for failure in failed_channels.drain(..) {
4261                         self.finish_force_close_channel(failure);
4262                 }
4263         }
4264
4265         fn peer_connected(&self, counterparty_node_id: &PublicKey, init_msg: &msgs::Init) {
4266                 log_debug!(self.logger, "Generating channel_reestablish events for {}", log_pubkey!(counterparty_node_id));
4267
4268                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4269
4270                 {
4271                         let mut peer_state_lock = self.per_peer_state.write().unwrap();
4272                         match peer_state_lock.entry(counterparty_node_id.clone()) {
4273                                 hash_map::Entry::Vacant(e) => {
4274                                         e.insert(Mutex::new(PeerState {
4275                                                 latest_features: init_msg.features.clone(),
4276                                         }));
4277                                 },
4278                                 hash_map::Entry::Occupied(e) => {
4279                                         e.get().lock().unwrap().latest_features = init_msg.features.clone();
4280                                 },
4281                         }
4282                 }
4283
4284                 let mut channel_state_lock = self.channel_state.lock().unwrap();
4285                 let channel_state = &mut *channel_state_lock;
4286                 let pending_msg_events = &mut channel_state.pending_msg_events;
4287                 channel_state.by_id.retain(|_, chan| {
4288                         if chan.get_counterparty_node_id() == *counterparty_node_id {
4289                                 if !chan.have_received_message() {
4290                                         // If we created this (outbound) channel while we were disconnected from the
4291                                         // peer we probably failed to send the open_channel message, which is now
4292                                         // lost. We can't have had anything pending related to this channel, so we just
4293                                         // drop it.
4294                                         false
4295                                 } else {
4296                                         pending_msg_events.push(events::MessageSendEvent::SendChannelReestablish {
4297                                                 node_id: chan.get_counterparty_node_id(),
4298                                                 msg: chan.get_channel_reestablish(&self.logger),
4299                                         });
4300                                         true
4301                                 }
4302                         } else { true }
4303                 });
4304                 //TODO: Also re-broadcast announcement_signatures
4305         }
4306
4307         fn handle_error(&self, counterparty_node_id: &PublicKey, msg: &msgs::ErrorMessage) {
4308                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4309
4310                 if msg.channel_id == [0; 32] {
4311                         for chan in self.list_channels() {
4312                                 if chan.remote_network_id == *counterparty_node_id {
4313                                         // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
4314                                         let _ = self.force_close_channel_with_peer(&chan.channel_id, Some(counterparty_node_id));
4315                                 }
4316                         }
4317                 } else {
4318                         // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
4319                         let _ = self.force_close_channel_with_peer(&msg.channel_id, Some(counterparty_node_id));
4320                 }
4321         }
4322 }
4323
4324 /// Used to signal to the ChannelManager persister that the manager needs to be re-persisted to
4325 /// disk/backups, through `await_persistable_update_timeout` and `await_persistable_update`.
4326 struct PersistenceNotifier {
4327         /// Users won't access the persistence_lock directly, but rather wait on its bool using
4328         /// `wait_timeout` and `wait`.
4329         persistence_lock: (Mutex<bool>, Condvar),
4330 }
4331
4332 impl PersistenceNotifier {
4333         fn new() -> Self {
4334                 Self {
4335                         persistence_lock: (Mutex::new(false), Condvar::new()),
4336                 }
4337         }
4338
4339         fn wait(&self) {
4340                 loop {
4341                         let &(ref mtx, ref cvar) = &self.persistence_lock;
4342                         let mut guard = mtx.lock().unwrap();
4343                         if *guard {
4344                                 *guard = false;
4345                                 return;
4346                         }
4347                         guard = cvar.wait(guard).unwrap();
4348                         let result = *guard;
4349                         if result {
4350                                 *guard = false;
4351                                 return
4352                         }
4353                 }
4354         }
4355
4356         #[cfg(any(test, feature = "allow_wallclock_use"))]
4357         fn wait_timeout(&self, max_wait: Duration) -> bool {
4358                 let current_time = Instant::now();
4359                 loop {
4360                         let &(ref mtx, ref cvar) = &self.persistence_lock;
4361                         let mut guard = mtx.lock().unwrap();
4362                         if *guard {
4363                                 *guard = false;
4364                                 return true;
4365                         }
4366                         guard = cvar.wait_timeout(guard, max_wait).unwrap().0;
4367                         // Due to spurious wakeups that can happen on `wait_timeout`, here we need to check if the
4368                         // desired wait time has actually passed, and if not then restart the loop with a reduced wait
4369                         // time. Note that this logic can be highly simplified through the use of
4370                         // `Condvar::wait_while` and `Condvar::wait_timeout_while`, if and when our MSRV is raised to
4371                         // 1.42.0.
4372                         let elapsed = current_time.elapsed();
4373                         let result = *guard;
4374                         if result || elapsed >= max_wait {
4375                                 *guard = false;
4376                                 return result;
4377                         }
4378                         match max_wait.checked_sub(elapsed) {
4379                                 None => return result,
4380                                 Some(_) => continue
4381                         }
4382                 }
4383         }
4384
4385         // Signal to the ChannelManager persister that there are updates necessitating persisting to disk.
4386         fn notify(&self) {
4387                 let &(ref persist_mtx, ref cnd) = &self.persistence_lock;
4388                 let mut persistence_lock = persist_mtx.lock().unwrap();
4389                 *persistence_lock = true;
4390                 mem::drop(persistence_lock);
4391                 cnd.notify_all();
4392         }
4393 }
4394
4395 const SERIALIZATION_VERSION: u8 = 1;
4396 const MIN_SERIALIZATION_VERSION: u8 = 1;
4397
4398 impl_writeable_tlv_based_enum!(PendingHTLCRouting,
4399         (0, Forward) => {
4400                 (0, onion_packet, required),
4401                 (2, short_channel_id, required),
4402         },
4403         (1, Receive) => {
4404                 (0, payment_data, required),
4405                 (2, incoming_cltv_expiry, required),
4406         }
4407 ;);
4408
4409 impl_writeable_tlv_based!(PendingHTLCInfo, {
4410         (0, routing, required),
4411         (2, incoming_shared_secret, required),
4412         (4, payment_hash, required),
4413         (6, amt_to_forward, required),
4414         (8, outgoing_cltv_value, required)
4415 });
4416
4417 impl_writeable_tlv_based_enum!(HTLCFailureMsg, ;
4418         (0, Relay),
4419         (1, Malformed),
4420 );
4421 impl_writeable_tlv_based_enum!(PendingHTLCStatus, ;
4422         (0, Forward),
4423         (1, Fail),
4424 );
4425
4426 impl_writeable_tlv_based!(HTLCPreviousHopData, {
4427         (0, short_channel_id, required),
4428         (2, outpoint, required),
4429         (4, htlc_id, required),
4430         (6, incoming_packet_shared_secret, required)
4431 });
4432
4433 impl_writeable_tlv_based!(ClaimableHTLC, {
4434         (0, prev_hop, required),
4435         (2, value, required),
4436         (4, payment_data, required),
4437         (6, cltv_expiry, required),
4438 });
4439
4440 impl_writeable_tlv_based_enum!(HTLCSource,
4441         (0, OutboundRoute) => {
4442                 (0, session_priv, required),
4443                 (2, first_hop_htlc_msat, required),
4444                 (4, path, vec_type),
4445         }, ;
4446         (1, PreviousHopData)
4447 );
4448
4449 impl_writeable_tlv_based_enum!(HTLCFailReason,
4450         (0, LightningError) => {
4451                 (0, err, required),
4452         },
4453         (1, Reason) => {
4454                 (0, failure_code, required),
4455                 (2, data, vec_type),
4456         },
4457 ;);
4458
4459 impl_writeable_tlv_based_enum!(HTLCForwardInfo,
4460         (0, AddHTLC) => {
4461                 (0, forward_info, required),
4462                 (2, prev_short_channel_id, required),
4463                 (4, prev_htlc_id, required),
4464                 (6, prev_funding_outpoint, required),
4465         },
4466         (1, FailHTLC) => {
4467                 (0, htlc_id, required),
4468                 (2, err_packet, required),
4469         },
4470 ;);
4471
4472 impl_writeable_tlv_based!(PendingInboundPayment, {
4473         (0, payment_secret, required),
4474         (2, expiry_time, required),
4475         (4, user_payment_id, required),
4476         (6, payment_preimage, required),
4477         (8, min_value_msat, required),
4478 });
4479
4480 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> Writeable for ChannelManager<Signer, M, T, K, F, L>
4481         where M::Target: chain::Watch<Signer>,
4482         T::Target: BroadcasterInterface,
4483         K::Target: KeysInterface<Signer = Signer>,
4484         F::Target: FeeEstimator,
4485         L::Target: Logger,
4486 {
4487         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
4488                 let _consistency_lock = self.total_consistency_lock.write().unwrap();
4489
4490                 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
4491
4492                 self.genesis_hash.write(writer)?;
4493                 {
4494                         let best_block = self.best_block.read().unwrap();
4495                         best_block.height().write(writer)?;
4496                         best_block.block_hash().write(writer)?;
4497                 }
4498
4499                 let channel_state = self.channel_state.lock().unwrap();
4500                 let mut unfunded_channels = 0;
4501                 for (_, channel) in channel_state.by_id.iter() {
4502                         if !channel.is_funding_initiated() {
4503                                 unfunded_channels += 1;
4504                         }
4505                 }
4506                 ((channel_state.by_id.len() - unfunded_channels) as u64).write(writer)?;
4507                 for (_, channel) in channel_state.by_id.iter() {
4508                         if channel.is_funding_initiated() {
4509                                 channel.write(writer)?;
4510                         }
4511                 }
4512
4513                 (channel_state.forward_htlcs.len() as u64).write(writer)?;
4514                 for (short_channel_id, pending_forwards) in channel_state.forward_htlcs.iter() {
4515                         short_channel_id.write(writer)?;
4516                         (pending_forwards.len() as u64).write(writer)?;
4517                         for forward in pending_forwards {
4518                                 forward.write(writer)?;
4519                         }
4520                 }
4521
4522                 (channel_state.claimable_htlcs.len() as u64).write(writer)?;
4523                 for (payment_hash, previous_hops) in channel_state.claimable_htlcs.iter() {
4524                         payment_hash.write(writer)?;
4525                         (previous_hops.len() as u64).write(writer)?;
4526                         for htlc in previous_hops.iter() {
4527                                 htlc.write(writer)?;
4528                         }
4529                 }
4530
4531                 let per_peer_state = self.per_peer_state.write().unwrap();
4532                 (per_peer_state.len() as u64).write(writer)?;
4533                 for (peer_pubkey, peer_state_mutex) in per_peer_state.iter() {
4534                         peer_pubkey.write(writer)?;
4535                         let peer_state = peer_state_mutex.lock().unwrap();
4536                         peer_state.latest_features.write(writer)?;
4537                 }
4538
4539                 let events = self.pending_events.lock().unwrap();
4540                 (events.len() as u64).write(writer)?;
4541                 for event in events.iter() {
4542                         event.write(writer)?;
4543                 }
4544
4545                 let background_events = self.pending_background_events.lock().unwrap();
4546                 (background_events.len() as u64).write(writer)?;
4547                 for event in background_events.iter() {
4548                         match event {
4549                                 BackgroundEvent::ClosingMonitorUpdate((funding_txo, monitor_update)) => {
4550                                         0u8.write(writer)?;
4551                                         funding_txo.write(writer)?;
4552                                         monitor_update.write(writer)?;
4553                                 },
4554                         }
4555                 }
4556
4557                 (self.last_node_announcement_serial.load(Ordering::Acquire) as u32).write(writer)?;
4558                 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
4559
4560                 let pending_inbound_payments = self.pending_inbound_payments.lock().unwrap();
4561                 (pending_inbound_payments.len() as u64).write(writer)?;
4562                 for (hash, pending_payment) in pending_inbound_payments.iter() {
4563                         hash.write(writer)?;
4564                         pending_payment.write(writer)?;
4565                 }
4566
4567                 let pending_outbound_payments = self.pending_outbound_payments.lock().unwrap();
4568                 (pending_outbound_payments.len() as u64).write(writer)?;
4569                 for session_priv in pending_outbound_payments.iter() {
4570                         session_priv.write(writer)?;
4571                 }
4572
4573                 write_tlv_fields!(writer, {});
4574
4575                 Ok(())
4576         }
4577 }
4578
4579 /// Arguments for the creation of a ChannelManager that are not deserialized.
4580 ///
4581 /// At a high-level, the process for deserializing a ChannelManager and resuming normal operation
4582 /// is:
4583 /// 1) Deserialize all stored ChannelMonitors.
4584 /// 2) Deserialize the ChannelManager by filling in this struct and calling:
4585 ///    <(BlockHash, ChannelManager)>::read(reader, args)
4586 ///    This may result in closing some Channels if the ChannelMonitor is newer than the stored
4587 ///    ChannelManager state to ensure no loss of funds. Thus, transactions may be broadcasted.
4588 /// 3) If you are not fetching full blocks, register all relevant ChannelMonitor outpoints the same
4589 ///    way you would handle a `chain::Filter` call using ChannelMonitor::get_outputs_to_watch() and
4590 ///    ChannelMonitor::get_funding_txo().
4591 /// 4) Reconnect blocks on your ChannelMonitors.
4592 /// 5) Disconnect/connect blocks on the ChannelManager.
4593 /// 6) Move the ChannelMonitors into your local chain::Watch.
4594 ///
4595 /// Note that the ordering of #4-6 is not of importance, however all three must occur before you
4596 /// call any other methods on the newly-deserialized ChannelManager.
4597 ///
4598 /// Note that because some channels may be closed during deserialization, it is critical that you
4599 /// always deserialize only the latest version of a ChannelManager and ChannelMonitors available to
4600 /// you. If you deserialize an old ChannelManager (during which force-closure transactions may be
4601 /// broadcast), and then later deserialize a newer version of the same ChannelManager (which will
4602 /// not force-close the same channels but consider them live), you may end up revoking a state for
4603 /// which you've already broadcasted the transaction.
4604 pub struct ChannelManagerReadArgs<'a, Signer: 'a + Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
4605         where M::Target: chain::Watch<Signer>,
4606         T::Target: BroadcasterInterface,
4607         K::Target: KeysInterface<Signer = Signer>,
4608         F::Target: FeeEstimator,
4609         L::Target: Logger,
4610 {
4611         /// The keys provider which will give us relevant keys. Some keys will be loaded during
4612         /// deserialization and KeysInterface::read_chan_signer will be used to read per-Channel
4613         /// signing data.
4614         pub keys_manager: K,
4615
4616         /// The fee_estimator for use in the ChannelManager in the future.
4617         ///
4618         /// No calls to the FeeEstimator will be made during deserialization.
4619         pub fee_estimator: F,
4620         /// The chain::Watch for use in the ChannelManager in the future.
4621         ///
4622         /// No calls to the chain::Watch will be made during deserialization. It is assumed that
4623         /// you have deserialized ChannelMonitors separately and will add them to your
4624         /// chain::Watch after deserializing this ChannelManager.
4625         pub chain_monitor: M,
4626
4627         /// The BroadcasterInterface which will be used in the ChannelManager in the future and may be
4628         /// used to broadcast the latest local commitment transactions of channels which must be
4629         /// force-closed during deserialization.
4630         pub tx_broadcaster: T,
4631         /// The Logger for use in the ChannelManager and which may be used to log information during
4632         /// deserialization.
4633         pub logger: L,
4634         /// Default settings used for new channels. Any existing channels will continue to use the
4635         /// runtime settings which were stored when the ChannelManager was serialized.
4636         pub default_config: UserConfig,
4637
4638         /// A map from channel funding outpoints to ChannelMonitors for those channels (ie
4639         /// value.get_funding_txo() should be the key).
4640         ///
4641         /// If a monitor is inconsistent with the channel state during deserialization the channel will
4642         /// be force-closed using the data in the ChannelMonitor and the channel will be dropped. This
4643         /// is true for missing channels as well. If there is a monitor missing for which we find
4644         /// channel data Err(DecodeError::InvalidValue) will be returned.
4645         ///
4646         /// In such cases the latest local transactions will be sent to the tx_broadcaster included in
4647         /// this struct.
4648         ///
4649         /// (C-not exported) because we have no HashMap bindings
4650         pub channel_monitors: HashMap<OutPoint, &'a mut ChannelMonitor<Signer>>,
4651 }
4652
4653 impl<'a, Signer: 'a + Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
4654                 ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>
4655         where M::Target: chain::Watch<Signer>,
4656                 T::Target: BroadcasterInterface,
4657                 K::Target: KeysInterface<Signer = Signer>,
4658                 F::Target: FeeEstimator,
4659                 L::Target: Logger,
4660         {
4661         /// Simple utility function to create a ChannelManagerReadArgs which creates the monitor
4662         /// HashMap for you. This is primarily useful for C bindings where it is not practical to
4663         /// populate a HashMap directly from C.
4664         pub fn new(keys_manager: K, fee_estimator: F, chain_monitor: M, tx_broadcaster: T, logger: L, default_config: UserConfig,
4665                         mut channel_monitors: Vec<&'a mut ChannelMonitor<Signer>>) -> Self {
4666                 Self {
4667                         keys_manager, fee_estimator, chain_monitor, tx_broadcaster, logger, default_config,
4668                         channel_monitors: channel_monitors.drain(..).map(|monitor| { (monitor.get_funding_txo().0, monitor) }).collect()
4669                 }
4670         }
4671 }
4672
4673 // Implement ReadableArgs for an Arc'd ChannelManager to make it a bit easier to work with the
4674 // SipmleArcChannelManager type:
4675 impl<'a, Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
4676         ReadableArgs<ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>> for (BlockHash, Arc<ChannelManager<Signer, M, T, K, F, L>>)
4677         where M::Target: chain::Watch<Signer>,
4678         T::Target: BroadcasterInterface,
4679         K::Target: KeysInterface<Signer = Signer>,
4680         F::Target: FeeEstimator,
4681         L::Target: Logger,
4682 {
4683         fn read<R: ::std::io::Read>(reader: &mut R, args: ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>) -> Result<Self, DecodeError> {
4684                 let (blockhash, chan_manager) = <(BlockHash, ChannelManager<Signer, M, T, K, F, L>)>::read(reader, args)?;
4685                 Ok((blockhash, Arc::new(chan_manager)))
4686         }
4687 }
4688
4689 impl<'a, Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
4690         ReadableArgs<ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>> for (BlockHash, ChannelManager<Signer, M, T, K, F, L>)
4691         where M::Target: chain::Watch<Signer>,
4692         T::Target: BroadcasterInterface,
4693         K::Target: KeysInterface<Signer = Signer>,
4694         F::Target: FeeEstimator,
4695         L::Target: Logger,
4696 {
4697         fn read<R: ::std::io::Read>(reader: &mut R, mut args: ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>) -> Result<Self, DecodeError> {
4698                 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
4699
4700                 let genesis_hash: BlockHash = Readable::read(reader)?;
4701                 let best_block_height: u32 = Readable::read(reader)?;
4702                 let best_block_hash: BlockHash = Readable::read(reader)?;
4703
4704                 let mut failed_htlcs = Vec::new();
4705
4706                 let channel_count: u64 = Readable::read(reader)?;
4707                 let mut funding_txo_set = HashSet::with_capacity(cmp::min(channel_count as usize, 128));
4708                 let mut by_id = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
4709                 let mut short_to_id = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
4710                 for _ in 0..channel_count {
4711                         let mut channel: Channel<Signer> = Channel::read(reader, &args.keys_manager)?;
4712                         let funding_txo = channel.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
4713                         funding_txo_set.insert(funding_txo.clone());
4714                         if let Some(ref mut monitor) = args.channel_monitors.get_mut(&funding_txo) {
4715                                 if channel.get_cur_holder_commitment_transaction_number() < monitor.get_cur_holder_commitment_number() ||
4716                                                 channel.get_revoked_counterparty_commitment_transaction_number() < monitor.get_min_seen_secret() ||
4717                                                 channel.get_cur_counterparty_commitment_transaction_number() < monitor.get_cur_counterparty_commitment_number() ||
4718                                                 channel.get_latest_monitor_update_id() > monitor.get_latest_update_id() {
4719                                         // If the channel is ahead of the monitor, return InvalidValue:
4720                                         log_error!(args.logger, "A ChannelMonitor is stale compared to the current ChannelManager! This indicates a potentially-critical violation of the chain::Watch API!");
4721                                         log_error!(args.logger, " The ChannelMonitor for channel {} is at update_id {} but the ChannelManager is at update_id {}.",
4722                                                 log_bytes!(channel.channel_id()), monitor.get_latest_update_id(), channel.get_latest_monitor_update_id());
4723                                         log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
4724                                         log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
4725                                         log_error!(args.logger, " Without the latest ChannelMonitor we cannot continue without risking funds.");
4726                                         log_error!(args.logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/rust-bitcoin/rust-lightning");
4727                                         return Err(DecodeError::InvalidValue);
4728                                 } else if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() ||
4729                                                 channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() ||
4730                                                 channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() ||
4731                                                 channel.get_latest_monitor_update_id() < monitor.get_latest_update_id() {
4732                                         // But if the channel is behind of the monitor, close the channel:
4733                                         let (_, mut new_failed_htlcs) = channel.force_shutdown(true);
4734                                         failed_htlcs.append(&mut new_failed_htlcs);
4735                                         monitor.broadcast_latest_holder_commitment_txn(&args.tx_broadcaster, &args.logger);
4736                                 } else {
4737                                         if let Some(short_channel_id) = channel.get_short_channel_id() {
4738                                                 short_to_id.insert(short_channel_id, channel.channel_id());
4739                                         }
4740                                         by_id.insert(channel.channel_id(), channel);
4741                                 }
4742                         } else {
4743                                 log_error!(args.logger, "Missing ChannelMonitor for channel {} needed by ChannelManager.", log_bytes!(channel.channel_id()));
4744                                 log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
4745                                 log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
4746                                 log_error!(args.logger, " Without the ChannelMonitor we cannot continue without risking funds.");
4747                                 log_error!(args.logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/rust-bitcoin/rust-lightning");
4748                                 return Err(DecodeError::InvalidValue);
4749                         }
4750                 }
4751
4752                 for (ref funding_txo, ref mut monitor) in args.channel_monitors.iter_mut() {
4753                         if !funding_txo_set.contains(funding_txo) {
4754                                 monitor.broadcast_latest_holder_commitment_txn(&args.tx_broadcaster, &args.logger);
4755                         }
4756                 }
4757
4758                 const MAX_ALLOC_SIZE: usize = 1024 * 64;
4759                 let forward_htlcs_count: u64 = Readable::read(reader)?;
4760                 let mut forward_htlcs = HashMap::with_capacity(cmp::min(forward_htlcs_count as usize, 128));
4761                 for _ in 0..forward_htlcs_count {
4762                         let short_channel_id = Readable::read(reader)?;
4763                         let pending_forwards_count: u64 = Readable::read(reader)?;
4764                         let mut pending_forwards = Vec::with_capacity(cmp::min(pending_forwards_count as usize, MAX_ALLOC_SIZE/mem::size_of::<HTLCForwardInfo>()));
4765                         for _ in 0..pending_forwards_count {
4766                                 pending_forwards.push(Readable::read(reader)?);
4767                         }
4768                         forward_htlcs.insert(short_channel_id, pending_forwards);
4769                 }
4770
4771                 let claimable_htlcs_count: u64 = Readable::read(reader)?;
4772                 let mut claimable_htlcs = HashMap::with_capacity(cmp::min(claimable_htlcs_count as usize, 128));
4773                 for _ in 0..claimable_htlcs_count {
4774                         let payment_hash = Readable::read(reader)?;
4775                         let previous_hops_len: u64 = Readable::read(reader)?;
4776                         let mut previous_hops = Vec::with_capacity(cmp::min(previous_hops_len as usize, MAX_ALLOC_SIZE/mem::size_of::<ClaimableHTLC>()));
4777                         for _ in 0..previous_hops_len {
4778                                 previous_hops.push(Readable::read(reader)?);
4779                         }
4780                         claimable_htlcs.insert(payment_hash, previous_hops);
4781                 }
4782
4783                 let peer_count: u64 = Readable::read(reader)?;
4784                 let mut per_peer_state = HashMap::with_capacity(cmp::min(peer_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(PublicKey, Mutex<PeerState>)>()));
4785                 for _ in 0..peer_count {
4786                         let peer_pubkey = Readable::read(reader)?;
4787                         let peer_state = PeerState {
4788                                 latest_features: Readable::read(reader)?,
4789                         };
4790                         per_peer_state.insert(peer_pubkey, Mutex::new(peer_state));
4791                 }
4792
4793                 let event_count: u64 = Readable::read(reader)?;
4794                 let mut pending_events_read: Vec<events::Event> = Vec::with_capacity(cmp::min(event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<events::Event>()));
4795                 for _ in 0..event_count {
4796                         match MaybeReadable::read(reader)? {
4797                                 Some(event) => pending_events_read.push(event),
4798                                 None => continue,
4799                         }
4800                 }
4801
4802                 let background_event_count: u64 = Readable::read(reader)?;
4803                 let mut pending_background_events_read: Vec<BackgroundEvent> = Vec::with_capacity(cmp::min(background_event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<BackgroundEvent>()));
4804                 for _ in 0..background_event_count {
4805                         match <u8 as Readable>::read(reader)? {
4806                                 0 => pending_background_events_read.push(BackgroundEvent::ClosingMonitorUpdate((Readable::read(reader)?, Readable::read(reader)?))),
4807                                 _ => return Err(DecodeError::InvalidValue),
4808                         }
4809                 }
4810
4811                 let last_node_announcement_serial: u32 = Readable::read(reader)?;
4812                 let highest_seen_timestamp: u32 = Readable::read(reader)?;
4813
4814                 let pending_inbound_payment_count: u64 = Readable::read(reader)?;
4815                 let mut pending_inbound_payments: HashMap<PaymentHash, PendingInboundPayment> = HashMap::with_capacity(cmp::min(pending_inbound_payment_count as usize, MAX_ALLOC_SIZE/(3*32)));
4816                 for _ in 0..pending_inbound_payment_count {
4817                         if pending_inbound_payments.insert(Readable::read(reader)?, Readable::read(reader)?).is_some() {
4818                                 return Err(DecodeError::InvalidValue);
4819                         }
4820                 }
4821
4822                 let pending_outbound_payments_count: u64 = Readable::read(reader)?;
4823                 let mut pending_outbound_payments: HashSet<[u8; 32]> = HashSet::with_capacity(cmp::min(pending_outbound_payments_count as usize, MAX_ALLOC_SIZE/32));
4824                 for _ in 0..pending_outbound_payments_count {
4825                         if !pending_outbound_payments.insert(Readable::read(reader)?) {
4826                                 return Err(DecodeError::InvalidValue);
4827                         }
4828                 }
4829
4830                 read_tlv_fields!(reader, {});
4831
4832                 let mut secp_ctx = Secp256k1::new();
4833                 secp_ctx.seeded_randomize(&args.keys_manager.get_secure_random_bytes());
4834
4835                 let channel_manager = ChannelManager {
4836                         genesis_hash,
4837                         fee_estimator: args.fee_estimator,
4838                         chain_monitor: args.chain_monitor,
4839                         tx_broadcaster: args.tx_broadcaster,
4840
4841                         best_block: RwLock::new(BestBlock::new(best_block_hash, best_block_height)),
4842
4843                         channel_state: Mutex::new(ChannelHolder {
4844                                 by_id,
4845                                 short_to_id,
4846                                 forward_htlcs,
4847                                 claimable_htlcs,
4848                                 pending_msg_events: Vec::new(),
4849                         }),
4850                         pending_inbound_payments: Mutex::new(pending_inbound_payments),
4851                         pending_outbound_payments: Mutex::new(pending_outbound_payments),
4852
4853                         our_network_key: args.keys_manager.get_node_secret(),
4854                         our_network_pubkey: PublicKey::from_secret_key(&secp_ctx, &args.keys_manager.get_node_secret()),
4855                         secp_ctx,
4856
4857                         last_node_announcement_serial: AtomicUsize::new(last_node_announcement_serial as usize),
4858                         highest_seen_timestamp: AtomicUsize::new(highest_seen_timestamp as usize),
4859
4860                         per_peer_state: RwLock::new(per_peer_state),
4861
4862                         pending_events: Mutex::new(pending_events_read),
4863                         pending_background_events: Mutex::new(pending_background_events_read),
4864                         total_consistency_lock: RwLock::new(()),
4865                         persistence_notifier: PersistenceNotifier::new(),
4866
4867                         keys_manager: args.keys_manager,
4868                         logger: args.logger,
4869                         default_configuration: args.default_config,
4870                 };
4871
4872                 for htlc_source in failed_htlcs.drain(..) {
4873                         channel_manager.fail_htlc_backwards_internal(channel_manager.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
4874                 }
4875
4876                 //TODO: Broadcast channel update for closed channels, but only after we've made a
4877                 //connection or two.
4878
4879                 Ok((best_block_hash.clone(), channel_manager))
4880         }
4881 }
4882
4883 #[cfg(test)]
4884 mod tests {
4885         use ln::channelmanager::PersistenceNotifier;
4886         use std::sync::Arc;
4887         use core::sync::atomic::{AtomicBool, Ordering};
4888         use std::thread;
4889         use core::time::Duration;
4890         use ln::functional_test_utils::*;
4891         use ln::features::InitFeatures;
4892         use ln::msgs::ChannelMessageHandler;
4893
4894         #[test]
4895         fn test_wait_timeout() {
4896                 let persistence_notifier = Arc::new(PersistenceNotifier::new());
4897                 let thread_notifier = Arc::clone(&persistence_notifier);
4898
4899                 let exit_thread = Arc::new(AtomicBool::new(false));
4900                 let exit_thread_clone = exit_thread.clone();
4901                 thread::spawn(move || {
4902                         loop {
4903                                 let &(ref persist_mtx, ref cnd) = &thread_notifier.persistence_lock;
4904                                 let mut persistence_lock = persist_mtx.lock().unwrap();
4905                                 *persistence_lock = true;
4906                                 cnd.notify_all();
4907
4908                                 if exit_thread_clone.load(Ordering::SeqCst) {
4909                                         break
4910                                 }
4911                         }
4912                 });
4913
4914                 // Check that we can block indefinitely until updates are available.
4915                 let _ = persistence_notifier.wait();
4916
4917                 // Check that the PersistenceNotifier will return after the given duration if updates are
4918                 // available.
4919                 loop {
4920                         if persistence_notifier.wait_timeout(Duration::from_millis(100)) {
4921                                 break
4922                         }
4923                 }
4924
4925                 exit_thread.store(true, Ordering::SeqCst);
4926
4927                 // Check that the PersistenceNotifier will return after the given duration even if no updates
4928                 // are available.
4929                 loop {
4930                         if !persistence_notifier.wait_timeout(Duration::from_millis(100)) {
4931                                 break
4932                         }
4933                 }
4934         }
4935
4936         #[test]
4937         fn test_notify_limits() {
4938                 // Check that a few cases which don't require the persistence of a new ChannelManager,
4939                 // indeed, do not cause the persistence of a new ChannelManager.
4940                 let chanmon_cfgs = create_chanmon_cfgs(3);
4941                 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
4942                 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
4943                 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
4944
4945                 let mut chan = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known());
4946
4947                 // We check that the channel info nodes have doesn't change too early, even though we try
4948                 // to connect messages with new values
4949                 chan.0.contents.fee_base_msat *= 2;
4950                 chan.1.contents.fee_base_msat *= 2;
4951                 let node_a_chan_info = nodes[0].node.list_channels()[0].clone();
4952                 let node_b_chan_info = nodes[1].node.list_channels()[0].clone();
4953
4954                 // The first two nodes (which opened a channel) should now require fresh persistence
4955                 assert!(nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
4956                 assert!(nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
4957                 // ... but the last node should not.
4958                 assert!(!nodes[2].node.await_persistable_update_timeout(Duration::from_millis(1)));
4959                 // After persisting the first two nodes they should no longer need fresh persistence.
4960                 assert!(!nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
4961                 assert!(!nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
4962
4963                 // Node 3, unrelated to the only channel, shouldn't care if it receives a channel_update
4964                 // about the channel.
4965                 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.0);
4966                 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.1);
4967                 assert!(!nodes[2].node.await_persistable_update_timeout(Duration::from_millis(1)));
4968
4969                 // The nodes which are a party to the channel should also ignore messages from unrelated
4970                 // parties.
4971                 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
4972                 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
4973                 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
4974                 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
4975                 assert!(!nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
4976                 assert!(!nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
4977
4978                 // At this point the channel info given by peers should still be the same.
4979                 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
4980                 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
4981         }
4982 }
4983
4984 #[cfg(all(any(test, feature = "_test_utils"), feature = "unstable"))]
4985 pub mod bench {
4986         use chain::Listen;
4987         use chain::chainmonitor::ChainMonitor;
4988         use chain::channelmonitor::Persist;
4989         use chain::keysinterface::{KeysManager, InMemorySigner};
4990         use ln::channelmanager::{BestBlock, ChainParameters, ChannelManager, PaymentHash, PaymentPreimage};
4991         use ln::features::{InitFeatures, InvoiceFeatures};
4992         use ln::functional_test_utils::*;
4993         use ln::msgs::ChannelMessageHandler;
4994         use routing::network_graph::NetworkGraph;
4995         use routing::router::get_route;
4996         use util::test_utils;
4997         use util::config::UserConfig;
4998         use util::events::{Event, MessageSendEvent, MessageSendEventsProvider};
4999
5000         use bitcoin::hashes::Hash;
5001         use bitcoin::hashes::sha256::Hash as Sha256;
5002         use bitcoin::{Block, BlockHeader, Transaction, TxOut};
5003
5004         use std::sync::{Arc, Mutex};
5005
5006         use test::Bencher;
5007
5008         struct NodeHolder<'a, P: Persist<InMemorySigner>> {
5009                 node: &'a ChannelManager<InMemorySigner,
5010                         &'a ChainMonitor<InMemorySigner, &'a test_utils::TestChainSource,
5011                                 &'a test_utils::TestBroadcaster, &'a test_utils::TestFeeEstimator,
5012                                 &'a test_utils::TestLogger, &'a P>,
5013                         &'a test_utils::TestBroadcaster, &'a KeysManager,
5014                         &'a test_utils::TestFeeEstimator, &'a test_utils::TestLogger>
5015         }
5016
5017         #[cfg(test)]
5018         #[bench]
5019         fn bench_sends(bench: &mut Bencher) {
5020                 bench_two_sends(bench, test_utils::TestPersister::new(), test_utils::TestPersister::new());
5021         }
5022
5023         pub fn bench_two_sends<P: Persist<InMemorySigner>>(bench: &mut Bencher, persister_a: P, persister_b: P) {
5024                 // Do a simple benchmark of sending a payment back and forth between two nodes.
5025                 // Note that this is unrealistic as each payment send will require at least two fsync
5026                 // calls per node.
5027                 let network = bitcoin::Network::Testnet;
5028                 let genesis_hash = bitcoin::blockdata::constants::genesis_block(network).header.block_hash();
5029
5030                 let tx_broadcaster = test_utils::TestBroadcaster{txn_broadcasted: Mutex::new(Vec::new()), blocks: Arc::new(Mutex::new(Vec::new()))};
5031                 let fee_estimator = test_utils::TestFeeEstimator { sat_per_kw: 253 };
5032
5033                 let mut config: UserConfig = Default::default();
5034                 config.own_channel_config.minimum_depth = 1;
5035
5036                 let logger_a = test_utils::TestLogger::with_id("node a".to_owned());
5037                 let chain_monitor_a = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_a);
5038                 let seed_a = [1u8; 32];
5039                 let keys_manager_a = KeysManager::new(&seed_a, 42, 42);
5040                 let node_a = ChannelManager::new(&fee_estimator, &chain_monitor_a, &tx_broadcaster, &logger_a, &keys_manager_a, config.clone(), ChainParameters {
5041                         network,
5042                         best_block: BestBlock::from_genesis(network),
5043                 });
5044                 let node_a_holder = NodeHolder { node: &node_a };
5045
5046                 let logger_b = test_utils::TestLogger::with_id("node a".to_owned());
5047                 let chain_monitor_b = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_b);
5048                 let seed_b = [2u8; 32];
5049                 let keys_manager_b = KeysManager::new(&seed_b, 42, 42);
5050                 let node_b = ChannelManager::new(&fee_estimator, &chain_monitor_b, &tx_broadcaster, &logger_b, &keys_manager_b, config.clone(), ChainParameters {
5051                         network,
5052                         best_block: BestBlock::from_genesis(network),
5053                 });
5054                 let node_b_holder = NodeHolder { node: &node_b };
5055
5056                 node_a.create_channel(node_b.get_our_node_id(), 8_000_000, 100_000_000, 42, None).unwrap();
5057                 node_b.handle_open_channel(&node_a.get_our_node_id(), InitFeatures::known(), &get_event_msg!(node_a_holder, MessageSendEvent::SendOpenChannel, node_b.get_our_node_id()));
5058                 node_a.handle_accept_channel(&node_b.get_our_node_id(), InitFeatures::known(), &get_event_msg!(node_b_holder, MessageSendEvent::SendAcceptChannel, node_a.get_our_node_id()));
5059
5060                 let tx;
5061                 if let Event::FundingGenerationReady { temporary_channel_id, output_script, .. } = get_event!(node_a_holder, Event::FundingGenerationReady) {
5062                         tx = Transaction { version: 2, lock_time: 0, input: Vec::new(), output: vec![TxOut {
5063                                 value: 8_000_000, script_pubkey: output_script,
5064                         }]};
5065                         node_a.funding_transaction_generated(&temporary_channel_id, tx.clone()).unwrap();
5066                 } else { panic!(); }
5067
5068                 node_b.handle_funding_created(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendFundingCreated, node_b.get_our_node_id()));
5069                 node_a.handle_funding_signed(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendFundingSigned, node_a.get_our_node_id()));
5070
5071                 assert_eq!(&tx_broadcaster.txn_broadcasted.lock().unwrap()[..], &[tx.clone()]);
5072
5073                 let block = Block {
5074                         header: BlockHeader { version: 0x20000000, prev_blockhash: genesis_hash, merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 },
5075                         txdata: vec![tx],
5076                 };
5077                 Listen::block_connected(&node_a, &block, 1);
5078                 Listen::block_connected(&node_b, &block, 1);
5079
5080                 node_a.handle_funding_locked(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendFundingLocked, node_a.get_our_node_id()));
5081                 node_b.handle_funding_locked(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendFundingLocked, node_b.get_our_node_id()));
5082
5083                 let dummy_graph = NetworkGraph::new(genesis_hash);
5084
5085                 let mut payment_count: u64 = 0;
5086                 macro_rules! send_payment {
5087                         ($node_a: expr, $node_b: expr) => {
5088                                 let usable_channels = $node_a.list_usable_channels();
5089                                 let route = get_route(&$node_a.get_our_node_id(), &dummy_graph, &$node_b.get_our_node_id(), Some(InvoiceFeatures::known()),
5090                                         Some(&usable_channels.iter().map(|r| r).collect::<Vec<_>>()), &[], 10_000, TEST_FINAL_CLTV, &logger_a).unwrap();
5091
5092                                 let mut payment_preimage = PaymentPreimage([0; 32]);
5093                                 payment_preimage.0[0..8].copy_from_slice(&payment_count.to_le_bytes());
5094                                 payment_count += 1;
5095                                 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0[..]).into_inner());
5096                                 let payment_secret = $node_b.create_inbound_payment_for_hash(payment_hash, None, 7200, 0).unwrap();
5097
5098                                 $node_a.send_payment(&route, payment_hash, &Some(payment_secret)).unwrap();
5099                                 let payment_event = SendEvent::from_event($node_a.get_and_clear_pending_msg_events().pop().unwrap());
5100                                 $node_b.handle_update_add_htlc(&$node_a.get_our_node_id(), &payment_event.msgs[0]);
5101                                 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &payment_event.commitment_msg);
5102                                 let (raa, cs) = get_revoke_commit_msgs!(NodeHolder { node: &$node_b }, $node_a.get_our_node_id());
5103                                 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &raa);
5104                                 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &cs);
5105                                 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &get_event_msg!(NodeHolder { node: &$node_a }, MessageSendEvent::SendRevokeAndACK, $node_b.get_our_node_id()));
5106
5107                                 expect_pending_htlcs_forwardable!(NodeHolder { node: &$node_b });
5108                                 expect_payment_received!(NodeHolder { node: &$node_b }, payment_hash, payment_secret, 10_000);
5109                                 assert!($node_b.claim_funds(payment_preimage));
5110
5111                                 match $node_b.get_and_clear_pending_msg_events().pop().unwrap() {
5112                                         MessageSendEvent::UpdateHTLCs { node_id, updates } => {
5113                                                 assert_eq!(node_id, $node_a.get_our_node_id());
5114                                                 $node_a.handle_update_fulfill_htlc(&$node_b.get_our_node_id(), &updates.update_fulfill_htlcs[0]);
5115                                                 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &updates.commitment_signed);
5116                                         },
5117                                         _ => panic!("Failed to generate claim event"),
5118                                 }
5119
5120                                 let (raa, cs) = get_revoke_commit_msgs!(NodeHolder { node: &$node_a }, $node_b.get_our_node_id());
5121                                 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &raa);
5122                                 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &cs);
5123                                 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &get_event_msg!(NodeHolder { node: &$node_b }, MessageSendEvent::SendRevokeAndACK, $node_a.get_our_node_id()));
5124
5125                                 expect_payment_sent!(NodeHolder { node: &$node_a }, payment_preimage);
5126                         }
5127                 }
5128
5129                 bench.iter(|| {
5130                         send_payment!(node_a, node_b);
5131                         send_payment!(node_b, node_a);
5132                 });
5133         }
5134 }