f72c76e7ac3eeb7b3944b3f99c42debeab013a90
[rust-lightning] / lightning / src / ln / channelmanager.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! The top-level channel management and payment tracking stuff lives here.
11 //!
12 //! The ChannelManager is the main chunk of logic implementing the lightning protocol and is
13 //! responsible for tracking which channels are open, HTLCs are in flight and reestablishing those
14 //! upon reconnect to the relevant peer(s).
15 //!
16 //! It does not manage routing logic (see routing::router::get_route for that) nor does it manage constructing
17 //! on-chain transactions (it only monitors the chain to watch for any force-closes that might
18 //! imply it needs to fail HTLCs/payments/channels it manages).
19 //!
20
21 use bitcoin::blockdata::block::{Block, BlockHeader};
22 use bitcoin::blockdata::transaction::Transaction;
23 use bitcoin::blockdata::constants::genesis_block;
24 use bitcoin::network::constants::Network;
25
26 use bitcoin::hashes::{Hash, HashEngine};
27 use bitcoin::hashes::hmac::{Hmac, HmacEngine};
28 use bitcoin::hashes::sha256::Hash as Sha256;
29 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
30 use bitcoin::hashes::cmp::fixed_time_eq;
31 use bitcoin::hash_types::{BlockHash, Txid};
32
33 use bitcoin::secp256k1::key::{SecretKey,PublicKey};
34 use bitcoin::secp256k1::Secp256k1;
35 use bitcoin::secp256k1::ecdh::SharedSecret;
36 use bitcoin::secp256k1;
37
38 use chain;
39 use chain::Confirm;
40 use chain::Watch;
41 use chain::chaininterface::{BroadcasterInterface, FeeEstimator};
42 use chain::channelmonitor::{ChannelMonitor, ChannelMonitorUpdate, ChannelMonitorUpdateStep, ChannelMonitorUpdateErr, HTLC_FAIL_BACK_BUFFER, CLTV_CLAIM_BUFFER, LATENCY_GRACE_PERIOD_BLOCKS, ANTI_REORG_DELAY, MonitorEvent, CLOSED_CHANNEL_UPDATE_ID};
43 use chain::transaction::{OutPoint, TransactionData};
44 // Since this struct is returned in `list_channels` methods, expose it here in case users want to
45 // construct one themselves.
46 use ln::{PaymentHash, PaymentPreimage, PaymentSecret};
47 pub use ln::channel::CounterpartyForwardingInfo;
48 use ln::channel::{Channel, ChannelError, ChannelUpdateStatus};
49 use ln::features::{InitFeatures, NodeFeatures};
50 use routing::router::{Route, RouteHop};
51 use ln::msgs;
52 use ln::msgs::NetAddress;
53 use ln::onion_utils;
54 use ln::msgs::{ChannelMessageHandler, DecodeError, LightningError, OptionalField};
55 use chain::keysinterface::{Sign, KeysInterface, KeysManager, InMemorySigner};
56 use util::config::UserConfig;
57 use util::events::{EventHandler, EventsProvider, MessageSendEvent, MessageSendEventsProvider};
58 use util::{byte_utils, events};
59 use util::ser::{Readable, ReadableArgs, MaybeReadable, Writeable, Writer};
60 use util::chacha20::{ChaCha20, ChaChaReader};
61 use util::logger::Logger;
62 use util::errors::APIError;
63
64 use prelude::*;
65 use core::{cmp, mem};
66 use core::cell::RefCell;
67 use std::io::{Cursor, Read};
68 use std::sync::{Arc, Condvar, Mutex, MutexGuard, RwLock, RwLockReadGuard};
69 use core::sync::atomic::{AtomicUsize, Ordering};
70 use core::time::Duration;
71 #[cfg(any(test, feature = "allow_wallclock_use"))]
72 use std::time::Instant;
73 use core::ops::Deref;
74 use bitcoin::hashes::hex::ToHex;
75
76 // We hold various information about HTLC relay in the HTLC objects in Channel itself:
77 //
78 // Upon receipt of an HTLC from a peer, we'll give it a PendingHTLCStatus indicating if it should
79 // forward the HTLC with information it will give back to us when it does so, or if it should Fail
80 // the HTLC with the relevant message for the Channel to handle giving to the remote peer.
81 //
82 // Once said HTLC is committed in the Channel, if the PendingHTLCStatus indicated Forward, the
83 // Channel will return the PendingHTLCInfo back to us, and we will create an HTLCForwardInfo
84 // with it to track where it came from (in case of onwards-forward error), waiting a random delay
85 // before we forward it.
86 //
87 // We will then use HTLCForwardInfo's PendingHTLCInfo to construct an outbound HTLC, with a
88 // relevant HTLCSource::PreviousHopData filled in to indicate where it came from (which we can use
89 // to either fail-backwards or fulfill the HTLC backwards along the relevant path).
90 // Alternatively, we can fill an outbound HTLC with a HTLCSource::OutboundRoute indicating this is
91 // our payment, which we can use to decode errors or inform the user that the payment was sent.
92
93 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
94 enum PendingHTLCRouting {
95         Forward {
96                 onion_packet: msgs::OnionPacket,
97                 short_channel_id: u64, // This should be NonZero<u64> eventually when we bump MSRV
98         },
99         Receive {
100                 payment_data: msgs::FinalOnionHopData,
101                 incoming_cltv_expiry: u32, // Used to track when we should expire pending HTLCs that go unclaimed
102         },
103 }
104
105 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
106 pub(super) struct PendingHTLCInfo {
107         routing: PendingHTLCRouting,
108         incoming_shared_secret: [u8; 32],
109         payment_hash: PaymentHash,
110         pub(super) amt_to_forward: u64,
111         pub(super) outgoing_cltv_value: u32,
112 }
113
114 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
115 pub(super) enum HTLCFailureMsg {
116         Relay(msgs::UpdateFailHTLC),
117         Malformed(msgs::UpdateFailMalformedHTLC),
118 }
119
120 /// Stores whether we can't forward an HTLC or relevant forwarding info
121 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
122 pub(super) enum PendingHTLCStatus {
123         Forward(PendingHTLCInfo),
124         Fail(HTLCFailureMsg),
125 }
126
127 pub(super) enum HTLCForwardInfo {
128         AddHTLC {
129                 forward_info: PendingHTLCInfo,
130
131                 // These fields are produced in `forward_htlcs()` and consumed in
132                 // `process_pending_htlc_forwards()` for constructing the
133                 // `HTLCSource::PreviousHopData` for failed and forwarded
134                 // HTLCs.
135                 prev_short_channel_id: u64,
136                 prev_htlc_id: u64,
137                 prev_funding_outpoint: OutPoint,
138         },
139         FailHTLC {
140                 htlc_id: u64,
141                 err_packet: msgs::OnionErrorPacket,
142         },
143 }
144
145 /// Tracks the inbound corresponding to an outbound HTLC
146 #[derive(Clone, PartialEq)]
147 pub(crate) struct HTLCPreviousHopData {
148         short_channel_id: u64,
149         htlc_id: u64,
150         incoming_packet_shared_secret: [u8; 32],
151
152         // This field is consumed by `claim_funds_from_hop()` when updating a force-closed backwards
153         // channel with a preimage provided by the forward channel.
154         outpoint: OutPoint,
155 }
156
157 struct ClaimableHTLC {
158         prev_hop: HTLCPreviousHopData,
159         value: u64,
160         /// Contains a total_msat (which may differ from value if this is a Multi-Path Payment) and a
161         /// payment_secret which prevents path-probing attacks and can associate different HTLCs which
162         /// are part of the same payment.
163         payment_data: msgs::FinalOnionHopData,
164         cltv_expiry: u32,
165 }
166
167 /// Tracks the inbound corresponding to an outbound HTLC
168 #[derive(Clone, PartialEq)]
169 pub(crate) enum HTLCSource {
170         PreviousHopData(HTLCPreviousHopData),
171         OutboundRoute {
172                 path: Vec<RouteHop>,
173                 session_priv: SecretKey,
174                 /// Technically we can recalculate this from the route, but we cache it here to avoid
175                 /// doing a double-pass on route when we get a failure back
176                 first_hop_htlc_msat: u64,
177         },
178 }
179 #[cfg(test)]
180 impl HTLCSource {
181         pub fn dummy() -> Self {
182                 HTLCSource::OutboundRoute {
183                         path: Vec::new(),
184                         session_priv: SecretKey::from_slice(&[1; 32]).unwrap(),
185                         first_hop_htlc_msat: 0,
186                 }
187         }
188 }
189
190 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
191 pub(super) enum HTLCFailReason {
192         LightningError {
193                 err: msgs::OnionErrorPacket,
194         },
195         Reason {
196                 failure_code: u16,
197                 data: Vec<u8>,
198         }
199 }
200
201 type ShutdownResult = (Option<(OutPoint, ChannelMonitorUpdate)>, Vec<(HTLCSource, PaymentHash)>);
202
203 /// Error type returned across the channel_state mutex boundary. When an Err is generated for a
204 /// Channel, we generally end up with a ChannelError::Close for which we have to close the channel
205 /// immediately (ie with no further calls on it made). Thus, this step happens inside a
206 /// channel_state lock. We then return the set of things that need to be done outside the lock in
207 /// this struct and call handle_error!() on it.
208
209 struct MsgHandleErrInternal {
210         err: msgs::LightningError,
211         shutdown_finish: Option<(ShutdownResult, Option<msgs::ChannelUpdate>)>,
212 }
213 impl MsgHandleErrInternal {
214         #[inline]
215         fn send_err_msg_no_close(err: String, channel_id: [u8; 32]) -> Self {
216                 Self {
217                         err: LightningError {
218                                 err: err.clone(),
219                                 action: msgs::ErrorAction::SendErrorMessage {
220                                         msg: msgs::ErrorMessage {
221                                                 channel_id,
222                                                 data: err
223                                         },
224                                 },
225                         },
226                         shutdown_finish: None,
227                 }
228         }
229         #[inline]
230         fn ignore_no_close(err: String) -> Self {
231                 Self {
232                         err: LightningError {
233                                 err,
234                                 action: msgs::ErrorAction::IgnoreError,
235                         },
236                         shutdown_finish: None,
237                 }
238         }
239         #[inline]
240         fn from_no_close(err: msgs::LightningError) -> Self {
241                 Self { err, shutdown_finish: None }
242         }
243         #[inline]
244         fn from_finish_shutdown(err: String, channel_id: [u8; 32], shutdown_res: ShutdownResult, channel_update: Option<msgs::ChannelUpdate>) -> Self {
245                 Self {
246                         err: LightningError {
247                                 err: err.clone(),
248                                 action: msgs::ErrorAction::SendErrorMessage {
249                                         msg: msgs::ErrorMessage {
250                                                 channel_id,
251                                                 data: err
252                                         },
253                                 },
254                         },
255                         shutdown_finish: Some((shutdown_res, channel_update)),
256                 }
257         }
258         #[inline]
259         fn from_chan_no_close(err: ChannelError, channel_id: [u8; 32]) -> Self {
260                 Self {
261                         err: match err {
262                                 ChannelError::Ignore(msg) => LightningError {
263                                         err: msg,
264                                         action: msgs::ErrorAction::IgnoreError,
265                                 },
266                                 ChannelError::Close(msg) => LightningError {
267                                         err: msg.clone(),
268                                         action: msgs::ErrorAction::SendErrorMessage {
269                                                 msg: msgs::ErrorMessage {
270                                                         channel_id,
271                                                         data: msg
272                                                 },
273                                         },
274                                 },
275                                 ChannelError::CloseDelayBroadcast(msg) => LightningError {
276                                         err: msg.clone(),
277                                         action: msgs::ErrorAction::SendErrorMessage {
278                                                 msg: msgs::ErrorMessage {
279                                                         channel_id,
280                                                         data: msg
281                                                 },
282                                         },
283                                 },
284                         },
285                         shutdown_finish: None,
286                 }
287         }
288 }
289
290 /// We hold back HTLCs we intend to relay for a random interval greater than this (see
291 /// Event::PendingHTLCsForwardable for the API guidelines indicating how long should be waited).
292 /// This provides some limited amount of privacy. Ideally this would range from somewhere like one
293 /// second to 30 seconds, but people expect lightning to be, you know, kinda fast, sadly.
294 const MIN_HTLC_RELAY_HOLDING_CELL_MILLIS: u64 = 100;
295
296 /// For events which result in both a RevokeAndACK and a CommitmentUpdate, by default they should
297 /// be sent in the order they appear in the return value, however sometimes the order needs to be
298 /// variable at runtime (eg Channel::channel_reestablish needs to re-send messages in the order
299 /// they were originally sent). In those cases, this enum is also returned.
300 #[derive(Clone, PartialEq)]
301 pub(super) enum RAACommitmentOrder {
302         /// Send the CommitmentUpdate messages first
303         CommitmentFirst,
304         /// Send the RevokeAndACK message first
305         RevokeAndACKFirst,
306 }
307
308 // Note this is only exposed in cfg(test):
309 pub(super) struct ChannelHolder<Signer: Sign> {
310         pub(super) by_id: HashMap<[u8; 32], Channel<Signer>>,
311         pub(super) short_to_id: HashMap<u64, [u8; 32]>,
312         /// short channel id -> forward infos. Key of 0 means payments received
313         /// Note that while this is held in the same mutex as the channels themselves, no consistency
314         /// guarantees are made about the existence of a channel with the short id here, nor the short
315         /// ids in the PendingHTLCInfo!
316         pub(super) forward_htlcs: HashMap<u64, Vec<HTLCForwardInfo>>,
317         /// Map from payment hash to any HTLCs which are to us and can be failed/claimed by the user.
318         /// Note that while this is held in the same mutex as the channels themselves, no consistency
319         /// guarantees are made about the channels given here actually existing anymore by the time you
320         /// go to read them!
321         claimable_htlcs: HashMap<PaymentHash, Vec<ClaimableHTLC>>,
322         /// Messages to send to peers - pushed to in the same lock that they are generated in (except
323         /// for broadcast messages, where ordering isn't as strict).
324         pub(super) pending_msg_events: Vec<MessageSendEvent>,
325 }
326
327 /// Events which we process internally but cannot be procsesed immediately at the generation site
328 /// for some reason. They are handled in timer_tick_occurred, so may be processed with
329 /// quite some time lag.
330 enum BackgroundEvent {
331         /// Handle a ChannelMonitorUpdate that closes a channel, broadcasting its current latest holder
332         /// commitment transaction.
333         ClosingMonitorUpdate((OutPoint, ChannelMonitorUpdate)),
334 }
335
336 /// State we hold per-peer. In the future we should put channels in here, but for now we only hold
337 /// the latest Init features we heard from the peer.
338 struct PeerState {
339         latest_features: InitFeatures,
340 }
341
342 /// Stores a PaymentSecret and any other data we may need to validate an inbound payment is
343 /// actually ours and not some duplicate HTLC sent to us by a node along the route.
344 ///
345 /// For users who don't want to bother doing their own payment preimage storage, we also store that
346 /// here.
347 struct PendingInboundPayment {
348         /// The payment secret that the sender must use for us to accept this payment
349         payment_secret: PaymentSecret,
350         /// Time at which this HTLC expires - blocks with a header time above this value will result in
351         /// this payment being removed.
352         expiry_time: u64,
353         /// Arbitrary identifier the user specifies (or not)
354         user_payment_id: u64,
355         // Other required attributes of the payment, optionally enforced:
356         payment_preimage: Option<PaymentPreimage>,
357         min_value_msat: Option<u64>,
358 }
359
360 /// SimpleArcChannelManager is useful when you need a ChannelManager with a static lifetime, e.g.
361 /// when you're using lightning-net-tokio (since tokio::spawn requires parameters with static
362 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
363 /// SimpleRefChannelManager is the more appropriate type. Defining these type aliases prevents
364 /// issues such as overly long function definitions. Note that the ChannelManager can take any
365 /// type that implements KeysInterface for its keys manager, but this type alias chooses the
366 /// concrete type of the KeysManager.
367 pub type SimpleArcChannelManager<M, T, F, L> = ChannelManager<InMemorySigner, Arc<M>, Arc<T>, Arc<KeysManager>, Arc<F>, Arc<L>>;
368
369 /// SimpleRefChannelManager is a type alias for a ChannelManager reference, and is the reference
370 /// counterpart to the SimpleArcChannelManager type alias. Use this type by default when you don't
371 /// need a ChannelManager with a static lifetime. You'll need a static lifetime in cases such as
372 /// usage of lightning-net-tokio (since tokio::spawn requires parameters with static lifetimes).
373 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
374 /// helps with issues such as long function definitions. Note that the ChannelManager can take any
375 /// type that implements KeysInterface for its keys manager, but this type alias chooses the
376 /// concrete type of the KeysManager.
377 pub type SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, M, T, F, L> = ChannelManager<InMemorySigner, &'a M, &'b T, &'c KeysManager, &'d F, &'e L>;
378
379 /// Manager which keeps track of a number of channels and sends messages to the appropriate
380 /// channel, also tracking HTLC preimages and forwarding onion packets appropriately.
381 ///
382 /// Implements ChannelMessageHandler, handling the multi-channel parts and passing things through
383 /// to individual Channels.
384 ///
385 /// Implements Writeable to write out all channel state to disk. Implies peer_disconnected() for
386 /// all peers during write/read (though does not modify this instance, only the instance being
387 /// serialized). This will result in any channels which have not yet exchanged funding_created (ie
388 /// called funding_transaction_generated for outbound channels).
389 ///
390 /// Note that you can be a bit lazier about writing out ChannelManager than you can be with
391 /// ChannelMonitors. With ChannelMonitors you MUST write each monitor update out to disk before
392 /// returning from chain::Watch::watch_/update_channel, with ChannelManagers, writing updates
393 /// happens out-of-band (and will prevent any other ChannelManager operations from occurring during
394 /// the serialization process). If the deserialized version is out-of-date compared to the
395 /// ChannelMonitors passed by reference to read(), those channels will be force-closed based on the
396 /// ChannelMonitor state and no funds will be lost (mod on-chain transaction fees).
397 ///
398 /// Note that the deserializer is only implemented for (BlockHash, ChannelManager), which
399 /// tells you the last block hash which was block_connect()ed. You MUST rescan any blocks along
400 /// the "reorg path" (ie call block_disconnected() until you get to a common block and then call
401 /// block_connected() to step towards your best block) upon deserialization before using the
402 /// object!
403 ///
404 /// Note that ChannelManager is responsible for tracking liveness of its channels and generating
405 /// ChannelUpdate messages informing peers that the channel is temporarily disabled. To avoid
406 /// spam due to quick disconnection/reconnection, updates are not sent until the channel has been
407 /// offline for a full minute. In order to track this, you must call
408 /// timer_tick_occurred roughly once per minute, though it doesn't have to be perfect.
409 ///
410 /// Rather than using a plain ChannelManager, it is preferable to use either a SimpleArcChannelManager
411 /// a SimpleRefChannelManager, for conciseness. See their documentation for more details, but
412 /// essentially you should default to using a SimpleRefChannelManager, and use a
413 /// SimpleArcChannelManager when you require a ChannelManager with a static lifetime, such as when
414 /// you're using lightning-net-tokio.
415 pub struct ChannelManager<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
416         where M::Target: chain::Watch<Signer>,
417         T::Target: BroadcasterInterface,
418         K::Target: KeysInterface<Signer = Signer>,
419         F::Target: FeeEstimator,
420                                 L::Target: Logger,
421 {
422         default_configuration: UserConfig,
423         genesis_hash: BlockHash,
424         fee_estimator: F,
425         chain_monitor: M,
426         tx_broadcaster: T,
427
428         #[cfg(test)]
429         pub(super) best_block: RwLock<BestBlock>,
430         #[cfg(not(test))]
431         best_block: RwLock<BestBlock>,
432         secp_ctx: Secp256k1<secp256k1::All>,
433
434         #[cfg(any(test, feature = "_test_utils"))]
435         pub(super) channel_state: Mutex<ChannelHolder<Signer>>,
436         #[cfg(not(any(test, feature = "_test_utils")))]
437         channel_state: Mutex<ChannelHolder<Signer>>,
438
439         /// Storage for PaymentSecrets and any requirements on future inbound payments before we will
440         /// expose them to users via a PaymentReceived event. HTLCs which do not meet the requirements
441         /// here are failed when we process them as pending-forwardable-HTLCs, and entries are removed
442         /// after we generate a PaymentReceived upon receipt of all MPP parts or when they time out.
443         /// Locked *after* channel_state.
444         pending_inbound_payments: Mutex<HashMap<PaymentHash, PendingInboundPayment>>,
445
446         /// The session_priv bytes of outbound payments which are pending resolution.
447         /// The authoritative state of these HTLCs resides either within Channels or ChannelMonitors
448         /// (if the channel has been force-closed), however we track them here to prevent duplicative
449         /// PaymentSent/PaymentFailed events. Specifically, in the case of a duplicative
450         /// update_fulfill_htlc message after a reconnect, we may "claim" a payment twice.
451         /// Additionally, because ChannelMonitors are often not re-serialized after connecting block(s)
452         /// which may generate a claim event, we may receive similar duplicate claim/fail MonitorEvents
453         /// after reloading from disk while replaying blocks against ChannelMonitors.
454         ///
455         /// Locked *after* channel_state.
456         pending_outbound_payments: Mutex<HashSet<[u8; 32]>>,
457
458         our_network_key: SecretKey,
459         our_network_pubkey: PublicKey,
460
461         /// Used to track the last value sent in a node_announcement "timestamp" field. We ensure this
462         /// value increases strictly since we don't assume access to a time source.
463         last_node_announcement_serial: AtomicUsize,
464
465         /// The highest block timestamp we've seen, which is usually a good guess at the current time.
466         /// Assuming most miners are generating blocks with reasonable timestamps, this shouldn't be
467         /// very far in the past, and can only ever be up to two hours in the future.
468         highest_seen_timestamp: AtomicUsize,
469
470         /// The bulk of our storage will eventually be here (channels and message queues and the like).
471         /// If we are connected to a peer we always at least have an entry here, even if no channels
472         /// are currently open with that peer.
473         /// Because adding or removing an entry is rare, we usually take an outer read lock and then
474         /// operate on the inner value freely. Sadly, this prevents parallel operation when opening a
475         /// new channel.
476         per_peer_state: RwLock<HashMap<PublicKey, Mutex<PeerState>>>,
477
478         pending_events: Mutex<Vec<events::Event>>,
479         pending_background_events: Mutex<Vec<BackgroundEvent>>,
480         /// Used when we have to take a BIG lock to make sure everything is self-consistent.
481         /// Essentially just when we're serializing ourselves out.
482         /// Taken first everywhere where we are making changes before any other locks.
483         /// When acquiring this lock in read mode, rather than acquiring it directly, call
484         /// `PersistenceNotifierGuard::notify_on_drop(..)` and pass the lock to it, to ensure the
485         /// PersistenceNotifier the lock contains sends out a notification when the lock is released.
486         total_consistency_lock: RwLock<()>,
487
488         persistence_notifier: PersistenceNotifier,
489
490         keys_manager: K,
491
492         logger: L,
493 }
494
495 /// Chain-related parameters used to construct a new `ChannelManager`.
496 ///
497 /// Typically, the block-specific parameters are derived from the best block hash for the network,
498 /// as a newly constructed `ChannelManager` will not have created any channels yet. These parameters
499 /// are not needed when deserializing a previously constructed `ChannelManager`.
500 #[derive(Clone, Copy, PartialEq)]
501 pub struct ChainParameters {
502         /// The network for determining the `chain_hash` in Lightning messages.
503         pub network: Network,
504
505         /// The hash and height of the latest block successfully connected.
506         ///
507         /// Used to track on-chain channel funding outputs and send payments with reliable timelocks.
508         pub best_block: BestBlock,
509 }
510
511 /// The best known block as identified by its hash and height.
512 #[derive(Clone, Copy, PartialEq)]
513 pub struct BestBlock {
514         block_hash: BlockHash,
515         height: u32,
516 }
517
518 impl BestBlock {
519         /// Returns the best block from the genesis of the given network.
520         pub fn from_genesis(network: Network) -> Self {
521                 BestBlock {
522                         block_hash: genesis_block(network).header.block_hash(),
523                         height: 0,
524                 }
525         }
526
527         /// Returns the best block as identified by the given block hash and height.
528         pub fn new(block_hash: BlockHash, height: u32) -> Self {
529                 BestBlock { block_hash, height }
530         }
531
532         /// Returns the best block hash.
533         pub fn block_hash(&self) -> BlockHash { self.block_hash }
534
535         /// Returns the best block height.
536         pub fn height(&self) -> u32 { self.height }
537 }
538
539 #[derive(Copy, Clone, PartialEq)]
540 enum NotifyOption {
541         DoPersist,
542         SkipPersist,
543 }
544
545 /// Whenever we release the `ChannelManager`'s `total_consistency_lock`, from read mode, it is
546 /// desirable to notify any listeners on `await_persistable_update_timeout`/
547 /// `await_persistable_update` when new updates are available for persistence. Therefore, this
548 /// struct is responsible for locking the total consistency lock and, upon going out of scope,
549 /// sending the aforementioned notification (since the lock being released indicates that the
550 /// updates are ready for persistence).
551 ///
552 /// We allow callers to either always notify by constructing with `notify_on_drop` or choose to
553 /// notify or not based on whether relevant changes have been made, providing a closure to
554 /// `optionally_notify` which returns a `NotifyOption`.
555 struct PersistenceNotifierGuard<'a, F: Fn() -> NotifyOption> {
556         persistence_notifier: &'a PersistenceNotifier,
557         should_persist: F,
558         // We hold onto this result so the lock doesn't get released immediately.
559         _read_guard: RwLockReadGuard<'a, ()>,
560 }
561
562 impl<'a> PersistenceNotifierGuard<'a, fn() -> NotifyOption> { // We don't care what the concrete F is here, it's unused
563         fn notify_on_drop(lock: &'a RwLock<()>, notifier: &'a PersistenceNotifier) -> PersistenceNotifierGuard<'a, impl Fn() -> NotifyOption> {
564                 PersistenceNotifierGuard::optionally_notify(lock, notifier, || -> NotifyOption { NotifyOption::DoPersist })
565         }
566
567         fn optionally_notify<F: Fn() -> NotifyOption>(lock: &'a RwLock<()>, notifier: &'a PersistenceNotifier, persist_check: F) -> PersistenceNotifierGuard<'a, F> {
568                 let read_guard = lock.read().unwrap();
569
570                 PersistenceNotifierGuard {
571                         persistence_notifier: notifier,
572                         should_persist: persist_check,
573                         _read_guard: read_guard,
574                 }
575         }
576 }
577
578 impl<'a, F: Fn() -> NotifyOption> Drop for PersistenceNotifierGuard<'a, F> {
579         fn drop(&mut self) {
580                 if (self.should_persist)() == NotifyOption::DoPersist {
581                         self.persistence_notifier.notify();
582                 }
583         }
584 }
585
586 /// The amount of time in blocks we require our counterparty wait to claim their money (ie time
587 /// between when we, or our watchtower, must check for them having broadcast a theft transaction).
588 ///
589 /// This can be increased (but not decreased) through [`ChannelHandshakeConfig::our_to_self_delay`]
590 ///
591 /// [`ChannelHandshakeConfig::our_to_self_delay`]: crate::util::config::ChannelHandshakeConfig::our_to_self_delay
592 pub const BREAKDOWN_TIMEOUT: u16 = 6 * 24;
593 /// The amount of time in blocks we're willing to wait to claim money back to us. This matches
594 /// the maximum required amount in lnd as of March 2021.
595 pub(crate) const MAX_LOCAL_BREAKDOWN_TIMEOUT: u16 = 2 * 6 * 24 * 7;
596
597 /// The minimum number of blocks between an inbound HTLC's CLTV and the corresponding outbound
598 /// HTLC's CLTV. The current default represents roughly seven hours of blocks at six blocks/hour.
599 ///
600 /// This can be increased (but not decreased) through [`ChannelConfig::cltv_expiry_delta`]
601 ///
602 /// [`ChannelConfig::cltv_expiry_delta`]: crate::util::config::ChannelConfig::cltv_expiry_delta
603 // This should always be a few blocks greater than channelmonitor::CLTV_CLAIM_BUFFER,
604 // i.e. the node we forwarded the payment on to should always have enough room to reliably time out
605 // the HTLC via a full update_fail_htlc/commitment_signed dance before we hit the
606 // CLTV_CLAIM_BUFFER point (we static assert that it's at least 3 blocks more).
607 pub const MIN_CLTV_EXPIRY_DELTA: u16 = 6*7;
608 pub(super) const CLTV_FAR_FAR_AWAY: u32 = 6 * 24 * 7; //TODO?
609
610 /// Minimum CLTV difference between the current block height and received inbound payments.
611 /// Invoices generated for payment to us must set their `min_final_cltv_expiry` field to at least
612 /// this value.
613 // Note that we fail if exactly HTLC_FAIL_BACK_BUFFER + 1 was used, so we need to add one for
614 // any payments to succeed. Further, we don't want payments to fail if a block was found while
615 // a payment was being routed, so we add an extra block to be safe.
616 pub const MIN_FINAL_CLTV_EXPIRY: u32 = HTLC_FAIL_BACK_BUFFER + 3;
617
618 // Check that our CLTV_EXPIRY is at least CLTV_CLAIM_BUFFER + ANTI_REORG_DELAY + LATENCY_GRACE_PERIOD_BLOCKS,
619 // ie that if the next-hop peer fails the HTLC within
620 // LATENCY_GRACE_PERIOD_BLOCKS then we'll still have CLTV_CLAIM_BUFFER left to timeout it onchain,
621 // then waiting ANTI_REORG_DELAY to be reorg-safe on the outbound HLTC and
622 // failing the corresponding htlc backward, and us now seeing the last block of ANTI_REORG_DELAY before
623 // LATENCY_GRACE_PERIOD_BLOCKS.
624 #[deny(const_err)]
625 #[allow(dead_code)]
626 const CHECK_CLTV_EXPIRY_SANITY: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - CLTV_CLAIM_BUFFER - ANTI_REORG_DELAY - LATENCY_GRACE_PERIOD_BLOCKS;
627
628 // Check for ability of an attacker to make us fail on-chain by delaying an HTLC claim. See
629 // ChannelMontior::would_broadcast_at_height for a description of why this is needed.
630 #[deny(const_err)]
631 #[allow(dead_code)]
632 const CHECK_CLTV_EXPIRY_SANITY_2: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - 2*CLTV_CLAIM_BUFFER;
633
634 /// Details of a channel, as returned by ChannelManager::list_channels and ChannelManager::list_usable_channels
635 #[derive(Clone)]
636 pub struct ChannelDetails {
637         /// The channel's ID (prior to funding transaction generation, this is a random 32 bytes,
638         /// thereafter this is the txid of the funding transaction xor the funding transaction output).
639         /// Note that this means this value is *not* persistent - it can change once during the
640         /// lifetime of the channel.
641         pub channel_id: [u8; 32],
642         /// The Channel's funding transaction output, if we've negotiated the funding transaction with
643         /// our counterparty already.
644         ///
645         /// Note that, if this has been set, `channel_id` will be equivalent to
646         /// `funding_txo.unwrap().to_channel_id()`.
647         pub funding_txo: Option<OutPoint>,
648         /// The position of the funding transaction in the chain. None if the funding transaction has
649         /// not yet been confirmed and the channel fully opened.
650         pub short_channel_id: Option<u64>,
651         /// The node_id of our counterparty
652         pub remote_network_id: PublicKey,
653         /// The Features the channel counterparty provided upon last connection.
654         /// Useful for routing as it is the most up-to-date copy of the counterparty's features and
655         /// many routing-relevant features are present in the init context.
656         pub counterparty_features: InitFeatures,
657         /// The value, in satoshis, of this channel as appears in the funding output
658         pub channel_value_satoshis: u64,
659         /// The user_id passed in to create_channel, or 0 if the channel was inbound.
660         pub user_id: u64,
661         /// The available outbound capacity for sending HTLCs to the remote peer. This does not include
662         /// any pending HTLCs which are not yet fully resolved (and, thus, who's balance is not
663         /// available for inclusion in new outbound HTLCs). This further does not include any pending
664         /// outgoing HTLCs which are awaiting some other resolution to be sent.
665         pub outbound_capacity_msat: u64,
666         /// The available inbound capacity for the remote peer to send HTLCs to us. This does not
667         /// include any pending HTLCs which are not yet fully resolved (and, thus, who's balance is not
668         /// available for inclusion in new inbound HTLCs).
669         /// Note that there are some corner cases not fully handled here, so the actual available
670         /// inbound capacity may be slightly higher than this.
671         pub inbound_capacity_msat: u64,
672         /// True if the channel was initiated (and thus funded) by us.
673         pub is_outbound: bool,
674         /// True if the channel is confirmed, funding_locked messages have been exchanged, and the
675         /// channel is not currently being shut down. `funding_locked` message exchange implies the
676         /// required confirmation count has been reached (and we were connected to the peer at some
677         /// point after the funding transaction received enough confirmations).
678         pub is_funding_locked: bool,
679         /// True if the channel is (a) confirmed and funding_locked messages have been exchanged, (b)
680         /// the peer is connected, (c) no monitor update failure is pending resolution, and (d) the
681         /// channel is not currently negotiating a shutdown.
682         ///
683         /// This is a strict superset of `is_funding_locked`.
684         pub is_usable: bool,
685         /// True if this channel is (or will be) publicly-announced.
686         pub is_public: bool,
687         /// Information on the fees and requirements that the counterparty requires when forwarding
688         /// payments to us through this channel.
689         pub counterparty_forwarding_info: Option<CounterpartyForwardingInfo>,
690 }
691
692 /// If a payment fails to send, it can be in one of several states. This enum is returned as the
693 /// Err() type describing which state the payment is in, see the description of individual enum
694 /// states for more.
695 #[derive(Clone, Debug)]
696 pub enum PaymentSendFailure {
697         /// A parameter which was passed to send_payment was invalid, preventing us from attempting to
698         /// send the payment at all. No channel state has been changed or messages sent to peers, and
699         /// once you've changed the parameter at error, you can freely retry the payment in full.
700         ParameterError(APIError),
701         /// A parameter in a single path which was passed to send_payment was invalid, preventing us
702         /// from attempting to send the payment at all. No channel state has been changed or messages
703         /// sent to peers, and once you've changed the parameter at error, you can freely retry the
704         /// payment in full.
705         ///
706         /// The results here are ordered the same as the paths in the route object which was passed to
707         /// send_payment.
708         PathParameterError(Vec<Result<(), APIError>>),
709         /// All paths which were attempted failed to send, with no channel state change taking place.
710         /// You can freely retry the payment in full (though you probably want to do so over different
711         /// paths than the ones selected).
712         AllFailedRetrySafe(Vec<APIError>),
713         /// Some paths which were attempted failed to send, though possibly not all. At least some
714         /// paths have irrevocably committed to the HTLC and retrying the payment in full would result
715         /// in over-/re-payment.
716         ///
717         /// The results here are ordered the same as the paths in the route object which was passed to
718         /// send_payment, and any Errs which are not APIError::MonitorUpdateFailed can be safely
719         /// retried (though there is currently no API with which to do so).
720         ///
721         /// Any entries which contain Err(APIError::MonitorUpdateFailed) or Ok(()) MUST NOT be retried
722         /// as they will result in over-/re-payment. These HTLCs all either successfully sent (in the
723         /// case of Ok(())) or will send once channel_monitor_updated is called on the next-hop channel
724         /// with the latest update_id.
725         PartialFailure(Vec<Result<(), APIError>>),
726 }
727
728 macro_rules! handle_error {
729         ($self: ident, $internal: expr, $counterparty_node_id: expr) => {
730                 match $internal {
731                         Ok(msg) => Ok(msg),
732                         Err(MsgHandleErrInternal { err, shutdown_finish }) => {
733                                 #[cfg(debug_assertions)]
734                                 {
735                                         // In testing, ensure there are no deadlocks where the lock is already held upon
736                                         // entering the macro.
737                                         assert!($self.channel_state.try_lock().is_ok());
738                                 }
739
740                                 let mut msg_events = Vec::with_capacity(2);
741
742                                 if let Some((shutdown_res, update_option)) = shutdown_finish {
743                                         $self.finish_force_close_channel(shutdown_res);
744                                         if let Some(update) = update_option {
745                                                 msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
746                                                         msg: update
747                                                 });
748                                         }
749                                 }
750
751                                 log_error!($self.logger, "{}", err.err);
752                                 if let msgs::ErrorAction::IgnoreError = err.action {
753                                 } else {
754                                         msg_events.push(events::MessageSendEvent::HandleError {
755                                                 node_id: $counterparty_node_id,
756                                                 action: err.action.clone()
757                                         });
758                                 }
759
760                                 if !msg_events.is_empty() {
761                                         $self.channel_state.lock().unwrap().pending_msg_events.append(&mut msg_events);
762                                 }
763
764                                 // Return error in case higher-API need one
765                                 Err(err)
766                         },
767                 }
768         }
769 }
770
771 /// Returns (boolean indicating if we should remove the Channel object from memory, a mapped error)
772 macro_rules! convert_chan_err {
773         ($self: ident, $err: expr, $short_to_id: expr, $channel: expr, $channel_id: expr) => {
774                 match $err {
775                         ChannelError::Ignore(msg) => {
776                                 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore(msg), $channel_id.clone()))
777                         },
778                         ChannelError::Close(msg) => {
779                                 log_error!($self.logger, "Closing channel {} due to close-required error: {}", log_bytes!($channel_id[..]), msg);
780                                 if let Some(short_id) = $channel.get_short_channel_id() {
781                                         $short_to_id.remove(&short_id);
782                                 }
783                                 let shutdown_res = $channel.force_shutdown(true);
784                                 (true, MsgHandleErrInternal::from_finish_shutdown(msg, *$channel_id, shutdown_res, $self.get_channel_update(&$channel).ok()))
785                         },
786                         ChannelError::CloseDelayBroadcast(msg) => {
787                                 log_error!($self.logger, "Channel {} need to be shutdown but closing transactions not broadcast due to {}", log_bytes!($channel_id[..]), msg);
788                                 if let Some(short_id) = $channel.get_short_channel_id() {
789                                         $short_to_id.remove(&short_id);
790                                 }
791                                 let shutdown_res = $channel.force_shutdown(false);
792                                 (true, MsgHandleErrInternal::from_finish_shutdown(msg, *$channel_id, shutdown_res, $self.get_channel_update(&$channel).ok()))
793                         }
794                 }
795         }
796 }
797
798 macro_rules! break_chan_entry {
799         ($self: ident, $res: expr, $channel_state: expr, $entry: expr) => {
800                 match $res {
801                         Ok(res) => res,
802                         Err(e) => {
803                                 let (drop, res) = convert_chan_err!($self, e, $channel_state.short_to_id, $entry.get_mut(), $entry.key());
804                                 if drop {
805                                         $entry.remove_entry();
806                                 }
807                                 break Err(res);
808                         }
809                 }
810         }
811 }
812
813 macro_rules! try_chan_entry {
814         ($self: ident, $res: expr, $channel_state: expr, $entry: expr) => {
815                 match $res {
816                         Ok(res) => res,
817                         Err(e) => {
818                                 let (drop, res) = convert_chan_err!($self, e, $channel_state.short_to_id, $entry.get_mut(), $entry.key());
819                                 if drop {
820                                         $entry.remove_entry();
821                                 }
822                                 return Err(res);
823                         }
824                 }
825         }
826 }
827
828 macro_rules! handle_monitor_err {
829         ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => {
830                 handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment, Vec::new(), Vec::new())
831         };
832         ($self: ident, $err: expr, $short_to_id: expr, $chan: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr, $failed_forwards: expr, $failed_fails: expr, $chan_id: expr) => {
833                 match $err {
834                         ChannelMonitorUpdateErr::PermanentFailure => {
835                                 log_error!($self.logger, "Closing channel {} due to monitor update ChannelMonitorUpdateErr::PermanentFailure", log_bytes!($chan_id[..]));
836                                 if let Some(short_id) = $chan.get_short_channel_id() {
837                                         $short_to_id.remove(&short_id);
838                                 }
839                                 // TODO: $failed_fails is dropped here, which will cause other channels to hit the
840                                 // chain in a confused state! We need to move them into the ChannelMonitor which
841                                 // will be responsible for failing backwards once things confirm on-chain.
842                                 // It's ok that we drop $failed_forwards here - at this point we'd rather they
843                                 // broadcast HTLC-Timeout and pay the associated fees to get their funds back than
844                                 // us bother trying to claim it just to forward on to another peer. If we're
845                                 // splitting hairs we'd prefer to claim payments that were to us, but we haven't
846                                 // given up the preimage yet, so might as well just wait until the payment is
847                                 // retried, avoiding the on-chain fees.
848                                 let res: Result<(), _> = Err(MsgHandleErrInternal::from_finish_shutdown("ChannelMonitor storage failure".to_owned(), *$chan_id, $chan.force_shutdown(true), $self.get_channel_update(&$chan).ok()));
849                                 (res, true)
850                         },
851                         ChannelMonitorUpdateErr::TemporaryFailure => {
852                                 log_info!($self.logger, "Disabling channel {} due to monitor update TemporaryFailure. On restore will send {} and process {} forwards and {} fails",
853                                                 log_bytes!($chan_id[..]),
854                                                 if $resend_commitment && $resend_raa {
855                                                                 match $action_type {
856                                                                         RAACommitmentOrder::CommitmentFirst => { "commitment then RAA" },
857                                                                         RAACommitmentOrder::RevokeAndACKFirst => { "RAA then commitment" },
858                                                                 }
859                                                         } else if $resend_commitment { "commitment" }
860                                                         else if $resend_raa { "RAA" }
861                                                         else { "nothing" },
862                                                 (&$failed_forwards as &Vec<(PendingHTLCInfo, u64)>).len(),
863                                                 (&$failed_fails as &Vec<(HTLCSource, PaymentHash, HTLCFailReason)>).len());
864                                 if !$resend_commitment {
865                                         debug_assert!($action_type == RAACommitmentOrder::RevokeAndACKFirst || !$resend_raa);
866                                 }
867                                 if !$resend_raa {
868                                         debug_assert!($action_type == RAACommitmentOrder::CommitmentFirst || !$resend_commitment);
869                                 }
870                                 $chan.monitor_update_failed($resend_raa, $resend_commitment, $failed_forwards, $failed_fails);
871                                 (Err(MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore("Failed to update ChannelMonitor".to_owned()), *$chan_id)), false)
872                         },
873                 }
874         };
875         ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr, $failed_forwards: expr, $failed_fails: expr) => { {
876                 let (res, drop) = handle_monitor_err!($self, $err, $channel_state.short_to_id, $entry.get_mut(), $action_type, $resend_raa, $resend_commitment, $failed_forwards, $failed_fails, $entry.key());
877                 if drop {
878                         $entry.remove_entry();
879                 }
880                 res
881         } };
882 }
883
884 macro_rules! return_monitor_err {
885         ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => {
886                 return handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment);
887         };
888         ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr, $failed_forwards: expr, $failed_fails: expr) => {
889                 return handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment, $failed_forwards, $failed_fails);
890         }
891 }
892
893 // Does not break in case of TemporaryFailure!
894 macro_rules! maybe_break_monitor_err {
895         ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => {
896                 match (handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment), $err) {
897                         (e, ChannelMonitorUpdateErr::PermanentFailure) => {
898                                 break e;
899                         },
900                         (_, ChannelMonitorUpdateErr::TemporaryFailure) => { },
901                 }
902         }
903 }
904
905 macro_rules! handle_chan_restoration_locked {
906         ($self: ident, $channel_lock: expr, $channel_state: expr, $channel_entry: expr,
907          $raa: expr, $commitment_update: expr, $order: expr, $chanmon_update: expr,
908          $pending_forwards: expr, $funding_broadcastable: expr, $funding_locked: expr) => { {
909                 let mut htlc_forwards = None;
910                 let counterparty_node_id = $channel_entry.get().get_counterparty_node_id();
911
912                 let chanmon_update: Option<ChannelMonitorUpdate> = $chanmon_update; // Force type-checking to resolve
913                 let chanmon_update_is_none = chanmon_update.is_none();
914                 let res = loop {
915                         let forwards: Vec<(PendingHTLCInfo, u64)> = $pending_forwards; // Force type-checking to resolve
916                         if !forwards.is_empty() {
917                                 htlc_forwards = Some(($channel_entry.get().get_short_channel_id().expect("We can't have pending forwards before funding confirmation"),
918                                         $channel_entry.get().get_funding_txo().unwrap(), forwards));
919                         }
920
921                         if chanmon_update.is_some() {
922                                 // On reconnect, we, by definition, only resend a funding_locked if there have been
923                                 // no commitment updates, so the only channel monitor update which could also be
924                                 // associated with a funding_locked would be the funding_created/funding_signed
925                                 // monitor update. That monitor update failing implies that we won't send
926                                 // funding_locked until it's been updated, so we can't have a funding_locked and a
927                                 // monitor update here (so we don't bother to handle it correctly below).
928                                 assert!($funding_locked.is_none());
929                                 // A channel monitor update makes no sense without either a funding_locked or a
930                                 // commitment update to process after it. Since we can't have a funding_locked, we
931                                 // only bother to handle the monitor-update + commitment_update case below.
932                                 assert!($commitment_update.is_some());
933                         }
934
935                         if let Some(msg) = $funding_locked {
936                                 // Similar to the above, this implies that we're letting the funding_locked fly
937                                 // before it should be allowed to.
938                                 assert!(chanmon_update.is_none());
939                                 $channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingLocked {
940                                         node_id: counterparty_node_id,
941                                         msg,
942                                 });
943                                 if let Some(announcement_sigs) = $self.get_announcement_sigs($channel_entry.get()) {
944                                         $channel_state.pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
945                                                 node_id: counterparty_node_id,
946                                                 msg: announcement_sigs,
947                                         });
948                                 }
949                                 $channel_state.short_to_id.insert($channel_entry.get().get_short_channel_id().unwrap(), $channel_entry.get().channel_id());
950                         }
951
952                         let funding_broadcastable: Option<Transaction> = $funding_broadcastable; // Force type-checking to resolve
953                         if let Some(monitor_update) = chanmon_update {
954                                 // We only ever broadcast a funding transaction in response to a funding_signed
955                                 // message and the resulting monitor update. Thus, on channel_reestablish
956                                 // message handling we can't have a funding transaction to broadcast. When
957                                 // processing a monitor update finishing resulting in a funding broadcast, we
958                                 // cannot have a second monitor update, thus this case would indicate a bug.
959                                 assert!(funding_broadcastable.is_none());
960                                 // Given we were just reconnected or finished updating a channel monitor, the
961                                 // only case where we can get a new ChannelMonitorUpdate would be if we also
962                                 // have some commitment updates to send as well.
963                                 assert!($commitment_update.is_some());
964                                 if let Err(e) = $self.chain_monitor.update_channel($channel_entry.get().get_funding_txo().unwrap(), monitor_update) {
965                                         // channel_reestablish doesn't guarantee the order it returns is sensical
966                                         // for the messages it returns, but if we're setting what messages to
967                                         // re-transmit on monitor update success, we need to make sure it is sane.
968                                         let mut order = $order;
969                                         if $raa.is_none() {
970                                                 order = RAACommitmentOrder::CommitmentFirst;
971                                         }
972                                         break handle_monitor_err!($self, e, $channel_state, $channel_entry, order, $raa.is_some(), true);
973                                 }
974                         }
975
976                         macro_rules! handle_cs { () => {
977                                 if let Some(update) = $commitment_update {
978                                         $channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
979                                                 node_id: counterparty_node_id,
980                                                 updates: update,
981                                         });
982                                 }
983                         } }
984                         macro_rules! handle_raa { () => {
985                                 if let Some(revoke_and_ack) = $raa {
986                                         $channel_state.pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
987                                                 node_id: counterparty_node_id,
988                                                 msg: revoke_and_ack,
989                                         });
990                                 }
991                         } }
992                         match $order {
993                                 RAACommitmentOrder::CommitmentFirst => {
994                                         handle_cs!();
995                                         handle_raa!();
996                                 },
997                                 RAACommitmentOrder::RevokeAndACKFirst => {
998                                         handle_raa!();
999                                         handle_cs!();
1000                                 },
1001                         }
1002                         if let Some(tx) = funding_broadcastable {
1003                                 log_info!($self.logger, "Broadcasting funding transaction with txid {}", tx.txid());
1004                                 $self.tx_broadcaster.broadcast_transaction(&tx);
1005                         }
1006                         break Ok(());
1007                 };
1008
1009                 if chanmon_update_is_none {
1010                         // If there was no ChannelMonitorUpdate, we should never generate an Err in the res loop
1011                         // above. Doing so would imply calling handle_err!() from channel_monitor_updated() which
1012                         // should *never* end up calling back to `chain_monitor.update_channel()`.
1013                         assert!(res.is_ok());
1014                 }
1015
1016                 (htlc_forwards, res, counterparty_node_id)
1017         } }
1018 }
1019
1020 macro_rules! post_handle_chan_restoration {
1021         ($self: ident, $locked_res: expr) => { {
1022                 let (htlc_forwards, res, counterparty_node_id) = $locked_res;
1023
1024                 let _ = handle_error!($self, res, counterparty_node_id);
1025
1026                 if let Some(forwards) = htlc_forwards {
1027                         $self.forward_htlcs(&mut [forwards][..]);
1028                 }
1029         } }
1030 }
1031
1032 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> ChannelManager<Signer, M, T, K, F, L>
1033         where M::Target: chain::Watch<Signer>,
1034         T::Target: BroadcasterInterface,
1035         K::Target: KeysInterface<Signer = Signer>,
1036         F::Target: FeeEstimator,
1037         L::Target: Logger,
1038 {
1039         /// Constructs a new ChannelManager to hold several channels and route between them.
1040         ///
1041         /// This is the main "logic hub" for all channel-related actions, and implements
1042         /// ChannelMessageHandler.
1043         ///
1044         /// Non-proportional fees are fixed according to our risk using the provided fee estimator.
1045         ///
1046         /// panics if channel_value_satoshis is >= `MAX_FUNDING_SATOSHIS`!
1047         ///
1048         /// Users need to notify the new ChannelManager when a new block is connected or
1049         /// disconnected using its `block_connected` and `block_disconnected` methods, starting
1050         /// from after `params.latest_hash`.
1051         pub fn new(fee_est: F, chain_monitor: M, tx_broadcaster: T, logger: L, keys_manager: K, config: UserConfig, params: ChainParameters) -> Self {
1052                 let mut secp_ctx = Secp256k1::new();
1053                 secp_ctx.seeded_randomize(&keys_manager.get_secure_random_bytes());
1054
1055                 ChannelManager {
1056                         default_configuration: config.clone(),
1057                         genesis_hash: genesis_block(params.network).header.block_hash(),
1058                         fee_estimator: fee_est,
1059                         chain_monitor,
1060                         tx_broadcaster,
1061
1062                         best_block: RwLock::new(params.best_block),
1063
1064                         channel_state: Mutex::new(ChannelHolder{
1065                                 by_id: HashMap::new(),
1066                                 short_to_id: HashMap::new(),
1067                                 forward_htlcs: HashMap::new(),
1068                                 claimable_htlcs: HashMap::new(),
1069                                 pending_msg_events: Vec::new(),
1070                         }),
1071                         pending_inbound_payments: Mutex::new(HashMap::new()),
1072                         pending_outbound_payments: Mutex::new(HashSet::new()),
1073
1074                         our_network_key: keys_manager.get_node_secret(),
1075                         our_network_pubkey: PublicKey::from_secret_key(&secp_ctx, &keys_manager.get_node_secret()),
1076                         secp_ctx,
1077
1078                         last_node_announcement_serial: AtomicUsize::new(0),
1079                         highest_seen_timestamp: AtomicUsize::new(0),
1080
1081                         per_peer_state: RwLock::new(HashMap::new()),
1082
1083                         pending_events: Mutex::new(Vec::new()),
1084                         pending_background_events: Mutex::new(Vec::new()),
1085                         total_consistency_lock: RwLock::new(()),
1086                         persistence_notifier: PersistenceNotifier::new(),
1087
1088                         keys_manager,
1089
1090                         logger,
1091                 }
1092         }
1093
1094         /// Gets the current configuration applied to all new channels,  as
1095         pub fn get_current_default_configuration(&self) -> &UserConfig {
1096                 &self.default_configuration
1097         }
1098
1099         /// Creates a new outbound channel to the given remote node and with the given value.
1100         ///
1101         /// user_id will be provided back as user_channel_id in FundingGenerationReady events to allow
1102         /// tracking of which events correspond with which create_channel call. Note that the
1103         /// user_channel_id defaults to 0 for inbound channels, so you may wish to avoid using 0 for
1104         /// user_id here. user_id has no meaning inside of LDK, it is simply copied to events and
1105         /// otherwise ignored.
1106         ///
1107         /// If successful, will generate a SendOpenChannel message event, so you should probably poll
1108         /// PeerManager::process_events afterwards.
1109         ///
1110         /// Raises APIError::APIMisuseError when channel_value_satoshis > 2**24 or push_msat is
1111         /// greater than channel_value_satoshis * 1k or channel_value_satoshis is < 1000.
1112         pub fn create_channel(&self, their_network_key: PublicKey, channel_value_satoshis: u64, push_msat: u64, user_id: u64, override_config: Option<UserConfig>) -> Result<(), APIError> {
1113                 if channel_value_satoshis < 1000 {
1114                         return Err(APIError::APIMisuseError { err: format!("Channel value must be at least 1000 satoshis. It was {}", channel_value_satoshis) });
1115                 }
1116
1117                 let config = if override_config.is_some() { override_config.as_ref().unwrap() } else { &self.default_configuration };
1118                 let channel = Channel::new_outbound(&self.fee_estimator, &self.keys_manager, their_network_key, channel_value_satoshis, push_msat, user_id, config)?;
1119                 let res = channel.get_open_channel(self.genesis_hash.clone());
1120
1121                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1122                 // We want to make sure the lock is actually acquired by PersistenceNotifierGuard.
1123                 debug_assert!(&self.total_consistency_lock.try_write().is_err());
1124
1125                 let mut channel_state = self.channel_state.lock().unwrap();
1126                 match channel_state.by_id.entry(channel.channel_id()) {
1127                         hash_map::Entry::Occupied(_) => {
1128                                 if cfg!(feature = "fuzztarget") {
1129                                         return Err(APIError::APIMisuseError { err: "Fuzzy bad RNG".to_owned() });
1130                                 } else {
1131                                         panic!("RNG is bad???");
1132                                 }
1133                         },
1134                         hash_map::Entry::Vacant(entry) => { entry.insert(channel); }
1135                 }
1136                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
1137                         node_id: their_network_key,
1138                         msg: res,
1139                 });
1140                 Ok(())
1141         }
1142
1143         fn list_channels_with_filter<Fn: FnMut(&(&[u8; 32], &Channel<Signer>)) -> bool>(&self, f: Fn) -> Vec<ChannelDetails> {
1144                 let mut res = Vec::new();
1145                 {
1146                         let channel_state = self.channel_state.lock().unwrap();
1147                         res.reserve(channel_state.by_id.len());
1148                         for (channel_id, channel) in channel_state.by_id.iter().filter(f) {
1149                                 let (inbound_capacity_msat, outbound_capacity_msat) = channel.get_inbound_outbound_available_balance_msat();
1150                                 res.push(ChannelDetails {
1151                                         channel_id: (*channel_id).clone(),
1152                                         funding_txo: channel.get_funding_txo(),
1153                                         short_channel_id: channel.get_short_channel_id(),
1154                                         remote_network_id: channel.get_counterparty_node_id(),
1155                                         counterparty_features: InitFeatures::empty(),
1156                                         channel_value_satoshis: channel.get_value_satoshis(),
1157                                         inbound_capacity_msat,
1158                                         outbound_capacity_msat,
1159                                         user_id: channel.get_user_id(),
1160                                         is_outbound: channel.is_outbound(),
1161                                         is_funding_locked: channel.is_usable(),
1162                                         is_usable: channel.is_live(),
1163                                         is_public: channel.should_announce(),
1164                                         counterparty_forwarding_info: channel.counterparty_forwarding_info(),
1165                                 });
1166                         }
1167                 }
1168                 let per_peer_state = self.per_peer_state.read().unwrap();
1169                 for chan in res.iter_mut() {
1170                         if let Some(peer_state) = per_peer_state.get(&chan.remote_network_id) {
1171                                 chan.counterparty_features = peer_state.lock().unwrap().latest_features.clone();
1172                         }
1173                 }
1174                 res
1175         }
1176
1177         /// Gets the list of open channels, in random order. See ChannelDetail field documentation for
1178         /// more information.
1179         pub fn list_channels(&self) -> Vec<ChannelDetails> {
1180                 self.list_channels_with_filter(|_| true)
1181         }
1182
1183         /// Gets the list of usable channels, in random order. Useful as an argument to
1184         /// get_route to ensure non-announced channels are used.
1185         ///
1186         /// These are guaranteed to have their [`ChannelDetails::is_usable`] value set to true, see the
1187         /// documentation for [`ChannelDetails::is_usable`] for more info on exactly what the criteria
1188         /// are.
1189         pub fn list_usable_channels(&self) -> Vec<ChannelDetails> {
1190                 // Note we use is_live here instead of usable which leads to somewhat confused
1191                 // internal/external nomenclature, but that's ok cause that's probably what the user
1192                 // really wanted anyway.
1193                 self.list_channels_with_filter(|&(_, ref channel)| channel.is_live())
1194         }
1195
1196         /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
1197         /// will be accepted on the given channel, and after additional timeout/the closing of all
1198         /// pending HTLCs, the channel will be closed on chain.
1199         ///
1200         /// May generate a SendShutdown message event on success, which should be relayed.
1201         pub fn close_channel(&self, channel_id: &[u8; 32]) -> Result<(), APIError> {
1202                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1203
1204                 let (mut failed_htlcs, chan_option) = {
1205                         let mut channel_state_lock = self.channel_state.lock().unwrap();
1206                         let channel_state = &mut *channel_state_lock;
1207                         match channel_state.by_id.entry(channel_id.clone()) {
1208                                 hash_map::Entry::Occupied(mut chan_entry) => {
1209                                         let (shutdown_msg, failed_htlcs) = chan_entry.get_mut().get_shutdown()?;
1210                                         channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
1211                                                 node_id: chan_entry.get().get_counterparty_node_id(),
1212                                                 msg: shutdown_msg
1213                                         });
1214                                         if chan_entry.get().is_shutdown() {
1215                                                 if let Some(short_id) = chan_entry.get().get_short_channel_id() {
1216                                                         channel_state.short_to_id.remove(&short_id);
1217                                                 }
1218                                                 (failed_htlcs, Some(chan_entry.remove_entry().1))
1219                                         } else { (failed_htlcs, None) }
1220                                 },
1221                                 hash_map::Entry::Vacant(_) => return Err(APIError::ChannelUnavailable{err: "No such channel".to_owned()})
1222                         }
1223                 };
1224                 for htlc_source in failed_htlcs.drain(..) {
1225                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
1226                 }
1227                 let chan_update = if let Some(chan) = chan_option {
1228                         if let Ok(update) = self.get_channel_update(&chan) {
1229                                 Some(update)
1230                         } else { None }
1231                 } else { None };
1232
1233                 if let Some(update) = chan_update {
1234                         let mut channel_state = self.channel_state.lock().unwrap();
1235                         channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
1236                                 msg: update
1237                         });
1238                 }
1239
1240                 Ok(())
1241         }
1242
1243         #[inline]
1244         fn finish_force_close_channel(&self, shutdown_res: ShutdownResult) {
1245                 let (monitor_update_option, mut failed_htlcs) = shutdown_res;
1246                 log_debug!(self.logger, "Finishing force-closure of channel with {} HTLCs to fail", failed_htlcs.len());
1247                 for htlc_source in failed_htlcs.drain(..) {
1248                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
1249                 }
1250                 if let Some((funding_txo, monitor_update)) = monitor_update_option {
1251                         // There isn't anything we can do if we get an update failure - we're already
1252                         // force-closing. The monitor update on the required in-memory copy should broadcast
1253                         // the latest local state, which is the best we can do anyway. Thus, it is safe to
1254                         // ignore the result here.
1255                         let _ = self.chain_monitor.update_channel(funding_txo, monitor_update);
1256                 }
1257         }
1258
1259         fn force_close_channel_with_peer(&self, channel_id: &[u8; 32], peer_node_id: Option<&PublicKey>) -> Result<PublicKey, APIError> {
1260                 let mut chan = {
1261                         let mut channel_state_lock = self.channel_state.lock().unwrap();
1262                         let channel_state = &mut *channel_state_lock;
1263                         if let hash_map::Entry::Occupied(chan) = channel_state.by_id.entry(channel_id.clone()) {
1264                                 if let Some(node_id) = peer_node_id {
1265                                         if chan.get().get_counterparty_node_id() != *node_id {
1266                                                 return Err(APIError::ChannelUnavailable{err: "No such channel".to_owned()});
1267                                         }
1268                                 }
1269                                 if let Some(short_id) = chan.get().get_short_channel_id() {
1270                                         channel_state.short_to_id.remove(&short_id);
1271                                 }
1272                                 chan.remove_entry().1
1273                         } else {
1274                                 return Err(APIError::ChannelUnavailable{err: "No such channel".to_owned()});
1275                         }
1276                 };
1277                 log_error!(self.logger, "Force-closing channel {}", log_bytes!(channel_id[..]));
1278                 self.finish_force_close_channel(chan.force_shutdown(true));
1279                 if let Ok(update) = self.get_channel_update(&chan) {
1280                         let mut channel_state = self.channel_state.lock().unwrap();
1281                         channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
1282                                 msg: update
1283                         });
1284                 }
1285
1286                 Ok(chan.get_counterparty_node_id())
1287         }
1288
1289         /// Force closes a channel, immediately broadcasting the latest local commitment transaction to
1290         /// the chain and rejecting new HTLCs on the given channel. Fails if channel_id is unknown to the manager.
1291         pub fn force_close_channel(&self, channel_id: &[u8; 32]) -> Result<(), APIError> {
1292                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1293                 match self.force_close_channel_with_peer(channel_id, None) {
1294                         Ok(counterparty_node_id) => {
1295                                 self.channel_state.lock().unwrap().pending_msg_events.push(
1296                                         events::MessageSendEvent::HandleError {
1297                                                 node_id: counterparty_node_id,
1298                                                 action: msgs::ErrorAction::SendErrorMessage {
1299                                                         msg: msgs::ErrorMessage { channel_id: *channel_id, data: "Channel force-closed".to_owned() }
1300                                                 },
1301                                         }
1302                                 );
1303                                 Ok(())
1304                         },
1305                         Err(e) => Err(e)
1306                 }
1307         }
1308
1309         /// Force close all channels, immediately broadcasting the latest local commitment transaction
1310         /// for each to the chain and rejecting new HTLCs on each.
1311         pub fn force_close_all_channels(&self) {
1312                 for chan in self.list_channels() {
1313                         let _ = self.force_close_channel(&chan.channel_id);
1314                 }
1315         }
1316
1317         fn decode_update_add_htlc_onion(&self, msg: &msgs::UpdateAddHTLC) -> (PendingHTLCStatus, MutexGuard<ChannelHolder<Signer>>) {
1318                 macro_rules! return_malformed_err {
1319                         ($msg: expr, $err_code: expr) => {
1320                                 {
1321                                         log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
1322                                         return (PendingHTLCStatus::Fail(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
1323                                                 channel_id: msg.channel_id,
1324                                                 htlc_id: msg.htlc_id,
1325                                                 sha256_of_onion: Sha256::hash(&msg.onion_routing_packet.hop_data).into_inner(),
1326                                                 failure_code: $err_code,
1327                                         })), self.channel_state.lock().unwrap());
1328                                 }
1329                         }
1330                 }
1331
1332                 if let Err(_) = msg.onion_routing_packet.public_key {
1333                         return_malformed_err!("invalid ephemeral pubkey", 0x8000 | 0x4000 | 6);
1334                 }
1335
1336                 let shared_secret = {
1337                         let mut arr = [0; 32];
1338                         arr.copy_from_slice(&SharedSecret::new(&msg.onion_routing_packet.public_key.unwrap(), &self.our_network_key)[..]);
1339                         arr
1340                 };
1341                 let (rho, mu) = onion_utils::gen_rho_mu_from_shared_secret(&shared_secret);
1342
1343                 if msg.onion_routing_packet.version != 0 {
1344                         //TODO: Spec doesn't indicate if we should only hash hop_data here (and in other
1345                         //sha256_of_onion error data packets), or the entire onion_routing_packet. Either way,
1346                         //the hash doesn't really serve any purpose - in the case of hashing all data, the
1347                         //receiving node would have to brute force to figure out which version was put in the
1348                         //packet by the node that send us the message, in the case of hashing the hop_data, the
1349                         //node knows the HMAC matched, so they already know what is there...
1350                         return_malformed_err!("Unknown onion packet version", 0x8000 | 0x4000 | 4);
1351                 }
1352
1353                 let mut hmac = HmacEngine::<Sha256>::new(&mu);
1354                 hmac.input(&msg.onion_routing_packet.hop_data);
1355                 hmac.input(&msg.payment_hash.0[..]);
1356                 if !fixed_time_eq(&Hmac::from_engine(hmac).into_inner(), &msg.onion_routing_packet.hmac) {
1357                         return_malformed_err!("HMAC Check failed", 0x8000 | 0x4000 | 5);
1358                 }
1359
1360                 let mut channel_state = None;
1361                 macro_rules! return_err {
1362                         ($msg: expr, $err_code: expr, $data: expr) => {
1363                                 {
1364                                         log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
1365                                         if channel_state.is_none() {
1366                                                 channel_state = Some(self.channel_state.lock().unwrap());
1367                                         }
1368                                         return (PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
1369                                                 channel_id: msg.channel_id,
1370                                                 htlc_id: msg.htlc_id,
1371                                                 reason: onion_utils::build_first_hop_failure_packet(&shared_secret, $err_code, $data),
1372                                         })), channel_state.unwrap());
1373                                 }
1374                         }
1375                 }
1376
1377                 let mut chacha = ChaCha20::new(&rho, &[0u8; 8]);
1378                 let mut chacha_stream = ChaChaReader { chacha: &mut chacha, read: Cursor::new(&msg.onion_routing_packet.hop_data[..]) };
1379                 let (next_hop_data, next_hop_hmac) = {
1380                         match msgs::OnionHopData::read(&mut chacha_stream) {
1381                                 Err(err) => {
1382                                         let error_code = match err {
1383                                                 msgs::DecodeError::UnknownVersion => 0x4000 | 1, // unknown realm byte
1384                                                 msgs::DecodeError::UnknownRequiredFeature|
1385                                                 msgs::DecodeError::InvalidValue|
1386                                                 msgs::DecodeError::ShortRead => 0x4000 | 22, // invalid_onion_payload
1387                                                 _ => 0x2000 | 2, // Should never happen
1388                                         };
1389                                         return_err!("Unable to decode our hop data", error_code, &[0;0]);
1390                                 },
1391                                 Ok(msg) => {
1392                                         let mut hmac = [0; 32];
1393                                         if let Err(_) = chacha_stream.read_exact(&mut hmac[..]) {
1394                                                 return_err!("Unable to decode hop data", 0x4000 | 22, &[0;0]);
1395                                         }
1396                                         (msg, hmac)
1397                                 },
1398                         }
1399                 };
1400
1401                 let pending_forward_info = if next_hop_hmac == [0; 32] {
1402                                 #[cfg(test)]
1403                                 {
1404                                         // In tests, make sure that the initial onion pcket data is, at least, non-0.
1405                                         // We could do some fancy randomness test here, but, ehh, whatever.
1406                                         // This checks for the issue where you can calculate the path length given the
1407                                         // onion data as all the path entries that the originator sent will be here
1408                                         // as-is (and were originally 0s).
1409                                         // Of course reverse path calculation is still pretty easy given naive routing
1410                                         // algorithms, but this fixes the most-obvious case.
1411                                         let mut next_bytes = [0; 32];
1412                                         chacha_stream.read_exact(&mut next_bytes).unwrap();
1413                                         assert_ne!(next_bytes[..], [0; 32][..]);
1414                                         chacha_stream.read_exact(&mut next_bytes).unwrap();
1415                                         assert_ne!(next_bytes[..], [0; 32][..]);
1416                                 }
1417
1418                                 // OUR PAYMENT!
1419                                 // final_expiry_too_soon
1420                                 // We have to have some headroom to broadcast on chain if we have the preimage, so make sure we have at least
1421                                 // HTLC_FAIL_BACK_BUFFER blocks to go.
1422                                 // Also, ensure that, in the case of an unknown payment hash, our payment logic has enough time to fail the HTLC backward
1423                                 // before our onchain logic triggers a channel closure (see HTLC_FAIL_BACK_BUFFER rational).
1424                                 if (msg.cltv_expiry as u64) <= self.best_block.read().unwrap().height() as u64 + HTLC_FAIL_BACK_BUFFER as u64 + 1 {
1425                                         return_err!("The final CLTV expiry is too soon to handle", 17, &[0;0]);
1426                                 }
1427                                 // final_incorrect_htlc_amount
1428                                 if next_hop_data.amt_to_forward > msg.amount_msat {
1429                                         return_err!("Upstream node sent less than we were supposed to receive in payment", 19, &byte_utils::be64_to_array(msg.amount_msat));
1430                                 }
1431                                 // final_incorrect_cltv_expiry
1432                                 if next_hop_data.outgoing_cltv_value != msg.cltv_expiry {
1433                                         return_err!("Upstream node set CLTV to the wrong value", 18, &byte_utils::be32_to_array(msg.cltv_expiry));
1434                                 }
1435
1436                                 let payment_data = match next_hop_data.format {
1437                                         msgs::OnionHopDataFormat::Legacy { .. } => None,
1438                                         msgs::OnionHopDataFormat::NonFinalNode { .. } => return_err!("Got non final data with an HMAC of 0", 0x4000 | 22, &[0;0]),
1439                                         msgs::OnionHopDataFormat::FinalNode { payment_data } => payment_data,
1440                                 };
1441
1442                                 if payment_data.is_none() {
1443                                         return_err!("We require payment_secrets", 0x4000|0x2000|3, &[0;0]);
1444                                 }
1445
1446                                 // Note that we could obviously respond immediately with an update_fulfill_htlc
1447                                 // message, however that would leak that we are the recipient of this payment, so
1448                                 // instead we stay symmetric with the forwarding case, only responding (after a
1449                                 // delay) once they've send us a commitment_signed!
1450
1451                                 PendingHTLCStatus::Forward(PendingHTLCInfo {
1452                                         routing: PendingHTLCRouting::Receive {
1453                                                 payment_data: payment_data.unwrap(),
1454                                                 incoming_cltv_expiry: msg.cltv_expiry,
1455                                         },
1456                                         payment_hash: msg.payment_hash.clone(),
1457                                         incoming_shared_secret: shared_secret,
1458                                         amt_to_forward: next_hop_data.amt_to_forward,
1459                                         outgoing_cltv_value: next_hop_data.outgoing_cltv_value,
1460                                 })
1461                         } else {
1462                                 let mut new_packet_data = [0; 20*65];
1463                                 let read_pos = chacha_stream.read(&mut new_packet_data).unwrap();
1464                                 #[cfg(debug_assertions)]
1465                                 {
1466                                         // Check two things:
1467                                         // a) that the behavior of our stream here will return Ok(0) even if the TLV
1468                                         //    read above emptied out our buffer and the unwrap() wont needlessly panic
1469                                         // b) that we didn't somehow magically end up with extra data.
1470                                         let mut t = [0; 1];
1471                                         debug_assert!(chacha_stream.read(&mut t).unwrap() == 0);
1472                                 }
1473                                 // Once we've emptied the set of bytes our peer gave us, encrypt 0 bytes until we
1474                                 // fill the onion hop data we'll forward to our next-hop peer.
1475                                 chacha_stream.chacha.process_in_place(&mut new_packet_data[read_pos..]);
1476
1477                                 let mut new_pubkey = msg.onion_routing_packet.public_key.unwrap();
1478
1479                                 let blinding_factor = {
1480                                         let mut sha = Sha256::engine();
1481                                         sha.input(&new_pubkey.serialize()[..]);
1482                                         sha.input(&shared_secret);
1483                                         Sha256::from_engine(sha).into_inner()
1484                                 };
1485
1486                                 let public_key = if let Err(e) = new_pubkey.mul_assign(&self.secp_ctx, &blinding_factor[..]) {
1487                                         Err(e)
1488                                 } else { Ok(new_pubkey) };
1489
1490                                 let outgoing_packet = msgs::OnionPacket {
1491                                         version: 0,
1492                                         public_key,
1493                                         hop_data: new_packet_data,
1494                                         hmac: next_hop_hmac.clone(),
1495                                 };
1496
1497                                 let short_channel_id = match next_hop_data.format {
1498                                         msgs::OnionHopDataFormat::Legacy { short_channel_id } => short_channel_id,
1499                                         msgs::OnionHopDataFormat::NonFinalNode { short_channel_id } => short_channel_id,
1500                                         msgs::OnionHopDataFormat::FinalNode { .. } => {
1501                                                 return_err!("Final Node OnionHopData provided for us as an intermediary node", 0x4000 | 22, &[0;0]);
1502                                         },
1503                                 };
1504
1505                                 PendingHTLCStatus::Forward(PendingHTLCInfo {
1506                                         routing: PendingHTLCRouting::Forward {
1507                                                 onion_packet: outgoing_packet,
1508                                                 short_channel_id,
1509                                         },
1510                                         payment_hash: msg.payment_hash.clone(),
1511                                         incoming_shared_secret: shared_secret,
1512                                         amt_to_forward: next_hop_data.amt_to_forward,
1513                                         outgoing_cltv_value: next_hop_data.outgoing_cltv_value,
1514                                 })
1515                         };
1516
1517                 channel_state = Some(self.channel_state.lock().unwrap());
1518                 if let &PendingHTLCStatus::Forward(PendingHTLCInfo { ref routing, ref amt_to_forward, ref outgoing_cltv_value, .. }) = &pending_forward_info {
1519                         // If short_channel_id is 0 here, we'll reject the HTLC as there cannot be a channel
1520                         // with a short_channel_id of 0. This is important as various things later assume
1521                         // short_channel_id is non-0 in any ::Forward.
1522                         if let &PendingHTLCRouting::Forward { ref short_channel_id, .. } = routing {
1523                                 let id_option = channel_state.as_ref().unwrap().short_to_id.get(&short_channel_id).cloned();
1524                                 let forwarding_id = match id_option {
1525                                         None => { // unknown_next_peer
1526                                                 return_err!("Don't have available channel for forwarding as requested.", 0x4000 | 10, &[0;0]);
1527                                         },
1528                                         Some(id) => id.clone(),
1529                                 };
1530                                 if let Some((err, code, chan_update)) = loop {
1531                                         let chan = channel_state.as_mut().unwrap().by_id.get_mut(&forwarding_id).unwrap();
1532
1533                                         // Note that we could technically not return an error yet here and just hope
1534                                         // that the connection is reestablished or monitor updated by the time we get
1535                                         // around to doing the actual forward, but better to fail early if we can and
1536                                         // hopefully an attacker trying to path-trace payments cannot make this occur
1537                                         // on a small/per-node/per-channel scale.
1538                                         if !chan.is_live() { // channel_disabled
1539                                                 break Some(("Forwarding channel is not in a ready state.", 0x1000 | 20, Some(self.get_channel_update(chan).unwrap())));
1540                                         }
1541                                         if *amt_to_forward < chan.get_counterparty_htlc_minimum_msat() { // amount_below_minimum
1542                                                 break Some(("HTLC amount was below the htlc_minimum_msat", 0x1000 | 11, Some(self.get_channel_update(chan).unwrap())));
1543                                         }
1544                                         let fee = amt_to_forward.checked_mul(chan.get_fee_proportional_millionths() as u64).and_then(|prop_fee| { (prop_fee / 1000000).checked_add(chan.get_holder_fee_base_msat(&self.fee_estimator) as u64) });
1545                                         if fee.is_none() || msg.amount_msat < fee.unwrap() || (msg.amount_msat - fee.unwrap()) < *amt_to_forward { // fee_insufficient
1546                                                 break Some(("Prior hop has deviated from specified fees parameters or origin node has obsolete ones", 0x1000 | 12, Some(self.get_channel_update(chan).unwrap())));
1547                                         }
1548                                         if (msg.cltv_expiry as u64) < (*outgoing_cltv_value) as u64 + chan.get_cltv_expiry_delta() as u64 { // incorrect_cltv_expiry
1549                                                 break Some(("Forwarding node has tampered with the intended HTLC values or origin node has an obsolete cltv_expiry_delta", 0x1000 | 13, Some(self.get_channel_update(chan).unwrap())));
1550                                         }
1551                                         let cur_height = self.best_block.read().unwrap().height() + 1;
1552                                         // Theoretically, channel counterparty shouldn't send us a HTLC expiring now, but we want to be robust wrt to counterparty
1553                                         // packet sanitization (see HTLC_FAIL_BACK_BUFFER rational)
1554                                         if msg.cltv_expiry <= cur_height + HTLC_FAIL_BACK_BUFFER as u32 { // expiry_too_soon
1555                                                 break Some(("CLTV expiry is too close", 0x1000 | 14, Some(self.get_channel_update(chan).unwrap())));
1556                                         }
1557                                         if msg.cltv_expiry > cur_height + CLTV_FAR_FAR_AWAY as u32 { // expiry_too_far
1558                                                 break Some(("CLTV expiry is too far in the future", 21, None));
1559                                         }
1560                                         // In theory, we would be safe against unitentional channel-closure, if we only required a margin of LATENCY_GRACE_PERIOD_BLOCKS.
1561                                         // But, to be safe against policy reception, we use a longuer delay.
1562                                         if (*outgoing_cltv_value) as u64 <= (cur_height + HTLC_FAIL_BACK_BUFFER) as u64 {
1563                                                 break Some(("Outgoing CLTV value is too soon", 0x1000 | 14, Some(self.get_channel_update(chan).unwrap())));
1564                                         }
1565
1566                                         break None;
1567                                 }
1568                                 {
1569                                         let mut res = Vec::with_capacity(8 + 128);
1570                                         if let Some(chan_update) = chan_update {
1571                                                 if code == 0x1000 | 11 || code == 0x1000 | 12 {
1572                                                         res.extend_from_slice(&byte_utils::be64_to_array(msg.amount_msat));
1573                                                 }
1574                                                 else if code == 0x1000 | 13 {
1575                                                         res.extend_from_slice(&byte_utils::be32_to_array(msg.cltv_expiry));
1576                                                 }
1577                                                 else if code == 0x1000 | 20 {
1578                                                         // TODO: underspecified, follow https://github.com/lightningnetwork/lightning-rfc/issues/791
1579                                                         res.extend_from_slice(&byte_utils::be16_to_array(0));
1580                                                 }
1581                                                 res.extend_from_slice(&chan_update.encode_with_len()[..]);
1582                                         }
1583                                         return_err!(err, code, &res[..]);
1584                                 }
1585                         }
1586                 }
1587
1588                 (pending_forward_info, channel_state.unwrap())
1589         }
1590
1591         /// only fails if the channel does not yet have an assigned short_id
1592         /// May be called with channel_state already locked!
1593         fn get_channel_update(&self, chan: &Channel<Signer>) -> Result<msgs::ChannelUpdate, LightningError> {
1594                 let short_channel_id = match chan.get_short_channel_id() {
1595                         None => return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError}),
1596                         Some(id) => id,
1597                 };
1598
1599                 let were_node_one = PublicKey::from_secret_key(&self.secp_ctx, &self.our_network_key).serialize()[..] < chan.get_counterparty_node_id().serialize()[..];
1600
1601                 let unsigned = msgs::UnsignedChannelUpdate {
1602                         chain_hash: self.genesis_hash,
1603                         short_channel_id,
1604                         timestamp: chan.get_update_time_counter(),
1605                         flags: (!were_node_one) as u8 | ((!chan.is_live() as u8) << 1),
1606                         cltv_expiry_delta: chan.get_cltv_expiry_delta(),
1607                         htlc_minimum_msat: chan.get_counterparty_htlc_minimum_msat(),
1608                         htlc_maximum_msat: OptionalField::Present(chan.get_announced_htlc_max_msat()),
1609                         fee_base_msat: chan.get_holder_fee_base_msat(&self.fee_estimator),
1610                         fee_proportional_millionths: chan.get_fee_proportional_millionths(),
1611                         excess_data: Vec::new(),
1612                 };
1613
1614                 let msg_hash = Sha256dHash::hash(&unsigned.encode()[..]);
1615                 let sig = self.secp_ctx.sign(&hash_to_message!(&msg_hash[..]), &self.our_network_key);
1616
1617                 Ok(msgs::ChannelUpdate {
1618                         signature: sig,
1619                         contents: unsigned
1620                 })
1621         }
1622
1623         // Only public for testing, this should otherwise never be called direcly
1624         pub(crate) fn send_payment_along_path(&self, path: &Vec<RouteHop>, payment_hash: &PaymentHash, payment_secret: &Option<PaymentSecret>, total_value: u64, cur_height: u32) -> Result<(), APIError> {
1625                 log_trace!(self.logger, "Attempting to send payment for path with next hop {}", path.first().unwrap().short_channel_id);
1626                 let prng_seed = self.keys_manager.get_secure_random_bytes();
1627                 let session_priv_bytes = self.keys_manager.get_secure_random_bytes();
1628                 let session_priv = SecretKey::from_slice(&session_priv_bytes[..]).expect("RNG is busted");
1629
1630                 let onion_keys = onion_utils::construct_onion_keys(&self.secp_ctx, &path, &session_priv)
1631                         .map_err(|_| APIError::RouteError{err: "Pubkey along hop was maliciously selected"})?;
1632                 let (onion_payloads, htlc_msat, htlc_cltv) = onion_utils::build_onion_payloads(path, total_value, payment_secret, cur_height)?;
1633                 if onion_utils::route_size_insane(&onion_payloads) {
1634                         return Err(APIError::RouteError{err: "Route size too large considering onion data"});
1635                 }
1636                 let onion_packet = onion_utils::construct_onion_packet(onion_payloads, onion_keys, prng_seed, payment_hash);
1637
1638                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1639                 assert!(self.pending_outbound_payments.lock().unwrap().insert(session_priv_bytes));
1640
1641                 let err: Result<(), _> = loop {
1642                         let mut channel_lock = self.channel_state.lock().unwrap();
1643                         let id = match channel_lock.short_to_id.get(&path.first().unwrap().short_channel_id) {
1644                                 None => return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()}),
1645                                 Some(id) => id.clone(),
1646                         };
1647
1648                         let channel_state = &mut *channel_lock;
1649                         if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(id) {
1650                                 match {
1651                                         if chan.get().get_counterparty_node_id() != path.first().unwrap().pubkey {
1652                                                 return Err(APIError::RouteError{err: "Node ID mismatch on first hop!"});
1653                                         }
1654                                         if !chan.get().is_live() {
1655                                                 return Err(APIError::ChannelUnavailable{err: "Peer for first hop currently disconnected/pending monitor update!".to_owned()});
1656                                         }
1657                                         break_chan_entry!(self, chan.get_mut().send_htlc_and_commit(htlc_msat, payment_hash.clone(), htlc_cltv, HTLCSource::OutboundRoute {
1658                                                 path: path.clone(),
1659                                                 session_priv: session_priv.clone(),
1660                                                 first_hop_htlc_msat: htlc_msat,
1661                                         }, onion_packet, &self.logger), channel_state, chan)
1662                                 } {
1663                                         Some((update_add, commitment_signed, monitor_update)) => {
1664                                                 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
1665                                                         maybe_break_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, true);
1666                                                         // Note that MonitorUpdateFailed here indicates (per function docs)
1667                                                         // that we will resend the commitment update once monitor updating
1668                                                         // is restored. Therefore, we must return an error indicating that
1669                                                         // it is unsafe to retry the payment wholesale, which we do in the
1670                                                         // send_payment check for MonitorUpdateFailed, below.
1671                                                         return Err(APIError::MonitorUpdateFailed);
1672                                                 }
1673
1674                                                 log_debug!(self.logger, "Sending payment along path resulted in a commitment_signed for channel {}", log_bytes!(chan.get().channel_id()));
1675                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
1676                                                         node_id: path.first().unwrap().pubkey,
1677                                                         updates: msgs::CommitmentUpdate {
1678                                                                 update_add_htlcs: vec![update_add],
1679                                                                 update_fulfill_htlcs: Vec::new(),
1680                                                                 update_fail_htlcs: Vec::new(),
1681                                                                 update_fail_malformed_htlcs: Vec::new(),
1682                                                                 update_fee: None,
1683                                                                 commitment_signed,
1684                                                         },
1685                                                 });
1686                                         },
1687                                         None => {},
1688                                 }
1689                         } else { unreachable!(); }
1690                         return Ok(());
1691                 };
1692
1693                 match handle_error!(self, err, path.first().unwrap().pubkey) {
1694                         Ok(_) => unreachable!(),
1695                         Err(e) => {
1696                                 Err(APIError::ChannelUnavailable { err: e.err })
1697                         },
1698                 }
1699         }
1700
1701         /// Sends a payment along a given route.
1702         ///
1703         /// Value parameters are provided via the last hop in route, see documentation for RouteHop
1704         /// fields for more info.
1705         ///
1706         /// Note that if the payment_hash already exists elsewhere (eg you're sending a duplicative
1707         /// payment), we don't do anything to stop you! We always try to ensure that if the provided
1708         /// next hop knows the preimage to payment_hash they can claim an additional amount as
1709         /// specified in the last hop in the route! Thus, you should probably do your own
1710         /// payment_preimage tracking (which you should already be doing as they represent "proof of
1711         /// payment") and prevent double-sends yourself.
1712         ///
1713         /// May generate SendHTLCs message(s) event on success, which should be relayed.
1714         ///
1715         /// Each path may have a different return value, and PaymentSendValue may return a Vec with
1716         /// each entry matching the corresponding-index entry in the route paths, see
1717         /// PaymentSendFailure for more info.
1718         ///
1719         /// In general, a path may raise:
1720         ///  * APIError::RouteError when an invalid route or forwarding parameter (cltv_delta, fee,
1721         ///    node public key) is specified.
1722         ///  * APIError::ChannelUnavailable if the next-hop channel is not available for updates
1723         ///    (including due to previous monitor update failure or new permanent monitor update
1724         ///    failure).
1725         ///  * APIError::MonitorUpdateFailed if a new monitor update failure prevented sending the
1726         ///    relevant updates.
1727         ///
1728         /// Note that depending on the type of the PaymentSendFailure the HTLC may have been
1729         /// irrevocably committed to on our end. In such a case, do NOT retry the payment with a
1730         /// different route unless you intend to pay twice!
1731         ///
1732         /// payment_secret is unrelated to payment_hash (or PaymentPreimage) and exists to authenticate
1733         /// the sender to the recipient and prevent payment-probing (deanonymization) attacks. For
1734         /// newer nodes, it will be provided to you in the invoice. If you do not have one, the Route
1735         /// must not contain multiple paths as multi-path payments require a recipient-provided
1736         /// payment_secret.
1737         /// If a payment_secret *is* provided, we assume that the invoice had the payment_secret feature
1738         /// bit set (either as required or as available). If multiple paths are present in the Route,
1739         /// we assume the invoice had the basic_mpp feature set.
1740         pub fn send_payment(&self, route: &Route, payment_hash: PaymentHash, payment_secret: &Option<PaymentSecret>) -> Result<(), PaymentSendFailure> {
1741                 if route.paths.len() < 1 {
1742                         return Err(PaymentSendFailure::ParameterError(APIError::RouteError{err: "There must be at least one path to send over"}));
1743                 }
1744                 if route.paths.len() > 10 {
1745                         // This limit is completely arbitrary - there aren't any real fundamental path-count
1746                         // limits. After we support retrying individual paths we should likely bump this, but
1747                         // for now more than 10 paths likely carries too much one-path failure.
1748                         return Err(PaymentSendFailure::ParameterError(APIError::RouteError{err: "Sending over more than 10 paths is not currently supported"}));
1749                 }
1750                 let mut total_value = 0;
1751                 let our_node_id = self.get_our_node_id();
1752                 let mut path_errs = Vec::with_capacity(route.paths.len());
1753                 'path_check: for path in route.paths.iter() {
1754                         if path.len() < 1 || path.len() > 20 {
1755                                 path_errs.push(Err(APIError::RouteError{err: "Path didn't go anywhere/had bogus size"}));
1756                                 continue 'path_check;
1757                         }
1758                         for (idx, hop) in path.iter().enumerate() {
1759                                 if idx != path.len() - 1 && hop.pubkey == our_node_id {
1760                                         path_errs.push(Err(APIError::RouteError{err: "Path went through us but wasn't a simple rebalance loop to us"}));
1761                                         continue 'path_check;
1762                                 }
1763                         }
1764                         total_value += path.last().unwrap().fee_msat;
1765                         path_errs.push(Ok(()));
1766                 }
1767                 if path_errs.iter().any(|e| e.is_err()) {
1768                         return Err(PaymentSendFailure::PathParameterError(path_errs));
1769                 }
1770
1771                 let cur_height = self.best_block.read().unwrap().height() + 1;
1772                 let mut results = Vec::new();
1773                 for path in route.paths.iter() {
1774                         results.push(self.send_payment_along_path(&path, &payment_hash, payment_secret, total_value, cur_height));
1775                 }
1776                 let mut has_ok = false;
1777                 let mut has_err = false;
1778                 for res in results.iter() {
1779                         if res.is_ok() { has_ok = true; }
1780                         if res.is_err() { has_err = true; }
1781                         if let &Err(APIError::MonitorUpdateFailed) = res {
1782                                 // MonitorUpdateFailed is inherently unsafe to retry, so we call it a
1783                                 // PartialFailure.
1784                                 has_err = true;
1785                                 has_ok = true;
1786                                 break;
1787                         }
1788                 }
1789                 if has_err && has_ok {
1790                         Err(PaymentSendFailure::PartialFailure(results))
1791                 } else if has_err {
1792                         Err(PaymentSendFailure::AllFailedRetrySafe(results.drain(..).map(|r| r.unwrap_err()).collect()))
1793                 } else {
1794                         Ok(())
1795                 }
1796         }
1797
1798         /// Handles the generation of a funding transaction, optionally (for tests) with a function
1799         /// which checks the correctness of the funding transaction given the associated channel.
1800         fn funding_transaction_generated_intern<FundingOutput: Fn(&Channel<Signer>, &Transaction) -> Result<OutPoint, APIError>>
1801                         (&self, temporary_channel_id: &[u8; 32], funding_transaction: Transaction, find_funding_output: FundingOutput) -> Result<(), APIError> {
1802                 let (chan, msg) = {
1803                         let (res, chan) = match self.channel_state.lock().unwrap().by_id.remove(temporary_channel_id) {
1804                                 Some(mut chan) => {
1805                                         let funding_txo = find_funding_output(&chan, &funding_transaction)?;
1806
1807                                         (chan.get_outbound_funding_created(funding_transaction, funding_txo, &self.logger)
1808                                                 .map_err(|e| if let ChannelError::Close(msg) = e {
1809                                                         MsgHandleErrInternal::from_finish_shutdown(msg, chan.channel_id(), chan.force_shutdown(true), None)
1810                                                 } else { unreachable!(); })
1811                                         , chan)
1812                                 },
1813                                 None => { return Err(APIError::ChannelUnavailable { err: "No such channel".to_owned() }) },
1814                         };
1815                         match handle_error!(self, res, chan.get_counterparty_node_id()) {
1816                                 Ok(funding_msg) => {
1817                                         (chan, funding_msg)
1818                                 },
1819                                 Err(_) => { return Err(APIError::ChannelUnavailable {
1820                                         err: "Error deriving keys or signing initial commitment transactions - either our RNG or our counterparty's RNG is broken or the Signer refused to sign".to_owned()
1821                                 }) },
1822                         }
1823                 };
1824
1825                 let mut channel_state = self.channel_state.lock().unwrap();
1826                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingCreated {
1827                         node_id: chan.get_counterparty_node_id(),
1828                         msg,
1829                 });
1830                 match channel_state.by_id.entry(chan.channel_id()) {
1831                         hash_map::Entry::Occupied(_) => {
1832                                 panic!("Generated duplicate funding txid?");
1833                         },
1834                         hash_map::Entry::Vacant(e) => {
1835                                 e.insert(chan);
1836                         }
1837                 }
1838                 Ok(())
1839         }
1840
1841         #[cfg(test)]
1842         pub(crate) fn funding_transaction_generated_unchecked(&self, temporary_channel_id: &[u8; 32], funding_transaction: Transaction, output_index: u16) -> Result<(), APIError> {
1843                 self.funding_transaction_generated_intern(temporary_channel_id, funding_transaction, |_, tx| {
1844                         Ok(OutPoint { txid: tx.txid(), index: output_index })
1845                 })
1846         }
1847
1848         /// Call this upon creation of a funding transaction for the given channel.
1849         ///
1850         /// Returns an [`APIError::APIMisuseError`] if the funding_transaction spent non-SegWit outputs
1851         /// or if no output was found which matches the parameters in [`Event::FundingGenerationReady`].
1852         ///
1853         /// Panics if a funding transaction has already been provided for this channel.
1854         ///
1855         /// May panic if the output found in the funding transaction is duplicative with some other
1856         /// channel (note that this should be trivially prevented by using unique funding transaction
1857         /// keys per-channel).
1858         ///
1859         /// Do NOT broadcast the funding transaction yourself. When we have safely received our
1860         /// counterparty's signature the funding transaction will automatically be broadcast via the
1861         /// [`BroadcasterInterface`] provided when this `ChannelManager` was constructed.
1862         ///
1863         /// Note that this includes RBF or similar transaction replacement strategies - lightning does
1864         /// not currently support replacing a funding transaction on an existing channel. Instead,
1865         /// create a new channel with a conflicting funding transaction.
1866         ///
1867         /// [`Event::FundingGenerationReady`]: crate::util::events::Event::FundingGenerationReady
1868         pub fn funding_transaction_generated(&self, temporary_channel_id: &[u8; 32], funding_transaction: Transaction) -> Result<(), APIError> {
1869                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1870
1871                 for inp in funding_transaction.input.iter() {
1872                         if inp.witness.is_empty() {
1873                                 return Err(APIError::APIMisuseError {
1874                                         err: "Funding transaction must be fully signed and spend Segwit outputs".to_owned()
1875                                 });
1876                         }
1877                 }
1878                 self.funding_transaction_generated_intern(temporary_channel_id, funding_transaction, |chan, tx| {
1879                         let mut output_index = None;
1880                         let expected_spk = chan.get_funding_redeemscript().to_v0_p2wsh();
1881                         for (idx, outp) in tx.output.iter().enumerate() {
1882                                 if outp.script_pubkey == expected_spk && outp.value == chan.get_value_satoshis() {
1883                                         if output_index.is_some() {
1884                                                 return Err(APIError::APIMisuseError {
1885                                                         err: "Multiple outputs matched the expected script and value".to_owned()
1886                                                 });
1887                                         }
1888                                         if idx > u16::max_value() as usize {
1889                                                 return Err(APIError::APIMisuseError {
1890                                                         err: "Transaction had more than 2^16 outputs, which is not supported".to_owned()
1891                                                 });
1892                                         }
1893                                         output_index = Some(idx as u16);
1894                                 }
1895                         }
1896                         if output_index.is_none() {
1897                                 return Err(APIError::APIMisuseError {
1898                                         err: "No output matched the script_pubkey and value in the FundingGenerationReady event".to_owned()
1899                                 });
1900                         }
1901                         Ok(OutPoint { txid: tx.txid(), index: output_index.unwrap() })
1902                 })
1903         }
1904
1905         fn get_announcement_sigs(&self, chan: &Channel<Signer>) -> Option<msgs::AnnouncementSignatures> {
1906                 if !chan.should_announce() {
1907                         log_trace!(self.logger, "Can't send announcement_signatures for private channel {}", log_bytes!(chan.channel_id()));
1908                         return None
1909                 }
1910
1911                 let (announcement, our_bitcoin_sig) = match chan.get_channel_announcement(self.get_our_node_id(), self.genesis_hash.clone()) {
1912                         Ok(res) => res,
1913                         Err(_) => return None, // Only in case of state precondition violations eg channel is closing
1914                 };
1915                 let msghash = hash_to_message!(&Sha256dHash::hash(&announcement.encode()[..])[..]);
1916                 let our_node_sig = self.secp_ctx.sign(&msghash, &self.our_network_key);
1917
1918                 Some(msgs::AnnouncementSignatures {
1919                         channel_id: chan.channel_id(),
1920                         short_channel_id: chan.get_short_channel_id().unwrap(),
1921                         node_signature: our_node_sig,
1922                         bitcoin_signature: our_bitcoin_sig,
1923                 })
1924         }
1925
1926         #[allow(dead_code)]
1927         // Messages of up to 64KB should never end up more than half full with addresses, as that would
1928         // be absurd. We ensure this by checking that at least 500 (our stated public contract on when
1929         // broadcast_node_announcement panics) of the maximum-length addresses would fit in a 64KB
1930         // message...
1931         const HALF_MESSAGE_IS_ADDRS: u32 = ::core::u16::MAX as u32 / (NetAddress::MAX_LEN as u32 + 1) / 2;
1932         #[deny(const_err)]
1933         #[allow(dead_code)]
1934         // ...by failing to compile if the number of addresses that would be half of a message is
1935         // smaller than 500:
1936         const STATIC_ASSERT: u32 = Self::HALF_MESSAGE_IS_ADDRS - 500;
1937
1938         /// Regenerates channel_announcements and generates a signed node_announcement from the given
1939         /// arguments, providing them in corresponding events via
1940         /// [`get_and_clear_pending_msg_events`], if at least one public channel has been confirmed
1941         /// on-chain. This effectively re-broadcasts all channel announcements and sends our node
1942         /// announcement to ensure that the lightning P2P network is aware of the channels we have and
1943         /// our network addresses.
1944         ///
1945         /// `rgb` is a node "color" and `alias` is a printable human-readable string to describe this
1946         /// node to humans. They carry no in-protocol meaning.
1947         ///
1948         /// `addresses` represent the set (possibly empty) of socket addresses on which this node
1949         /// accepts incoming connections. These will be included in the node_announcement, publicly
1950         /// tying these addresses together and to this node. If you wish to preserve user privacy,
1951         /// addresses should likely contain only Tor Onion addresses.
1952         ///
1953         /// Panics if `addresses` is absurdly large (more than 500).
1954         ///
1955         /// [`get_and_clear_pending_msg_events`]: MessageSendEventsProvider::get_and_clear_pending_msg_events
1956         pub fn broadcast_node_announcement(&self, rgb: [u8; 3], alias: [u8; 32], mut addresses: Vec<NetAddress>) {
1957                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1958
1959                 if addresses.len() > 500 {
1960                         panic!("More than half the message size was taken up by public addresses!");
1961                 }
1962
1963                 // While all existing nodes handle unsorted addresses just fine, the spec requires that
1964                 // addresses be sorted for future compatibility.
1965                 addresses.sort_by_key(|addr| addr.get_id());
1966
1967                 let announcement = msgs::UnsignedNodeAnnouncement {
1968                         features: NodeFeatures::known(),
1969                         timestamp: self.last_node_announcement_serial.fetch_add(1, Ordering::AcqRel) as u32,
1970                         node_id: self.get_our_node_id(),
1971                         rgb, alias, addresses,
1972                         excess_address_data: Vec::new(),
1973                         excess_data: Vec::new(),
1974                 };
1975                 let msghash = hash_to_message!(&Sha256dHash::hash(&announcement.encode()[..])[..]);
1976                 let node_announce_sig = self.secp_ctx.sign(&msghash, &self.our_network_key);
1977
1978                 let mut channel_state_lock = self.channel_state.lock().unwrap();
1979                 let channel_state = &mut *channel_state_lock;
1980
1981                 let mut announced_chans = false;
1982                 for (_, chan) in channel_state.by_id.iter() {
1983                         if let Some(msg) = chan.get_signed_channel_announcement(&self.our_network_key, self.get_our_node_id(), self.genesis_hash.clone()) {
1984                                 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
1985                                         msg,
1986                                         update_msg: match self.get_channel_update(chan) {
1987                                                 Ok(msg) => msg,
1988                                                 Err(_) => continue,
1989                                         },
1990                                 });
1991                                 announced_chans = true;
1992                         } else {
1993                                 // If the channel is not public or has not yet reached funding_locked, check the
1994                                 // next channel. If we don't yet have any public channels, we'll skip the broadcast
1995                                 // below as peers may not accept it without channels on chain first.
1996                         }
1997                 }
1998
1999                 if announced_chans {
2000                         channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastNodeAnnouncement {
2001                                 msg: msgs::NodeAnnouncement {
2002                                         signature: node_announce_sig,
2003                                         contents: announcement
2004                                 },
2005                         });
2006                 }
2007         }
2008
2009         /// Processes HTLCs which are pending waiting on random forward delay.
2010         ///
2011         /// Should only really ever be called in response to a PendingHTLCsForwardable event.
2012         /// Will likely generate further events.
2013         pub fn process_pending_htlc_forwards(&self) {
2014                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2015
2016                 let mut new_events = Vec::new();
2017                 let mut failed_forwards = Vec::new();
2018                 let mut handle_errors = Vec::new();
2019                 {
2020                         let mut channel_state_lock = self.channel_state.lock().unwrap();
2021                         let channel_state = &mut *channel_state_lock;
2022
2023                         for (short_chan_id, mut pending_forwards) in channel_state.forward_htlcs.drain() {
2024                                 if short_chan_id != 0 {
2025                                         let forward_chan_id = match channel_state.short_to_id.get(&short_chan_id) {
2026                                                 Some(chan_id) => chan_id.clone(),
2027                                                 None => {
2028                                                         failed_forwards.reserve(pending_forwards.len());
2029                                                         for forward_info in pending_forwards.drain(..) {
2030                                                                 match forward_info {
2031                                                                         HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info,
2032                                                                                                    prev_funding_outpoint } => {
2033                                                                                 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
2034                                                                                         short_channel_id: prev_short_channel_id,
2035                                                                                         outpoint: prev_funding_outpoint,
2036                                                                                         htlc_id: prev_htlc_id,
2037                                                                                         incoming_packet_shared_secret: forward_info.incoming_shared_secret,
2038                                                                                 });
2039                                                                                 failed_forwards.push((htlc_source, forward_info.payment_hash,
2040                                                                                         HTLCFailReason::Reason { failure_code: 0x4000 | 10, data: Vec::new() }
2041                                                                                 ));
2042                                                                         },
2043                                                                         HTLCForwardInfo::FailHTLC { .. } => {
2044                                                                                 // Channel went away before we could fail it. This implies
2045                                                                                 // the channel is now on chain and our counterparty is
2046                                                                                 // trying to broadcast the HTLC-Timeout, but that's their
2047                                                                                 // problem, not ours.
2048                                                                         }
2049                                                                 }
2050                                                         }
2051                                                         continue;
2052                                                 }
2053                                         };
2054                                         if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(forward_chan_id) {
2055                                                 let mut add_htlc_msgs = Vec::new();
2056                                                 let mut fail_htlc_msgs = Vec::new();
2057                                                 for forward_info in pending_forwards.drain(..) {
2058                                                         match forward_info {
2059                                                                 HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info: PendingHTLCInfo {
2060                                                                                 routing: PendingHTLCRouting::Forward {
2061                                                                                         onion_packet, ..
2062                                                                                 }, incoming_shared_secret, payment_hash, amt_to_forward, outgoing_cltv_value },
2063                                                                                 prev_funding_outpoint } => {
2064                                                                         log_trace!(self.logger, "Adding HTLC from short id {} with payment_hash {} to channel with short id {} after delay", prev_short_channel_id, log_bytes!(payment_hash.0), short_chan_id);
2065                                                                         let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
2066                                                                                 short_channel_id: prev_short_channel_id,
2067                                                                                 outpoint: prev_funding_outpoint,
2068                                                                                 htlc_id: prev_htlc_id,
2069                                                                                 incoming_packet_shared_secret: incoming_shared_secret,
2070                                                                         });
2071                                                                         match chan.get_mut().send_htlc(amt_to_forward, payment_hash, outgoing_cltv_value, htlc_source.clone(), onion_packet) {
2072                                                                                 Err(e) => {
2073                                                                                         if let ChannelError::Ignore(msg) = e {
2074                                                                                                 log_trace!(self.logger, "Failed to forward HTLC with payment_hash {}: {}", log_bytes!(payment_hash.0), msg);
2075                                                                                         } else {
2076                                                                                                 panic!("Stated return value requirements in send_htlc() were not met");
2077                                                                                         }
2078                                                                                         let chan_update = self.get_channel_update(chan.get()).unwrap();
2079                                                                                         failed_forwards.push((htlc_source, payment_hash,
2080                                                                                                 HTLCFailReason::Reason { failure_code: 0x1000 | 7, data: chan_update.encode_with_len() }
2081                                                                                         ));
2082                                                                                         continue;
2083                                                                                 },
2084                                                                                 Ok(update_add) => {
2085                                                                                         match update_add {
2086                                                                                                 Some(msg) => { add_htlc_msgs.push(msg); },
2087                                                                                                 None => {
2088                                                                                                         // Nothing to do here...we're waiting on a remote
2089                                                                                                         // revoke_and_ack before we can add anymore HTLCs. The Channel
2090                                                                                                         // will automatically handle building the update_add_htlc and
2091                                                                                                         // commitment_signed messages when we can.
2092                                                                                                         // TODO: Do some kind of timer to set the channel as !is_live()
2093                                                                                                         // as we don't really want others relying on us relaying through
2094                                                                                                         // this channel currently :/.
2095                                                                                                 }
2096                                                                                         }
2097                                                                                 }
2098                                                                         }
2099                                                                 },
2100                                                                 HTLCForwardInfo::AddHTLC { .. } => {
2101                                                                         panic!("short_channel_id != 0 should imply any pending_forward entries are of type Forward");
2102                                                                 },
2103                                                                 HTLCForwardInfo::FailHTLC { htlc_id, err_packet } => {
2104                                                                         log_trace!(self.logger, "Failing HTLC back to channel with short id {} (backward HTLC ID {}) after delay", short_chan_id, htlc_id);
2105                                                                         match chan.get_mut().get_update_fail_htlc(htlc_id, err_packet, &self.logger) {
2106                                                                                 Err(e) => {
2107                                                                                         if let ChannelError::Ignore(msg) = e {
2108                                                                                                 log_trace!(self.logger, "Failed to fail HTLC with ID {} backwards to short_id {}: {}", htlc_id, short_chan_id, msg);
2109                                                                                         } else {
2110                                                                                                 panic!("Stated return value requirements in get_update_fail_htlc() were not met");
2111                                                                                         }
2112                                                                                         // fail-backs are best-effort, we probably already have one
2113                                                                                         // pending, and if not that's OK, if not, the channel is on
2114                                                                                         // the chain and sending the HTLC-Timeout is their problem.
2115                                                                                         continue;
2116                                                                                 },
2117                                                                                 Ok(Some(msg)) => { fail_htlc_msgs.push(msg); },
2118                                                                                 Ok(None) => {
2119                                                                                         // Nothing to do here...we're waiting on a remote
2120                                                                                         // revoke_and_ack before we can update the commitment
2121                                                                                         // transaction. The Channel will automatically handle
2122                                                                                         // building the update_fail_htlc and commitment_signed
2123                                                                                         // messages when we can.
2124                                                                                         // We don't need any kind of timer here as they should fail
2125                                                                                         // the channel onto the chain if they can't get our
2126                                                                                         // update_fail_htlc in time, it's not our problem.
2127                                                                                 }
2128                                                                         }
2129                                                                 },
2130                                                         }
2131                                                 }
2132
2133                                                 if !add_htlc_msgs.is_empty() || !fail_htlc_msgs.is_empty() {
2134                                                         let (commitment_msg, monitor_update) = match chan.get_mut().send_commitment(&self.logger) {
2135                                                                 Ok(res) => res,
2136                                                                 Err(e) => {
2137                                                                         // We surely failed send_commitment due to bad keys, in that case
2138                                                                         // close channel and then send error message to peer.
2139                                                                         let counterparty_node_id = chan.get().get_counterparty_node_id();
2140                                                                         let err: Result<(), _>  = match e {
2141                                                                                 ChannelError::Ignore(_) => {
2142                                                                                         panic!("Stated return value requirements in send_commitment() were not met");
2143                                                                                 },
2144                                                                                 ChannelError::Close(msg) => {
2145                                                                                         log_trace!(self.logger, "Closing channel {} due to Close-required error: {}", log_bytes!(chan.key()[..]), msg);
2146                                                                                         let (channel_id, mut channel) = chan.remove_entry();
2147                                                                                         if let Some(short_id) = channel.get_short_channel_id() {
2148                                                                                                 channel_state.short_to_id.remove(&short_id);
2149                                                                                         }
2150                                                                                         Err(MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, channel.force_shutdown(true), self.get_channel_update(&channel).ok()))
2151                                                                                 },
2152                                                                                 ChannelError::CloseDelayBroadcast(_) => { panic!("Wait is only generated on receipt of channel_reestablish, which is handled by try_chan_entry, we don't bother to support it here"); }
2153                                                                         };
2154                                                                         handle_errors.push((counterparty_node_id, err));
2155                                                                         continue;
2156                                                                 }
2157                                                         };
2158                                                         if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
2159                                                                 handle_errors.push((chan.get().get_counterparty_node_id(), handle_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, true)));
2160                                                                 continue;
2161                                                         }
2162                                                         log_debug!(self.logger, "Forwarding HTLCs resulted in a commitment update with {} HTLCs added and {} HTLCs failed for channel {}",
2163                                                                 add_htlc_msgs.len(), fail_htlc_msgs.len(), log_bytes!(chan.get().channel_id()));
2164                                                         channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
2165                                                                 node_id: chan.get().get_counterparty_node_id(),
2166                                                                 updates: msgs::CommitmentUpdate {
2167                                                                         update_add_htlcs: add_htlc_msgs,
2168                                                                         update_fulfill_htlcs: Vec::new(),
2169                                                                         update_fail_htlcs: fail_htlc_msgs,
2170                                                                         update_fail_malformed_htlcs: Vec::new(),
2171                                                                         update_fee: None,
2172                                                                         commitment_signed: commitment_msg,
2173                                                                 },
2174                                                         });
2175                                                 }
2176                                         } else {
2177                                                 unreachable!();
2178                                         }
2179                                 } else {
2180                                         for forward_info in pending_forwards.drain(..) {
2181                                                 match forward_info {
2182                                                         HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info: PendingHTLCInfo {
2183                                                                         routing: PendingHTLCRouting::Receive { payment_data, incoming_cltv_expiry },
2184                                                                         incoming_shared_secret, payment_hash, amt_to_forward, .. },
2185                                                                         prev_funding_outpoint } => {
2186                                                                 let claimable_htlc = ClaimableHTLC {
2187                                                                         prev_hop: HTLCPreviousHopData {
2188                                                                                 short_channel_id: prev_short_channel_id,
2189                                                                                 outpoint: prev_funding_outpoint,
2190                                                                                 htlc_id: prev_htlc_id,
2191                                                                                 incoming_packet_shared_secret: incoming_shared_secret,
2192                                                                         },
2193                                                                         value: amt_to_forward,
2194                                                                         payment_data: payment_data.clone(),
2195                                                                         cltv_expiry: incoming_cltv_expiry,
2196                                                                 };
2197
2198                                                                 macro_rules! fail_htlc {
2199                                                                         ($htlc: expr) => {
2200                                                                                 let mut htlc_msat_height_data = byte_utils::be64_to_array($htlc.value).to_vec();
2201                                                                                 htlc_msat_height_data.extend_from_slice(
2202                                                                                         &byte_utils::be32_to_array(self.best_block.read().unwrap().height()),
2203                                                                                 );
2204                                                                                 failed_forwards.push((HTLCSource::PreviousHopData(HTLCPreviousHopData {
2205                                                                                                 short_channel_id: $htlc.prev_hop.short_channel_id,
2206                                                                                                 outpoint: prev_funding_outpoint,
2207                                                                                                 htlc_id: $htlc.prev_hop.htlc_id,
2208                                                                                                 incoming_packet_shared_secret: $htlc.prev_hop.incoming_packet_shared_secret,
2209                                                                                         }), payment_hash,
2210                                                                                         HTLCFailReason::Reason { failure_code: 0x4000 | 15, data: htlc_msat_height_data }
2211                                                                                 ));
2212                                                                         }
2213                                                                 }
2214
2215                                                                 // Check that the payment hash and secret are known. Note that we
2216                                                                 // MUST take care to handle the "unknown payment hash" and
2217                                                                 // "incorrect payment secret" cases here identically or we'd expose
2218                                                                 // that we are the ultimate recipient of the given payment hash.
2219                                                                 // Further, we must not expose whether we have any other HTLCs
2220                                                                 // associated with the same payment_hash pending or not.
2221                                                                 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
2222                                                                 match payment_secrets.entry(payment_hash) {
2223                                                                         hash_map::Entry::Vacant(_) => {
2224                                                                                 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as we didn't have a corresponding inbound payment.", log_bytes!(payment_hash.0));
2225                                                                                 fail_htlc!(claimable_htlc);
2226                                                                         },
2227                                                                         hash_map::Entry::Occupied(inbound_payment) => {
2228                                                                                 if inbound_payment.get().payment_secret != payment_data.payment_secret {
2229                                                                                         log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our expected payment secret.", log_bytes!(payment_hash.0));
2230                                                                                         fail_htlc!(claimable_htlc);
2231                                                                                 } else if inbound_payment.get().min_value_msat.is_some() && payment_data.total_msat < inbound_payment.get().min_value_msat.unwrap() {
2232                                                                                         log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our minimum value (had {}, needed {}).",
2233                                                                                                 log_bytes!(payment_hash.0), payment_data.total_msat, inbound_payment.get().min_value_msat.unwrap());
2234                                                                                         fail_htlc!(claimable_htlc);
2235                                                                                 } else {
2236                                                                                         let mut total_value = 0;
2237                                                                                         let htlcs = channel_state.claimable_htlcs.entry(payment_hash)
2238                                                                                                 .or_insert(Vec::new());
2239                                                                                         htlcs.push(claimable_htlc);
2240                                                                                         for htlc in htlcs.iter() {
2241                                                                                                 total_value += htlc.value;
2242                                                                                                 if htlc.payment_data.total_msat != payment_data.total_msat {
2243                                                                                                         log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the HTLCs had inconsistent total values (eg {} and {})",
2244                                                                                                                 log_bytes!(payment_hash.0), payment_data.total_msat, htlc.payment_data.total_msat);
2245                                                                                                         total_value = msgs::MAX_VALUE_MSAT;
2246                                                                                                 }
2247                                                                                                 if total_value >= msgs::MAX_VALUE_MSAT { break; }
2248                                                                                         }
2249                                                                                         if total_value >= msgs::MAX_VALUE_MSAT || total_value > payment_data.total_msat {
2250                                                                                                 log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the total value {} ran over expected value {} (or HTLCs were inconsistent)",
2251                                                                                                         log_bytes!(payment_hash.0), total_value, payment_data.total_msat);
2252                                                                                                 for htlc in htlcs.iter() {
2253                                                                                                         fail_htlc!(htlc);
2254                                                                                                 }
2255                                                                                         } else if total_value == payment_data.total_msat {
2256                                                                                                 new_events.push(events::Event::PaymentReceived {
2257                                                                                                         payment_hash,
2258                                                                                                         payment_preimage: inbound_payment.get().payment_preimage,
2259                                                                                                         payment_secret: payment_data.payment_secret,
2260                                                                                                         amt: total_value,
2261                                                                                                         user_payment_id: inbound_payment.get().user_payment_id,
2262                                                                                                 });
2263                                                                                                 // Only ever generate at most one PaymentReceived
2264                                                                                                 // per registered payment_hash, even if it isn't
2265                                                                                                 // claimed.
2266                                                                                                 inbound_payment.remove_entry();
2267                                                                                         } else {
2268                                                                                                 // Nothing to do - we haven't reached the total
2269                                                                                                 // payment value yet, wait until we receive more
2270                                                                                                 // MPP parts.
2271                                                                                         }
2272                                                                                 }
2273                                                                         },
2274                                                                 };
2275                                                         },
2276                                                         HTLCForwardInfo::AddHTLC { .. } => {
2277                                                                 panic!("short_channel_id == 0 should imply any pending_forward entries are of type Receive");
2278                                                         },
2279                                                         HTLCForwardInfo::FailHTLC { .. } => {
2280                                                                 panic!("Got pending fail of our own HTLC");
2281                                                         }
2282                                                 }
2283                                         }
2284                                 }
2285                         }
2286                 }
2287
2288                 for (htlc_source, payment_hash, failure_reason) in failed_forwards.drain(..) {
2289                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source, &payment_hash, failure_reason);
2290                 }
2291
2292                 for (counterparty_node_id, err) in handle_errors.drain(..) {
2293                         let _ = handle_error!(self, err, counterparty_node_id);
2294                 }
2295
2296                 if new_events.is_empty() { return }
2297                 let mut events = self.pending_events.lock().unwrap();
2298                 events.append(&mut new_events);
2299         }
2300
2301         /// Free the background events, generally called from timer_tick_occurred.
2302         ///
2303         /// Exposed for testing to allow us to process events quickly without generating accidental
2304         /// BroadcastChannelUpdate events in timer_tick_occurred.
2305         ///
2306         /// Expects the caller to have a total_consistency_lock read lock.
2307         fn process_background_events(&self) -> bool {
2308                 let mut background_events = Vec::new();
2309                 mem::swap(&mut *self.pending_background_events.lock().unwrap(), &mut background_events);
2310                 if background_events.is_empty() {
2311                         return false;
2312                 }
2313
2314                 for event in background_events.drain(..) {
2315                         match event {
2316                                 BackgroundEvent::ClosingMonitorUpdate((funding_txo, update)) => {
2317                                         // The channel has already been closed, so no use bothering to care about the
2318                                         // monitor updating completing.
2319                                         let _ = self.chain_monitor.update_channel(funding_txo, update);
2320                                 },
2321                         }
2322                 }
2323                 true
2324         }
2325
2326         #[cfg(any(test, feature = "_test_utils"))]
2327         /// Process background events, for functional testing
2328         pub fn test_process_background_events(&self) {
2329                 self.process_background_events();
2330         }
2331
2332         /// If a peer is disconnected we mark any channels with that peer as 'disabled'.
2333         /// After some time, if channels are still disabled we need to broadcast a ChannelUpdate
2334         /// to inform the network about the uselessness of these channels.
2335         ///
2336         /// This method handles all the details, and must be called roughly once per minute.
2337         ///
2338         /// Note that in some rare cases this may generate a `chain::Watch::update_channel` call.
2339         pub fn timer_tick_occurred(&self) {
2340                 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
2341                         let mut should_persist = NotifyOption::SkipPersist;
2342                         if self.process_background_events() { should_persist = NotifyOption::DoPersist; }
2343
2344                         let mut channel_state_lock = self.channel_state.lock().unwrap();
2345                         let channel_state = &mut *channel_state_lock;
2346                         for (_, chan) in channel_state.by_id.iter_mut() {
2347                                 match chan.channel_update_status() {
2348                                         ChannelUpdateStatus::Enabled if !chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::DisabledStaged),
2349                                         ChannelUpdateStatus::Disabled if chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::EnabledStaged),
2350                                         ChannelUpdateStatus::DisabledStaged if chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::Enabled),
2351                                         ChannelUpdateStatus::EnabledStaged if !chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::Disabled),
2352                                         ChannelUpdateStatus::DisabledStaged if !chan.is_live() => {
2353                                                 if let Ok(update) = self.get_channel_update(&chan) {
2354                                                         channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2355                                                                 msg: update
2356                                                         });
2357                                                 }
2358                                                 should_persist = NotifyOption::DoPersist;
2359                                                 chan.set_channel_update_status(ChannelUpdateStatus::Disabled);
2360                                         },
2361                                         ChannelUpdateStatus::EnabledStaged if chan.is_live() => {
2362                                                 if let Ok(update) = self.get_channel_update(&chan) {
2363                                                         channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2364                                                                 msg: update
2365                                                         });
2366                                                 }
2367                                                 should_persist = NotifyOption::DoPersist;
2368                                                 chan.set_channel_update_status(ChannelUpdateStatus::Enabled);
2369                                         },
2370                                         _ => {},
2371                                 }
2372                         }
2373
2374                         should_persist
2375                 });
2376         }
2377
2378         /// Indicates that the preimage for payment_hash is unknown or the received amount is incorrect
2379         /// after a PaymentReceived event, failing the HTLC back to its origin and freeing resources
2380         /// along the path (including in our own channel on which we received it).
2381         /// Returns false if no payment was found to fail backwards, true if the process of failing the
2382         /// HTLC backwards has been started.
2383         pub fn fail_htlc_backwards(&self, payment_hash: &PaymentHash) -> bool {
2384                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2385
2386                 let mut channel_state = Some(self.channel_state.lock().unwrap());
2387                 let removed_source = channel_state.as_mut().unwrap().claimable_htlcs.remove(payment_hash);
2388                 if let Some(mut sources) = removed_source {
2389                         for htlc in sources.drain(..) {
2390                                 if channel_state.is_none() { channel_state = Some(self.channel_state.lock().unwrap()); }
2391                                 let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec();
2392                                 htlc_msat_height_data.extend_from_slice(&byte_utils::be32_to_array(
2393                                                 self.best_block.read().unwrap().height()));
2394                                 self.fail_htlc_backwards_internal(channel_state.take().unwrap(),
2395                                                 HTLCSource::PreviousHopData(htlc.prev_hop), payment_hash,
2396                                                 HTLCFailReason::Reason { failure_code: 0x4000 | 15, data: htlc_msat_height_data });
2397                         }
2398                         true
2399                 } else { false }
2400         }
2401
2402         // Fail a list of HTLCs that were just freed from the holding cell. The HTLCs need to be
2403         // failed backwards or, if they were one of our outgoing HTLCs, then their failure needs to
2404         // be surfaced to the user.
2405         fn fail_holding_cell_htlcs(&self, mut htlcs_to_fail: Vec<(HTLCSource, PaymentHash)>, channel_id: [u8; 32]) {
2406                 for (htlc_src, payment_hash) in htlcs_to_fail.drain(..) {
2407                         match htlc_src {
2408                                 HTLCSource::PreviousHopData(HTLCPreviousHopData { .. }) => {
2409                                         let (failure_code, onion_failure_data) =
2410                                                 match self.channel_state.lock().unwrap().by_id.entry(channel_id) {
2411                                                         hash_map::Entry::Occupied(chan_entry) => {
2412                                                                 if let Ok(upd) = self.get_channel_update(&chan_entry.get()) {
2413                                                                         (0x1000|7, upd.encode_with_len())
2414                                                                 } else {
2415                                                                         (0x4000|10, Vec::new())
2416                                                                 }
2417                                                         },
2418                                                         hash_map::Entry::Vacant(_) => (0x4000|10, Vec::new())
2419                                                 };
2420                                         let channel_state = self.channel_state.lock().unwrap();
2421                                         self.fail_htlc_backwards_internal(channel_state,
2422                                                 htlc_src, &payment_hash, HTLCFailReason::Reason { failure_code, data: onion_failure_data});
2423                                 },
2424                                 HTLCSource::OutboundRoute { session_priv, .. } => {
2425                                         if {
2426                                                 let mut session_priv_bytes = [0; 32];
2427                                                 session_priv_bytes.copy_from_slice(&session_priv[..]);
2428                                                 self.pending_outbound_payments.lock().unwrap().remove(&session_priv_bytes)
2429                                         } {
2430                                                 self.pending_events.lock().unwrap().push(
2431                                                         events::Event::PaymentFailed {
2432                                                                 payment_hash,
2433                                                                 rejected_by_dest: false,
2434 #[cfg(test)]
2435                                                                 error_code: None,
2436 #[cfg(test)]
2437                                                                 error_data: None,
2438                                                         }
2439                                                 )
2440                                         } else {
2441                                                 log_trace!(self.logger, "Received duplicative fail for HTLC with payment_hash {}", log_bytes!(payment_hash.0));
2442                                         }
2443                                 },
2444                         };
2445                 }
2446         }
2447
2448         /// Fails an HTLC backwards to the sender of it to us.
2449         /// Note that while we take a channel_state lock as input, we do *not* assume consistency here.
2450         /// There are several callsites that do stupid things like loop over a list of payment_hashes
2451         /// to fail and take the channel_state lock for each iteration (as we take ownership and may
2452         /// drop it). In other words, no assumptions are made that entries in claimable_htlcs point to
2453         /// still-available channels.
2454         fn fail_htlc_backwards_internal(&self, mut channel_state_lock: MutexGuard<ChannelHolder<Signer>>, source: HTLCSource, payment_hash: &PaymentHash, onion_error: HTLCFailReason) {
2455                 //TODO: There is a timing attack here where if a node fails an HTLC back to us they can
2456                 //identify whether we sent it or not based on the (I presume) very different runtime
2457                 //between the branches here. We should make this async and move it into the forward HTLCs
2458                 //timer handling.
2459
2460                 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
2461                 // from block_connected which may run during initialization prior to the chain_monitor
2462                 // being fully configured. See the docs for `ChannelManagerReadArgs` for more.
2463                 match source {
2464                         HTLCSource::OutboundRoute { ref path, session_priv, .. } => {
2465                                 if {
2466                                         let mut session_priv_bytes = [0; 32];
2467                                         session_priv_bytes.copy_from_slice(&session_priv[..]);
2468                                         !self.pending_outbound_payments.lock().unwrap().remove(&session_priv_bytes)
2469                                 } {
2470                                         log_trace!(self.logger, "Received duplicative fail for HTLC with payment_hash {}", log_bytes!(payment_hash.0));
2471                                         return;
2472                                 }
2473                                 log_trace!(self.logger, "Failing outbound payment HTLC with payment_hash {}", log_bytes!(payment_hash.0));
2474                                 mem::drop(channel_state_lock);
2475                                 match &onion_error {
2476                                         &HTLCFailReason::LightningError { ref err } => {
2477 #[cfg(test)]
2478                                                 let (channel_update, payment_retryable, onion_error_code, onion_error_data) = onion_utils::process_onion_failure(&self.secp_ctx, &self.logger, &source, err.data.clone());
2479 #[cfg(not(test))]
2480                                                 let (channel_update, payment_retryable, _, _) = onion_utils::process_onion_failure(&self.secp_ctx, &self.logger, &source, err.data.clone());
2481                                                 // TODO: If we decided to blame ourselves (or one of our channels) in
2482                                                 // process_onion_failure we should close that channel as it implies our
2483                                                 // next-hop is needlessly blaming us!
2484                                                 if let Some(update) = channel_update {
2485                                                         self.channel_state.lock().unwrap().pending_msg_events.push(
2486                                                                 events::MessageSendEvent::PaymentFailureNetworkUpdate {
2487                                                                         update,
2488                                                                 }
2489                                                         );
2490                                                 }
2491                                                 self.pending_events.lock().unwrap().push(
2492                                                         events::Event::PaymentFailed {
2493                                                                 payment_hash: payment_hash.clone(),
2494                                                                 rejected_by_dest: !payment_retryable,
2495 #[cfg(test)]
2496                                                                 error_code: onion_error_code,
2497 #[cfg(test)]
2498                                                                 error_data: onion_error_data
2499                                                         }
2500                                                 );
2501                                         },
2502                                         &HTLCFailReason::Reason {
2503 #[cfg(test)]
2504                                                         ref failure_code,
2505 #[cfg(test)]
2506                                                         ref data,
2507                                                         .. } => {
2508                                                 // we get a fail_malformed_htlc from the first hop
2509                                                 // TODO: We'd like to generate a PaymentFailureNetworkUpdate for temporary
2510                                                 // failures here, but that would be insufficient as get_route
2511                                                 // generally ignores its view of our own channels as we provide them via
2512                                                 // ChannelDetails.
2513                                                 // TODO: For non-temporary failures, we really should be closing the
2514                                                 // channel here as we apparently can't relay through them anyway.
2515                                                 self.pending_events.lock().unwrap().push(
2516                                                         events::Event::PaymentFailed {
2517                                                                 payment_hash: payment_hash.clone(),
2518                                                                 rejected_by_dest: path.len() == 1,
2519 #[cfg(test)]
2520                                                                 error_code: Some(*failure_code),
2521 #[cfg(test)]
2522                                                                 error_data: Some(data.clone()),
2523                                                         }
2524                                                 );
2525                                         }
2526                                 }
2527                         },
2528                         HTLCSource::PreviousHopData(HTLCPreviousHopData { short_channel_id, htlc_id, incoming_packet_shared_secret, .. }) => {
2529                                 let err_packet = match onion_error {
2530                                         HTLCFailReason::Reason { failure_code, data } => {
2531                                                 log_trace!(self.logger, "Failing HTLC with payment_hash {} backwards from us with code {}", log_bytes!(payment_hash.0), failure_code);
2532                                                 let packet = onion_utils::build_failure_packet(&incoming_packet_shared_secret, failure_code, &data[..]).encode();
2533                                                 onion_utils::encrypt_failure_packet(&incoming_packet_shared_secret, &packet)
2534                                         },
2535                                         HTLCFailReason::LightningError { err } => {
2536                                                 log_trace!(self.logger, "Failing HTLC with payment_hash {} backwards with pre-built LightningError", log_bytes!(payment_hash.0));
2537                                                 onion_utils::encrypt_failure_packet(&incoming_packet_shared_secret, &err.data)
2538                                         }
2539                                 };
2540
2541                                 let mut forward_event = None;
2542                                 if channel_state_lock.forward_htlcs.is_empty() {
2543                                         forward_event = Some(Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS));
2544                                 }
2545                                 match channel_state_lock.forward_htlcs.entry(short_channel_id) {
2546                                         hash_map::Entry::Occupied(mut entry) => {
2547                                                 entry.get_mut().push(HTLCForwardInfo::FailHTLC { htlc_id, err_packet });
2548                                         },
2549                                         hash_map::Entry::Vacant(entry) => {
2550                                                 entry.insert(vec!(HTLCForwardInfo::FailHTLC { htlc_id, err_packet }));
2551                                         }
2552                                 }
2553                                 mem::drop(channel_state_lock);
2554                                 if let Some(time) = forward_event {
2555                                         let mut pending_events = self.pending_events.lock().unwrap();
2556                                         pending_events.push(events::Event::PendingHTLCsForwardable {
2557                                                 time_forwardable: time
2558                                         });
2559                                 }
2560                         },
2561                 }
2562         }
2563
2564         /// Provides a payment preimage in response to a PaymentReceived event, returning true and
2565         /// generating message events for the net layer to claim the payment, if possible. Thus, you
2566         /// should probably kick the net layer to go send messages if this returns true!
2567         ///
2568         /// Note that if you did not set an `amount_msat` when calling [`create_inbound_payment`] or
2569         /// [`create_inbound_payment_for_hash`] you must check that the amount in the `PaymentReceived`
2570         /// event matches your expectation. If you fail to do so and call this method, you may provide
2571         /// the sender "proof-of-payment" when they did not fulfill the full expected payment.
2572         ///
2573         /// May panic if called except in response to a PaymentReceived event.
2574         ///
2575         /// [`create_inbound_payment`]: Self::create_inbound_payment
2576         /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
2577         pub fn claim_funds(&self, payment_preimage: PaymentPreimage) -> bool {
2578                 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
2579
2580                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2581
2582                 let mut channel_state = Some(self.channel_state.lock().unwrap());
2583                 let removed_source = channel_state.as_mut().unwrap().claimable_htlcs.remove(&payment_hash);
2584                 if let Some(mut sources) = removed_source {
2585                         assert!(!sources.is_empty());
2586
2587                         // If we are claiming an MPP payment, we have to take special care to ensure that each
2588                         // channel exists before claiming all of the payments (inside one lock).
2589                         // Note that channel existance is sufficient as we should always get a monitor update
2590                         // which will take care of the real HTLC claim enforcement.
2591                         //
2592                         // If we find an HTLC which we would need to claim but for which we do not have a
2593                         // channel, we will fail all parts of the MPP payment. While we could wait and see if
2594                         // the sender retries the already-failed path(s), it should be a pretty rare case where
2595                         // we got all the HTLCs and then a channel closed while we were waiting for the user to
2596                         // provide the preimage, so worrying too much about the optimal handling isn't worth
2597                         // it.
2598                         let mut valid_mpp = true;
2599                         for htlc in sources.iter() {
2600                                 if let None = channel_state.as_ref().unwrap().short_to_id.get(&htlc.prev_hop.short_channel_id) {
2601                                         valid_mpp = false;
2602                                         break;
2603                                 }
2604                         }
2605
2606                         let mut errs = Vec::new();
2607                         let mut claimed_any_htlcs = false;
2608                         for htlc in sources.drain(..) {
2609                                 if !valid_mpp {
2610                                         if channel_state.is_none() { channel_state = Some(self.channel_state.lock().unwrap()); }
2611                                         let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec();
2612                                         htlc_msat_height_data.extend_from_slice(&byte_utils::be32_to_array(
2613                                                         self.best_block.read().unwrap().height()));
2614                                         self.fail_htlc_backwards_internal(channel_state.take().unwrap(),
2615                                                                          HTLCSource::PreviousHopData(htlc.prev_hop), &payment_hash,
2616                                                                          HTLCFailReason::Reason { failure_code: 0x4000|15, data: htlc_msat_height_data });
2617                                 } else {
2618                                         match self.claim_funds_from_hop(channel_state.as_mut().unwrap(), htlc.prev_hop, payment_preimage) {
2619                                                 Err(Some(e)) => {
2620                                                         if let msgs::ErrorAction::IgnoreError = e.1.err.action {
2621                                                                 // We got a temporary failure updating monitor, but will claim the
2622                                                                 // HTLC when the monitor updating is restored (or on chain).
2623                                                                 log_error!(self.logger, "Temporary failure claiming HTLC, treating as success: {}", e.1.err.err);
2624                                                                 claimed_any_htlcs = true;
2625                                                         } else { errs.push(e); }
2626                                                 },
2627                                                 Err(None) => unreachable!("We already checked for channel existence, we can't fail here!"),
2628                                                 Ok(()) => claimed_any_htlcs = true,
2629                                         }
2630                                 }
2631                         }
2632
2633                         // Now that we've done the entire above loop in one lock, we can handle any errors
2634                         // which were generated.
2635                         channel_state.take();
2636
2637                         for (counterparty_node_id, err) in errs.drain(..) {
2638                                 let res: Result<(), _> = Err(err);
2639                                 let _ = handle_error!(self, res, counterparty_node_id);
2640                         }
2641
2642                         claimed_any_htlcs
2643                 } else { false }
2644         }
2645
2646         fn claim_funds_from_hop(&self, channel_state_lock: &mut MutexGuard<ChannelHolder<Signer>>, prev_hop: HTLCPreviousHopData, payment_preimage: PaymentPreimage) -> Result<(), Option<(PublicKey, MsgHandleErrInternal)>> {
2647                 //TODO: Delay the claimed_funds relaying just like we do outbound relay!
2648                 let channel_state = &mut **channel_state_lock;
2649                 let chan_id = match channel_state.short_to_id.get(&prev_hop.short_channel_id) {
2650                         Some(chan_id) => chan_id.clone(),
2651                         None => {
2652                                 return Err(None)
2653                         }
2654                 };
2655
2656                 if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(chan_id) {
2657                         let was_frozen_for_monitor = chan.get().is_awaiting_monitor_update();
2658                         match chan.get_mut().get_update_fulfill_htlc_and_commit(prev_hop.htlc_id, payment_preimage, &self.logger) {
2659                                 Ok((msgs, monitor_option)) => {
2660                                         if let Some(monitor_update) = monitor_option {
2661                                                 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
2662                                                         if was_frozen_for_monitor {
2663                                                                 assert!(msgs.is_none());
2664                                                         } else {
2665                                                                 return Err(Some((chan.get().get_counterparty_node_id(), handle_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, msgs.is_some()).unwrap_err())));
2666                                                         }
2667                                                 }
2668                                         }
2669                                         if let Some((msg, commitment_signed)) = msgs {
2670                                                 log_debug!(self.logger, "Claiming funds for HTLC with preimage {} resulted in a commitment_signed for channel {}",
2671                                                         log_bytes!(payment_preimage.0), log_bytes!(chan.get().channel_id()));
2672                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
2673                                                         node_id: chan.get().get_counterparty_node_id(),
2674                                                         updates: msgs::CommitmentUpdate {
2675                                                                 update_add_htlcs: Vec::new(),
2676                                                                 update_fulfill_htlcs: vec![msg],
2677                                                                 update_fail_htlcs: Vec::new(),
2678                                                                 update_fail_malformed_htlcs: Vec::new(),
2679                                                                 update_fee: None,
2680                                                                 commitment_signed,
2681                                                         }
2682                                                 });
2683                                         }
2684                                         return Ok(())
2685                                 },
2686                                 Err(e) => {
2687                                         // TODO: Do something with e?
2688                                         // This should only occur if we are claiming an HTLC at the same time as the
2689                                         // HTLC is being failed (eg because a block is being connected and this caused
2690                                         // an HTLC to time out). This should, of course, only occur if the user is the
2691                                         // one doing the claiming (as it being a part of a peer claim would imply we're
2692                                         // about to lose funds) and only if the lock in claim_funds was dropped as a
2693                                         // previous HTLC was failed (thus not for an MPP payment).
2694                                         debug_assert!(false, "This shouldn't be reachable except in absurdly rare cases between monitor updates and HTLC timeouts: {:?}", e);
2695                                         return Err(None)
2696                                 },
2697                         }
2698                 } else { unreachable!(); }
2699         }
2700
2701         fn claim_funds_internal(&self, mut channel_state_lock: MutexGuard<ChannelHolder<Signer>>, source: HTLCSource, payment_preimage: PaymentPreimage) {
2702                 match source {
2703                         HTLCSource::OutboundRoute { session_priv, .. } => {
2704                                 mem::drop(channel_state_lock);
2705                                 if {
2706                                         let mut session_priv_bytes = [0; 32];
2707                                         session_priv_bytes.copy_from_slice(&session_priv[..]);
2708                                         self.pending_outbound_payments.lock().unwrap().remove(&session_priv_bytes)
2709                                 } {
2710                                         let mut pending_events = self.pending_events.lock().unwrap();
2711                                         pending_events.push(events::Event::PaymentSent {
2712                                                 payment_preimage
2713                                         });
2714                                 } else {
2715                                         log_trace!(self.logger, "Received duplicative fulfill for HTLC with payment_preimage {}", log_bytes!(payment_preimage.0));
2716                                 }
2717                         },
2718                         HTLCSource::PreviousHopData(hop_data) => {
2719                                 let prev_outpoint = hop_data.outpoint;
2720                                 if let Err((counterparty_node_id, err)) = match self.claim_funds_from_hop(&mut channel_state_lock, hop_data, payment_preimage) {
2721                                         Ok(()) => Ok(()),
2722                                         Err(None) => {
2723                                                 let preimage_update = ChannelMonitorUpdate {
2724                                                         update_id: CLOSED_CHANNEL_UPDATE_ID,
2725                                                         updates: vec![ChannelMonitorUpdateStep::PaymentPreimage {
2726                                                                 payment_preimage: payment_preimage.clone(),
2727                                                         }],
2728                                                 };
2729                                                 // We update the ChannelMonitor on the backward link, after
2730                                                 // receiving an offchain preimage event from the forward link (the
2731                                                 // event being update_fulfill_htlc).
2732                                                 if let Err(e) = self.chain_monitor.update_channel(prev_outpoint, preimage_update) {
2733                                                         log_error!(self.logger, "Critical error: failed to update channel monitor with preimage {:?}: {:?}",
2734                                                                    payment_preimage, e);
2735                                                 }
2736                                                 Ok(())
2737                                         },
2738                                         Err(Some(res)) => Err(res),
2739                                 } {
2740                                         mem::drop(channel_state_lock);
2741                                         let res: Result<(), _> = Err(err);
2742                                         let _ = handle_error!(self, res, counterparty_node_id);
2743                                 }
2744                         },
2745                 }
2746         }
2747
2748         /// Gets the node_id held by this ChannelManager
2749         pub fn get_our_node_id(&self) -> PublicKey {
2750                 self.our_network_pubkey.clone()
2751         }
2752
2753         /// Restores a single, given channel to normal operation after a
2754         /// ChannelMonitorUpdateErr::TemporaryFailure was returned from a channel monitor update
2755         /// operation.
2756         ///
2757         /// All ChannelMonitor updates up to and including highest_applied_update_id must have been
2758         /// fully committed in every copy of the given channels' ChannelMonitors.
2759         ///
2760         /// Note that there is no effect to calling with a highest_applied_update_id other than the
2761         /// current latest ChannelMonitorUpdate and one call to this function after multiple
2762         /// ChannelMonitorUpdateErr::TemporaryFailures is fine. The highest_applied_update_id field
2763         /// exists largely only to prevent races between this and concurrent update_monitor calls.
2764         ///
2765         /// Thus, the anticipated use is, at a high level:
2766         ///  1) You register a chain::Watch with this ChannelManager,
2767         ///  2) it stores each update to disk, and begins updating any remote (eg watchtower) copies of
2768         ///     said ChannelMonitors as it can, returning ChannelMonitorUpdateErr::TemporaryFailures
2769         ///     any time it cannot do so instantly,
2770         ///  3) update(s) are applied to each remote copy of a ChannelMonitor,
2771         ///  4) once all remote copies are updated, you call this function with the update_id that
2772         ///     completed, and once it is the latest the Channel will be re-enabled.
2773         pub fn channel_monitor_updated(&self, funding_txo: &OutPoint, highest_applied_update_id: u64) {
2774                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2775
2776                 let (mut pending_failures, chan_restoration_res) = {
2777                         let mut channel_lock = self.channel_state.lock().unwrap();
2778                         let channel_state = &mut *channel_lock;
2779                         let mut channel = match channel_state.by_id.entry(funding_txo.to_channel_id()) {
2780                                 hash_map::Entry::Occupied(chan) => chan,
2781                                 hash_map::Entry::Vacant(_) => return,
2782                         };
2783                         if !channel.get().is_awaiting_monitor_update() || channel.get().get_latest_monitor_update_id() != highest_applied_update_id {
2784                                 return;
2785                         }
2786
2787                         let (raa, commitment_update, order, pending_forwards, pending_failures, funding_broadcastable, funding_locked) = channel.get_mut().monitor_updating_restored(&self.logger);
2788                         (pending_failures, handle_chan_restoration_locked!(self, channel_lock, channel_state, channel, raa, commitment_update, order, None, pending_forwards, funding_broadcastable, funding_locked))
2789                 };
2790                 post_handle_chan_restoration!(self, chan_restoration_res);
2791                 for failure in pending_failures.drain(..) {
2792                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), failure.0, &failure.1, failure.2);
2793                 }
2794         }
2795
2796         fn internal_open_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::OpenChannel) -> Result<(), MsgHandleErrInternal> {
2797                 if msg.chain_hash != self.genesis_hash {
2798                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Unknown genesis block hash".to_owned(), msg.temporary_channel_id.clone()));
2799                 }
2800
2801                 let channel = Channel::new_from_req(&self.fee_estimator, &self.keys_manager, counterparty_node_id.clone(), their_features, msg, 0, &self.default_configuration)
2802                         .map_err(|e| MsgHandleErrInternal::from_chan_no_close(e, msg.temporary_channel_id))?;
2803                 let mut channel_state_lock = self.channel_state.lock().unwrap();
2804                 let channel_state = &mut *channel_state_lock;
2805                 match channel_state.by_id.entry(channel.channel_id()) {
2806                         hash_map::Entry::Occupied(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("temporary_channel_id collision!".to_owned(), msg.temporary_channel_id.clone())),
2807                         hash_map::Entry::Vacant(entry) => {
2808                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
2809                                         node_id: counterparty_node_id.clone(),
2810                                         msg: channel.get_accept_channel(),
2811                                 });
2812                                 entry.insert(channel);
2813                         }
2814                 }
2815                 Ok(())
2816         }
2817
2818         fn internal_accept_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::AcceptChannel) -> Result<(), MsgHandleErrInternal> {
2819                 let (value, output_script, user_id) = {
2820                         let mut channel_lock = self.channel_state.lock().unwrap();
2821                         let channel_state = &mut *channel_lock;
2822                         match channel_state.by_id.entry(msg.temporary_channel_id) {
2823                                 hash_map::Entry::Occupied(mut chan) => {
2824                                         if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2825                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.temporary_channel_id));
2826                                         }
2827                                         try_chan_entry!(self, chan.get_mut().accept_channel(&msg, &self.default_configuration, their_features), channel_state, chan);
2828                                         (chan.get().get_value_satoshis(), chan.get().get_funding_redeemscript().to_v0_p2wsh(), chan.get().get_user_id())
2829                                 },
2830                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.temporary_channel_id))
2831                         }
2832                 };
2833                 let mut pending_events = self.pending_events.lock().unwrap();
2834                 pending_events.push(events::Event::FundingGenerationReady {
2835                         temporary_channel_id: msg.temporary_channel_id,
2836                         channel_value_satoshis: value,
2837                         output_script,
2838                         user_channel_id: user_id,
2839                 });
2840                 Ok(())
2841         }
2842
2843         fn internal_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) -> Result<(), MsgHandleErrInternal> {
2844                 let ((funding_msg, monitor), mut chan) = {
2845                         let best_block = *self.best_block.read().unwrap();
2846                         let mut channel_lock = self.channel_state.lock().unwrap();
2847                         let channel_state = &mut *channel_lock;
2848                         match channel_state.by_id.entry(msg.temporary_channel_id.clone()) {
2849                                 hash_map::Entry::Occupied(mut chan) => {
2850                                         if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2851                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.temporary_channel_id));
2852                                         }
2853                                         (try_chan_entry!(self, chan.get_mut().funding_created(msg, best_block, &self.logger), channel_state, chan), chan.remove())
2854                                 },
2855                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.temporary_channel_id))
2856                         }
2857                 };
2858                 // Because we have exclusive ownership of the channel here we can release the channel_state
2859                 // lock before watch_channel
2860                 if let Err(e) = self.chain_monitor.watch_channel(monitor.get_funding_txo().0, monitor) {
2861                         match e {
2862                                 ChannelMonitorUpdateErr::PermanentFailure => {
2863                                         // Note that we reply with the new channel_id in error messages if we gave up on the
2864                                         // channel, not the temporary_channel_id. This is compatible with ourselves, but the
2865                                         // spec is somewhat ambiguous here. Not a huge deal since we'll send error messages for
2866                                         // any messages referencing a previously-closed channel anyway.
2867                                         // We do not do a force-close here as that would generate a monitor update for
2868                                         // a monitor that we didn't manage to store (and that we don't care about - we
2869                                         // don't respond with the funding_signed so the channel can never go on chain).
2870                                         let (_monitor_update, failed_htlcs) = chan.force_shutdown(true);
2871                                         assert!(failed_htlcs.is_empty());
2872                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("ChannelMonitor storage failure".to_owned(), funding_msg.channel_id));
2873                                 },
2874                                 ChannelMonitorUpdateErr::TemporaryFailure => {
2875                                         // There's no problem signing a counterparty's funding transaction if our monitor
2876                                         // hasn't persisted to disk yet - we can't lose money on a transaction that we haven't
2877                                         // accepted payment from yet. We do, however, need to wait to send our funding_locked
2878                                         // until we have persisted our monitor.
2879                                         chan.monitor_update_failed(false, false, Vec::new(), Vec::new());
2880                                 },
2881                         }
2882                 }
2883                 let mut channel_state_lock = self.channel_state.lock().unwrap();
2884                 let channel_state = &mut *channel_state_lock;
2885                 match channel_state.by_id.entry(funding_msg.channel_id) {
2886                         hash_map::Entry::Occupied(_) => {
2887                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Already had channel with the new channel_id".to_owned(), funding_msg.channel_id))
2888                         },
2889                         hash_map::Entry::Vacant(e) => {
2890                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingSigned {
2891                                         node_id: counterparty_node_id.clone(),
2892                                         msg: funding_msg,
2893                                 });
2894                                 e.insert(chan);
2895                         }
2896                 }
2897                 Ok(())
2898         }
2899
2900         fn internal_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) -> Result<(), MsgHandleErrInternal> {
2901                 let funding_tx = {
2902                         let best_block = *self.best_block.read().unwrap();
2903                         let mut channel_lock = self.channel_state.lock().unwrap();
2904                         let channel_state = &mut *channel_lock;
2905                         match channel_state.by_id.entry(msg.channel_id) {
2906                                 hash_map::Entry::Occupied(mut chan) => {
2907                                         if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2908                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2909                                         }
2910                                         let (monitor, funding_tx) = match chan.get_mut().funding_signed(&msg, best_block, &self.logger) {
2911                                                 Ok(update) => update,
2912                                                 Err(e) => try_chan_entry!(self, Err(e), channel_state, chan),
2913                                         };
2914                                         if let Err(e) = self.chain_monitor.watch_channel(chan.get().get_funding_txo().unwrap(), monitor) {
2915                                                 return_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::RevokeAndACKFirst, false, false);
2916                                         }
2917                                         funding_tx
2918                                 },
2919                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2920                         }
2921                 };
2922                 log_info!(self.logger, "Broadcasting funding transaction with txid {}", funding_tx.txid());
2923                 self.tx_broadcaster.broadcast_transaction(&funding_tx);
2924                 Ok(())
2925         }
2926
2927         fn internal_funding_locked(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingLocked) -> Result<(), MsgHandleErrInternal> {
2928                 let mut channel_state_lock = self.channel_state.lock().unwrap();
2929                 let channel_state = &mut *channel_state_lock;
2930                 match channel_state.by_id.entry(msg.channel_id) {
2931                         hash_map::Entry::Occupied(mut chan) => {
2932                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2933                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2934                                 }
2935                                 try_chan_entry!(self, chan.get_mut().funding_locked(&msg, &self.logger), channel_state, chan);
2936                                 if let Some(announcement_sigs) = self.get_announcement_sigs(chan.get()) {
2937                                         log_trace!(self.logger, "Sending announcement_signatures for {} in response to funding_locked", log_bytes!(chan.get().channel_id()));
2938                                         // If we see locking block before receiving remote funding_locked, we broadcast our
2939                                         // announcement_sigs at remote funding_locked reception. If we receive remote
2940                                         // funding_locked before seeing locking block, we broadcast our announcement_sigs at locking
2941                                         // block connection. We should guanrantee to broadcast announcement_sigs to our peer whatever
2942                                         // the order of the events but our peer may not receive it due to disconnection. The specs
2943                                         // lacking an acknowledgement for announcement_sigs we may have to re-send them at peer
2944                                         // connection in the future if simultaneous misses by both peers due to network/hardware
2945                                         // failures is an issue. Note, to achieve its goal, only one of the announcement_sigs needs
2946                                         // to be received, from then sigs are going to be flood to the whole network.
2947                                         channel_state.pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
2948                                                 node_id: counterparty_node_id.clone(),
2949                                                 msg: announcement_sigs,
2950                                         });
2951                                 }
2952                                 Ok(())
2953                         },
2954                         hash_map::Entry::Vacant(_) => Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2955                 }
2956         }
2957
2958         fn internal_shutdown(&self, counterparty_node_id: &PublicKey, their_features: &InitFeatures, msg: &msgs::Shutdown) -> Result<(), MsgHandleErrInternal> {
2959                 let (mut dropped_htlcs, chan_option) = {
2960                         let mut channel_state_lock = self.channel_state.lock().unwrap();
2961                         let channel_state = &mut *channel_state_lock;
2962
2963                         match channel_state.by_id.entry(msg.channel_id.clone()) {
2964                                 hash_map::Entry::Occupied(mut chan_entry) => {
2965                                         if chan_entry.get().get_counterparty_node_id() != *counterparty_node_id {
2966                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2967                                         }
2968                                         let (shutdown, closing_signed, dropped_htlcs) = try_chan_entry!(self, chan_entry.get_mut().shutdown(&self.fee_estimator, &their_features, &msg), channel_state, chan_entry);
2969                                         if let Some(msg) = shutdown {
2970                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
2971                                                         node_id: counterparty_node_id.clone(),
2972                                                         msg,
2973                                                 });
2974                                         }
2975                                         if let Some(msg) = closing_signed {
2976                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
2977                                                         node_id: counterparty_node_id.clone(),
2978                                                         msg,
2979                                                 });
2980                                         }
2981                                         if chan_entry.get().is_shutdown() {
2982                                                 if let Some(short_id) = chan_entry.get().get_short_channel_id() {
2983                                                         channel_state.short_to_id.remove(&short_id);
2984                                                 }
2985                                                 (dropped_htlcs, Some(chan_entry.remove_entry().1))
2986                                         } else { (dropped_htlcs, None) }
2987                                 },
2988                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2989                         }
2990                 };
2991                 for htlc_source in dropped_htlcs.drain(..) {
2992                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
2993                 }
2994                 if let Some(chan) = chan_option {
2995                         if let Ok(update) = self.get_channel_update(&chan) {
2996                                 let mut channel_state = self.channel_state.lock().unwrap();
2997                                 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2998                                         msg: update
2999                                 });
3000                         }
3001                 }
3002                 Ok(())
3003         }
3004
3005         fn internal_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) -> Result<(), MsgHandleErrInternal> {
3006                 let (tx, chan_option) = {
3007                         let mut channel_state_lock = self.channel_state.lock().unwrap();
3008                         let channel_state = &mut *channel_state_lock;
3009                         match channel_state.by_id.entry(msg.channel_id.clone()) {
3010                                 hash_map::Entry::Occupied(mut chan_entry) => {
3011                                         if chan_entry.get().get_counterparty_node_id() != *counterparty_node_id {
3012                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3013                                         }
3014                                         let (closing_signed, tx) = try_chan_entry!(self, chan_entry.get_mut().closing_signed(&self.fee_estimator, &msg), channel_state, chan_entry);
3015                                         if let Some(msg) = closing_signed {
3016                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
3017                                                         node_id: counterparty_node_id.clone(),
3018                                                         msg,
3019                                                 });
3020                                         }
3021                                         if tx.is_some() {
3022                                                 // We're done with this channel, we've got a signed closing transaction and
3023                                                 // will send the closing_signed back to the remote peer upon return. This
3024                                                 // also implies there are no pending HTLCs left on the channel, so we can
3025                                                 // fully delete it from tracking (the channel monitor is still around to
3026                                                 // watch for old state broadcasts)!
3027                                                 if let Some(short_id) = chan_entry.get().get_short_channel_id() {
3028                                                         channel_state.short_to_id.remove(&short_id);
3029                                                 }
3030                                                 (tx, Some(chan_entry.remove_entry().1))
3031                                         } else { (tx, None) }
3032                                 },
3033                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3034                         }
3035                 };
3036                 if let Some(broadcast_tx) = tx {
3037                         log_info!(self.logger, "Broadcasting {}", log_tx!(broadcast_tx));
3038                         self.tx_broadcaster.broadcast_transaction(&broadcast_tx);
3039                 }
3040                 if let Some(chan) = chan_option {
3041                         if let Ok(update) = self.get_channel_update(&chan) {
3042                                 let mut channel_state = self.channel_state.lock().unwrap();
3043                                 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
3044                                         msg: update
3045                                 });
3046                         }
3047                 }
3048                 Ok(())
3049         }
3050
3051         fn internal_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) -> Result<(), MsgHandleErrInternal> {
3052                 //TODO: BOLT 4 points out a specific attack where a peer may re-send an onion packet and
3053                 //determine the state of the payment based on our response/if we forward anything/the time
3054                 //we take to respond. We should take care to avoid allowing such an attack.
3055                 //
3056                 //TODO: There exists a further attack where a node may garble the onion data, forward it to
3057                 //us repeatedly garbled in different ways, and compare our error messages, which are
3058                 //encrypted with the same key. It's not immediately obvious how to usefully exploit that,
3059                 //but we should prevent it anyway.
3060
3061                 let (pending_forward_info, mut channel_state_lock) = self.decode_update_add_htlc_onion(msg);
3062                 let channel_state = &mut *channel_state_lock;
3063
3064                 match channel_state.by_id.entry(msg.channel_id) {
3065                         hash_map::Entry::Occupied(mut chan) => {
3066                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3067                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3068                                 }
3069
3070                                 let create_pending_htlc_status = |chan: &Channel<Signer>, pending_forward_info: PendingHTLCStatus, error_code: u16| {
3071                                         // Ensure error_code has the UPDATE flag set, since by default we send a
3072                                         // channel update along as part of failing the HTLC.
3073                                         assert!((error_code & 0x1000) != 0);
3074                                         // If the update_add is completely bogus, the call will Err and we will close,
3075                                         // but if we've sent a shutdown and they haven't acknowledged it yet, we just
3076                                         // want to reject the new HTLC and fail it backwards instead of forwarding.
3077                                         match pending_forward_info {
3078                                                 PendingHTLCStatus::Forward(PendingHTLCInfo { ref incoming_shared_secret, .. }) => {
3079                                                         let reason = if let Ok(upd) = self.get_channel_update(chan) {
3080                                                                 onion_utils::build_first_hop_failure_packet(incoming_shared_secret, error_code, &{
3081                                                                         let mut res = Vec::with_capacity(8 + 128);
3082                                                                         // TODO: underspecified, follow https://github.com/lightningnetwork/lightning-rfc/issues/791
3083                                                                         res.extend_from_slice(&byte_utils::be16_to_array(0));
3084                                                                         res.extend_from_slice(&upd.encode_with_len()[..]);
3085                                                                         res
3086                                                                 }[..])
3087                                                         } else {
3088                                                                 // The only case where we'd be unable to
3089                                                                 // successfully get a channel update is if the
3090                                                                 // channel isn't in the fully-funded state yet,
3091                                                                 // implying our counterparty is trying to route
3092                                                                 // payments over the channel back to themselves
3093                                                                 // (cause no one else should know the short_id
3094                                                                 // is a lightning channel yet). We should have
3095                                                                 // no problem just calling this
3096                                                                 // unknown_next_peer (0x4000|10).
3097                                                                 onion_utils::build_first_hop_failure_packet(incoming_shared_secret, 0x4000|10, &[])
3098                                                         };
3099                                                         let msg = msgs::UpdateFailHTLC {
3100                                                                 channel_id: msg.channel_id,
3101                                                                 htlc_id: msg.htlc_id,
3102                                                                 reason
3103                                                         };
3104                                                         PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msg))
3105                                                 },
3106                                                 _ => pending_forward_info
3107                                         }
3108                                 };
3109                                 try_chan_entry!(self, chan.get_mut().update_add_htlc(&msg, pending_forward_info, create_pending_htlc_status, &self.logger), channel_state, chan);
3110                         },
3111                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3112                 }
3113                 Ok(())
3114         }
3115
3116         fn internal_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) -> Result<(), MsgHandleErrInternal> {
3117                 let mut channel_lock = self.channel_state.lock().unwrap();
3118                 let htlc_source = {
3119                         let channel_state = &mut *channel_lock;
3120                         match channel_state.by_id.entry(msg.channel_id) {
3121                                 hash_map::Entry::Occupied(mut chan) => {
3122                                         if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3123                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3124                                         }
3125                                         try_chan_entry!(self, chan.get_mut().update_fulfill_htlc(&msg), channel_state, chan)
3126                                 },
3127                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3128                         }
3129                 };
3130                 self.claim_funds_internal(channel_lock, htlc_source, msg.payment_preimage.clone());
3131                 Ok(())
3132         }
3133
3134         fn internal_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) -> Result<(), MsgHandleErrInternal> {
3135                 let mut channel_lock = self.channel_state.lock().unwrap();
3136                 let channel_state = &mut *channel_lock;
3137                 match channel_state.by_id.entry(msg.channel_id) {
3138                         hash_map::Entry::Occupied(mut chan) => {
3139                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3140                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3141                                 }
3142                                 try_chan_entry!(self, chan.get_mut().update_fail_htlc(&msg, HTLCFailReason::LightningError { err: msg.reason.clone() }), channel_state, chan);
3143                         },
3144                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3145                 }
3146                 Ok(())
3147         }
3148
3149         fn internal_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) -> Result<(), MsgHandleErrInternal> {
3150                 let mut channel_lock = self.channel_state.lock().unwrap();
3151                 let channel_state = &mut *channel_lock;
3152                 match channel_state.by_id.entry(msg.channel_id) {
3153                         hash_map::Entry::Occupied(mut chan) => {
3154                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3155                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3156                                 }
3157                                 if (msg.failure_code & 0x8000) == 0 {
3158                                         let chan_err: ChannelError = ChannelError::Close("Got update_fail_malformed_htlc with BADONION not set".to_owned());
3159                                         try_chan_entry!(self, Err(chan_err), channel_state, chan);
3160                                 }
3161                                 try_chan_entry!(self, chan.get_mut().update_fail_malformed_htlc(&msg, HTLCFailReason::Reason { failure_code: msg.failure_code, data: Vec::new() }), channel_state, chan);
3162                                 Ok(())
3163                         },
3164                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3165                 }
3166         }
3167
3168         fn internal_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) -> Result<(), MsgHandleErrInternal> {
3169                 let mut channel_state_lock = self.channel_state.lock().unwrap();
3170                 let channel_state = &mut *channel_state_lock;
3171                 match channel_state.by_id.entry(msg.channel_id) {
3172                         hash_map::Entry::Occupied(mut chan) => {
3173                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3174                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3175                                 }
3176                                 let (revoke_and_ack, commitment_signed, closing_signed, monitor_update) =
3177                                         match chan.get_mut().commitment_signed(&msg, &self.fee_estimator, &self.logger) {
3178                                                 Err((None, e)) => try_chan_entry!(self, Err(e), channel_state, chan),
3179                                                 Err((Some(update), e)) => {
3180                                                         assert!(chan.get().is_awaiting_monitor_update());
3181                                                         let _ = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), update);
3182                                                         try_chan_entry!(self, Err(e), channel_state, chan);
3183                                                         unreachable!();
3184                                                 },
3185                                                 Ok(res) => res
3186                                         };
3187                                 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
3188                                         return_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::RevokeAndACKFirst, true, commitment_signed.is_some());
3189                                         //TODO: Rebroadcast closing_signed if present on monitor update restoration
3190                                 }
3191                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
3192                                         node_id: counterparty_node_id.clone(),
3193                                         msg: revoke_and_ack,
3194                                 });
3195                                 if let Some(msg) = commitment_signed {
3196                                         channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
3197                                                 node_id: counterparty_node_id.clone(),
3198                                                 updates: msgs::CommitmentUpdate {
3199                                                         update_add_htlcs: Vec::new(),
3200                                                         update_fulfill_htlcs: Vec::new(),
3201                                                         update_fail_htlcs: Vec::new(),
3202                                                         update_fail_malformed_htlcs: Vec::new(),
3203                                                         update_fee: None,
3204                                                         commitment_signed: msg,
3205                                                 },
3206                                         });
3207                                 }
3208                                 if let Some(msg) = closing_signed {
3209                                         channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
3210                                                 node_id: counterparty_node_id.clone(),
3211                                                 msg,
3212                                         });
3213                                 }
3214                                 Ok(())
3215                         },
3216                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3217                 }
3218         }
3219
3220         #[inline]
3221         fn forward_htlcs(&self, per_source_pending_forwards: &mut [(u64, OutPoint, Vec<(PendingHTLCInfo, u64)>)]) {
3222                 for &mut (prev_short_channel_id, prev_funding_outpoint, ref mut pending_forwards) in per_source_pending_forwards {
3223                         let mut forward_event = None;
3224                         if !pending_forwards.is_empty() {
3225                                 let mut channel_state = self.channel_state.lock().unwrap();
3226                                 if channel_state.forward_htlcs.is_empty() {
3227                                         forward_event = Some(Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS))
3228                                 }
3229                                 for (forward_info, prev_htlc_id) in pending_forwards.drain(..) {
3230                                         match channel_state.forward_htlcs.entry(match forward_info.routing {
3231                                                         PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
3232                                                         PendingHTLCRouting::Receive { .. } => 0,
3233                                         }) {
3234                                                 hash_map::Entry::Occupied(mut entry) => {
3235                                                         entry.get_mut().push(HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_funding_outpoint,
3236                                                                                                         prev_htlc_id, forward_info });
3237                                                 },
3238                                                 hash_map::Entry::Vacant(entry) => {
3239                                                         entry.insert(vec!(HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_funding_outpoint,
3240                                                                                                      prev_htlc_id, forward_info }));
3241                                                 }
3242                                         }
3243                                 }
3244                         }
3245                         match forward_event {
3246                                 Some(time) => {
3247                                         let mut pending_events = self.pending_events.lock().unwrap();
3248                                         pending_events.push(events::Event::PendingHTLCsForwardable {
3249                                                 time_forwardable: time
3250                                         });
3251                                 }
3252                                 None => {},
3253                         }
3254                 }
3255         }
3256
3257         fn internal_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) -> Result<(), MsgHandleErrInternal> {
3258                 let mut htlcs_to_fail = Vec::new();
3259                 let res = loop {
3260                         let mut channel_state_lock = self.channel_state.lock().unwrap();
3261                         let channel_state = &mut *channel_state_lock;
3262                         match channel_state.by_id.entry(msg.channel_id) {
3263                                 hash_map::Entry::Occupied(mut chan) => {
3264                                         if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3265                                                 break Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3266                                         }
3267                                         let was_frozen_for_monitor = chan.get().is_awaiting_monitor_update();
3268                                         let (commitment_update, pending_forwards, pending_failures, closing_signed, monitor_update, htlcs_to_fail_in) =
3269                                                 break_chan_entry!(self, chan.get_mut().revoke_and_ack(&msg, &self.fee_estimator, &self.logger), channel_state, chan);
3270                                         htlcs_to_fail = htlcs_to_fail_in;
3271                                         if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
3272                                                 if was_frozen_for_monitor {
3273                                                         assert!(commitment_update.is_none() && closing_signed.is_none() && pending_forwards.is_empty() && pending_failures.is_empty());
3274                                                         break Err(MsgHandleErrInternal::ignore_no_close("Previous monitor update failure prevented responses to RAA".to_owned()));
3275                                                 } else {
3276                                                         if let Err(e) = handle_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, commitment_update.is_some(), pending_forwards, pending_failures) {
3277                                                                 break Err(e);
3278                                                         } else { unreachable!(); }
3279                                                 }
3280                                         }
3281                                         if let Some(updates) = commitment_update {
3282                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
3283                                                         node_id: counterparty_node_id.clone(),
3284                                                         updates,
3285                                                 });
3286                                         }
3287                                         if let Some(msg) = closing_signed {
3288                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
3289                                                         node_id: counterparty_node_id.clone(),
3290                                                         msg,
3291                                                 });
3292                                         }
3293                                         break Ok((pending_forwards, pending_failures, chan.get().get_short_channel_id().expect("RAA should only work on a short-id-available channel"), chan.get().get_funding_txo().unwrap()))
3294                                 },
3295                                 hash_map::Entry::Vacant(_) => break Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3296                         }
3297                 };
3298                 self.fail_holding_cell_htlcs(htlcs_to_fail, msg.channel_id);
3299                 match res {
3300                         Ok((pending_forwards, mut pending_failures, short_channel_id, channel_outpoint)) => {
3301                                 for failure in pending_failures.drain(..) {
3302                                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), failure.0, &failure.1, failure.2);
3303                                 }
3304                                 self.forward_htlcs(&mut [(short_channel_id, channel_outpoint, pending_forwards)]);
3305                                 Ok(())
3306                         },
3307                         Err(e) => Err(e)
3308                 }
3309         }
3310
3311         fn internal_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) -> Result<(), MsgHandleErrInternal> {
3312                 let mut channel_lock = self.channel_state.lock().unwrap();
3313                 let channel_state = &mut *channel_lock;
3314                 match channel_state.by_id.entry(msg.channel_id) {
3315                         hash_map::Entry::Occupied(mut chan) => {
3316                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3317                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3318                                 }
3319                                 try_chan_entry!(self, chan.get_mut().update_fee(&self.fee_estimator, &msg), channel_state, chan);
3320                         },
3321                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3322                 }
3323                 Ok(())
3324         }
3325
3326         fn internal_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) -> Result<(), MsgHandleErrInternal> {
3327                 let mut channel_state_lock = self.channel_state.lock().unwrap();
3328                 let channel_state = &mut *channel_state_lock;
3329
3330                 match channel_state.by_id.entry(msg.channel_id) {
3331                         hash_map::Entry::Occupied(mut chan) => {
3332                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3333                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3334                                 }
3335                                 if !chan.get().is_usable() {
3336                                         return Err(MsgHandleErrInternal::from_no_close(LightningError{err: "Got an announcement_signatures before we were ready for it".to_owned(), action: msgs::ErrorAction::IgnoreError}));
3337                                 }
3338
3339                                 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
3340                                         msg: try_chan_entry!(self, chan.get_mut().announcement_signatures(&self.our_network_key, self.get_our_node_id(), self.genesis_hash.clone(), msg), channel_state, chan),
3341                                         update_msg: self.get_channel_update(chan.get()).unwrap(), // can only fail if we're not in a ready state
3342                                 });
3343                         },
3344                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3345                 }
3346                 Ok(())
3347         }
3348
3349         fn internal_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) -> Result<(), MsgHandleErrInternal> {
3350                 let mut channel_state_lock = self.channel_state.lock().unwrap();
3351                 let channel_state = &mut *channel_state_lock;
3352                 let chan_id = match channel_state.short_to_id.get(&msg.contents.short_channel_id) {
3353                         Some(chan_id) => chan_id.clone(),
3354                         None => {
3355                                 // It's not a local channel
3356                                 return Ok(())
3357                         }
3358                 };
3359                 match channel_state.by_id.entry(chan_id) {
3360                         hash_map::Entry::Occupied(mut chan) => {
3361                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3362                                         if chan.get().should_announce() {
3363                                                 // If the announcement is about a channel of ours which is public, some
3364                                                 // other peer may simply be forwarding all its gossip to us. Don't provide
3365                                                 // a scary-looking error message and return Ok instead.
3366                                                 return Ok(());
3367                                         }
3368                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a channel_update for a channel from the wrong node - it shouldn't know about our private channels!".to_owned(), chan_id));
3369                                 }
3370                                 try_chan_entry!(self, chan.get_mut().channel_update(&msg), channel_state, chan);
3371                         },
3372                         hash_map::Entry::Vacant(_) => unreachable!()
3373                 }
3374                 Ok(())
3375         }
3376
3377         fn internal_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) -> Result<(), MsgHandleErrInternal> {
3378                 let (htlcs_failed_forward, need_lnd_workaround, chan_restoration_res) = {
3379                         let mut channel_state_lock = self.channel_state.lock().unwrap();
3380                         let channel_state = &mut *channel_state_lock;
3381
3382                         match channel_state.by_id.entry(msg.channel_id) {
3383                                 hash_map::Entry::Occupied(mut chan) => {
3384                                         if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3385                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3386                                         }
3387                                         // Currently, we expect all holding cell update_adds to be dropped on peer
3388                                         // disconnect, so Channel's reestablish will never hand us any holding cell
3389                                         // freed HTLCs to fail backwards. If in the future we no longer drop pending
3390                                         // add-HTLCs on disconnect, we may be handed HTLCs to fail backwards here.
3391                                         let (funding_locked, revoke_and_ack, commitment_update, monitor_update_opt, order, htlcs_failed_forward, shutdown) =
3392                                                 try_chan_entry!(self, chan.get_mut().channel_reestablish(msg, &self.logger), channel_state, chan);
3393                                         if let Some(msg) = shutdown {
3394                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
3395                                                         node_id: counterparty_node_id.clone(),
3396                                                         msg,
3397                                                 });
3398                                         }
3399                                         let need_lnd_workaround = chan.get_mut().workaround_lnd_bug_4006.take();
3400                                         (htlcs_failed_forward, need_lnd_workaround,
3401                                                 handle_chan_restoration_locked!(self, channel_state_lock, channel_state, chan, revoke_and_ack, commitment_update, order, monitor_update_opt, Vec::new(), None, funding_locked))
3402                                 },
3403                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3404                         }
3405                 };
3406                 post_handle_chan_restoration!(self, chan_restoration_res);
3407                 self.fail_holding_cell_htlcs(htlcs_failed_forward, msg.channel_id);
3408
3409                 if let Some(funding_locked_msg) = need_lnd_workaround {
3410                         self.internal_funding_locked(counterparty_node_id, &funding_locked_msg)?;
3411                 }
3412                 Ok(())
3413         }
3414
3415         /// Begin Update fee process. Allowed only on an outbound channel.
3416         /// If successful, will generate a UpdateHTLCs event, so you should probably poll
3417         /// PeerManager::process_events afterwards.
3418         /// Note: This API is likely to change!
3419         /// (C-not exported) Cause its doc(hidden) anyway
3420         #[doc(hidden)]
3421         pub fn update_fee(&self, channel_id: [u8;32], feerate_per_kw: u32) -> Result<(), APIError> {
3422                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3423                 let counterparty_node_id;
3424                 let err: Result<(), _> = loop {
3425                         let mut channel_state_lock = self.channel_state.lock().unwrap();
3426                         let channel_state = &mut *channel_state_lock;
3427
3428                         match channel_state.by_id.entry(channel_id) {
3429                                 hash_map::Entry::Vacant(_) => return Err(APIError::APIMisuseError{err: format!("Failed to find corresponding channel for id {}", channel_id.to_hex())}),
3430                                 hash_map::Entry::Occupied(mut chan) => {
3431                                         if !chan.get().is_outbound() {
3432                                                 return Err(APIError::APIMisuseError{err: "update_fee cannot be sent for an inbound channel".to_owned()});
3433                                         }
3434                                         if chan.get().is_awaiting_monitor_update() {
3435                                                 return Err(APIError::MonitorUpdateFailed);
3436                                         }
3437                                         if !chan.get().is_live() {
3438                                                 return Err(APIError::ChannelUnavailable{err: "Channel is either not yet fully established or peer is currently disconnected".to_owned()});
3439                                         }
3440                                         counterparty_node_id = chan.get().get_counterparty_node_id();
3441                                         if let Some((update_fee, commitment_signed, monitor_update)) =
3442                                                         break_chan_entry!(self, chan.get_mut().send_update_fee_and_commit(feerate_per_kw, &self.logger), channel_state, chan)
3443                                         {
3444                                                 if let Err(_e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
3445                                                         unimplemented!();
3446                                                 }
3447                                                 log_debug!(self.logger, "Updating fee resulted in a commitment_signed for channel {}", log_bytes!(chan.get().channel_id()));
3448                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
3449                                                         node_id: chan.get().get_counterparty_node_id(),
3450                                                         updates: msgs::CommitmentUpdate {
3451                                                                 update_add_htlcs: Vec::new(),
3452                                                                 update_fulfill_htlcs: Vec::new(),
3453                                                                 update_fail_htlcs: Vec::new(),
3454                                                                 update_fail_malformed_htlcs: Vec::new(),
3455                                                                 update_fee: Some(update_fee),
3456                                                                 commitment_signed,
3457                                                         },
3458                                                 });
3459                                         }
3460                                 },
3461                         }
3462                         return Ok(())
3463                 };
3464
3465                 match handle_error!(self, err, counterparty_node_id) {
3466                         Ok(_) => unreachable!(),
3467                         Err(e) => { Err(APIError::APIMisuseError { err: e.err })}
3468                 }
3469         }
3470
3471         /// Process pending events from the `chain::Watch`, returning whether any events were processed.
3472         fn process_pending_monitor_events(&self) -> bool {
3473                 let mut failed_channels = Vec::new();
3474                 let pending_monitor_events = self.chain_monitor.release_pending_monitor_events();
3475                 let has_pending_monitor_events = !pending_monitor_events.is_empty();
3476                 for monitor_event in pending_monitor_events {
3477                         match monitor_event {
3478                                 MonitorEvent::HTLCEvent(htlc_update) => {
3479                                         if let Some(preimage) = htlc_update.payment_preimage {
3480                                                 log_trace!(self.logger, "Claiming HTLC with preimage {} from our monitor", log_bytes!(preimage.0));
3481                                                 self.claim_funds_internal(self.channel_state.lock().unwrap(), htlc_update.source, preimage);
3482                                         } else {
3483                                                 log_trace!(self.logger, "Failing HTLC with hash {} from our monitor", log_bytes!(htlc_update.payment_hash.0));
3484                                                 self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_update.source, &htlc_update.payment_hash, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
3485                                         }
3486                                 },
3487                                 MonitorEvent::CommitmentTxBroadcasted(funding_outpoint) => {
3488                                         let mut channel_lock = self.channel_state.lock().unwrap();
3489                                         let channel_state = &mut *channel_lock;
3490                                         let by_id = &mut channel_state.by_id;
3491                                         let short_to_id = &mut channel_state.short_to_id;
3492                                         let pending_msg_events = &mut channel_state.pending_msg_events;
3493                                         if let Some(mut chan) = by_id.remove(&funding_outpoint.to_channel_id()) {
3494                                                 if let Some(short_id) = chan.get_short_channel_id() {
3495                                                         short_to_id.remove(&short_id);
3496                                                 }
3497                                                 failed_channels.push(chan.force_shutdown(false));
3498                                                 if let Ok(update) = self.get_channel_update(&chan) {
3499                                                         pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
3500                                                                 msg: update
3501                                                         });
3502                                                 }
3503                                                 pending_msg_events.push(events::MessageSendEvent::HandleError {
3504                                                         node_id: chan.get_counterparty_node_id(),
3505                                                         action: msgs::ErrorAction::SendErrorMessage {
3506                                                                 msg: msgs::ErrorMessage { channel_id: chan.channel_id(), data: "Channel force-closed".to_owned() }
3507                                                         },
3508                                                 });
3509                                         }
3510                                 },
3511                         }
3512                 }
3513
3514                 for failure in failed_channels.drain(..) {
3515                         self.finish_force_close_channel(failure);
3516                 }
3517
3518                 has_pending_monitor_events
3519         }
3520
3521         /// Check the holding cell in each channel and free any pending HTLCs in them if possible.
3522         /// Returns whether there were any updates such as if pending HTLCs were freed or a monitor
3523         /// update was applied.
3524         ///
3525         /// This should only apply to HTLCs which were added to the holding cell because we were
3526         /// waiting on a monitor update to finish. In that case, we don't want to free the holding cell
3527         /// directly in `channel_monitor_updated` as it may introduce deadlocks calling back into user
3528         /// code to inform them of a channel monitor update.
3529         fn check_free_holding_cells(&self) -> bool {
3530                 let mut has_monitor_update = false;
3531                 let mut failed_htlcs = Vec::new();
3532                 let mut handle_errors = Vec::new();
3533                 {
3534                         let mut channel_state_lock = self.channel_state.lock().unwrap();
3535                         let channel_state = &mut *channel_state_lock;
3536                         let by_id = &mut channel_state.by_id;
3537                         let short_to_id = &mut channel_state.short_to_id;
3538                         let pending_msg_events = &mut channel_state.pending_msg_events;
3539
3540                         by_id.retain(|channel_id, chan| {
3541                                 match chan.maybe_free_holding_cell_htlcs(&self.logger) {
3542                                         Ok((commitment_opt, holding_cell_failed_htlcs)) => {
3543                                                 if !holding_cell_failed_htlcs.is_empty() {
3544                                                         failed_htlcs.push((holding_cell_failed_htlcs, *channel_id));
3545                                                 }
3546                                                 if let Some((commitment_update, monitor_update)) = commitment_opt {
3547                                                         if let Err(e) = self.chain_monitor.update_channel(chan.get_funding_txo().unwrap(), monitor_update) {
3548                                                                 has_monitor_update = true;
3549                                                                 let (res, close_channel) = handle_monitor_err!(self, e, short_to_id, chan, RAACommitmentOrder::CommitmentFirst, false, true, Vec::new(), Vec::new(), channel_id);
3550                                                                 handle_errors.push((chan.get_counterparty_node_id(), res));
3551                                                                 if close_channel { return false; }
3552                                                         } else {
3553                                                                 pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
3554                                                                         node_id: chan.get_counterparty_node_id(),
3555                                                                         updates: commitment_update,
3556                                                                 });
3557                                                         }
3558                                                 }
3559                                                 true
3560                                         },
3561                                         Err(e) => {
3562                                                 let (close_channel, res) = convert_chan_err!(self, e, short_to_id, chan, channel_id);
3563                                                 handle_errors.push((chan.get_counterparty_node_id(), Err(res)));
3564                                                 !close_channel
3565                                         }
3566                                 }
3567                         });
3568                 }
3569
3570                 let has_update = has_monitor_update || !failed_htlcs.is_empty();
3571                 for (failures, channel_id) in failed_htlcs.drain(..) {
3572                         self.fail_holding_cell_htlcs(failures, channel_id);
3573                 }
3574
3575                 for (counterparty_node_id, err) in handle_errors.drain(..) {
3576                         let _ = handle_error!(self, err, counterparty_node_id);
3577                 }
3578
3579                 has_update
3580         }
3581
3582         /// Handle a list of channel failures during a block_connected or block_disconnected call,
3583         /// pushing the channel monitor update (if any) to the background events queue and removing the
3584         /// Channel object.
3585         fn handle_init_event_channel_failures(&self, mut failed_channels: Vec<ShutdownResult>) {
3586                 for mut failure in failed_channels.drain(..) {
3587                         // Either a commitment transactions has been confirmed on-chain or
3588                         // Channel::block_disconnected detected that the funding transaction has been
3589                         // reorganized out of the main chain.
3590                         // We cannot broadcast our latest local state via monitor update (as
3591                         // Channel::force_shutdown tries to make us do) as we may still be in initialization,
3592                         // so we track the update internally and handle it when the user next calls
3593                         // timer_tick_occurred, guaranteeing we're running normally.
3594                         if let Some((funding_txo, update)) = failure.0.take() {
3595                                 assert_eq!(update.updates.len(), 1);
3596                                 if let ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast } = update.updates[0] {
3597                                         assert!(should_broadcast);
3598                                 } else { unreachable!(); }
3599                                 self.pending_background_events.lock().unwrap().push(BackgroundEvent::ClosingMonitorUpdate((funding_txo, update)));
3600                         }
3601                         self.finish_force_close_channel(failure);
3602                 }
3603         }
3604
3605         fn set_payment_hash_secret_map(&self, payment_hash: PaymentHash, payment_preimage: Option<PaymentPreimage>, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32, user_payment_id: u64) -> Result<PaymentSecret, APIError> {
3606                 assert!(invoice_expiry_delta_secs <= 60*60*24*365); // Sadly bitcoin timestamps are u32s, so panic before 2106
3607
3608                 let payment_secret = PaymentSecret(self.keys_manager.get_secure_random_bytes());
3609
3610                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3611                 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
3612                 match payment_secrets.entry(payment_hash) {
3613                         hash_map::Entry::Vacant(e) => {
3614                                 e.insert(PendingInboundPayment {
3615                                         payment_secret, min_value_msat, user_payment_id, payment_preimage,
3616                                         // We assume that highest_seen_timestamp is pretty close to the current time -
3617                                         // its updated when we receive a new block with the maximum time we've seen in
3618                                         // a header. It should never be more than two hours in the future.
3619                                         // Thus, we add two hours here as a buffer to ensure we absolutely
3620                                         // never fail a payment too early.
3621                                         // Note that we assume that received blocks have reasonably up-to-date
3622                                         // timestamps.
3623                                         expiry_time: self.highest_seen_timestamp.load(Ordering::Acquire) as u64 + invoice_expiry_delta_secs as u64 + 7200,
3624                                 });
3625                         },
3626                         hash_map::Entry::Occupied(_) => return Err(APIError::APIMisuseError { err: "Duplicate payment hash".to_owned() }),
3627                 }
3628                 Ok(payment_secret)
3629         }
3630
3631         /// Gets a payment secret and payment hash for use in an invoice given to a third party wishing
3632         /// to pay us.
3633         ///
3634         /// This differs from [`create_inbound_payment_for_hash`] only in that it generates the
3635         /// [`PaymentHash`] and [`PaymentPreimage`] for you, returning the first and storing the second.
3636         ///
3637         /// The [`PaymentPreimage`] will ultimately be returned to you in the [`PaymentReceived`], which
3638         /// will have the [`PaymentReceived::payment_preimage`] field filled in. That should then be
3639         /// passed directly to [`claim_funds`].
3640         ///
3641         /// See [`create_inbound_payment_for_hash`] for detailed documentation on behavior and requirements.
3642         ///
3643         /// [`claim_funds`]: Self::claim_funds
3644         /// [`PaymentReceived`]: events::Event::PaymentReceived
3645         /// [`PaymentReceived::payment_preimage`]: events::Event::PaymentReceived::payment_preimage
3646         /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
3647         pub fn create_inbound_payment(&self, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32, user_payment_id: u64) -> (PaymentHash, PaymentSecret) {
3648                 let payment_preimage = PaymentPreimage(self.keys_manager.get_secure_random_bytes());
3649                 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
3650
3651                 (payment_hash,
3652                         self.set_payment_hash_secret_map(payment_hash, Some(payment_preimage), min_value_msat, invoice_expiry_delta_secs, user_payment_id)
3653                                 .expect("RNG Generated Duplicate PaymentHash"))
3654         }
3655
3656         /// Gets a [`PaymentSecret`] for a given [`PaymentHash`], for which the payment preimage is
3657         /// stored external to LDK.
3658         ///
3659         /// A [`PaymentReceived`] event will only be generated if the [`PaymentSecret`] matches a
3660         /// payment secret fetched via this method or [`create_inbound_payment`], and which is at least
3661         /// the `min_value_msat` provided here, if one is provided.
3662         ///
3663         /// The [`PaymentHash`] (and corresponding [`PaymentPreimage`]) must be globally unique. This
3664         /// method may return an Err if another payment with the same payment_hash is still pending.
3665         ///
3666         /// `user_payment_id` will be provided back in [`PaymentReceived::user_payment_id`] events to
3667         /// allow tracking of which events correspond with which calls to this and
3668         /// [`create_inbound_payment`]. `user_payment_id` has no meaning inside of LDK, it is simply
3669         /// copied to events and otherwise ignored. It may be used to correlate PaymentReceived events
3670         /// with invoice metadata stored elsewhere.
3671         ///
3672         /// `min_value_msat` should be set if the invoice being generated contains a value. Any payment
3673         /// received for the returned [`PaymentHash`] will be required to be at least `min_value_msat`
3674         /// before a [`PaymentReceived`] event will be generated, ensuring that we do not provide the
3675         /// sender "proof-of-payment" unless they have paid the required amount.
3676         ///
3677         /// `invoice_expiry_delta_secs` describes the number of seconds that the invoice is valid for
3678         /// in excess of the current time. This should roughly match the expiry time set in the invoice.
3679         /// After this many seconds, we will remove the inbound payment, resulting in any attempts to
3680         /// pay the invoice failing. The BOLT spec suggests 3,600 secs as a default validity time for
3681         /// invoices when no timeout is set.
3682         ///
3683         /// Note that we use block header time to time-out pending inbound payments (with some margin
3684         /// to compensate for the inaccuracy of block header timestamps). Thus, in practice we will
3685         /// accept a payment and generate a [`PaymentReceived`] event for some time after the expiry.
3686         /// If you need exact expiry semantics, you should enforce them upon receipt of
3687         /// [`PaymentReceived`].
3688         ///
3689         /// Pending inbound payments are stored in memory and in serialized versions of this
3690         /// [`ChannelManager`]. If potentially unbounded numbers of inbound payments may exist and
3691         /// space is limited, you may wish to rate-limit inbound payment creation.
3692         ///
3693         /// May panic if `invoice_expiry_delta_secs` is greater than one year.
3694         ///
3695         /// Note that invoices generated for inbound payments should have their `min_final_cltv_expiry`
3696         /// set to at least [`MIN_FINAL_CLTV_EXPIRY`].
3697         ///
3698         /// [`create_inbound_payment`]: Self::create_inbound_payment
3699         /// [`PaymentReceived`]: events::Event::PaymentReceived
3700         /// [`PaymentReceived::user_payment_id`]: events::Event::PaymentReceived::user_payment_id
3701         pub fn create_inbound_payment_for_hash(&self, payment_hash: PaymentHash, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32, user_payment_id: u64) -> Result<PaymentSecret, APIError> {
3702                 self.set_payment_hash_secret_map(payment_hash, None, min_value_msat, invoice_expiry_delta_secs, user_payment_id)
3703         }
3704
3705         #[cfg(any(test, feature = "fuzztarget", feature = "_test_utils"))]
3706         pub fn get_and_clear_pending_events(&self) -> Vec<events::Event> {
3707                 let events = core::cell::RefCell::new(Vec::new());
3708                 let event_handler = |event| events.borrow_mut().push(event);
3709                 self.process_pending_events(&event_handler);
3710                 events.into_inner()
3711         }
3712 }
3713
3714 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> MessageSendEventsProvider for ChannelManager<Signer, M, T, K, F, L>
3715         where M::Target: chain::Watch<Signer>,
3716         T::Target: BroadcasterInterface,
3717         K::Target: KeysInterface<Signer = Signer>,
3718         F::Target: FeeEstimator,
3719                                 L::Target: Logger,
3720 {
3721         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
3722                 let events = RefCell::new(Vec::new());
3723                 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
3724                         let mut result = NotifyOption::SkipPersist;
3725
3726                         // TODO: This behavior should be documented. It's unintuitive that we query
3727                         // ChannelMonitors when clearing other events.
3728                         if self.process_pending_monitor_events() {
3729                                 result = NotifyOption::DoPersist;
3730                         }
3731
3732                         if self.check_free_holding_cells() {
3733                                 result = NotifyOption::DoPersist;
3734                         }
3735
3736                         let mut pending_events = Vec::new();
3737                         let mut channel_state = self.channel_state.lock().unwrap();
3738                         mem::swap(&mut pending_events, &mut channel_state.pending_msg_events);
3739
3740                         if !pending_events.is_empty() {
3741                                 events.replace(pending_events);
3742                         }
3743
3744                         result
3745                 });
3746                 events.into_inner()
3747         }
3748 }
3749
3750 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> EventsProvider for ChannelManager<Signer, M, T, K, F, L>
3751 where
3752         M::Target: chain::Watch<Signer>,
3753         T::Target: BroadcasterInterface,
3754         K::Target: KeysInterface<Signer = Signer>,
3755         F::Target: FeeEstimator,
3756         L::Target: Logger,
3757 {
3758         /// Processes events that must be periodically handled.
3759         ///
3760         /// An [`EventHandler`] may safely call back to the provider in order to handle an event.
3761         /// However, it must not call [`Writeable::write`] as doing so would result in a deadlock.
3762         ///
3763         /// Pending events are persisted as part of [`ChannelManager`]. While these events are cleared
3764         /// when processed, an [`EventHandler`] must be able to handle previously seen events when
3765         /// restarting from an old state.
3766         fn process_pending_events<H: Deref>(&self, handler: H) where H::Target: EventHandler {
3767                 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
3768                         let mut result = NotifyOption::SkipPersist;
3769
3770                         // TODO: This behavior should be documented. It's unintuitive that we query
3771                         // ChannelMonitors when clearing other events.
3772                         if self.process_pending_monitor_events() {
3773                                 result = NotifyOption::DoPersist;
3774                         }
3775
3776                         let mut pending_events = std::mem::replace(&mut *self.pending_events.lock().unwrap(), vec![]);
3777                         if !pending_events.is_empty() {
3778                                 result = NotifyOption::DoPersist;
3779                         }
3780
3781                         for event in pending_events.drain(..) {
3782                                 handler.handle_event(event);
3783                         }
3784
3785                         result
3786                 });
3787         }
3788 }
3789
3790 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> chain::Listen for ChannelManager<Signer, M, T, K, F, L>
3791 where
3792         M::Target: chain::Watch<Signer>,
3793         T::Target: BroadcasterInterface,
3794         K::Target: KeysInterface<Signer = Signer>,
3795         F::Target: FeeEstimator,
3796         L::Target: Logger,
3797 {
3798         fn block_connected(&self, block: &Block, height: u32) {
3799                 {
3800                         let best_block = self.best_block.read().unwrap();
3801                         assert_eq!(best_block.block_hash(), block.header.prev_blockhash,
3802                                 "Blocks must be connected in chain-order - the connected header must build on the last connected header");
3803                         assert_eq!(best_block.height(), height - 1,
3804                                 "Blocks must be connected in chain-order - the connected block height must be one greater than the previous height");
3805                 }
3806
3807                 let txdata: Vec<_> = block.txdata.iter().enumerate().collect();
3808                 self.transactions_confirmed(&block.header, &txdata, height);
3809                 self.best_block_updated(&block.header, height);
3810         }
3811
3812         fn block_disconnected(&self, header: &BlockHeader, height: u32) {
3813                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3814                 let new_height = height - 1;
3815                 {
3816                         let mut best_block = self.best_block.write().unwrap();
3817                         assert_eq!(best_block.block_hash(), header.block_hash(),
3818                                 "Blocks must be disconnected in chain-order - the disconnected header must be the last connected header");
3819                         assert_eq!(best_block.height(), height,
3820                                 "Blocks must be disconnected in chain-order - the disconnected block must have the correct height");
3821                         *best_block = BestBlock::new(header.prev_blockhash, new_height)
3822                 }
3823
3824                 self.do_chain_event(Some(new_height), |channel| channel.best_block_updated(new_height, header.time, &self.logger));
3825         }
3826 }
3827
3828 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> chain::Confirm for ChannelManager<Signer, M, T, K, F, L>
3829 where
3830         M::Target: chain::Watch<Signer>,
3831         T::Target: BroadcasterInterface,
3832         K::Target: KeysInterface<Signer = Signer>,
3833         F::Target: FeeEstimator,
3834         L::Target: Logger,
3835 {
3836         fn transactions_confirmed(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
3837                 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
3838                 // during initialization prior to the chain_monitor being fully configured in some cases.
3839                 // See the docs for `ChannelManagerReadArgs` for more.
3840
3841                 let block_hash = header.block_hash();
3842                 log_trace!(self.logger, "{} transactions included in block {} at height {} provided", txdata.len(), block_hash, height);
3843
3844                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3845                 self.do_chain_event(Some(height), |channel| channel.transactions_confirmed(&block_hash, height, txdata, &self.logger).map(|a| (a, Vec::new())));
3846         }
3847
3848         fn best_block_updated(&self, header: &BlockHeader, height: u32) {
3849                 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
3850                 // during initialization prior to the chain_monitor being fully configured in some cases.
3851                 // See the docs for `ChannelManagerReadArgs` for more.
3852
3853                 let block_hash = header.block_hash();
3854                 log_trace!(self.logger, "New best block: {} at height {}", block_hash, height);
3855
3856                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3857
3858                 *self.best_block.write().unwrap() = BestBlock::new(block_hash, height);
3859
3860                 self.do_chain_event(Some(height), |channel| channel.best_block_updated(height, header.time, &self.logger));
3861
3862                 macro_rules! max_time {
3863                         ($timestamp: expr) => {
3864                                 loop {
3865                                         // Update $timestamp to be the max of its current value and the block
3866                                         // timestamp. This should keep us close to the current time without relying on
3867                                         // having an explicit local time source.
3868                                         // Just in case we end up in a race, we loop until we either successfully
3869                                         // update $timestamp or decide we don't need to.
3870                                         let old_serial = $timestamp.load(Ordering::Acquire);
3871                                         if old_serial >= header.time as usize { break; }
3872                                         if $timestamp.compare_exchange(old_serial, header.time as usize, Ordering::AcqRel, Ordering::Relaxed).is_ok() {
3873                                                 break;
3874                                         }
3875                                 }
3876                         }
3877                 }
3878                 max_time!(self.last_node_announcement_serial);
3879                 max_time!(self.highest_seen_timestamp);
3880                 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
3881                 payment_secrets.retain(|_, inbound_payment| {
3882                         inbound_payment.expiry_time > header.time as u64
3883                 });
3884         }
3885
3886         fn get_relevant_txids(&self) -> Vec<Txid> {
3887                 let channel_state = self.channel_state.lock().unwrap();
3888                 let mut res = Vec::with_capacity(channel_state.short_to_id.len());
3889                 for chan in channel_state.by_id.values() {
3890                         if let Some(funding_txo) = chan.get_funding_txo() {
3891                                 res.push(funding_txo.txid);
3892                         }
3893                 }
3894                 res
3895         }
3896
3897         fn transaction_unconfirmed(&self, txid: &Txid) {
3898                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3899                 self.do_chain_event(None, |channel| {
3900                         if let Some(funding_txo) = channel.get_funding_txo() {
3901                                 if funding_txo.txid == *txid {
3902                                         channel.funding_transaction_unconfirmed(&self.logger).map(|_| (None, Vec::new()))
3903                                 } else { Ok((None, Vec::new())) }
3904                         } else { Ok((None, Vec::new())) }
3905                 });
3906         }
3907 }
3908
3909 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> ChannelManager<Signer, M, T, K, F, L>
3910 where
3911         M::Target: chain::Watch<Signer>,
3912         T::Target: BroadcasterInterface,
3913         K::Target: KeysInterface<Signer = Signer>,
3914         F::Target: FeeEstimator,
3915         L::Target: Logger,
3916 {
3917         /// Calls a function which handles an on-chain event (blocks dis/connected, transactions
3918         /// un/confirmed, etc) on each channel, handling any resulting errors or messages generated by
3919         /// the function.
3920         fn do_chain_event<FN: Fn(&mut Channel<Signer>) -> Result<(Option<msgs::FundingLocked>, Vec<(HTLCSource, PaymentHash)>), msgs::ErrorMessage>>
3921                         (&self, height_opt: Option<u32>, f: FN) {
3922                 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
3923                 // during initialization prior to the chain_monitor being fully configured in some cases.
3924                 // See the docs for `ChannelManagerReadArgs` for more.
3925
3926                 let mut failed_channels = Vec::new();
3927                 let mut timed_out_htlcs = Vec::new();
3928                 {
3929                         let mut channel_lock = self.channel_state.lock().unwrap();
3930                         let channel_state = &mut *channel_lock;
3931                         let short_to_id = &mut channel_state.short_to_id;
3932                         let pending_msg_events = &mut channel_state.pending_msg_events;
3933                         channel_state.by_id.retain(|_, channel| {
3934                                 let res = f(channel);
3935                                 if let Ok((chan_res, mut timed_out_pending_htlcs)) = res {
3936                                         for (source, payment_hash) in timed_out_pending_htlcs.drain(..) {
3937                                                 let chan_update = self.get_channel_update(&channel).map(|u| u.encode_with_len()).unwrap(); // Cannot add/recv HTLCs before we have a short_id so unwrap is safe
3938                                                 timed_out_htlcs.push((source, payment_hash,  HTLCFailReason::Reason {
3939                                                         failure_code: 0x1000 | 14, // expiry_too_soon, or at least it is now
3940                                                         data: chan_update,
3941                                                 }));
3942                                         }
3943                                         if let Some(funding_locked) = chan_res {
3944                                                 pending_msg_events.push(events::MessageSendEvent::SendFundingLocked {
3945                                                         node_id: channel.get_counterparty_node_id(),
3946                                                         msg: funding_locked,
3947                                                 });
3948                                                 if let Some(announcement_sigs) = self.get_announcement_sigs(channel) {
3949                                                         log_trace!(self.logger, "Sending funding_locked and announcement_signatures for {}", log_bytes!(channel.channel_id()));
3950                                                         pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
3951                                                                 node_id: channel.get_counterparty_node_id(),
3952                                                                 msg: announcement_sigs,
3953                                                         });
3954                                                 } else {
3955                                                         log_trace!(self.logger, "Sending funding_locked WITHOUT announcement_signatures for {}", log_bytes!(channel.channel_id()));
3956                                                 }
3957                                                 short_to_id.insert(channel.get_short_channel_id().unwrap(), channel.channel_id());
3958                                         }
3959                                 } else if let Err(e) = res {
3960                                         if let Some(short_id) = channel.get_short_channel_id() {
3961                                                 short_to_id.remove(&short_id);
3962                                         }
3963                                         // It looks like our counterparty went on-chain or funding transaction was
3964                                         // reorged out of the main chain. Close the channel.
3965                                         failed_channels.push(channel.force_shutdown(true));
3966                                         if let Ok(update) = self.get_channel_update(&channel) {
3967                                                 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
3968                                                         msg: update
3969                                                 });
3970                                         }
3971                                         pending_msg_events.push(events::MessageSendEvent::HandleError {
3972                                                 node_id: channel.get_counterparty_node_id(),
3973                                                 action: msgs::ErrorAction::SendErrorMessage { msg: e },
3974                                         });
3975                                         return false;
3976                                 }
3977                                 true
3978                         });
3979
3980                         if let Some(height) = height_opt {
3981                                 channel_state.claimable_htlcs.retain(|payment_hash, htlcs| {
3982                                         htlcs.retain(|htlc| {
3983                                                 // If height is approaching the number of blocks we think it takes us to get
3984                                                 // our commitment transaction confirmed before the HTLC expires, plus the
3985                                                 // number of blocks we generally consider it to take to do a commitment update,
3986                                                 // just give up on it and fail the HTLC.
3987                                                 if height >= htlc.cltv_expiry - HTLC_FAIL_BACK_BUFFER {
3988                                                         let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec();
3989                                                         htlc_msat_height_data.extend_from_slice(&byte_utils::be32_to_array(height));
3990                                                         timed_out_htlcs.push((HTLCSource::PreviousHopData(htlc.prev_hop.clone()), payment_hash.clone(), HTLCFailReason::Reason {
3991                                                                 failure_code: 0x4000 | 15,
3992                                                                 data: htlc_msat_height_data
3993                                                         }));
3994                                                         false
3995                                                 } else { true }
3996                                         });
3997                                         !htlcs.is_empty() // Only retain this entry if htlcs has at least one entry.
3998                                 });
3999                         }
4000                 }
4001
4002                 self.handle_init_event_channel_failures(failed_channels);
4003
4004                 for (source, payment_hash, reason) in timed_out_htlcs.drain(..) {
4005                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), source, &payment_hash, reason);
4006                 }
4007         }
4008
4009         /// Blocks until ChannelManager needs to be persisted or a timeout is reached. It returns a bool
4010         /// indicating whether persistence is necessary. Only one listener on
4011         /// `await_persistable_update` or `await_persistable_update_timeout` is guaranteed to be woken
4012         /// up.
4013         /// Note that the feature `allow_wallclock_use` must be enabled to use this function.
4014         #[cfg(any(test, feature = "allow_wallclock_use"))]
4015         pub fn await_persistable_update_timeout(&self, max_wait: Duration) -> bool {
4016                 self.persistence_notifier.wait_timeout(max_wait)
4017         }
4018
4019         /// Blocks until ChannelManager needs to be persisted. Only one listener on
4020         /// `await_persistable_update` or `await_persistable_update_timeout` is guaranteed to be woken
4021         /// up.
4022         pub fn await_persistable_update(&self) {
4023                 self.persistence_notifier.wait()
4024         }
4025
4026         #[cfg(any(test, feature = "_test_utils"))]
4027         pub fn get_persistence_condvar_value(&self) -> bool {
4028                 let mutcond = &self.persistence_notifier.persistence_lock;
4029                 let &(ref mtx, _) = mutcond;
4030                 let guard = mtx.lock().unwrap();
4031                 *guard
4032         }
4033 }
4034
4035 impl<Signer: Sign, M: Deref , T: Deref , K: Deref , F: Deref , L: Deref >
4036         ChannelMessageHandler for ChannelManager<Signer, M, T, K, F, L>
4037         where M::Target: chain::Watch<Signer>,
4038         T::Target: BroadcasterInterface,
4039         K::Target: KeysInterface<Signer = Signer>,
4040         F::Target: FeeEstimator,
4041         L::Target: Logger,
4042 {
4043         fn handle_open_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::OpenChannel) {
4044                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4045                 let _ = handle_error!(self, self.internal_open_channel(counterparty_node_id, their_features, msg), *counterparty_node_id);
4046         }
4047
4048         fn handle_accept_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::AcceptChannel) {
4049                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4050                 let _ = handle_error!(self, self.internal_accept_channel(counterparty_node_id, their_features, msg), *counterparty_node_id);
4051         }
4052
4053         fn handle_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) {
4054                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4055                 let _ = handle_error!(self, self.internal_funding_created(counterparty_node_id, msg), *counterparty_node_id);
4056         }
4057
4058         fn handle_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) {
4059                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4060                 let _ = handle_error!(self, self.internal_funding_signed(counterparty_node_id, msg), *counterparty_node_id);
4061         }
4062
4063         fn handle_funding_locked(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingLocked) {
4064                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4065                 let _ = handle_error!(self, self.internal_funding_locked(counterparty_node_id, msg), *counterparty_node_id);
4066         }
4067
4068         fn handle_shutdown(&self, counterparty_node_id: &PublicKey, their_features: &InitFeatures, msg: &msgs::Shutdown) {
4069                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4070                 let _ = handle_error!(self, self.internal_shutdown(counterparty_node_id, their_features, msg), *counterparty_node_id);
4071         }
4072
4073         fn handle_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
4074                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4075                 let _ = handle_error!(self, self.internal_closing_signed(counterparty_node_id, msg), *counterparty_node_id);
4076         }
4077
4078         fn handle_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
4079                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4080                 let _ = handle_error!(self, self.internal_update_add_htlc(counterparty_node_id, msg), *counterparty_node_id);
4081         }
4082
4083         fn handle_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
4084                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4085                 let _ = handle_error!(self, self.internal_update_fulfill_htlc(counterparty_node_id, msg), *counterparty_node_id);
4086         }
4087
4088         fn handle_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
4089                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4090                 let _ = handle_error!(self, self.internal_update_fail_htlc(counterparty_node_id, msg), *counterparty_node_id);
4091         }
4092
4093         fn handle_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
4094                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4095                 let _ = handle_error!(self, self.internal_update_fail_malformed_htlc(counterparty_node_id, msg), *counterparty_node_id);
4096         }
4097
4098         fn handle_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
4099                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4100                 let _ = handle_error!(self, self.internal_commitment_signed(counterparty_node_id, msg), *counterparty_node_id);
4101         }
4102
4103         fn handle_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
4104                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4105                 let _ = handle_error!(self, self.internal_revoke_and_ack(counterparty_node_id, msg), *counterparty_node_id);
4106         }
4107
4108         fn handle_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) {
4109                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4110                 let _ = handle_error!(self, self.internal_update_fee(counterparty_node_id, msg), *counterparty_node_id);
4111         }
4112
4113         fn handle_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
4114                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4115                 let _ = handle_error!(self, self.internal_announcement_signatures(counterparty_node_id, msg), *counterparty_node_id);
4116         }
4117
4118         fn handle_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) {
4119                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4120                 let _ = handle_error!(self, self.internal_channel_update(counterparty_node_id, msg), *counterparty_node_id);
4121         }
4122
4123         fn handle_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
4124                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4125                 let _ = handle_error!(self, self.internal_channel_reestablish(counterparty_node_id, msg), *counterparty_node_id);
4126         }
4127
4128         fn peer_disconnected(&self, counterparty_node_id: &PublicKey, no_connection_possible: bool) {
4129                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4130                 let mut failed_channels = Vec::new();
4131                 let mut no_channels_remain = true;
4132                 {
4133                         let mut channel_state_lock = self.channel_state.lock().unwrap();
4134                         let channel_state = &mut *channel_state_lock;
4135                         let short_to_id = &mut channel_state.short_to_id;
4136                         let pending_msg_events = &mut channel_state.pending_msg_events;
4137                         if no_connection_possible {
4138                                 log_debug!(self.logger, "Failing all channels with {} due to no_connection_possible", log_pubkey!(counterparty_node_id));
4139                                 channel_state.by_id.retain(|_, chan| {
4140                                         if chan.get_counterparty_node_id() == *counterparty_node_id {
4141                                                 if let Some(short_id) = chan.get_short_channel_id() {
4142                                                         short_to_id.remove(&short_id);
4143                                                 }
4144                                                 failed_channels.push(chan.force_shutdown(true));
4145                                                 if let Ok(update) = self.get_channel_update(&chan) {
4146                                                         pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
4147                                                                 msg: update
4148                                                         });
4149                                                 }
4150                                                 false
4151                                         } else {
4152                                                 true
4153                                         }
4154                                 });
4155                         } else {
4156                                 log_debug!(self.logger, "Marking channels with {} disconnected and generating channel_updates", log_pubkey!(counterparty_node_id));
4157                                 channel_state.by_id.retain(|_, chan| {
4158                                         if chan.get_counterparty_node_id() == *counterparty_node_id {
4159                                                 chan.remove_uncommitted_htlcs_and_mark_paused(&self.logger);
4160                                                 if chan.is_shutdown() {
4161                                                         if let Some(short_id) = chan.get_short_channel_id() {
4162                                                                 short_to_id.remove(&short_id);
4163                                                         }
4164                                                         return false;
4165                                                 } else {
4166                                                         no_channels_remain = false;
4167                                                 }
4168                                         }
4169                                         true
4170                                 })
4171                         }
4172                         pending_msg_events.retain(|msg| {
4173                                 match msg {
4174                                         &events::MessageSendEvent::SendAcceptChannel { ref node_id, .. } => node_id != counterparty_node_id,
4175                                         &events::MessageSendEvent::SendOpenChannel { ref node_id, .. } => node_id != counterparty_node_id,
4176                                         &events::MessageSendEvent::SendFundingCreated { ref node_id, .. } => node_id != counterparty_node_id,
4177                                         &events::MessageSendEvent::SendFundingSigned { ref node_id, .. } => node_id != counterparty_node_id,
4178                                         &events::MessageSendEvent::SendFundingLocked { ref node_id, .. } => node_id != counterparty_node_id,
4179                                         &events::MessageSendEvent::SendAnnouncementSignatures { ref node_id, .. } => node_id != counterparty_node_id,
4180                                         &events::MessageSendEvent::UpdateHTLCs { ref node_id, .. } => node_id != counterparty_node_id,
4181                                         &events::MessageSendEvent::SendRevokeAndACK { ref node_id, .. } => node_id != counterparty_node_id,
4182                                         &events::MessageSendEvent::SendClosingSigned { ref node_id, .. } => node_id != counterparty_node_id,
4183                                         &events::MessageSendEvent::SendShutdown { ref node_id, .. } => node_id != counterparty_node_id,
4184                                         &events::MessageSendEvent::SendChannelReestablish { ref node_id, .. } => node_id != counterparty_node_id,
4185                                         &events::MessageSendEvent::BroadcastChannelAnnouncement { .. } => true,
4186                                         &events::MessageSendEvent::BroadcastNodeAnnouncement { .. } => true,
4187                                         &events::MessageSendEvent::BroadcastChannelUpdate { .. } => true,
4188                                         &events::MessageSendEvent::HandleError { ref node_id, .. } => node_id != counterparty_node_id,
4189                                         &events::MessageSendEvent::PaymentFailureNetworkUpdate { .. } => true,
4190                                         &events::MessageSendEvent::SendChannelRangeQuery { .. } => false,
4191                                         &events::MessageSendEvent::SendShortIdsQuery { .. } => false,
4192                                         &events::MessageSendEvent::SendReplyChannelRange { .. } => false,
4193                                 }
4194                         });
4195                 }
4196                 if no_channels_remain {
4197                         self.per_peer_state.write().unwrap().remove(counterparty_node_id);
4198                 }
4199
4200                 for failure in failed_channels.drain(..) {
4201                         self.finish_force_close_channel(failure);
4202                 }
4203         }
4204
4205         fn peer_connected(&self, counterparty_node_id: &PublicKey, init_msg: &msgs::Init) {
4206                 log_debug!(self.logger, "Generating channel_reestablish events for {}", log_pubkey!(counterparty_node_id));
4207
4208                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4209
4210                 {
4211                         let mut peer_state_lock = self.per_peer_state.write().unwrap();
4212                         match peer_state_lock.entry(counterparty_node_id.clone()) {
4213                                 hash_map::Entry::Vacant(e) => {
4214                                         e.insert(Mutex::new(PeerState {
4215                                                 latest_features: init_msg.features.clone(),
4216                                         }));
4217                                 },
4218                                 hash_map::Entry::Occupied(e) => {
4219                                         e.get().lock().unwrap().latest_features = init_msg.features.clone();
4220                                 },
4221                         }
4222                 }
4223
4224                 let mut channel_state_lock = self.channel_state.lock().unwrap();
4225                 let channel_state = &mut *channel_state_lock;
4226                 let pending_msg_events = &mut channel_state.pending_msg_events;
4227                 channel_state.by_id.retain(|_, chan| {
4228                         if chan.get_counterparty_node_id() == *counterparty_node_id {
4229                                 if !chan.have_received_message() {
4230                                         // If we created this (outbound) channel while we were disconnected from the
4231                                         // peer we probably failed to send the open_channel message, which is now
4232                                         // lost. We can't have had anything pending related to this channel, so we just
4233                                         // drop it.
4234                                         false
4235                                 } else {
4236                                         pending_msg_events.push(events::MessageSendEvent::SendChannelReestablish {
4237                                                 node_id: chan.get_counterparty_node_id(),
4238                                                 msg: chan.get_channel_reestablish(&self.logger),
4239                                         });
4240                                         true
4241                                 }
4242                         } else { true }
4243                 });
4244                 //TODO: Also re-broadcast announcement_signatures
4245         }
4246
4247         fn handle_error(&self, counterparty_node_id: &PublicKey, msg: &msgs::ErrorMessage) {
4248                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4249
4250                 if msg.channel_id == [0; 32] {
4251                         for chan in self.list_channels() {
4252                                 if chan.remote_network_id == *counterparty_node_id {
4253                                         // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
4254                                         let _ = self.force_close_channel_with_peer(&chan.channel_id, Some(counterparty_node_id));
4255                                 }
4256                         }
4257                 } else {
4258                         // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
4259                         let _ = self.force_close_channel_with_peer(&msg.channel_id, Some(counterparty_node_id));
4260                 }
4261         }
4262 }
4263
4264 /// Used to signal to the ChannelManager persister that the manager needs to be re-persisted to
4265 /// disk/backups, through `await_persistable_update_timeout` and `await_persistable_update`.
4266 struct PersistenceNotifier {
4267         /// Users won't access the persistence_lock directly, but rather wait on its bool using
4268         /// `wait_timeout` and `wait`.
4269         persistence_lock: (Mutex<bool>, Condvar),
4270 }
4271
4272 impl PersistenceNotifier {
4273         fn new() -> Self {
4274                 Self {
4275                         persistence_lock: (Mutex::new(false), Condvar::new()),
4276                 }
4277         }
4278
4279         fn wait(&self) {
4280                 loop {
4281                         let &(ref mtx, ref cvar) = &self.persistence_lock;
4282                         let mut guard = mtx.lock().unwrap();
4283                         if *guard {
4284                                 *guard = false;
4285                                 return;
4286                         }
4287                         guard = cvar.wait(guard).unwrap();
4288                         let result = *guard;
4289                         if result {
4290                                 *guard = false;
4291                                 return
4292                         }
4293                 }
4294         }
4295
4296         #[cfg(any(test, feature = "allow_wallclock_use"))]
4297         fn wait_timeout(&self, max_wait: Duration) -> bool {
4298                 let current_time = Instant::now();
4299                 loop {
4300                         let &(ref mtx, ref cvar) = &self.persistence_lock;
4301                         let mut guard = mtx.lock().unwrap();
4302                         if *guard {
4303                                 *guard = false;
4304                                 return true;
4305                         }
4306                         guard = cvar.wait_timeout(guard, max_wait).unwrap().0;
4307                         // Due to spurious wakeups that can happen on `wait_timeout`, here we need to check if the
4308                         // desired wait time has actually passed, and if not then restart the loop with a reduced wait
4309                         // time. Note that this logic can be highly simplified through the use of
4310                         // `Condvar::wait_while` and `Condvar::wait_timeout_while`, if and when our MSRV is raised to
4311                         // 1.42.0.
4312                         let elapsed = current_time.elapsed();
4313                         let result = *guard;
4314                         if result || elapsed >= max_wait {
4315                                 *guard = false;
4316                                 return result;
4317                         }
4318                         match max_wait.checked_sub(elapsed) {
4319                                 None => return result,
4320                                 Some(_) => continue
4321                         }
4322                 }
4323         }
4324
4325         // Signal to the ChannelManager persister that there are updates necessitating persisting to disk.
4326         fn notify(&self) {
4327                 let &(ref persist_mtx, ref cnd) = &self.persistence_lock;
4328                 let mut persistence_lock = persist_mtx.lock().unwrap();
4329                 *persistence_lock = true;
4330                 mem::drop(persistence_lock);
4331                 cnd.notify_all();
4332         }
4333 }
4334
4335 const SERIALIZATION_VERSION: u8 = 1;
4336 const MIN_SERIALIZATION_VERSION: u8 = 1;
4337
4338 impl_writeable_tlv_based_enum!(PendingHTLCRouting,
4339         (0, Forward) => {
4340                 (0, onion_packet, required),
4341                 (2, short_channel_id, required),
4342         },
4343         (1, Receive) => {
4344                 (0, payment_data, required),
4345                 (2, incoming_cltv_expiry, required),
4346         }
4347 ;);
4348
4349 impl_writeable_tlv_based!(PendingHTLCInfo, {
4350         (0, routing, required),
4351         (2, incoming_shared_secret, required),
4352         (4, payment_hash, required),
4353         (6, amt_to_forward, required),
4354         (8, outgoing_cltv_value, required)
4355 });
4356
4357 impl_writeable_tlv_based_enum!(HTLCFailureMsg, ;
4358         (0, Relay),
4359         (1, Malformed),
4360 );
4361 impl_writeable_tlv_based_enum!(PendingHTLCStatus, ;
4362         (0, Forward),
4363         (1, Fail),
4364 );
4365
4366 impl_writeable_tlv_based!(HTLCPreviousHopData, {
4367         (0, short_channel_id, required),
4368         (2, outpoint, required),
4369         (4, htlc_id, required),
4370         (6, incoming_packet_shared_secret, required)
4371 });
4372
4373 impl_writeable_tlv_based!(ClaimableHTLC, {
4374         (0, prev_hop, required),
4375         (2, value, required),
4376         (4, payment_data, required),
4377         (6, cltv_expiry, required),
4378 });
4379
4380 impl_writeable_tlv_based_enum!(HTLCSource,
4381         (0, OutboundRoute) => {
4382                 (0, session_priv, required),
4383                 (2, first_hop_htlc_msat, required),
4384                 (4, path, vec_type),
4385         }, ;
4386         (1, PreviousHopData)
4387 );
4388
4389 impl_writeable_tlv_based_enum!(HTLCFailReason,
4390         (0, LightningError) => {
4391                 (0, err, required),
4392         },
4393         (1, Reason) => {
4394                 (0, failure_code, required),
4395                 (2, data, vec_type),
4396         },
4397 ;);
4398
4399 impl_writeable_tlv_based_enum!(HTLCForwardInfo,
4400         (0, AddHTLC) => {
4401                 (0, forward_info, required),
4402                 (2, prev_short_channel_id, required),
4403                 (4, prev_htlc_id, required),
4404                 (6, prev_funding_outpoint, required),
4405         },
4406         (1, FailHTLC) => {
4407                 (0, htlc_id, required),
4408                 (2, err_packet, required),
4409         },
4410 ;);
4411
4412 impl_writeable_tlv_based!(PendingInboundPayment, {
4413         (0, payment_secret, required),
4414         (2, expiry_time, required),
4415         (4, user_payment_id, required),
4416         (6, payment_preimage, required),
4417         (8, min_value_msat, required),
4418 });
4419
4420 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> Writeable for ChannelManager<Signer, M, T, K, F, L>
4421         where M::Target: chain::Watch<Signer>,
4422         T::Target: BroadcasterInterface,
4423         K::Target: KeysInterface<Signer = Signer>,
4424         F::Target: FeeEstimator,
4425         L::Target: Logger,
4426 {
4427         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
4428                 let _consistency_lock = self.total_consistency_lock.write().unwrap();
4429
4430                 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
4431
4432                 self.genesis_hash.write(writer)?;
4433                 {
4434                         let best_block = self.best_block.read().unwrap();
4435                         best_block.height().write(writer)?;
4436                         best_block.block_hash().write(writer)?;
4437                 }
4438
4439                 let channel_state = self.channel_state.lock().unwrap();
4440                 let mut unfunded_channels = 0;
4441                 for (_, channel) in channel_state.by_id.iter() {
4442                         if !channel.is_funding_initiated() {
4443                                 unfunded_channels += 1;
4444                         }
4445                 }
4446                 ((channel_state.by_id.len() - unfunded_channels) as u64).write(writer)?;
4447                 for (_, channel) in channel_state.by_id.iter() {
4448                         if channel.is_funding_initiated() {
4449                                 channel.write(writer)?;
4450                         }
4451                 }
4452
4453                 (channel_state.forward_htlcs.len() as u64).write(writer)?;
4454                 for (short_channel_id, pending_forwards) in channel_state.forward_htlcs.iter() {
4455                         short_channel_id.write(writer)?;
4456                         (pending_forwards.len() as u64).write(writer)?;
4457                         for forward in pending_forwards {
4458                                 forward.write(writer)?;
4459                         }
4460                 }
4461
4462                 (channel_state.claimable_htlcs.len() as u64).write(writer)?;
4463                 for (payment_hash, previous_hops) in channel_state.claimable_htlcs.iter() {
4464                         payment_hash.write(writer)?;
4465                         (previous_hops.len() as u64).write(writer)?;
4466                         for htlc in previous_hops.iter() {
4467                                 htlc.write(writer)?;
4468                         }
4469                 }
4470
4471                 let per_peer_state = self.per_peer_state.write().unwrap();
4472                 (per_peer_state.len() as u64).write(writer)?;
4473                 for (peer_pubkey, peer_state_mutex) in per_peer_state.iter() {
4474                         peer_pubkey.write(writer)?;
4475                         let peer_state = peer_state_mutex.lock().unwrap();
4476                         peer_state.latest_features.write(writer)?;
4477                 }
4478
4479                 let events = self.pending_events.lock().unwrap();
4480                 (events.len() as u64).write(writer)?;
4481                 for event in events.iter() {
4482                         event.write(writer)?;
4483                 }
4484
4485                 let background_events = self.pending_background_events.lock().unwrap();
4486                 (background_events.len() as u64).write(writer)?;
4487                 for event in background_events.iter() {
4488                         match event {
4489                                 BackgroundEvent::ClosingMonitorUpdate((funding_txo, monitor_update)) => {
4490                                         0u8.write(writer)?;
4491                                         funding_txo.write(writer)?;
4492                                         monitor_update.write(writer)?;
4493                                 },
4494                         }
4495                 }
4496
4497                 (self.last_node_announcement_serial.load(Ordering::Acquire) as u32).write(writer)?;
4498                 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
4499
4500                 let pending_inbound_payments = self.pending_inbound_payments.lock().unwrap();
4501                 (pending_inbound_payments.len() as u64).write(writer)?;
4502                 for (hash, pending_payment) in pending_inbound_payments.iter() {
4503                         hash.write(writer)?;
4504                         pending_payment.write(writer)?;
4505                 }
4506
4507                 let pending_outbound_payments = self.pending_outbound_payments.lock().unwrap();
4508                 (pending_outbound_payments.len() as u64).write(writer)?;
4509                 for session_priv in pending_outbound_payments.iter() {
4510                         session_priv.write(writer)?;
4511                 }
4512
4513                 write_tlv_fields!(writer, {});
4514
4515                 Ok(())
4516         }
4517 }
4518
4519 /// Arguments for the creation of a ChannelManager that are not deserialized.
4520 ///
4521 /// At a high-level, the process for deserializing a ChannelManager and resuming normal operation
4522 /// is:
4523 /// 1) Deserialize all stored ChannelMonitors.
4524 /// 2) Deserialize the ChannelManager by filling in this struct and calling:
4525 ///    <(BlockHash, ChannelManager)>::read(reader, args)
4526 ///    This may result in closing some Channels if the ChannelMonitor is newer than the stored
4527 ///    ChannelManager state to ensure no loss of funds. Thus, transactions may be broadcasted.
4528 /// 3) If you are not fetching full blocks, register all relevant ChannelMonitor outpoints the same
4529 ///    way you would handle a `chain::Filter` call using ChannelMonitor::get_outputs_to_watch() and
4530 ///    ChannelMonitor::get_funding_txo().
4531 /// 4) Reconnect blocks on your ChannelMonitors.
4532 /// 5) Disconnect/connect blocks on the ChannelManager.
4533 /// 6) Move the ChannelMonitors into your local chain::Watch.
4534 ///
4535 /// Note that the ordering of #4-6 is not of importance, however all three must occur before you
4536 /// call any other methods on the newly-deserialized ChannelManager.
4537 ///
4538 /// Note that because some channels may be closed during deserialization, it is critical that you
4539 /// always deserialize only the latest version of a ChannelManager and ChannelMonitors available to
4540 /// you. If you deserialize an old ChannelManager (during which force-closure transactions may be
4541 /// broadcast), and then later deserialize a newer version of the same ChannelManager (which will
4542 /// not force-close the same channels but consider them live), you may end up revoking a state for
4543 /// which you've already broadcasted the transaction.
4544 pub struct ChannelManagerReadArgs<'a, Signer: 'a + Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
4545         where M::Target: chain::Watch<Signer>,
4546         T::Target: BroadcasterInterface,
4547         K::Target: KeysInterface<Signer = Signer>,
4548         F::Target: FeeEstimator,
4549         L::Target: Logger,
4550 {
4551         /// The keys provider which will give us relevant keys. Some keys will be loaded during
4552         /// deserialization and KeysInterface::read_chan_signer will be used to read per-Channel
4553         /// signing data.
4554         pub keys_manager: K,
4555
4556         /// The fee_estimator for use in the ChannelManager in the future.
4557         ///
4558         /// No calls to the FeeEstimator will be made during deserialization.
4559         pub fee_estimator: F,
4560         /// The chain::Watch for use in the ChannelManager in the future.
4561         ///
4562         /// No calls to the chain::Watch will be made during deserialization. It is assumed that
4563         /// you have deserialized ChannelMonitors separately and will add them to your
4564         /// chain::Watch after deserializing this ChannelManager.
4565         pub chain_monitor: M,
4566
4567         /// The BroadcasterInterface which will be used in the ChannelManager in the future and may be
4568         /// used to broadcast the latest local commitment transactions of channels which must be
4569         /// force-closed during deserialization.
4570         pub tx_broadcaster: T,
4571         /// The Logger for use in the ChannelManager and which may be used to log information during
4572         /// deserialization.
4573         pub logger: L,
4574         /// Default settings used for new channels. Any existing channels will continue to use the
4575         /// runtime settings which were stored when the ChannelManager was serialized.
4576         pub default_config: UserConfig,
4577
4578         /// A map from channel funding outpoints to ChannelMonitors for those channels (ie
4579         /// value.get_funding_txo() should be the key).
4580         ///
4581         /// If a monitor is inconsistent with the channel state during deserialization the channel will
4582         /// be force-closed using the data in the ChannelMonitor and the channel will be dropped. This
4583         /// is true for missing channels as well. If there is a monitor missing for which we find
4584         /// channel data Err(DecodeError::InvalidValue) will be returned.
4585         ///
4586         /// In such cases the latest local transactions will be sent to the tx_broadcaster included in
4587         /// this struct.
4588         ///
4589         /// (C-not exported) because we have no HashMap bindings
4590         pub channel_monitors: HashMap<OutPoint, &'a mut ChannelMonitor<Signer>>,
4591 }
4592
4593 impl<'a, Signer: 'a + Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
4594                 ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>
4595         where M::Target: chain::Watch<Signer>,
4596                 T::Target: BroadcasterInterface,
4597                 K::Target: KeysInterface<Signer = Signer>,
4598                 F::Target: FeeEstimator,
4599                 L::Target: Logger,
4600         {
4601         /// Simple utility function to create a ChannelManagerReadArgs which creates the monitor
4602         /// HashMap for you. This is primarily useful for C bindings where it is not practical to
4603         /// populate a HashMap directly from C.
4604         pub fn new(keys_manager: K, fee_estimator: F, chain_monitor: M, tx_broadcaster: T, logger: L, default_config: UserConfig,
4605                         mut channel_monitors: Vec<&'a mut ChannelMonitor<Signer>>) -> Self {
4606                 Self {
4607                         keys_manager, fee_estimator, chain_monitor, tx_broadcaster, logger, default_config,
4608                         channel_monitors: channel_monitors.drain(..).map(|monitor| { (monitor.get_funding_txo().0, monitor) }).collect()
4609                 }
4610         }
4611 }
4612
4613 // Implement ReadableArgs for an Arc'd ChannelManager to make it a bit easier to work with the
4614 // SipmleArcChannelManager type:
4615 impl<'a, Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
4616         ReadableArgs<ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>> for (BlockHash, Arc<ChannelManager<Signer, M, T, K, F, L>>)
4617         where M::Target: chain::Watch<Signer>,
4618         T::Target: BroadcasterInterface,
4619         K::Target: KeysInterface<Signer = Signer>,
4620         F::Target: FeeEstimator,
4621         L::Target: Logger,
4622 {
4623         fn read<R: ::std::io::Read>(reader: &mut R, args: ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>) -> Result<Self, DecodeError> {
4624                 let (blockhash, chan_manager) = <(BlockHash, ChannelManager<Signer, M, T, K, F, L>)>::read(reader, args)?;
4625                 Ok((blockhash, Arc::new(chan_manager)))
4626         }
4627 }
4628
4629 impl<'a, Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
4630         ReadableArgs<ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>> for (BlockHash, ChannelManager<Signer, M, T, K, F, L>)
4631         where M::Target: chain::Watch<Signer>,
4632         T::Target: BroadcasterInterface,
4633         K::Target: KeysInterface<Signer = Signer>,
4634         F::Target: FeeEstimator,
4635         L::Target: Logger,
4636 {
4637         fn read<R: ::std::io::Read>(reader: &mut R, mut args: ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>) -> Result<Self, DecodeError> {
4638                 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
4639
4640                 let genesis_hash: BlockHash = Readable::read(reader)?;
4641                 let best_block_height: u32 = Readable::read(reader)?;
4642                 let best_block_hash: BlockHash = Readable::read(reader)?;
4643
4644                 let mut failed_htlcs = Vec::new();
4645
4646                 let channel_count: u64 = Readable::read(reader)?;
4647                 let mut funding_txo_set = HashSet::with_capacity(cmp::min(channel_count as usize, 128));
4648                 let mut by_id = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
4649                 let mut short_to_id = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
4650                 for _ in 0..channel_count {
4651                         let mut channel: Channel<Signer> = Channel::read(reader, &args.keys_manager)?;
4652                         let funding_txo = channel.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
4653                         funding_txo_set.insert(funding_txo.clone());
4654                         if let Some(ref mut monitor) = args.channel_monitors.get_mut(&funding_txo) {
4655                                 if channel.get_cur_holder_commitment_transaction_number() < monitor.get_cur_holder_commitment_number() ||
4656                                                 channel.get_revoked_counterparty_commitment_transaction_number() < monitor.get_min_seen_secret() ||
4657                                                 channel.get_cur_counterparty_commitment_transaction_number() < monitor.get_cur_counterparty_commitment_number() ||
4658                                                 channel.get_latest_monitor_update_id() > monitor.get_latest_update_id() {
4659                                         // If the channel is ahead of the monitor, return InvalidValue:
4660                                         log_error!(args.logger, "A ChannelMonitor is stale compared to the current ChannelManager! This indicates a potentially-critical violation of the chain::Watch API!");
4661                                         log_error!(args.logger, " The ChannelMonitor for channel {} is at update_id {} but the ChannelManager is at update_id {}.",
4662                                                 log_bytes!(channel.channel_id()), monitor.get_latest_update_id(), channel.get_latest_monitor_update_id());
4663                                         log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
4664                                         log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
4665                                         return Err(DecodeError::InvalidValue);
4666                                 } else if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() ||
4667                                                 channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() ||
4668                                                 channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() ||
4669                                                 channel.get_latest_monitor_update_id() < monitor.get_latest_update_id() {
4670                                         // But if the channel is behind of the monitor, close the channel:
4671                                         let (_, mut new_failed_htlcs) = channel.force_shutdown(true);
4672                                         failed_htlcs.append(&mut new_failed_htlcs);
4673                                         monitor.broadcast_latest_holder_commitment_txn(&args.tx_broadcaster, &args.logger);
4674                                 } else {
4675                                         if let Some(short_channel_id) = channel.get_short_channel_id() {
4676                                                 short_to_id.insert(short_channel_id, channel.channel_id());
4677                                         }
4678                                         by_id.insert(channel.channel_id(), channel);
4679                                 }
4680                         } else {
4681                                 log_error!(args.logger, "Missing ChannelMonitor for channel {} needed by ChannelManager.", log_bytes!(channel.channel_id()));
4682                                 log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
4683                                 log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
4684                                 return Err(DecodeError::InvalidValue);
4685                         }
4686                 }
4687
4688                 for (ref funding_txo, ref mut monitor) in args.channel_monitors.iter_mut() {
4689                         if !funding_txo_set.contains(funding_txo) {
4690                                 monitor.broadcast_latest_holder_commitment_txn(&args.tx_broadcaster, &args.logger);
4691                         }
4692                 }
4693
4694                 const MAX_ALLOC_SIZE: usize = 1024 * 64;
4695                 let forward_htlcs_count: u64 = Readable::read(reader)?;
4696                 let mut forward_htlcs = HashMap::with_capacity(cmp::min(forward_htlcs_count as usize, 128));
4697                 for _ in 0..forward_htlcs_count {
4698                         let short_channel_id = Readable::read(reader)?;
4699                         let pending_forwards_count: u64 = Readable::read(reader)?;
4700                         let mut pending_forwards = Vec::with_capacity(cmp::min(pending_forwards_count as usize, MAX_ALLOC_SIZE/mem::size_of::<HTLCForwardInfo>()));
4701                         for _ in 0..pending_forwards_count {
4702                                 pending_forwards.push(Readable::read(reader)?);
4703                         }
4704                         forward_htlcs.insert(short_channel_id, pending_forwards);
4705                 }
4706
4707                 let claimable_htlcs_count: u64 = Readable::read(reader)?;
4708                 let mut claimable_htlcs = HashMap::with_capacity(cmp::min(claimable_htlcs_count as usize, 128));
4709                 for _ in 0..claimable_htlcs_count {
4710                         let payment_hash = Readable::read(reader)?;
4711                         let previous_hops_len: u64 = Readable::read(reader)?;
4712                         let mut previous_hops = Vec::with_capacity(cmp::min(previous_hops_len as usize, MAX_ALLOC_SIZE/mem::size_of::<ClaimableHTLC>()));
4713                         for _ in 0..previous_hops_len {
4714                                 previous_hops.push(Readable::read(reader)?);
4715                         }
4716                         claimable_htlcs.insert(payment_hash, previous_hops);
4717                 }
4718
4719                 let peer_count: u64 = Readable::read(reader)?;
4720                 let mut per_peer_state = HashMap::with_capacity(cmp::min(peer_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(PublicKey, Mutex<PeerState>)>()));
4721                 for _ in 0..peer_count {
4722                         let peer_pubkey = Readable::read(reader)?;
4723                         let peer_state = PeerState {
4724                                 latest_features: Readable::read(reader)?,
4725                         };
4726                         per_peer_state.insert(peer_pubkey, Mutex::new(peer_state));
4727                 }
4728
4729                 let event_count: u64 = Readable::read(reader)?;
4730                 let mut pending_events_read: Vec<events::Event> = Vec::with_capacity(cmp::min(event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<events::Event>()));
4731                 for _ in 0..event_count {
4732                         match MaybeReadable::read(reader)? {
4733                                 Some(event) => pending_events_read.push(event),
4734                                 None => continue,
4735                         }
4736                 }
4737
4738                 let background_event_count: u64 = Readable::read(reader)?;
4739                 let mut pending_background_events_read: Vec<BackgroundEvent> = Vec::with_capacity(cmp::min(background_event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<BackgroundEvent>()));
4740                 for _ in 0..background_event_count {
4741                         match <u8 as Readable>::read(reader)? {
4742                                 0 => pending_background_events_read.push(BackgroundEvent::ClosingMonitorUpdate((Readable::read(reader)?, Readable::read(reader)?))),
4743                                 _ => return Err(DecodeError::InvalidValue),
4744                         }
4745                 }
4746
4747                 let last_node_announcement_serial: u32 = Readable::read(reader)?;
4748                 let highest_seen_timestamp: u32 = Readable::read(reader)?;
4749
4750                 let pending_inbound_payment_count: u64 = Readable::read(reader)?;
4751                 let mut pending_inbound_payments: HashMap<PaymentHash, PendingInboundPayment> = HashMap::with_capacity(cmp::min(pending_inbound_payment_count as usize, MAX_ALLOC_SIZE/(3*32)));
4752                 for _ in 0..pending_inbound_payment_count {
4753                         if pending_inbound_payments.insert(Readable::read(reader)?, Readable::read(reader)?).is_some() {
4754                                 return Err(DecodeError::InvalidValue);
4755                         }
4756                 }
4757
4758                 let pending_outbound_payments_count: u64 = Readable::read(reader)?;
4759                 let mut pending_outbound_payments: HashSet<[u8; 32]> = HashSet::with_capacity(cmp::min(pending_outbound_payments_count as usize, MAX_ALLOC_SIZE/32));
4760                 for _ in 0..pending_outbound_payments_count {
4761                         if !pending_outbound_payments.insert(Readable::read(reader)?) {
4762                                 return Err(DecodeError::InvalidValue);
4763                         }
4764                 }
4765
4766                 read_tlv_fields!(reader, {});
4767
4768                 let mut secp_ctx = Secp256k1::new();
4769                 secp_ctx.seeded_randomize(&args.keys_manager.get_secure_random_bytes());
4770
4771                 let channel_manager = ChannelManager {
4772                         genesis_hash,
4773                         fee_estimator: args.fee_estimator,
4774                         chain_monitor: args.chain_monitor,
4775                         tx_broadcaster: args.tx_broadcaster,
4776
4777                         best_block: RwLock::new(BestBlock::new(best_block_hash, best_block_height)),
4778
4779                         channel_state: Mutex::new(ChannelHolder {
4780                                 by_id,
4781                                 short_to_id,
4782                                 forward_htlcs,
4783                                 claimable_htlcs,
4784                                 pending_msg_events: Vec::new(),
4785                         }),
4786                         pending_inbound_payments: Mutex::new(pending_inbound_payments),
4787                         pending_outbound_payments: Mutex::new(pending_outbound_payments),
4788
4789                         our_network_key: args.keys_manager.get_node_secret(),
4790                         our_network_pubkey: PublicKey::from_secret_key(&secp_ctx, &args.keys_manager.get_node_secret()),
4791                         secp_ctx,
4792
4793                         last_node_announcement_serial: AtomicUsize::new(last_node_announcement_serial as usize),
4794                         highest_seen_timestamp: AtomicUsize::new(highest_seen_timestamp as usize),
4795
4796                         per_peer_state: RwLock::new(per_peer_state),
4797
4798                         pending_events: Mutex::new(pending_events_read),
4799                         pending_background_events: Mutex::new(pending_background_events_read),
4800                         total_consistency_lock: RwLock::new(()),
4801                         persistence_notifier: PersistenceNotifier::new(),
4802
4803                         keys_manager: args.keys_manager,
4804                         logger: args.logger,
4805                         default_configuration: args.default_config,
4806                 };
4807
4808                 for htlc_source in failed_htlcs.drain(..) {
4809                         channel_manager.fail_htlc_backwards_internal(channel_manager.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
4810                 }
4811
4812                 //TODO: Broadcast channel update for closed channels, but only after we've made a
4813                 //connection or two.
4814
4815                 Ok((best_block_hash.clone(), channel_manager))
4816         }
4817 }
4818
4819 #[cfg(test)]
4820 mod tests {
4821         use ln::channelmanager::PersistenceNotifier;
4822         use std::sync::Arc;
4823         use core::sync::atomic::{AtomicBool, Ordering};
4824         use std::thread;
4825         use core::time::Duration;
4826
4827         #[test]
4828         fn test_wait_timeout() {
4829                 let persistence_notifier = Arc::new(PersistenceNotifier::new());
4830                 let thread_notifier = Arc::clone(&persistence_notifier);
4831
4832                 let exit_thread = Arc::new(AtomicBool::new(false));
4833                 let exit_thread_clone = exit_thread.clone();
4834                 thread::spawn(move || {
4835                         loop {
4836                                 let &(ref persist_mtx, ref cnd) = &thread_notifier.persistence_lock;
4837                                 let mut persistence_lock = persist_mtx.lock().unwrap();
4838                                 *persistence_lock = true;
4839                                 cnd.notify_all();
4840
4841                                 if exit_thread_clone.load(Ordering::SeqCst) {
4842                                         break
4843                                 }
4844                         }
4845                 });
4846
4847                 // Check that we can block indefinitely until updates are available.
4848                 let _ = persistence_notifier.wait();
4849
4850                 // Check that the PersistenceNotifier will return after the given duration if updates are
4851                 // available.
4852                 loop {
4853                         if persistence_notifier.wait_timeout(Duration::from_millis(100)) {
4854                                 break
4855                         }
4856                 }
4857
4858                 exit_thread.store(true, Ordering::SeqCst);
4859
4860                 // Check that the PersistenceNotifier will return after the given duration even if no updates
4861                 // are available.
4862                 loop {
4863                         if !persistence_notifier.wait_timeout(Duration::from_millis(100)) {
4864                                 break
4865                         }
4866                 }
4867         }
4868 }
4869
4870 #[cfg(all(any(test, feature = "_test_utils"), feature = "unstable"))]
4871 pub mod bench {
4872         use chain::Listen;
4873         use chain::chainmonitor::ChainMonitor;
4874         use chain::channelmonitor::Persist;
4875         use chain::keysinterface::{KeysManager, InMemorySigner};
4876         use ln::channelmanager::{BestBlock, ChainParameters, ChannelManager, PaymentHash, PaymentPreimage};
4877         use ln::features::{InitFeatures, InvoiceFeatures};
4878         use ln::functional_test_utils::*;
4879         use ln::msgs::ChannelMessageHandler;
4880         use routing::network_graph::NetworkGraph;
4881         use routing::router::get_route;
4882         use util::test_utils;
4883         use util::config::UserConfig;
4884         use util::events::{Event, MessageSendEvent, MessageSendEventsProvider};
4885
4886         use bitcoin::hashes::Hash;
4887         use bitcoin::hashes::sha256::Hash as Sha256;
4888         use bitcoin::{Block, BlockHeader, Transaction, TxOut};
4889
4890         use std::sync::{Arc, Mutex};
4891
4892         use test::Bencher;
4893
4894         struct NodeHolder<'a, P: Persist<InMemorySigner>> {
4895                 node: &'a ChannelManager<InMemorySigner,
4896                         &'a ChainMonitor<InMemorySigner, &'a test_utils::TestChainSource,
4897                                 &'a test_utils::TestBroadcaster, &'a test_utils::TestFeeEstimator,
4898                                 &'a test_utils::TestLogger, &'a P>,
4899                         &'a test_utils::TestBroadcaster, &'a KeysManager,
4900                         &'a test_utils::TestFeeEstimator, &'a test_utils::TestLogger>
4901         }
4902
4903         #[cfg(test)]
4904         #[bench]
4905         fn bench_sends(bench: &mut Bencher) {
4906                 bench_two_sends(bench, test_utils::TestPersister::new(), test_utils::TestPersister::new());
4907         }
4908
4909         pub fn bench_two_sends<P: Persist<InMemorySigner>>(bench: &mut Bencher, persister_a: P, persister_b: P) {
4910                 // Do a simple benchmark of sending a payment back and forth between two nodes.
4911                 // Note that this is unrealistic as each payment send will require at least two fsync
4912                 // calls per node.
4913                 let network = bitcoin::Network::Testnet;
4914                 let genesis_hash = bitcoin::blockdata::constants::genesis_block(network).header.block_hash();
4915
4916                 let tx_broadcaster = test_utils::TestBroadcaster{txn_broadcasted: Mutex::new(Vec::new()), blocks: Arc::new(Mutex::new(Vec::new()))};
4917                 let fee_estimator = test_utils::TestFeeEstimator { sat_per_kw: 253 };
4918
4919                 let mut config: UserConfig = Default::default();
4920                 config.own_channel_config.minimum_depth = 1;
4921
4922                 let logger_a = test_utils::TestLogger::with_id("node a".to_owned());
4923                 let chain_monitor_a = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_a);
4924                 let seed_a = [1u8; 32];
4925                 let keys_manager_a = KeysManager::new(&seed_a, 42, 42);
4926                 let node_a = ChannelManager::new(&fee_estimator, &chain_monitor_a, &tx_broadcaster, &logger_a, &keys_manager_a, config.clone(), ChainParameters {
4927                         network,
4928                         best_block: BestBlock::from_genesis(network),
4929                 });
4930                 let node_a_holder = NodeHolder { node: &node_a };
4931
4932                 let logger_b = test_utils::TestLogger::with_id("node a".to_owned());
4933                 let chain_monitor_b = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_b);
4934                 let seed_b = [2u8; 32];
4935                 let keys_manager_b = KeysManager::new(&seed_b, 42, 42);
4936                 let node_b = ChannelManager::new(&fee_estimator, &chain_monitor_b, &tx_broadcaster, &logger_b, &keys_manager_b, config.clone(), ChainParameters {
4937                         network,
4938                         best_block: BestBlock::from_genesis(network),
4939                 });
4940                 let node_b_holder = NodeHolder { node: &node_b };
4941
4942                 node_a.create_channel(node_b.get_our_node_id(), 8_000_000, 100_000_000, 42, None).unwrap();
4943                 node_b.handle_open_channel(&node_a.get_our_node_id(), InitFeatures::known(), &get_event_msg!(node_a_holder, MessageSendEvent::SendOpenChannel, node_b.get_our_node_id()));
4944                 node_a.handle_accept_channel(&node_b.get_our_node_id(), InitFeatures::known(), &get_event_msg!(node_b_holder, MessageSendEvent::SendAcceptChannel, node_a.get_our_node_id()));
4945
4946                 let tx;
4947                 if let Event::FundingGenerationReady { temporary_channel_id, output_script, .. } = get_event!(node_a_holder, Event::FundingGenerationReady) {
4948                         tx = Transaction { version: 2, lock_time: 0, input: Vec::new(), output: vec![TxOut {
4949                                 value: 8_000_000, script_pubkey: output_script,
4950                         }]};
4951                         node_a.funding_transaction_generated(&temporary_channel_id, tx.clone()).unwrap();
4952                 } else { panic!(); }
4953
4954                 node_b.handle_funding_created(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendFundingCreated, node_b.get_our_node_id()));
4955                 node_a.handle_funding_signed(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendFundingSigned, node_a.get_our_node_id()));
4956
4957                 assert_eq!(&tx_broadcaster.txn_broadcasted.lock().unwrap()[..], &[tx.clone()]);
4958
4959                 let block = Block {
4960                         header: BlockHeader { version: 0x20000000, prev_blockhash: genesis_hash, merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 },
4961                         txdata: vec![tx],
4962                 };
4963                 Listen::block_connected(&node_a, &block, 1);
4964                 Listen::block_connected(&node_b, &block, 1);
4965
4966                 node_a.handle_funding_locked(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendFundingLocked, node_a.get_our_node_id()));
4967                 node_b.handle_funding_locked(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendFundingLocked, node_b.get_our_node_id()));
4968
4969                 let dummy_graph = NetworkGraph::new(genesis_hash);
4970
4971                 let mut payment_count: u64 = 0;
4972                 macro_rules! send_payment {
4973                         ($node_a: expr, $node_b: expr) => {
4974                                 let usable_channels = $node_a.list_usable_channels();
4975                                 let route = get_route(&$node_a.get_our_node_id(), &dummy_graph, &$node_b.get_our_node_id(), Some(InvoiceFeatures::known()),
4976                                         Some(&usable_channels.iter().map(|r| r).collect::<Vec<_>>()), &[], 10_000, TEST_FINAL_CLTV, &logger_a).unwrap();
4977
4978                                 let mut payment_preimage = PaymentPreimage([0; 32]);
4979                                 payment_preimage.0[0..8].copy_from_slice(&payment_count.to_le_bytes());
4980                                 payment_count += 1;
4981                                 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0[..]).into_inner());
4982                                 let payment_secret = $node_b.create_inbound_payment_for_hash(payment_hash, None, 7200, 0).unwrap();
4983
4984                                 $node_a.send_payment(&route, payment_hash, &Some(payment_secret)).unwrap();
4985                                 let payment_event = SendEvent::from_event($node_a.get_and_clear_pending_msg_events().pop().unwrap());
4986                                 $node_b.handle_update_add_htlc(&$node_a.get_our_node_id(), &payment_event.msgs[0]);
4987                                 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &payment_event.commitment_msg);
4988                                 let (raa, cs) = get_revoke_commit_msgs!(NodeHolder { node: &$node_b }, $node_a.get_our_node_id());
4989                                 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &raa);
4990                                 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &cs);
4991                                 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &get_event_msg!(NodeHolder { node: &$node_a }, MessageSendEvent::SendRevokeAndACK, $node_b.get_our_node_id()));
4992
4993                                 expect_pending_htlcs_forwardable!(NodeHolder { node: &$node_b });
4994                                 expect_payment_received!(NodeHolder { node: &$node_b }, payment_hash, payment_secret, 10_000);
4995                                 assert!($node_b.claim_funds(payment_preimage));
4996
4997                                 match $node_b.get_and_clear_pending_msg_events().pop().unwrap() {
4998                                         MessageSendEvent::UpdateHTLCs { node_id, updates } => {
4999                                                 assert_eq!(node_id, $node_a.get_our_node_id());
5000                                                 $node_a.handle_update_fulfill_htlc(&$node_b.get_our_node_id(), &updates.update_fulfill_htlcs[0]);
5001                                                 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &updates.commitment_signed);
5002                                         },
5003                                         _ => panic!("Failed to generate claim event"),
5004                                 }
5005
5006                                 let (raa, cs) = get_revoke_commit_msgs!(NodeHolder { node: &$node_a }, $node_b.get_our_node_id());
5007                                 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &raa);
5008                                 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &cs);
5009                                 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &get_event_msg!(NodeHolder { node: &$node_b }, MessageSendEvent::SendRevokeAndACK, $node_a.get_our_node_id()));
5010
5011                                 expect_payment_sent!(NodeHolder { node: &$node_a }, payment_preimage);
5012                         }
5013                 }
5014
5015                 bench.iter(|| {
5016                         send_payment!(node_a, node_b);
5017                         send_payment!(node_b, node_a);
5018                 });
5019         }
5020 }