Use core replacements for std members
[rust-lightning] / lightning / src / ln / channelmanager.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! The top-level channel management and payment tracking stuff lives here.
11 //!
12 //! The ChannelManager is the main chunk of logic implementing the lightning protocol and is
13 //! responsible for tracking which channels are open, HTLCs are in flight and reestablishing those
14 //! upon reconnect to the relevant peer(s).
15 //!
16 //! It does not manage routing logic (see routing::router::get_route for that) nor does it manage constructing
17 //! on-chain transactions (it only monitors the chain to watch for any force-closes that might
18 //! imply it needs to fail HTLCs/payments/channels it manages).
19 //!
20
21 use bitcoin::blockdata::block::{Block, BlockHeader};
22 use bitcoin::blockdata::transaction::Transaction;
23 use bitcoin::blockdata::constants::genesis_block;
24 use bitcoin::network::constants::Network;
25
26 use bitcoin::hashes::{Hash, HashEngine};
27 use bitcoin::hashes::hmac::{Hmac, HmacEngine};
28 use bitcoin::hashes::sha256::Hash as Sha256;
29 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
30 use bitcoin::hashes::cmp::fixed_time_eq;
31 use bitcoin::hash_types::{BlockHash, Txid};
32
33 use bitcoin::secp256k1::key::{SecretKey,PublicKey};
34 use bitcoin::secp256k1::Secp256k1;
35 use bitcoin::secp256k1::ecdh::SharedSecret;
36 use bitcoin::secp256k1;
37
38 use chain;
39 use chain::Confirm;
40 use chain::Watch;
41 use chain::chaininterface::{BroadcasterInterface, FeeEstimator};
42 use chain::channelmonitor::{ChannelMonitor, ChannelMonitorUpdate, ChannelMonitorUpdateStep, ChannelMonitorUpdateErr, HTLC_FAIL_BACK_BUFFER, CLTV_CLAIM_BUFFER, LATENCY_GRACE_PERIOD_BLOCKS, ANTI_REORG_DELAY, MonitorEvent, CLOSED_CHANNEL_UPDATE_ID};
43 use chain::transaction::{OutPoint, TransactionData};
44 // Since this struct is returned in `list_channels` methods, expose it here in case users want to
45 // construct one themselves.
46 use ln::{PaymentHash, PaymentPreimage, PaymentSecret};
47 pub use ln::channel::CounterpartyForwardingInfo;
48 use ln::channel::{Channel, ChannelError, ChannelUpdateStatus};
49 use ln::features::{InitFeatures, NodeFeatures};
50 use routing::router::{Route, RouteHop};
51 use ln::msgs;
52 use ln::msgs::NetAddress;
53 use ln::onion_utils;
54 use ln::msgs::{ChannelMessageHandler, DecodeError, LightningError, OptionalField};
55 use chain::keysinterface::{Sign, KeysInterface, KeysManager, InMemorySigner};
56 use util::config::UserConfig;
57 use util::events::{Event, EventsProvider, MessageSendEvent, MessageSendEventsProvider};
58 use util::{byte_utils, events};
59 use util::ser::{Readable, ReadableArgs, MaybeReadable, Writeable, Writer};
60 use util::chacha20::{ChaCha20, ChaChaReader};
61 use util::logger::Logger;
62 use util::errors::APIError;
63
64 use core::{cmp, mem};
65 use std::collections::{HashMap, hash_map, HashSet};
66 use std::io::{Cursor, Read};
67 use std::sync::{Arc, Condvar, Mutex, MutexGuard, RwLock, RwLockReadGuard};
68 use core::sync::atomic::{AtomicUsize, Ordering};
69 use core::time::Duration;
70 #[cfg(any(test, feature = "allow_wallclock_use"))]
71 use std::time::Instant;
72 use core::ops::Deref;
73 use bitcoin::hashes::hex::ToHex;
74
75 // We hold various information about HTLC relay in the HTLC objects in Channel itself:
76 //
77 // Upon receipt of an HTLC from a peer, we'll give it a PendingHTLCStatus indicating if it should
78 // forward the HTLC with information it will give back to us when it does so, or if it should Fail
79 // the HTLC with the relevant message for the Channel to handle giving to the remote peer.
80 //
81 // Once said HTLC is committed in the Channel, if the PendingHTLCStatus indicated Forward, the
82 // Channel will return the PendingHTLCInfo back to us, and we will create an HTLCForwardInfo
83 // with it to track where it came from (in case of onwards-forward error), waiting a random delay
84 // before we forward it.
85 //
86 // We will then use HTLCForwardInfo's PendingHTLCInfo to construct an outbound HTLC, with a
87 // relevant HTLCSource::PreviousHopData filled in to indicate where it came from (which we can use
88 // to either fail-backwards or fulfill the HTLC backwards along the relevant path).
89 // Alternatively, we can fill an outbound HTLC with a HTLCSource::OutboundRoute indicating this is
90 // our payment, which we can use to decode errors or inform the user that the payment was sent.
91
92 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
93 enum PendingHTLCRouting {
94         Forward {
95                 onion_packet: msgs::OnionPacket,
96                 short_channel_id: u64, // This should be NonZero<u64> eventually when we bump MSRV
97         },
98         Receive {
99                 payment_data: msgs::FinalOnionHopData,
100                 incoming_cltv_expiry: u32, // Used to track when we should expire pending HTLCs that go unclaimed
101         },
102 }
103
104 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
105 pub(super) struct PendingHTLCInfo {
106         routing: PendingHTLCRouting,
107         incoming_shared_secret: [u8; 32],
108         payment_hash: PaymentHash,
109         pub(super) amt_to_forward: u64,
110         pub(super) outgoing_cltv_value: u32,
111 }
112
113 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
114 pub(super) enum HTLCFailureMsg {
115         Relay(msgs::UpdateFailHTLC),
116         Malformed(msgs::UpdateFailMalformedHTLC),
117 }
118
119 /// Stores whether we can't forward an HTLC or relevant forwarding info
120 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
121 pub(super) enum PendingHTLCStatus {
122         Forward(PendingHTLCInfo),
123         Fail(HTLCFailureMsg),
124 }
125
126 pub(super) enum HTLCForwardInfo {
127         AddHTLC {
128                 forward_info: PendingHTLCInfo,
129
130                 // These fields are produced in `forward_htlcs()` and consumed in
131                 // `process_pending_htlc_forwards()` for constructing the
132                 // `HTLCSource::PreviousHopData` for failed and forwarded
133                 // HTLCs.
134                 prev_short_channel_id: u64,
135                 prev_htlc_id: u64,
136                 prev_funding_outpoint: OutPoint,
137         },
138         FailHTLC {
139                 htlc_id: u64,
140                 err_packet: msgs::OnionErrorPacket,
141         },
142 }
143
144 /// Tracks the inbound corresponding to an outbound HTLC
145 #[derive(Clone, PartialEq)]
146 pub(crate) struct HTLCPreviousHopData {
147         short_channel_id: u64,
148         htlc_id: u64,
149         incoming_packet_shared_secret: [u8; 32],
150
151         // This field is consumed by `claim_funds_from_hop()` when updating a force-closed backwards
152         // channel with a preimage provided by the forward channel.
153         outpoint: OutPoint,
154 }
155
156 struct ClaimableHTLC {
157         prev_hop: HTLCPreviousHopData,
158         value: u64,
159         /// Contains a total_msat (which may differ from value if this is a Multi-Path Payment) and a
160         /// payment_secret which prevents path-probing attacks and can associate different HTLCs which
161         /// are part of the same payment.
162         payment_data: msgs::FinalOnionHopData,
163         cltv_expiry: u32,
164 }
165
166 /// Tracks the inbound corresponding to an outbound HTLC
167 #[derive(Clone, PartialEq)]
168 pub(crate) enum HTLCSource {
169         PreviousHopData(HTLCPreviousHopData),
170         OutboundRoute {
171                 path: Vec<RouteHop>,
172                 session_priv: SecretKey,
173                 /// Technically we can recalculate this from the route, but we cache it here to avoid
174                 /// doing a double-pass on route when we get a failure back
175                 first_hop_htlc_msat: u64,
176         },
177 }
178 #[cfg(test)]
179 impl HTLCSource {
180         pub fn dummy() -> Self {
181                 HTLCSource::OutboundRoute {
182                         path: Vec::new(),
183                         session_priv: SecretKey::from_slice(&[1; 32]).unwrap(),
184                         first_hop_htlc_msat: 0,
185                 }
186         }
187 }
188
189 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
190 pub(super) enum HTLCFailReason {
191         LightningError {
192                 err: msgs::OnionErrorPacket,
193         },
194         Reason {
195                 failure_code: u16,
196                 data: Vec<u8>,
197         }
198 }
199
200 type ShutdownResult = (Option<(OutPoint, ChannelMonitorUpdate)>, Vec<(HTLCSource, PaymentHash)>);
201
202 /// Error type returned across the channel_state mutex boundary. When an Err is generated for a
203 /// Channel, we generally end up with a ChannelError::Close for which we have to close the channel
204 /// immediately (ie with no further calls on it made). Thus, this step happens inside a
205 /// channel_state lock. We then return the set of things that need to be done outside the lock in
206 /// this struct and call handle_error!() on it.
207
208 struct MsgHandleErrInternal {
209         err: msgs::LightningError,
210         shutdown_finish: Option<(ShutdownResult, Option<msgs::ChannelUpdate>)>,
211 }
212 impl MsgHandleErrInternal {
213         #[inline]
214         fn send_err_msg_no_close(err: String, channel_id: [u8; 32]) -> Self {
215                 Self {
216                         err: LightningError {
217                                 err: err.clone(),
218                                 action: msgs::ErrorAction::SendErrorMessage {
219                                         msg: msgs::ErrorMessage {
220                                                 channel_id,
221                                                 data: err
222                                         },
223                                 },
224                         },
225                         shutdown_finish: None,
226                 }
227         }
228         #[inline]
229         fn ignore_no_close(err: String) -> Self {
230                 Self {
231                         err: LightningError {
232                                 err,
233                                 action: msgs::ErrorAction::IgnoreError,
234                         },
235                         shutdown_finish: None,
236                 }
237         }
238         #[inline]
239         fn from_no_close(err: msgs::LightningError) -> Self {
240                 Self { err, shutdown_finish: None }
241         }
242         #[inline]
243         fn from_finish_shutdown(err: String, channel_id: [u8; 32], shutdown_res: ShutdownResult, channel_update: Option<msgs::ChannelUpdate>) -> Self {
244                 Self {
245                         err: LightningError {
246                                 err: err.clone(),
247                                 action: msgs::ErrorAction::SendErrorMessage {
248                                         msg: msgs::ErrorMessage {
249                                                 channel_id,
250                                                 data: err
251                                         },
252                                 },
253                         },
254                         shutdown_finish: Some((shutdown_res, channel_update)),
255                 }
256         }
257         #[inline]
258         fn from_chan_no_close(err: ChannelError, channel_id: [u8; 32]) -> Self {
259                 Self {
260                         err: match err {
261                                 ChannelError::Ignore(msg) => LightningError {
262                                         err: msg,
263                                         action: msgs::ErrorAction::IgnoreError,
264                                 },
265                                 ChannelError::Close(msg) => LightningError {
266                                         err: msg.clone(),
267                                         action: msgs::ErrorAction::SendErrorMessage {
268                                                 msg: msgs::ErrorMessage {
269                                                         channel_id,
270                                                         data: msg
271                                                 },
272                                         },
273                                 },
274                                 ChannelError::CloseDelayBroadcast(msg) => LightningError {
275                                         err: msg.clone(),
276                                         action: msgs::ErrorAction::SendErrorMessage {
277                                                 msg: msgs::ErrorMessage {
278                                                         channel_id,
279                                                         data: msg
280                                                 },
281                                         },
282                                 },
283                         },
284                         shutdown_finish: None,
285                 }
286         }
287 }
288
289 /// We hold back HTLCs we intend to relay for a random interval greater than this (see
290 /// Event::PendingHTLCsForwardable for the API guidelines indicating how long should be waited).
291 /// This provides some limited amount of privacy. Ideally this would range from somewhere like one
292 /// second to 30 seconds, but people expect lightning to be, you know, kinda fast, sadly.
293 const MIN_HTLC_RELAY_HOLDING_CELL_MILLIS: u64 = 100;
294
295 /// For events which result in both a RevokeAndACK and a CommitmentUpdate, by default they should
296 /// be sent in the order they appear in the return value, however sometimes the order needs to be
297 /// variable at runtime (eg Channel::channel_reestablish needs to re-send messages in the order
298 /// they were originally sent). In those cases, this enum is also returned.
299 #[derive(Clone, PartialEq)]
300 pub(super) enum RAACommitmentOrder {
301         /// Send the CommitmentUpdate messages first
302         CommitmentFirst,
303         /// Send the RevokeAndACK message first
304         RevokeAndACKFirst,
305 }
306
307 // Note this is only exposed in cfg(test):
308 pub(super) struct ChannelHolder<Signer: Sign> {
309         pub(super) by_id: HashMap<[u8; 32], Channel<Signer>>,
310         pub(super) short_to_id: HashMap<u64, [u8; 32]>,
311         /// short channel id -> forward infos. Key of 0 means payments received
312         /// Note that while this is held in the same mutex as the channels themselves, no consistency
313         /// guarantees are made about the existence of a channel with the short id here, nor the short
314         /// ids in the PendingHTLCInfo!
315         pub(super) forward_htlcs: HashMap<u64, Vec<HTLCForwardInfo>>,
316         /// Map from payment hash to any HTLCs which are to us and can be failed/claimed by the user.
317         /// Note that while this is held in the same mutex as the channels themselves, no consistency
318         /// guarantees are made about the channels given here actually existing anymore by the time you
319         /// go to read them!
320         claimable_htlcs: HashMap<PaymentHash, Vec<ClaimableHTLC>>,
321         /// Messages to send to peers - pushed to in the same lock that they are generated in (except
322         /// for broadcast messages, where ordering isn't as strict).
323         pub(super) pending_msg_events: Vec<MessageSendEvent>,
324 }
325
326 /// Events which we process internally but cannot be procsesed immediately at the generation site
327 /// for some reason. They are handled in timer_tick_occurred, so may be processed with
328 /// quite some time lag.
329 enum BackgroundEvent {
330         /// Handle a ChannelMonitorUpdate that closes a channel, broadcasting its current latest holder
331         /// commitment transaction.
332         ClosingMonitorUpdate((OutPoint, ChannelMonitorUpdate)),
333 }
334
335 /// State we hold per-peer. In the future we should put channels in here, but for now we only hold
336 /// the latest Init features we heard from the peer.
337 struct PeerState {
338         latest_features: InitFeatures,
339 }
340
341 /// Stores a PaymentSecret and any other data we may need to validate an inbound payment is
342 /// actually ours and not some duplicate HTLC sent to us by a node along the route.
343 ///
344 /// For users who don't want to bother doing their own payment preimage storage, we also store that
345 /// here.
346 struct PendingInboundPayment {
347         /// The payment secret that the sender must use for us to accept this payment
348         payment_secret: PaymentSecret,
349         /// Time at which this HTLC expires - blocks with a header time above this value will result in
350         /// this payment being removed.
351         expiry_time: u64,
352         /// Arbitrary identifier the user specifies (or not)
353         user_payment_id: u64,
354         // Other required attributes of the payment, optionally enforced:
355         payment_preimage: Option<PaymentPreimage>,
356         min_value_msat: Option<u64>,
357 }
358
359 /// SimpleArcChannelManager is useful when you need a ChannelManager with a static lifetime, e.g.
360 /// when you're using lightning-net-tokio (since tokio::spawn requires parameters with static
361 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
362 /// SimpleRefChannelManager is the more appropriate type. Defining these type aliases prevents
363 /// issues such as overly long function definitions. Note that the ChannelManager can take any
364 /// type that implements KeysInterface for its keys manager, but this type alias chooses the
365 /// concrete type of the KeysManager.
366 pub type SimpleArcChannelManager<M, T, F, L> = ChannelManager<InMemorySigner, Arc<M>, Arc<T>, Arc<KeysManager>, Arc<F>, Arc<L>>;
367
368 /// SimpleRefChannelManager is a type alias for a ChannelManager reference, and is the reference
369 /// counterpart to the SimpleArcChannelManager type alias. Use this type by default when you don't
370 /// need a ChannelManager with a static lifetime. You'll need a static lifetime in cases such as
371 /// usage of lightning-net-tokio (since tokio::spawn requires parameters with static lifetimes).
372 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
373 /// helps with issues such as long function definitions. Note that the ChannelManager can take any
374 /// type that implements KeysInterface for its keys manager, but this type alias chooses the
375 /// concrete type of the KeysManager.
376 pub type SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, M, T, F, L> = ChannelManager<InMemorySigner, &'a M, &'b T, &'c KeysManager, &'d F, &'e L>;
377
378 /// Manager which keeps track of a number of channels and sends messages to the appropriate
379 /// channel, also tracking HTLC preimages and forwarding onion packets appropriately.
380 ///
381 /// Implements ChannelMessageHandler, handling the multi-channel parts and passing things through
382 /// to individual Channels.
383 ///
384 /// Implements Writeable to write out all channel state to disk. Implies peer_disconnected() for
385 /// all peers during write/read (though does not modify this instance, only the instance being
386 /// serialized). This will result in any channels which have not yet exchanged funding_created (ie
387 /// called funding_transaction_generated for outbound channels).
388 ///
389 /// Note that you can be a bit lazier about writing out ChannelManager than you can be with
390 /// ChannelMonitors. With ChannelMonitors you MUST write each monitor update out to disk before
391 /// returning from chain::Watch::watch_/update_channel, with ChannelManagers, writing updates
392 /// happens out-of-band (and will prevent any other ChannelManager operations from occurring during
393 /// the serialization process). If the deserialized version is out-of-date compared to the
394 /// ChannelMonitors passed by reference to read(), those channels will be force-closed based on the
395 /// ChannelMonitor state and no funds will be lost (mod on-chain transaction fees).
396 ///
397 /// Note that the deserializer is only implemented for (BlockHash, ChannelManager), which
398 /// tells you the last block hash which was block_connect()ed. You MUST rescan any blocks along
399 /// the "reorg path" (ie call block_disconnected() until you get to a common block and then call
400 /// block_connected() to step towards your best block) upon deserialization before using the
401 /// object!
402 ///
403 /// Note that ChannelManager is responsible for tracking liveness of its channels and generating
404 /// ChannelUpdate messages informing peers that the channel is temporarily disabled. To avoid
405 /// spam due to quick disconnection/reconnection, updates are not sent until the channel has been
406 /// offline for a full minute. In order to track this, you must call
407 /// timer_tick_occurred roughly once per minute, though it doesn't have to be perfect.
408 ///
409 /// Rather than using a plain ChannelManager, it is preferable to use either a SimpleArcChannelManager
410 /// a SimpleRefChannelManager, for conciseness. See their documentation for more details, but
411 /// essentially you should default to using a SimpleRefChannelManager, and use a
412 /// SimpleArcChannelManager when you require a ChannelManager with a static lifetime, such as when
413 /// you're using lightning-net-tokio.
414 pub struct ChannelManager<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
415         where M::Target: chain::Watch<Signer>,
416         T::Target: BroadcasterInterface,
417         K::Target: KeysInterface<Signer = Signer>,
418         F::Target: FeeEstimator,
419                                 L::Target: Logger,
420 {
421         default_configuration: UserConfig,
422         genesis_hash: BlockHash,
423         fee_estimator: F,
424         chain_monitor: M,
425         tx_broadcaster: T,
426
427         #[cfg(test)]
428         pub(super) best_block: RwLock<BestBlock>,
429         #[cfg(not(test))]
430         best_block: RwLock<BestBlock>,
431         secp_ctx: Secp256k1<secp256k1::All>,
432
433         #[cfg(any(test, feature = "_test_utils"))]
434         pub(super) channel_state: Mutex<ChannelHolder<Signer>>,
435         #[cfg(not(any(test, feature = "_test_utils")))]
436         channel_state: Mutex<ChannelHolder<Signer>>,
437
438         /// Storage for PaymentSecrets and any requirements on future inbound payments before we will
439         /// expose them to users via a PaymentReceived event. HTLCs which do not meet the requirements
440         /// here are failed when we process them as pending-forwardable-HTLCs, and entries are removed
441         /// after we generate a PaymentReceived upon receipt of all MPP parts or when they time out.
442         /// Locked *after* channel_state.
443         pending_inbound_payments: Mutex<HashMap<PaymentHash, PendingInboundPayment>>,
444
445         /// The session_priv bytes of outbound payments which are pending resolution.
446         /// The authoritative state of these HTLCs resides either within Channels or ChannelMonitors
447         /// (if the channel has been force-closed), however we track them here to prevent duplicative
448         /// PaymentSent/PaymentFailed events. Specifically, in the case of a duplicative
449         /// update_fulfill_htlc message after a reconnect, we may "claim" a payment twice.
450         /// Additionally, because ChannelMonitors are often not re-serialized after connecting block(s)
451         /// which may generate a claim event, we may receive similar duplicate claim/fail MonitorEvents
452         /// after reloading from disk while replaying blocks against ChannelMonitors.
453         ///
454         /// Locked *after* channel_state.
455         pending_outbound_payments: Mutex<HashSet<[u8; 32]>>,
456
457         our_network_key: SecretKey,
458         our_network_pubkey: PublicKey,
459
460         /// Used to track the last value sent in a node_announcement "timestamp" field. We ensure this
461         /// value increases strictly since we don't assume access to a time source.
462         last_node_announcement_serial: AtomicUsize,
463
464         /// The highest block timestamp we've seen, which is usually a good guess at the current time.
465         /// Assuming most miners are generating blocks with reasonable timestamps, this shouldn't be
466         /// very far in the past, and can only ever be up to two hours in the future.
467         highest_seen_timestamp: AtomicUsize,
468
469         /// The bulk of our storage will eventually be here (channels and message queues and the like).
470         /// If we are connected to a peer we always at least have an entry here, even if no channels
471         /// are currently open with that peer.
472         /// Because adding or removing an entry is rare, we usually take an outer read lock and then
473         /// operate on the inner value freely. Sadly, this prevents parallel operation when opening a
474         /// new channel.
475         per_peer_state: RwLock<HashMap<PublicKey, Mutex<PeerState>>>,
476
477         pending_events: Mutex<Vec<events::Event>>,
478         pending_background_events: Mutex<Vec<BackgroundEvent>>,
479         /// Used when we have to take a BIG lock to make sure everything is self-consistent.
480         /// Essentially just when we're serializing ourselves out.
481         /// Taken first everywhere where we are making changes before any other locks.
482         /// When acquiring this lock in read mode, rather than acquiring it directly, call
483         /// `PersistenceNotifierGuard::notify_on_drop(..)` and pass the lock to it, to ensure the
484         /// PersistenceNotifier the lock contains sends out a notification when the lock is released.
485         total_consistency_lock: RwLock<()>,
486
487         persistence_notifier: PersistenceNotifier,
488
489         keys_manager: K,
490
491         logger: L,
492 }
493
494 /// Chain-related parameters used to construct a new `ChannelManager`.
495 ///
496 /// Typically, the block-specific parameters are derived from the best block hash for the network,
497 /// as a newly constructed `ChannelManager` will not have created any channels yet. These parameters
498 /// are not needed when deserializing a previously constructed `ChannelManager`.
499 pub struct ChainParameters {
500         /// The network for determining the `chain_hash` in Lightning messages.
501         pub network: Network,
502
503         /// The hash and height of the latest block successfully connected.
504         ///
505         /// Used to track on-chain channel funding outputs and send payments with reliable timelocks.
506         pub best_block: BestBlock,
507 }
508
509 /// The best known block as identified by its hash and height.
510 #[derive(Clone, Copy)]
511 pub struct BestBlock {
512         block_hash: BlockHash,
513         height: u32,
514 }
515
516 impl BestBlock {
517         /// Returns the best block from the genesis of the given network.
518         pub fn from_genesis(network: Network) -> Self {
519                 BestBlock {
520                         block_hash: genesis_block(network).header.block_hash(),
521                         height: 0,
522                 }
523         }
524
525         /// Returns the best block as identified by the given block hash and height.
526         pub fn new(block_hash: BlockHash, height: u32) -> Self {
527                 BestBlock { block_hash, height }
528         }
529
530         /// Returns the best block hash.
531         pub fn block_hash(&self) -> BlockHash { self.block_hash }
532
533         /// Returns the best block height.
534         pub fn height(&self) -> u32 { self.height }
535 }
536
537 #[derive(Copy, Clone, PartialEq)]
538 enum NotifyOption {
539         DoPersist,
540         SkipPersist,
541 }
542
543 /// Whenever we release the `ChannelManager`'s `total_consistency_lock`, from read mode, it is
544 /// desirable to notify any listeners on `await_persistable_update_timeout`/
545 /// `await_persistable_update` when new updates are available for persistence. Therefore, this
546 /// struct is responsible for locking the total consistency lock and, upon going out of scope,
547 /// sending the aforementioned notification (since the lock being released indicates that the
548 /// updates are ready for persistence).
549 ///
550 /// We allow callers to either always notify by constructing with `notify_on_drop` or choose to
551 /// notify or not based on whether relevant changes have been made, providing a closure to
552 /// `optionally_notify` which returns a `NotifyOption`.
553 struct PersistenceNotifierGuard<'a, F: Fn() -> NotifyOption> {
554         persistence_notifier: &'a PersistenceNotifier,
555         should_persist: F,
556         // We hold onto this result so the lock doesn't get released immediately.
557         _read_guard: RwLockReadGuard<'a, ()>,
558 }
559
560 impl<'a> PersistenceNotifierGuard<'a, fn() -> NotifyOption> { // We don't care what the concrete F is here, it's unused
561         fn notify_on_drop(lock: &'a RwLock<()>, notifier: &'a PersistenceNotifier) -> PersistenceNotifierGuard<'a, impl Fn() -> NotifyOption> {
562                 PersistenceNotifierGuard::optionally_notify(lock, notifier, || -> NotifyOption { NotifyOption::DoPersist })
563         }
564
565         fn optionally_notify<F: Fn() -> NotifyOption>(lock: &'a RwLock<()>, notifier: &'a PersistenceNotifier, persist_check: F) -> PersistenceNotifierGuard<'a, F> {
566                 let read_guard = lock.read().unwrap();
567
568                 PersistenceNotifierGuard {
569                         persistence_notifier: notifier,
570                         should_persist: persist_check,
571                         _read_guard: read_guard,
572                 }
573         }
574 }
575
576 impl<'a, F: Fn() -> NotifyOption> Drop for PersistenceNotifierGuard<'a, F> {
577         fn drop(&mut self) {
578                 if (self.should_persist)() == NotifyOption::DoPersist {
579                         self.persistence_notifier.notify();
580                 }
581         }
582 }
583
584 /// The amount of time in blocks we require our counterparty wait to claim their money (ie time
585 /// between when we, or our watchtower, must check for them having broadcast a theft transaction).
586 ///
587 /// This can be increased (but not decreased) through [`ChannelHandshakeConfig::our_to_self_delay`]
588 ///
589 /// [`ChannelHandshakeConfig::our_to_self_delay`]: crate::util::config::ChannelHandshakeConfig::our_to_self_delay
590 pub const BREAKDOWN_TIMEOUT: u16 = 6 * 24;
591 /// The amount of time in blocks we're willing to wait to claim money back to us. This matches
592 /// the maximum required amount in lnd as of March 2021.
593 pub(crate) const MAX_LOCAL_BREAKDOWN_TIMEOUT: u16 = 2 * 6 * 24 * 7;
594
595 /// The minimum number of blocks between an inbound HTLC's CLTV and the corresponding outbound
596 /// HTLC's CLTV. The current default represents roughly seven hours of blocks at six blocks/hour.
597 ///
598 /// This can be increased (but not decreased) through [`ChannelConfig::cltv_expiry_delta`]
599 ///
600 /// [`ChannelConfig::cltv_expiry_delta`]: crate::util::config::ChannelConfig::cltv_expiry_delta
601 // This should always be a few blocks greater than channelmonitor::CLTV_CLAIM_BUFFER,
602 // i.e. the node we forwarded the payment on to should always have enough room to reliably time out
603 // the HTLC via a full update_fail_htlc/commitment_signed dance before we hit the
604 // CLTV_CLAIM_BUFFER point (we static assert that it's at least 3 blocks more).
605 pub const MIN_CLTV_EXPIRY_DELTA: u16 = 6*7;
606 pub(super) const CLTV_FAR_FAR_AWAY: u32 = 6 * 24 * 7; //TODO?
607
608 /// Minimum CLTV difference between the current block height and received inbound payments.
609 /// Invoices generated for payment to us must set their `min_final_cltv_expiry` field to at least
610 /// this value.
611 // Note that we fail if exactly HTLC_FAIL_BACK_BUFFER + 1 was used, so we need to add one for
612 // any payments to succeed. Further, we don't want payments to fail if a block was found while
613 // a payment was being routed, so we add an extra block to be safe.
614 pub const MIN_FINAL_CLTV_EXPIRY: u32 = HTLC_FAIL_BACK_BUFFER + 3;
615
616 // Check that our CLTV_EXPIRY is at least CLTV_CLAIM_BUFFER + ANTI_REORG_DELAY + LATENCY_GRACE_PERIOD_BLOCKS,
617 // ie that if the next-hop peer fails the HTLC within
618 // LATENCY_GRACE_PERIOD_BLOCKS then we'll still have CLTV_CLAIM_BUFFER left to timeout it onchain,
619 // then waiting ANTI_REORG_DELAY to be reorg-safe on the outbound HLTC and
620 // failing the corresponding htlc backward, and us now seeing the last block of ANTI_REORG_DELAY before
621 // LATENCY_GRACE_PERIOD_BLOCKS.
622 #[deny(const_err)]
623 #[allow(dead_code)]
624 const CHECK_CLTV_EXPIRY_SANITY: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - CLTV_CLAIM_BUFFER - ANTI_REORG_DELAY - LATENCY_GRACE_PERIOD_BLOCKS;
625
626 // Check for ability of an attacker to make us fail on-chain by delaying an HTLC claim. See
627 // ChannelMontior::would_broadcast_at_height for a description of why this is needed.
628 #[deny(const_err)]
629 #[allow(dead_code)]
630 const CHECK_CLTV_EXPIRY_SANITY_2: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - 2*CLTV_CLAIM_BUFFER;
631
632 /// Details of a channel, as returned by ChannelManager::list_channels and ChannelManager::list_usable_channels
633 #[derive(Clone)]
634 pub struct ChannelDetails {
635         /// The channel's ID (prior to funding transaction generation, this is a random 32 bytes,
636         /// thereafter this is the txid of the funding transaction xor the funding transaction output).
637         /// Note that this means this value is *not* persistent - it can change once during the
638         /// lifetime of the channel.
639         pub channel_id: [u8; 32],
640         /// The Channel's funding transaction output, if we've negotiated the funding transaction with
641         /// our counterparty already.
642         ///
643         /// Note that, if this has been set, `channel_id` will be equivalent to
644         /// `funding_txo.unwrap().to_channel_id()`.
645         pub funding_txo: Option<OutPoint>,
646         /// The position of the funding transaction in the chain. None if the funding transaction has
647         /// not yet been confirmed and the channel fully opened.
648         pub short_channel_id: Option<u64>,
649         /// The node_id of our counterparty
650         pub remote_network_id: PublicKey,
651         /// The Features the channel counterparty provided upon last connection.
652         /// Useful for routing as it is the most up-to-date copy of the counterparty's features and
653         /// many routing-relevant features are present in the init context.
654         pub counterparty_features: InitFeatures,
655         /// The value, in satoshis, of this channel as appears in the funding output
656         pub channel_value_satoshis: u64,
657         /// The user_id passed in to create_channel, or 0 if the channel was inbound.
658         pub user_id: u64,
659         /// The available outbound capacity for sending HTLCs to the remote peer. This does not include
660         /// any pending HTLCs which are not yet fully resolved (and, thus, who's balance is not
661         /// available for inclusion in new outbound HTLCs). This further does not include any pending
662         /// outgoing HTLCs which are awaiting some other resolution to be sent.
663         pub outbound_capacity_msat: u64,
664         /// The available inbound capacity for the remote peer to send HTLCs to us. This does not
665         /// include any pending HTLCs which are not yet fully resolved (and, thus, who's balance is not
666         /// available for inclusion in new inbound HTLCs).
667         /// Note that there are some corner cases not fully handled here, so the actual available
668         /// inbound capacity may be slightly higher than this.
669         pub inbound_capacity_msat: u64,
670         /// True if the channel was initiated (and thus funded) by us.
671         pub is_outbound: bool,
672         /// True if the channel is confirmed, funding_locked messages have been exchanged, and the
673         /// channel is not currently being shut down. `funding_locked` message exchange implies the
674         /// required confirmation count has been reached (and we were connected to the peer at some
675         /// point after the funding transaction received enough confirmations).
676         pub is_funding_locked: bool,
677         /// True if the channel is (a) confirmed and funding_locked messages have been exchanged, (b)
678         /// the peer is connected, (c) no monitor update failure is pending resolution, and (d) the
679         /// channel is not currently negotiating a shutdown.
680         ///
681         /// This is a strict superset of `is_funding_locked`.
682         pub is_usable: bool,
683         /// True if this channel is (or will be) publicly-announced.
684         pub is_public: bool,
685         /// Information on the fees and requirements that the counterparty requires when forwarding
686         /// payments to us through this channel.
687         pub counterparty_forwarding_info: Option<CounterpartyForwardingInfo>,
688 }
689
690 /// If a payment fails to send, it can be in one of several states. This enum is returned as the
691 /// Err() type describing which state the payment is in, see the description of individual enum
692 /// states for more.
693 #[derive(Clone, Debug)]
694 pub enum PaymentSendFailure {
695         /// A parameter which was passed to send_payment was invalid, preventing us from attempting to
696         /// send the payment at all. No channel state has been changed or messages sent to peers, and
697         /// once you've changed the parameter at error, you can freely retry the payment in full.
698         ParameterError(APIError),
699         /// A parameter in a single path which was passed to send_payment was invalid, preventing us
700         /// from attempting to send the payment at all. No channel state has been changed or messages
701         /// sent to peers, and once you've changed the parameter at error, you can freely retry the
702         /// payment in full.
703         ///
704         /// The results here are ordered the same as the paths in the route object which was passed to
705         /// send_payment.
706         PathParameterError(Vec<Result<(), APIError>>),
707         /// All paths which were attempted failed to send, with no channel state change taking place.
708         /// You can freely retry the payment in full (though you probably want to do so over different
709         /// paths than the ones selected).
710         AllFailedRetrySafe(Vec<APIError>),
711         /// Some paths which were attempted failed to send, though possibly not all. At least some
712         /// paths have irrevocably committed to the HTLC and retrying the payment in full would result
713         /// in over-/re-payment.
714         ///
715         /// The results here are ordered the same as the paths in the route object which was passed to
716         /// send_payment, and any Errs which are not APIError::MonitorUpdateFailed can be safely
717         /// retried (though there is currently no API with which to do so).
718         ///
719         /// Any entries which contain Err(APIError::MonitorUpdateFailed) or Ok(()) MUST NOT be retried
720         /// as they will result in over-/re-payment. These HTLCs all either successfully sent (in the
721         /// case of Ok(())) or will send once channel_monitor_updated is called on the next-hop channel
722         /// with the latest update_id.
723         PartialFailure(Vec<Result<(), APIError>>),
724 }
725
726 macro_rules! handle_error {
727         ($self: ident, $internal: expr, $counterparty_node_id: expr) => {
728                 match $internal {
729                         Ok(msg) => Ok(msg),
730                         Err(MsgHandleErrInternal { err, shutdown_finish }) => {
731                                 #[cfg(debug_assertions)]
732                                 {
733                                         // In testing, ensure there are no deadlocks where the lock is already held upon
734                                         // entering the macro.
735                                         assert!($self.channel_state.try_lock().is_ok());
736                                 }
737
738                                 let mut msg_events = Vec::with_capacity(2);
739
740                                 if let Some((shutdown_res, update_option)) = shutdown_finish {
741                                         $self.finish_force_close_channel(shutdown_res);
742                                         if let Some(update) = update_option {
743                                                 msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
744                                                         msg: update
745                                                 });
746                                         }
747                                 }
748
749                                 log_error!($self.logger, "{}", err.err);
750                                 if let msgs::ErrorAction::IgnoreError = err.action {
751                                 } else {
752                                         msg_events.push(events::MessageSendEvent::HandleError {
753                                                 node_id: $counterparty_node_id,
754                                                 action: err.action.clone()
755                                         });
756                                 }
757
758                                 if !msg_events.is_empty() {
759                                         $self.channel_state.lock().unwrap().pending_msg_events.append(&mut msg_events);
760                                 }
761
762                                 // Return error in case higher-API need one
763                                 Err(err)
764                         },
765                 }
766         }
767 }
768
769 macro_rules! break_chan_entry {
770         ($self: ident, $res: expr, $channel_state: expr, $entry: expr) => {
771                 match $res {
772                         Ok(res) => res,
773                         Err(ChannelError::Ignore(msg)) => {
774                                 break Err(MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore(msg), $entry.key().clone()))
775                         },
776                         Err(ChannelError::Close(msg)) => {
777                                 log_trace!($self.logger, "Closing channel {} due to Close-required error: {}", log_bytes!($entry.key()[..]), msg);
778                                 let (channel_id, mut chan) = $entry.remove_entry();
779                                 if let Some(short_id) = chan.get_short_channel_id() {
780                                         $channel_state.short_to_id.remove(&short_id);
781                                 }
782                                 break Err(MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, chan.force_shutdown(true), $self.get_channel_update(&chan).ok()))
783                         },
784                         Err(ChannelError::CloseDelayBroadcast(_)) => { panic!("Wait is only generated on receipt of channel_reestablish, which is handled by try_chan_entry, we don't bother to support it here"); }
785                 }
786         }
787 }
788
789 macro_rules! try_chan_entry {
790         ($self: ident, $res: expr, $channel_state: expr, $entry: expr) => {
791                 match $res {
792                         Ok(res) => res,
793                         Err(ChannelError::Ignore(msg)) => {
794                                 return Err(MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore(msg), $entry.key().clone()))
795                         },
796                         Err(ChannelError::Close(msg)) => {
797                                 log_trace!($self.logger, "Closing channel {} due to Close-required error: {}", log_bytes!($entry.key()[..]), msg);
798                                 let (channel_id, mut chan) = $entry.remove_entry();
799                                 if let Some(short_id) = chan.get_short_channel_id() {
800                                         $channel_state.short_to_id.remove(&short_id);
801                                 }
802                                 return Err(MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, chan.force_shutdown(true), $self.get_channel_update(&chan).ok()))
803                         },
804                         Err(ChannelError::CloseDelayBroadcast(msg)) => {
805                                 log_error!($self.logger, "Channel {} need to be shutdown but closing transactions not broadcast due to {}", log_bytes!($entry.key()[..]), msg);
806                                 let (channel_id, mut chan) = $entry.remove_entry();
807                                 if let Some(short_id) = chan.get_short_channel_id() {
808                                         $channel_state.short_to_id.remove(&short_id);
809                                 }
810                                 let shutdown_res = chan.force_shutdown(false);
811                                 return Err(MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, shutdown_res, $self.get_channel_update(&chan).ok()))
812                         }
813                 }
814         }
815 }
816
817 macro_rules! handle_monitor_err {
818         ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => {
819                 handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment, Vec::new(), Vec::new())
820         };
821         ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr, $failed_forwards: expr, $failed_fails: expr) => {
822                 match $err {
823                         ChannelMonitorUpdateErr::PermanentFailure => {
824                                 log_error!($self.logger, "Closing channel {} due to monitor update PermanentFailure", log_bytes!($entry.key()[..]));
825                                 let (channel_id, mut chan) = $entry.remove_entry();
826                                 if let Some(short_id) = chan.get_short_channel_id() {
827                                         $channel_state.short_to_id.remove(&short_id);
828                                 }
829                                 // TODO: $failed_fails is dropped here, which will cause other channels to hit the
830                                 // chain in a confused state! We need to move them into the ChannelMonitor which
831                                 // will be responsible for failing backwards once things confirm on-chain.
832                                 // It's ok that we drop $failed_forwards here - at this point we'd rather they
833                                 // broadcast HTLC-Timeout and pay the associated fees to get their funds back than
834                                 // us bother trying to claim it just to forward on to another peer. If we're
835                                 // splitting hairs we'd prefer to claim payments that were to us, but we haven't
836                                 // given up the preimage yet, so might as well just wait until the payment is
837                                 // retried, avoiding the on-chain fees.
838                                 let res: Result<(), _> = Err(MsgHandleErrInternal::from_finish_shutdown("ChannelMonitor storage failure".to_owned(), channel_id, chan.force_shutdown(true), $self.get_channel_update(&chan).ok()));
839                                 res
840                         },
841                         ChannelMonitorUpdateErr::TemporaryFailure => {
842                                 log_info!($self.logger, "Disabling channel {} due to monitor update TemporaryFailure. On restore will send {} and process {} forwards and {} fails",
843                                                 log_bytes!($entry.key()[..]),
844                                                 if $resend_commitment && $resend_raa {
845                                                                 match $action_type {
846                                                                         RAACommitmentOrder::CommitmentFirst => { "commitment then RAA" },
847                                                                         RAACommitmentOrder::RevokeAndACKFirst => { "RAA then commitment" },
848                                                                 }
849                                                         } else if $resend_commitment { "commitment" }
850                                                         else if $resend_raa { "RAA" }
851                                                         else { "nothing" },
852                                                 (&$failed_forwards as &Vec<(PendingHTLCInfo, u64)>).len(),
853                                                 (&$failed_fails as &Vec<(HTLCSource, PaymentHash, HTLCFailReason)>).len());
854                                 if !$resend_commitment {
855                                         debug_assert!($action_type == RAACommitmentOrder::RevokeAndACKFirst || !$resend_raa);
856                                 }
857                                 if !$resend_raa {
858                                         debug_assert!($action_type == RAACommitmentOrder::CommitmentFirst || !$resend_commitment);
859                                 }
860                                 $entry.get_mut().monitor_update_failed($resend_raa, $resend_commitment, $failed_forwards, $failed_fails);
861                                 Err(MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore("Failed to update ChannelMonitor".to_owned()), *$entry.key()))
862                         },
863                 }
864         }
865 }
866
867 macro_rules! return_monitor_err {
868         ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => {
869                 return handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment);
870         };
871         ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr, $failed_forwards: expr, $failed_fails: expr) => {
872                 return handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment, $failed_forwards, $failed_fails);
873         }
874 }
875
876 // Does not break in case of TemporaryFailure!
877 macro_rules! maybe_break_monitor_err {
878         ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => {
879                 match (handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment), $err) {
880                         (e, ChannelMonitorUpdateErr::PermanentFailure) => {
881                                 break e;
882                         },
883                         (_, ChannelMonitorUpdateErr::TemporaryFailure) => { },
884                 }
885         }
886 }
887
888 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> ChannelManager<Signer, M, T, K, F, L>
889         where M::Target: chain::Watch<Signer>,
890         T::Target: BroadcasterInterface,
891         K::Target: KeysInterface<Signer = Signer>,
892         F::Target: FeeEstimator,
893         L::Target: Logger,
894 {
895         /// Constructs a new ChannelManager to hold several channels and route between them.
896         ///
897         /// This is the main "logic hub" for all channel-related actions, and implements
898         /// ChannelMessageHandler.
899         ///
900         /// Non-proportional fees are fixed according to our risk using the provided fee estimator.
901         ///
902         /// panics if channel_value_satoshis is >= `MAX_FUNDING_SATOSHIS`!
903         ///
904         /// Users need to notify the new ChannelManager when a new block is connected or
905         /// disconnected using its `block_connected` and `block_disconnected` methods, starting
906         /// from after `params.latest_hash`.
907         pub fn new(fee_est: F, chain_monitor: M, tx_broadcaster: T, logger: L, keys_manager: K, config: UserConfig, params: ChainParameters) -> Self {
908                 let mut secp_ctx = Secp256k1::new();
909                 secp_ctx.seeded_randomize(&keys_manager.get_secure_random_bytes());
910
911                 ChannelManager {
912                         default_configuration: config.clone(),
913                         genesis_hash: genesis_block(params.network).header.block_hash(),
914                         fee_estimator: fee_est,
915                         chain_monitor,
916                         tx_broadcaster,
917
918                         best_block: RwLock::new(params.best_block),
919
920                         channel_state: Mutex::new(ChannelHolder{
921                                 by_id: HashMap::new(),
922                                 short_to_id: HashMap::new(),
923                                 forward_htlcs: HashMap::new(),
924                                 claimable_htlcs: HashMap::new(),
925                                 pending_msg_events: Vec::new(),
926                         }),
927                         pending_inbound_payments: Mutex::new(HashMap::new()),
928                         pending_outbound_payments: Mutex::new(HashSet::new()),
929
930                         our_network_key: keys_manager.get_node_secret(),
931                         our_network_pubkey: PublicKey::from_secret_key(&secp_ctx, &keys_manager.get_node_secret()),
932                         secp_ctx,
933
934                         last_node_announcement_serial: AtomicUsize::new(0),
935                         highest_seen_timestamp: AtomicUsize::new(0),
936
937                         per_peer_state: RwLock::new(HashMap::new()),
938
939                         pending_events: Mutex::new(Vec::new()),
940                         pending_background_events: Mutex::new(Vec::new()),
941                         total_consistency_lock: RwLock::new(()),
942                         persistence_notifier: PersistenceNotifier::new(),
943
944                         keys_manager,
945
946                         logger,
947                 }
948         }
949
950         /// Gets the current configuration applied to all new channels,  as
951         pub fn get_current_default_configuration(&self) -> &UserConfig {
952                 &self.default_configuration
953         }
954
955         /// Creates a new outbound channel to the given remote node and with the given value.
956         ///
957         /// user_id will be provided back as user_channel_id in FundingGenerationReady events to allow
958         /// tracking of which events correspond with which create_channel call. Note that the
959         /// user_channel_id defaults to 0 for inbound channels, so you may wish to avoid using 0 for
960         /// user_id here. user_id has no meaning inside of LDK, it is simply copied to events and
961         /// otherwise ignored.
962         ///
963         /// If successful, will generate a SendOpenChannel message event, so you should probably poll
964         /// PeerManager::process_events afterwards.
965         ///
966         /// Raises APIError::APIMisuseError when channel_value_satoshis > 2**24 or push_msat is
967         /// greater than channel_value_satoshis * 1k or channel_value_satoshis is < 1000.
968         pub fn create_channel(&self, their_network_key: PublicKey, channel_value_satoshis: u64, push_msat: u64, user_id: u64, override_config: Option<UserConfig>) -> Result<(), APIError> {
969                 if channel_value_satoshis < 1000 {
970                         return Err(APIError::APIMisuseError { err: format!("Channel value must be at least 1000 satoshis. It was {}", channel_value_satoshis) });
971                 }
972
973                 let config = if override_config.is_some() { override_config.as_ref().unwrap() } else { &self.default_configuration };
974                 let channel = Channel::new_outbound(&self.fee_estimator, &self.keys_manager, their_network_key, channel_value_satoshis, push_msat, user_id, config)?;
975                 let res = channel.get_open_channel(self.genesis_hash.clone());
976
977                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
978                 // We want to make sure the lock is actually acquired by PersistenceNotifierGuard.
979                 debug_assert!(&self.total_consistency_lock.try_write().is_err());
980
981                 let mut channel_state = self.channel_state.lock().unwrap();
982                 match channel_state.by_id.entry(channel.channel_id()) {
983                         hash_map::Entry::Occupied(_) => {
984                                 if cfg!(feature = "fuzztarget") {
985                                         return Err(APIError::APIMisuseError { err: "Fuzzy bad RNG".to_owned() });
986                                 } else {
987                                         panic!("RNG is bad???");
988                                 }
989                         },
990                         hash_map::Entry::Vacant(entry) => { entry.insert(channel); }
991                 }
992                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
993                         node_id: their_network_key,
994                         msg: res,
995                 });
996                 Ok(())
997         }
998
999         fn list_channels_with_filter<Fn: FnMut(&(&[u8; 32], &Channel<Signer>)) -> bool>(&self, f: Fn) -> Vec<ChannelDetails> {
1000                 let mut res = Vec::new();
1001                 {
1002                         let channel_state = self.channel_state.lock().unwrap();
1003                         res.reserve(channel_state.by_id.len());
1004                         for (channel_id, channel) in channel_state.by_id.iter().filter(f) {
1005                                 let (inbound_capacity_msat, outbound_capacity_msat) = channel.get_inbound_outbound_available_balance_msat();
1006                                 res.push(ChannelDetails {
1007                                         channel_id: (*channel_id).clone(),
1008                                         funding_txo: channel.get_funding_txo(),
1009                                         short_channel_id: channel.get_short_channel_id(),
1010                                         remote_network_id: channel.get_counterparty_node_id(),
1011                                         counterparty_features: InitFeatures::empty(),
1012                                         channel_value_satoshis: channel.get_value_satoshis(),
1013                                         inbound_capacity_msat,
1014                                         outbound_capacity_msat,
1015                                         user_id: channel.get_user_id(),
1016                                         is_outbound: channel.is_outbound(),
1017                                         is_funding_locked: channel.is_usable(),
1018                                         is_usable: channel.is_live(),
1019                                         is_public: channel.should_announce(),
1020                                         counterparty_forwarding_info: channel.counterparty_forwarding_info(),
1021                                 });
1022                         }
1023                 }
1024                 let per_peer_state = self.per_peer_state.read().unwrap();
1025                 for chan in res.iter_mut() {
1026                         if let Some(peer_state) = per_peer_state.get(&chan.remote_network_id) {
1027                                 chan.counterparty_features = peer_state.lock().unwrap().latest_features.clone();
1028                         }
1029                 }
1030                 res
1031         }
1032
1033         /// Gets the list of open channels, in random order. See ChannelDetail field documentation for
1034         /// more information.
1035         pub fn list_channels(&self) -> Vec<ChannelDetails> {
1036                 self.list_channels_with_filter(|_| true)
1037         }
1038
1039         /// Gets the list of usable channels, in random order. Useful as an argument to
1040         /// get_route to ensure non-announced channels are used.
1041         ///
1042         /// These are guaranteed to have their [`ChannelDetails::is_usable`] value set to true, see the
1043         /// documentation for [`ChannelDetails::is_usable`] for more info on exactly what the criteria
1044         /// are.
1045         pub fn list_usable_channels(&self) -> Vec<ChannelDetails> {
1046                 // Note we use is_live here instead of usable which leads to somewhat confused
1047                 // internal/external nomenclature, but that's ok cause that's probably what the user
1048                 // really wanted anyway.
1049                 self.list_channels_with_filter(|&(_, ref channel)| channel.is_live())
1050         }
1051
1052         /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
1053         /// will be accepted on the given channel, and after additional timeout/the closing of all
1054         /// pending HTLCs, the channel will be closed on chain.
1055         ///
1056         /// May generate a SendShutdown message event on success, which should be relayed.
1057         pub fn close_channel(&self, channel_id: &[u8; 32]) -> Result<(), APIError> {
1058                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1059
1060                 let (mut failed_htlcs, chan_option) = {
1061                         let mut channel_state_lock = self.channel_state.lock().unwrap();
1062                         let channel_state = &mut *channel_state_lock;
1063                         match channel_state.by_id.entry(channel_id.clone()) {
1064                                 hash_map::Entry::Occupied(mut chan_entry) => {
1065                                         let (shutdown_msg, failed_htlcs) = chan_entry.get_mut().get_shutdown()?;
1066                                         channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
1067                                                 node_id: chan_entry.get().get_counterparty_node_id(),
1068                                                 msg: shutdown_msg
1069                                         });
1070                                         if chan_entry.get().is_shutdown() {
1071                                                 if let Some(short_id) = chan_entry.get().get_short_channel_id() {
1072                                                         channel_state.short_to_id.remove(&short_id);
1073                                                 }
1074                                                 (failed_htlcs, Some(chan_entry.remove_entry().1))
1075                                         } else { (failed_htlcs, None) }
1076                                 },
1077                                 hash_map::Entry::Vacant(_) => return Err(APIError::ChannelUnavailable{err: "No such channel".to_owned()})
1078                         }
1079                 };
1080                 for htlc_source in failed_htlcs.drain(..) {
1081                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
1082                 }
1083                 let chan_update = if let Some(chan) = chan_option {
1084                         if let Ok(update) = self.get_channel_update(&chan) {
1085                                 Some(update)
1086                         } else { None }
1087                 } else { None };
1088
1089                 if let Some(update) = chan_update {
1090                         let mut channel_state = self.channel_state.lock().unwrap();
1091                         channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
1092                                 msg: update
1093                         });
1094                 }
1095
1096                 Ok(())
1097         }
1098
1099         #[inline]
1100         fn finish_force_close_channel(&self, shutdown_res: ShutdownResult) {
1101                 let (monitor_update_option, mut failed_htlcs) = shutdown_res;
1102                 log_trace!(self.logger, "Finishing force-closure of channel {} HTLCs to fail", failed_htlcs.len());
1103                 for htlc_source in failed_htlcs.drain(..) {
1104                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
1105                 }
1106                 if let Some((funding_txo, monitor_update)) = monitor_update_option {
1107                         // There isn't anything we can do if we get an update failure - we're already
1108                         // force-closing. The monitor update on the required in-memory copy should broadcast
1109                         // the latest local state, which is the best we can do anyway. Thus, it is safe to
1110                         // ignore the result here.
1111                         let _ = self.chain_monitor.update_channel(funding_txo, monitor_update);
1112                 }
1113         }
1114
1115         fn force_close_channel_with_peer(&self, channel_id: &[u8; 32], peer_node_id: Option<&PublicKey>) -> Result<PublicKey, APIError> {
1116                 let mut chan = {
1117                         let mut channel_state_lock = self.channel_state.lock().unwrap();
1118                         let channel_state = &mut *channel_state_lock;
1119                         if let hash_map::Entry::Occupied(chan) = channel_state.by_id.entry(channel_id.clone()) {
1120                                 if let Some(node_id) = peer_node_id {
1121                                         if chan.get().get_counterparty_node_id() != *node_id {
1122                                                 return Err(APIError::ChannelUnavailable{err: "No such channel".to_owned()});
1123                                         }
1124                                 }
1125                                 if let Some(short_id) = chan.get().get_short_channel_id() {
1126                                         channel_state.short_to_id.remove(&short_id);
1127                                 }
1128                                 chan.remove_entry().1
1129                         } else {
1130                                 return Err(APIError::ChannelUnavailable{err: "No such channel".to_owned()});
1131                         }
1132                 };
1133                 log_trace!(self.logger, "Force-closing channel {}", log_bytes!(channel_id[..]));
1134                 self.finish_force_close_channel(chan.force_shutdown(true));
1135                 if let Ok(update) = self.get_channel_update(&chan) {
1136                         let mut channel_state = self.channel_state.lock().unwrap();
1137                         channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
1138                                 msg: update
1139                         });
1140                 }
1141
1142                 Ok(chan.get_counterparty_node_id())
1143         }
1144
1145         /// Force closes a channel, immediately broadcasting the latest local commitment transaction to
1146         /// the chain and rejecting new HTLCs on the given channel. Fails if channel_id is unknown to the manager.
1147         pub fn force_close_channel(&self, channel_id: &[u8; 32]) -> Result<(), APIError> {
1148                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1149                 match self.force_close_channel_with_peer(channel_id, None) {
1150                         Ok(counterparty_node_id) => {
1151                                 self.channel_state.lock().unwrap().pending_msg_events.push(
1152                                         events::MessageSendEvent::HandleError {
1153                                                 node_id: counterparty_node_id,
1154                                                 action: msgs::ErrorAction::SendErrorMessage {
1155                                                         msg: msgs::ErrorMessage { channel_id: *channel_id, data: "Channel force-closed".to_owned() }
1156                                                 },
1157                                         }
1158                                 );
1159                                 Ok(())
1160                         },
1161                         Err(e) => Err(e)
1162                 }
1163         }
1164
1165         /// Force close all channels, immediately broadcasting the latest local commitment transaction
1166         /// for each to the chain and rejecting new HTLCs on each.
1167         pub fn force_close_all_channels(&self) {
1168                 for chan in self.list_channels() {
1169                         let _ = self.force_close_channel(&chan.channel_id);
1170                 }
1171         }
1172
1173         fn decode_update_add_htlc_onion(&self, msg: &msgs::UpdateAddHTLC) -> (PendingHTLCStatus, MutexGuard<ChannelHolder<Signer>>) {
1174                 macro_rules! return_malformed_err {
1175                         ($msg: expr, $err_code: expr) => {
1176                                 {
1177                                         log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
1178                                         return (PendingHTLCStatus::Fail(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
1179                                                 channel_id: msg.channel_id,
1180                                                 htlc_id: msg.htlc_id,
1181                                                 sha256_of_onion: Sha256::hash(&msg.onion_routing_packet.hop_data).into_inner(),
1182                                                 failure_code: $err_code,
1183                                         })), self.channel_state.lock().unwrap());
1184                                 }
1185                         }
1186                 }
1187
1188                 if let Err(_) = msg.onion_routing_packet.public_key {
1189                         return_malformed_err!("invalid ephemeral pubkey", 0x8000 | 0x4000 | 6);
1190                 }
1191
1192                 let shared_secret = {
1193                         let mut arr = [0; 32];
1194                         arr.copy_from_slice(&SharedSecret::new(&msg.onion_routing_packet.public_key.unwrap(), &self.our_network_key)[..]);
1195                         arr
1196                 };
1197                 let (rho, mu) = onion_utils::gen_rho_mu_from_shared_secret(&shared_secret);
1198
1199                 if msg.onion_routing_packet.version != 0 {
1200                         //TODO: Spec doesn't indicate if we should only hash hop_data here (and in other
1201                         //sha256_of_onion error data packets), or the entire onion_routing_packet. Either way,
1202                         //the hash doesn't really serve any purpose - in the case of hashing all data, the
1203                         //receiving node would have to brute force to figure out which version was put in the
1204                         //packet by the node that send us the message, in the case of hashing the hop_data, the
1205                         //node knows the HMAC matched, so they already know what is there...
1206                         return_malformed_err!("Unknown onion packet version", 0x8000 | 0x4000 | 4);
1207                 }
1208
1209                 let mut hmac = HmacEngine::<Sha256>::new(&mu);
1210                 hmac.input(&msg.onion_routing_packet.hop_data);
1211                 hmac.input(&msg.payment_hash.0[..]);
1212                 if !fixed_time_eq(&Hmac::from_engine(hmac).into_inner(), &msg.onion_routing_packet.hmac) {
1213                         return_malformed_err!("HMAC Check failed", 0x8000 | 0x4000 | 5);
1214                 }
1215
1216                 let mut channel_state = None;
1217                 macro_rules! return_err {
1218                         ($msg: expr, $err_code: expr, $data: expr) => {
1219                                 {
1220                                         log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
1221                                         if channel_state.is_none() {
1222                                                 channel_state = Some(self.channel_state.lock().unwrap());
1223                                         }
1224                                         return (PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
1225                                                 channel_id: msg.channel_id,
1226                                                 htlc_id: msg.htlc_id,
1227                                                 reason: onion_utils::build_first_hop_failure_packet(&shared_secret, $err_code, $data),
1228                                         })), channel_state.unwrap());
1229                                 }
1230                         }
1231                 }
1232
1233                 let mut chacha = ChaCha20::new(&rho, &[0u8; 8]);
1234                 let mut chacha_stream = ChaChaReader { chacha: &mut chacha, read: Cursor::new(&msg.onion_routing_packet.hop_data[..]) };
1235                 let (next_hop_data, next_hop_hmac) = {
1236                         match msgs::OnionHopData::read(&mut chacha_stream) {
1237                                 Err(err) => {
1238                                         let error_code = match err {
1239                                                 msgs::DecodeError::UnknownVersion => 0x4000 | 1, // unknown realm byte
1240                                                 msgs::DecodeError::UnknownRequiredFeature|
1241                                                 msgs::DecodeError::InvalidValue|
1242                                                 msgs::DecodeError::ShortRead => 0x4000 | 22, // invalid_onion_payload
1243                                                 _ => 0x2000 | 2, // Should never happen
1244                                         };
1245                                         return_err!("Unable to decode our hop data", error_code, &[0;0]);
1246                                 },
1247                                 Ok(msg) => {
1248                                         let mut hmac = [0; 32];
1249                                         if let Err(_) = chacha_stream.read_exact(&mut hmac[..]) {
1250                                                 return_err!("Unable to decode hop data", 0x4000 | 22, &[0;0]);
1251                                         }
1252                                         (msg, hmac)
1253                                 },
1254                         }
1255                 };
1256
1257                 let pending_forward_info = if next_hop_hmac == [0; 32] {
1258                                 #[cfg(test)]
1259                                 {
1260                                         // In tests, make sure that the initial onion pcket data is, at least, non-0.
1261                                         // We could do some fancy randomness test here, but, ehh, whatever.
1262                                         // This checks for the issue where you can calculate the path length given the
1263                                         // onion data as all the path entries that the originator sent will be here
1264                                         // as-is (and were originally 0s).
1265                                         // Of course reverse path calculation is still pretty easy given naive routing
1266                                         // algorithms, but this fixes the most-obvious case.
1267                                         let mut next_bytes = [0; 32];
1268                                         chacha_stream.read_exact(&mut next_bytes).unwrap();
1269                                         assert_ne!(next_bytes[..], [0; 32][..]);
1270                                         chacha_stream.read_exact(&mut next_bytes).unwrap();
1271                                         assert_ne!(next_bytes[..], [0; 32][..]);
1272                                 }
1273
1274                                 // OUR PAYMENT!
1275                                 // final_expiry_too_soon
1276                                 // We have to have some headroom to broadcast on chain if we have the preimage, so make sure we have at least
1277                                 // HTLC_FAIL_BACK_BUFFER blocks to go.
1278                                 // Also, ensure that, in the case of an unknown payment hash, our payment logic has enough time to fail the HTLC backward
1279                                 // before our onchain logic triggers a channel closure (see HTLC_FAIL_BACK_BUFFER rational).
1280                                 if (msg.cltv_expiry as u64) <= self.best_block.read().unwrap().height() as u64 + HTLC_FAIL_BACK_BUFFER as u64 + 1 {
1281                                         return_err!("The final CLTV expiry is too soon to handle", 17, &[0;0]);
1282                                 }
1283                                 // final_incorrect_htlc_amount
1284                                 if next_hop_data.amt_to_forward > msg.amount_msat {
1285                                         return_err!("Upstream node sent less than we were supposed to receive in payment", 19, &byte_utils::be64_to_array(msg.amount_msat));
1286                                 }
1287                                 // final_incorrect_cltv_expiry
1288                                 if next_hop_data.outgoing_cltv_value != msg.cltv_expiry {
1289                                         return_err!("Upstream node set CLTV to the wrong value", 18, &byte_utils::be32_to_array(msg.cltv_expiry));
1290                                 }
1291
1292                                 let payment_data = match next_hop_data.format {
1293                                         msgs::OnionHopDataFormat::Legacy { .. } => None,
1294                                         msgs::OnionHopDataFormat::NonFinalNode { .. } => return_err!("Got non final data with an HMAC of 0", 0x4000 | 22, &[0;0]),
1295                                         msgs::OnionHopDataFormat::FinalNode { payment_data } => payment_data,
1296                                 };
1297
1298                                 if payment_data.is_none() {
1299                                         return_err!("We require payment_secrets", 0x4000|0x2000|3, &[0;0]);
1300                                 }
1301
1302                                 // Note that we could obviously respond immediately with an update_fulfill_htlc
1303                                 // message, however that would leak that we are the recipient of this payment, so
1304                                 // instead we stay symmetric with the forwarding case, only responding (after a
1305                                 // delay) once they've send us a commitment_signed!
1306
1307                                 PendingHTLCStatus::Forward(PendingHTLCInfo {
1308                                         routing: PendingHTLCRouting::Receive {
1309                                                 payment_data: payment_data.unwrap(),
1310                                                 incoming_cltv_expiry: msg.cltv_expiry,
1311                                         },
1312                                         payment_hash: msg.payment_hash.clone(),
1313                                         incoming_shared_secret: shared_secret,
1314                                         amt_to_forward: next_hop_data.amt_to_forward,
1315                                         outgoing_cltv_value: next_hop_data.outgoing_cltv_value,
1316                                 })
1317                         } else {
1318                                 let mut new_packet_data = [0; 20*65];
1319                                 let read_pos = chacha_stream.read(&mut new_packet_data).unwrap();
1320                                 #[cfg(debug_assertions)]
1321                                 {
1322                                         // Check two things:
1323                                         // a) that the behavior of our stream here will return Ok(0) even if the TLV
1324                                         //    read above emptied out our buffer and the unwrap() wont needlessly panic
1325                                         // b) that we didn't somehow magically end up with extra data.
1326                                         let mut t = [0; 1];
1327                                         debug_assert!(chacha_stream.read(&mut t).unwrap() == 0);
1328                                 }
1329                                 // Once we've emptied the set of bytes our peer gave us, encrypt 0 bytes until we
1330                                 // fill the onion hop data we'll forward to our next-hop peer.
1331                                 chacha_stream.chacha.process_in_place(&mut new_packet_data[read_pos..]);
1332
1333                                 let mut new_pubkey = msg.onion_routing_packet.public_key.unwrap();
1334
1335                                 let blinding_factor = {
1336                                         let mut sha = Sha256::engine();
1337                                         sha.input(&new_pubkey.serialize()[..]);
1338                                         sha.input(&shared_secret);
1339                                         Sha256::from_engine(sha).into_inner()
1340                                 };
1341
1342                                 let public_key = if let Err(e) = new_pubkey.mul_assign(&self.secp_ctx, &blinding_factor[..]) {
1343                                         Err(e)
1344                                 } else { Ok(new_pubkey) };
1345
1346                                 let outgoing_packet = msgs::OnionPacket {
1347                                         version: 0,
1348                                         public_key,
1349                                         hop_data: new_packet_data,
1350                                         hmac: next_hop_hmac.clone(),
1351                                 };
1352
1353                                 let short_channel_id = match next_hop_data.format {
1354                                         msgs::OnionHopDataFormat::Legacy { short_channel_id } => short_channel_id,
1355                                         msgs::OnionHopDataFormat::NonFinalNode { short_channel_id } => short_channel_id,
1356                                         msgs::OnionHopDataFormat::FinalNode { .. } => {
1357                                                 return_err!("Final Node OnionHopData provided for us as an intermediary node", 0x4000 | 22, &[0;0]);
1358                                         },
1359                                 };
1360
1361                                 PendingHTLCStatus::Forward(PendingHTLCInfo {
1362                                         routing: PendingHTLCRouting::Forward {
1363                                                 onion_packet: outgoing_packet,
1364                                                 short_channel_id,
1365                                         },
1366                                         payment_hash: msg.payment_hash.clone(),
1367                                         incoming_shared_secret: shared_secret,
1368                                         amt_to_forward: next_hop_data.amt_to_forward,
1369                                         outgoing_cltv_value: next_hop_data.outgoing_cltv_value,
1370                                 })
1371                         };
1372
1373                 channel_state = Some(self.channel_state.lock().unwrap());
1374                 if let &PendingHTLCStatus::Forward(PendingHTLCInfo { ref routing, ref amt_to_forward, ref outgoing_cltv_value, .. }) = &pending_forward_info {
1375                         // If short_channel_id is 0 here, we'll reject the HTLC as there cannot be a channel
1376                         // with a short_channel_id of 0. This is important as various things later assume
1377                         // short_channel_id is non-0 in any ::Forward.
1378                         if let &PendingHTLCRouting::Forward { ref short_channel_id, .. } = routing {
1379                                 let id_option = channel_state.as_ref().unwrap().short_to_id.get(&short_channel_id).cloned();
1380                                 let forwarding_id = match id_option {
1381                                         None => { // unknown_next_peer
1382                                                 return_err!("Don't have available channel for forwarding as requested.", 0x4000 | 10, &[0;0]);
1383                                         },
1384                                         Some(id) => id.clone(),
1385                                 };
1386                                 if let Some((err, code, chan_update)) = loop {
1387                                         let chan = channel_state.as_mut().unwrap().by_id.get_mut(&forwarding_id).unwrap();
1388
1389                                         // Note that we could technically not return an error yet here and just hope
1390                                         // that the connection is reestablished or monitor updated by the time we get
1391                                         // around to doing the actual forward, but better to fail early if we can and
1392                                         // hopefully an attacker trying to path-trace payments cannot make this occur
1393                                         // on a small/per-node/per-channel scale.
1394                                         if !chan.is_live() { // channel_disabled
1395                                                 break Some(("Forwarding channel is not in a ready state.", 0x1000 | 20, Some(self.get_channel_update(chan).unwrap())));
1396                                         }
1397                                         if *amt_to_forward < chan.get_counterparty_htlc_minimum_msat() { // amount_below_minimum
1398                                                 break Some(("HTLC amount was below the htlc_minimum_msat", 0x1000 | 11, Some(self.get_channel_update(chan).unwrap())));
1399                                         }
1400                                         let fee = amt_to_forward.checked_mul(chan.get_fee_proportional_millionths() as u64).and_then(|prop_fee| { (prop_fee / 1000000).checked_add(chan.get_holder_fee_base_msat(&self.fee_estimator) as u64) });
1401                                         if fee.is_none() || msg.amount_msat < fee.unwrap() || (msg.amount_msat - fee.unwrap()) < *amt_to_forward { // fee_insufficient
1402                                                 break Some(("Prior hop has deviated from specified fees parameters or origin node has obsolete ones", 0x1000 | 12, Some(self.get_channel_update(chan).unwrap())));
1403                                         }
1404                                         if (msg.cltv_expiry as u64) < (*outgoing_cltv_value) as u64 + chan.get_cltv_expiry_delta() as u64 { // incorrect_cltv_expiry
1405                                                 break Some(("Forwarding node has tampered with the intended HTLC values or origin node has an obsolete cltv_expiry_delta", 0x1000 | 13, Some(self.get_channel_update(chan).unwrap())));
1406                                         }
1407                                         let cur_height = self.best_block.read().unwrap().height() + 1;
1408                                         // Theoretically, channel counterparty shouldn't send us a HTLC expiring now, but we want to be robust wrt to counterparty
1409                                         // packet sanitization (see HTLC_FAIL_BACK_BUFFER rational)
1410                                         if msg.cltv_expiry <= cur_height + HTLC_FAIL_BACK_BUFFER as u32 { // expiry_too_soon
1411                                                 break Some(("CLTV expiry is too close", 0x1000 | 14, Some(self.get_channel_update(chan).unwrap())));
1412                                         }
1413                                         if msg.cltv_expiry > cur_height + CLTV_FAR_FAR_AWAY as u32 { // expiry_too_far
1414                                                 break Some(("CLTV expiry is too far in the future", 21, None));
1415                                         }
1416                                         // In theory, we would be safe against unitentional channel-closure, if we only required a margin of LATENCY_GRACE_PERIOD_BLOCKS.
1417                                         // But, to be safe against policy reception, we use a longuer delay.
1418                                         if (*outgoing_cltv_value) as u64 <= (cur_height + HTLC_FAIL_BACK_BUFFER) as u64 {
1419                                                 break Some(("Outgoing CLTV value is too soon", 0x1000 | 14, Some(self.get_channel_update(chan).unwrap())));
1420                                         }
1421
1422                                         break None;
1423                                 }
1424                                 {
1425                                         let mut res = Vec::with_capacity(8 + 128);
1426                                         if let Some(chan_update) = chan_update {
1427                                                 if code == 0x1000 | 11 || code == 0x1000 | 12 {
1428                                                         res.extend_from_slice(&byte_utils::be64_to_array(msg.amount_msat));
1429                                                 }
1430                                                 else if code == 0x1000 | 13 {
1431                                                         res.extend_from_slice(&byte_utils::be32_to_array(msg.cltv_expiry));
1432                                                 }
1433                                                 else if code == 0x1000 | 20 {
1434                                                         // TODO: underspecified, follow https://github.com/lightningnetwork/lightning-rfc/issues/791
1435                                                         res.extend_from_slice(&byte_utils::be16_to_array(0));
1436                                                 }
1437                                                 res.extend_from_slice(&chan_update.encode_with_len()[..]);
1438                                         }
1439                                         return_err!(err, code, &res[..]);
1440                                 }
1441                         }
1442                 }
1443
1444                 (pending_forward_info, channel_state.unwrap())
1445         }
1446
1447         /// only fails if the channel does not yet have an assigned short_id
1448         /// May be called with channel_state already locked!
1449         fn get_channel_update(&self, chan: &Channel<Signer>) -> Result<msgs::ChannelUpdate, LightningError> {
1450                 let short_channel_id = match chan.get_short_channel_id() {
1451                         None => return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError}),
1452                         Some(id) => id,
1453                 };
1454
1455                 let were_node_one = PublicKey::from_secret_key(&self.secp_ctx, &self.our_network_key).serialize()[..] < chan.get_counterparty_node_id().serialize()[..];
1456
1457                 let unsigned = msgs::UnsignedChannelUpdate {
1458                         chain_hash: self.genesis_hash,
1459                         short_channel_id,
1460                         timestamp: chan.get_update_time_counter(),
1461                         flags: (!were_node_one) as u8 | ((!chan.is_live() as u8) << 1),
1462                         cltv_expiry_delta: chan.get_cltv_expiry_delta(),
1463                         htlc_minimum_msat: chan.get_counterparty_htlc_minimum_msat(),
1464                         htlc_maximum_msat: OptionalField::Present(chan.get_announced_htlc_max_msat()),
1465                         fee_base_msat: chan.get_holder_fee_base_msat(&self.fee_estimator),
1466                         fee_proportional_millionths: chan.get_fee_proportional_millionths(),
1467                         excess_data: Vec::new(),
1468                 };
1469
1470                 let msg_hash = Sha256dHash::hash(&unsigned.encode()[..]);
1471                 let sig = self.secp_ctx.sign(&hash_to_message!(&msg_hash[..]), &self.our_network_key);
1472
1473                 Ok(msgs::ChannelUpdate {
1474                         signature: sig,
1475                         contents: unsigned
1476                 })
1477         }
1478
1479         // Only public for testing, this should otherwise never be called direcly
1480         pub(crate) fn send_payment_along_path(&self, path: &Vec<RouteHop>, payment_hash: &PaymentHash, payment_secret: &Option<PaymentSecret>, total_value: u64, cur_height: u32) -> Result<(), APIError> {
1481                 log_trace!(self.logger, "Attempting to send payment for path with next hop {}", path.first().unwrap().short_channel_id);
1482                 let prng_seed = self.keys_manager.get_secure_random_bytes();
1483                 let session_priv_bytes = self.keys_manager.get_secure_random_bytes();
1484                 let session_priv = SecretKey::from_slice(&session_priv_bytes[..]).expect("RNG is busted");
1485
1486                 let onion_keys = onion_utils::construct_onion_keys(&self.secp_ctx, &path, &session_priv)
1487                         .map_err(|_| APIError::RouteError{err: "Pubkey along hop was maliciously selected"})?;
1488                 let (onion_payloads, htlc_msat, htlc_cltv) = onion_utils::build_onion_payloads(path, total_value, payment_secret, cur_height)?;
1489                 if onion_utils::route_size_insane(&onion_payloads) {
1490                         return Err(APIError::RouteError{err: "Route size too large considering onion data"});
1491                 }
1492                 let onion_packet = onion_utils::construct_onion_packet(onion_payloads, onion_keys, prng_seed, payment_hash);
1493
1494                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1495                 assert!(self.pending_outbound_payments.lock().unwrap().insert(session_priv_bytes));
1496
1497                 let err: Result<(), _> = loop {
1498                         let mut channel_lock = self.channel_state.lock().unwrap();
1499                         let id = match channel_lock.short_to_id.get(&path.first().unwrap().short_channel_id) {
1500                                 None => return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()}),
1501                                 Some(id) => id.clone(),
1502                         };
1503
1504                         let channel_state = &mut *channel_lock;
1505                         if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(id) {
1506                                 match {
1507                                         if chan.get().get_counterparty_node_id() != path.first().unwrap().pubkey {
1508                                                 return Err(APIError::RouteError{err: "Node ID mismatch on first hop!"});
1509                                         }
1510                                         if !chan.get().is_live() {
1511                                                 return Err(APIError::ChannelUnavailable{err: "Peer for first hop currently disconnected/pending monitor update!".to_owned()});
1512                                         }
1513                                         break_chan_entry!(self, chan.get_mut().send_htlc_and_commit(htlc_msat, payment_hash.clone(), htlc_cltv, HTLCSource::OutboundRoute {
1514                                                 path: path.clone(),
1515                                                 session_priv: session_priv.clone(),
1516                                                 first_hop_htlc_msat: htlc_msat,
1517                                         }, onion_packet, &self.logger), channel_state, chan)
1518                                 } {
1519                                         Some((update_add, commitment_signed, monitor_update)) => {
1520                                                 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
1521                                                         maybe_break_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, true);
1522                                                         // Note that MonitorUpdateFailed here indicates (per function docs)
1523                                                         // that we will resend the commitment update once monitor updating
1524                                                         // is restored. Therefore, we must return an error indicating that
1525                                                         // it is unsafe to retry the payment wholesale, which we do in the
1526                                                         // send_payment check for MonitorUpdateFailed, below.
1527                                                         return Err(APIError::MonitorUpdateFailed);
1528                                                 }
1529
1530                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
1531                                                         node_id: path.first().unwrap().pubkey,
1532                                                         updates: msgs::CommitmentUpdate {
1533                                                                 update_add_htlcs: vec![update_add],
1534                                                                 update_fulfill_htlcs: Vec::new(),
1535                                                                 update_fail_htlcs: Vec::new(),
1536                                                                 update_fail_malformed_htlcs: Vec::new(),
1537                                                                 update_fee: None,
1538                                                                 commitment_signed,
1539                                                         },
1540                                                 });
1541                                         },
1542                                         None => {},
1543                                 }
1544                         } else { unreachable!(); }
1545                         return Ok(());
1546                 };
1547
1548                 match handle_error!(self, err, path.first().unwrap().pubkey) {
1549                         Ok(_) => unreachable!(),
1550                         Err(e) => {
1551                                 Err(APIError::ChannelUnavailable { err: e.err })
1552                         },
1553                 }
1554         }
1555
1556         /// Sends a payment along a given route.
1557         ///
1558         /// Value parameters are provided via the last hop in route, see documentation for RouteHop
1559         /// fields for more info.
1560         ///
1561         /// Note that if the payment_hash already exists elsewhere (eg you're sending a duplicative
1562         /// payment), we don't do anything to stop you! We always try to ensure that if the provided
1563         /// next hop knows the preimage to payment_hash they can claim an additional amount as
1564         /// specified in the last hop in the route! Thus, you should probably do your own
1565         /// payment_preimage tracking (which you should already be doing as they represent "proof of
1566         /// payment") and prevent double-sends yourself.
1567         ///
1568         /// May generate SendHTLCs message(s) event on success, which should be relayed.
1569         ///
1570         /// Each path may have a different return value, and PaymentSendValue may return a Vec with
1571         /// each entry matching the corresponding-index entry in the route paths, see
1572         /// PaymentSendFailure for more info.
1573         ///
1574         /// In general, a path may raise:
1575         ///  * APIError::RouteError when an invalid route or forwarding parameter (cltv_delta, fee,
1576         ///    node public key) is specified.
1577         ///  * APIError::ChannelUnavailable if the next-hop channel is not available for updates
1578         ///    (including due to previous monitor update failure or new permanent monitor update
1579         ///    failure).
1580         ///  * APIError::MonitorUpdateFailed if a new monitor update failure prevented sending the
1581         ///    relevant updates.
1582         ///
1583         /// Note that depending on the type of the PaymentSendFailure the HTLC may have been
1584         /// irrevocably committed to on our end. In such a case, do NOT retry the payment with a
1585         /// different route unless you intend to pay twice!
1586         ///
1587         /// payment_secret is unrelated to payment_hash (or PaymentPreimage) and exists to authenticate
1588         /// the sender to the recipient and prevent payment-probing (deanonymization) attacks. For
1589         /// newer nodes, it will be provided to you in the invoice. If you do not have one, the Route
1590         /// must not contain multiple paths as multi-path payments require a recipient-provided
1591         /// payment_secret.
1592         /// If a payment_secret *is* provided, we assume that the invoice had the payment_secret feature
1593         /// bit set (either as required or as available). If multiple paths are present in the Route,
1594         /// we assume the invoice had the basic_mpp feature set.
1595         pub fn send_payment(&self, route: &Route, payment_hash: PaymentHash, payment_secret: &Option<PaymentSecret>) -> Result<(), PaymentSendFailure> {
1596                 if route.paths.len() < 1 {
1597                         return Err(PaymentSendFailure::ParameterError(APIError::RouteError{err: "There must be at least one path to send over"}));
1598                 }
1599                 if route.paths.len() > 10 {
1600                         // This limit is completely arbitrary - there aren't any real fundamental path-count
1601                         // limits. After we support retrying individual paths we should likely bump this, but
1602                         // for now more than 10 paths likely carries too much one-path failure.
1603                         return Err(PaymentSendFailure::ParameterError(APIError::RouteError{err: "Sending over more than 10 paths is not currently supported"}));
1604                 }
1605                 let mut total_value = 0;
1606                 let our_node_id = self.get_our_node_id();
1607                 let mut path_errs = Vec::with_capacity(route.paths.len());
1608                 'path_check: for path in route.paths.iter() {
1609                         if path.len() < 1 || path.len() > 20 {
1610                                 path_errs.push(Err(APIError::RouteError{err: "Path didn't go anywhere/had bogus size"}));
1611                                 continue 'path_check;
1612                         }
1613                         for (idx, hop) in path.iter().enumerate() {
1614                                 if idx != path.len() - 1 && hop.pubkey == our_node_id {
1615                                         path_errs.push(Err(APIError::RouteError{err: "Path went through us but wasn't a simple rebalance loop to us"}));
1616                                         continue 'path_check;
1617                                 }
1618                         }
1619                         total_value += path.last().unwrap().fee_msat;
1620                         path_errs.push(Ok(()));
1621                 }
1622                 if path_errs.iter().any(|e| e.is_err()) {
1623                         return Err(PaymentSendFailure::PathParameterError(path_errs));
1624                 }
1625
1626                 let cur_height = self.best_block.read().unwrap().height() + 1;
1627                 let mut results = Vec::new();
1628                 for path in route.paths.iter() {
1629                         results.push(self.send_payment_along_path(&path, &payment_hash, payment_secret, total_value, cur_height));
1630                 }
1631                 let mut has_ok = false;
1632                 let mut has_err = false;
1633                 for res in results.iter() {
1634                         if res.is_ok() { has_ok = true; }
1635                         if res.is_err() { has_err = true; }
1636                         if let &Err(APIError::MonitorUpdateFailed) = res {
1637                                 // MonitorUpdateFailed is inherently unsafe to retry, so we call it a
1638                                 // PartialFailure.
1639                                 has_err = true;
1640                                 has_ok = true;
1641                                 break;
1642                         }
1643                 }
1644                 if has_err && has_ok {
1645                         Err(PaymentSendFailure::PartialFailure(results))
1646                 } else if has_err {
1647                         Err(PaymentSendFailure::AllFailedRetrySafe(results.drain(..).map(|r| r.unwrap_err()).collect()))
1648                 } else {
1649                         Ok(())
1650                 }
1651         }
1652
1653         /// Handles the generation of a funding transaction, optionally (for tests) with a function
1654         /// which checks the correctness of the funding transaction given the associated channel.
1655         fn funding_transaction_generated_intern<FundingOutput: Fn(&Channel<Signer>, &Transaction) -> Result<OutPoint, APIError>>
1656                         (&self, temporary_channel_id: &[u8; 32], funding_transaction: Transaction, find_funding_output: FundingOutput) -> Result<(), APIError> {
1657                 let (chan, msg) = {
1658                         let (res, chan) = match self.channel_state.lock().unwrap().by_id.remove(temporary_channel_id) {
1659                                 Some(mut chan) => {
1660                                         let funding_txo = find_funding_output(&chan, &funding_transaction)?;
1661
1662                                         (chan.get_outbound_funding_created(funding_transaction, funding_txo, &self.logger)
1663                                                 .map_err(|e| if let ChannelError::Close(msg) = e {
1664                                                         MsgHandleErrInternal::from_finish_shutdown(msg, chan.channel_id(), chan.force_shutdown(true), None)
1665                                                 } else { unreachable!(); })
1666                                         , chan)
1667                                 },
1668                                 None => { return Err(APIError::ChannelUnavailable { err: "No such channel".to_owned() }) },
1669                         };
1670                         match handle_error!(self, res, chan.get_counterparty_node_id()) {
1671                                 Ok(funding_msg) => {
1672                                         (chan, funding_msg)
1673                                 },
1674                                 Err(_) => { return Err(APIError::ChannelUnavailable {
1675                                         err: "Error deriving keys or signing initial commitment transactions - either our RNG or our counterparty's RNG is broken or the Signer refused to sign".to_owned()
1676                                 }) },
1677                         }
1678                 };
1679
1680                 let mut channel_state = self.channel_state.lock().unwrap();
1681                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingCreated {
1682                         node_id: chan.get_counterparty_node_id(),
1683                         msg,
1684                 });
1685                 match channel_state.by_id.entry(chan.channel_id()) {
1686                         hash_map::Entry::Occupied(_) => {
1687                                 panic!("Generated duplicate funding txid?");
1688                         },
1689                         hash_map::Entry::Vacant(e) => {
1690                                 e.insert(chan);
1691                         }
1692                 }
1693                 Ok(())
1694         }
1695
1696         #[cfg(test)]
1697         pub(crate) fn funding_transaction_generated_unchecked(&self, temporary_channel_id: &[u8; 32], funding_transaction: Transaction, output_index: u16) -> Result<(), APIError> {
1698                 self.funding_transaction_generated_intern(temporary_channel_id, funding_transaction, |_, tx| {
1699                         Ok(OutPoint { txid: tx.txid(), index: output_index })
1700                 })
1701         }
1702
1703         /// Call this upon creation of a funding transaction for the given channel.
1704         ///
1705         /// Returns an [`APIError::APIMisuseError`] if the funding_transaction spent non-SegWit outputs
1706         /// or if no output was found which matches the parameters in [`Event::FundingGenerationReady`].
1707         ///
1708         /// Panics if a funding transaction has already been provided for this channel.
1709         ///
1710         /// May panic if the output found in the funding transaction is duplicative with some other
1711         /// channel (note that this should be trivially prevented by using unique funding transaction
1712         /// keys per-channel).
1713         ///
1714         /// Do NOT broadcast the funding transaction yourself. When we have safely received our
1715         /// counterparty's signature the funding transaction will automatically be broadcast via the
1716         /// [`BroadcasterInterface`] provided when this `ChannelManager` was constructed.
1717         ///
1718         /// Note that this includes RBF or similar transaction replacement strategies - lightning does
1719         /// not currently support replacing a funding transaction on an existing channel. Instead,
1720         /// create a new channel with a conflicting funding transaction.
1721         pub fn funding_transaction_generated(&self, temporary_channel_id: &[u8; 32], funding_transaction: Transaction) -> Result<(), APIError> {
1722                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1723
1724                 for inp in funding_transaction.input.iter() {
1725                         if inp.witness.is_empty() {
1726                                 return Err(APIError::APIMisuseError {
1727                                         err: "Funding transaction must be fully signed and spend Segwit outputs".to_owned()
1728                                 });
1729                         }
1730                 }
1731                 self.funding_transaction_generated_intern(temporary_channel_id, funding_transaction, |chan, tx| {
1732                         let mut output_index = None;
1733                         let expected_spk = chan.get_funding_redeemscript().to_v0_p2wsh();
1734                         for (idx, outp) in tx.output.iter().enumerate() {
1735                                 if outp.script_pubkey == expected_spk && outp.value == chan.get_value_satoshis() {
1736                                         if output_index.is_some() {
1737                                                 return Err(APIError::APIMisuseError {
1738                                                         err: "Multiple outputs matched the expected script and value".to_owned()
1739                                                 });
1740                                         }
1741                                         if idx > u16::max_value() as usize {
1742                                                 return Err(APIError::APIMisuseError {
1743                                                         err: "Transaction had more than 2^16 outputs, which is not supported".to_owned()
1744                                                 });
1745                                         }
1746                                         output_index = Some(idx as u16);
1747                                 }
1748                         }
1749                         if output_index.is_none() {
1750                                 return Err(APIError::APIMisuseError {
1751                                         err: "No output matched the script_pubkey and value in the FundingGenerationReady event".to_owned()
1752                                 });
1753                         }
1754                         Ok(OutPoint { txid: tx.txid(), index: output_index.unwrap() })
1755                 })
1756         }
1757
1758         fn get_announcement_sigs(&self, chan: &Channel<Signer>) -> Option<msgs::AnnouncementSignatures> {
1759                 if !chan.should_announce() {
1760                         log_trace!(self.logger, "Can't send announcement_signatures for private channel {}", log_bytes!(chan.channel_id()));
1761                         return None
1762                 }
1763
1764                 let (announcement, our_bitcoin_sig) = match chan.get_channel_announcement(self.get_our_node_id(), self.genesis_hash.clone()) {
1765                         Ok(res) => res,
1766                         Err(_) => return None, // Only in case of state precondition violations eg channel is closing
1767                 };
1768                 let msghash = hash_to_message!(&Sha256dHash::hash(&announcement.encode()[..])[..]);
1769                 let our_node_sig = self.secp_ctx.sign(&msghash, &self.our_network_key);
1770
1771                 Some(msgs::AnnouncementSignatures {
1772                         channel_id: chan.channel_id(),
1773                         short_channel_id: chan.get_short_channel_id().unwrap(),
1774                         node_signature: our_node_sig,
1775                         bitcoin_signature: our_bitcoin_sig,
1776                 })
1777         }
1778
1779         #[allow(dead_code)]
1780         // Messages of up to 64KB should never end up more than half full with addresses, as that would
1781         // be absurd. We ensure this by checking that at least 500 (our stated public contract on when
1782         // broadcast_node_announcement panics) of the maximum-length addresses would fit in a 64KB
1783         // message...
1784         const HALF_MESSAGE_IS_ADDRS: u32 = ::core::u16::MAX as u32 / (NetAddress::MAX_LEN as u32 + 1) / 2;
1785         #[deny(const_err)]
1786         #[allow(dead_code)]
1787         // ...by failing to compile if the number of addresses that would be half of a message is
1788         // smaller than 500:
1789         const STATIC_ASSERT: u32 = Self::HALF_MESSAGE_IS_ADDRS - 500;
1790
1791         /// Generates a signed node_announcement from the given arguments and creates a
1792         /// BroadcastNodeAnnouncement event. Note that such messages will be ignored unless peers have
1793         /// seen a channel_announcement from us (ie unless we have public channels open).
1794         ///
1795         /// RGB is a node "color" and alias is a printable human-readable string to describe this node
1796         /// to humans. They carry no in-protocol meaning.
1797         ///
1798         /// addresses represent the set (possibly empty) of socket addresses on which this node accepts
1799         /// incoming connections. These will be broadcast to the network, publicly tying these
1800         /// addresses together. If you wish to preserve user privacy, addresses should likely contain
1801         /// only Tor Onion addresses.
1802         ///
1803         /// Panics if addresses is absurdly large (more than 500).
1804         pub fn broadcast_node_announcement(&self, rgb: [u8; 3], alias: [u8; 32], mut addresses: Vec<NetAddress>) {
1805                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1806
1807                 if addresses.len() > 500 {
1808                         panic!("More than half the message size was taken up by public addresses!");
1809                 }
1810
1811                 // While all existing nodes handle unsorted addresses just fine, the spec requires that
1812                 // addresses be sorted for future compatibility.
1813                 addresses.sort_by_key(|addr| addr.get_id());
1814
1815                 let announcement = msgs::UnsignedNodeAnnouncement {
1816                         features: NodeFeatures::known(),
1817                         timestamp: self.last_node_announcement_serial.fetch_add(1, Ordering::AcqRel) as u32,
1818                         node_id: self.get_our_node_id(),
1819                         rgb, alias, addresses,
1820                         excess_address_data: Vec::new(),
1821                         excess_data: Vec::new(),
1822                 };
1823                 let msghash = hash_to_message!(&Sha256dHash::hash(&announcement.encode()[..])[..]);
1824
1825                 let mut channel_state = self.channel_state.lock().unwrap();
1826                 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastNodeAnnouncement {
1827                         msg: msgs::NodeAnnouncement {
1828                                 signature: self.secp_ctx.sign(&msghash, &self.our_network_key),
1829                                 contents: announcement
1830                         },
1831                 });
1832         }
1833
1834         /// Processes HTLCs which are pending waiting on random forward delay.
1835         ///
1836         /// Should only really ever be called in response to a PendingHTLCsForwardable event.
1837         /// Will likely generate further events.
1838         pub fn process_pending_htlc_forwards(&self) {
1839                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1840
1841                 let mut new_events = Vec::new();
1842                 let mut failed_forwards = Vec::new();
1843                 let mut handle_errors = Vec::new();
1844                 {
1845                         let mut channel_state_lock = self.channel_state.lock().unwrap();
1846                         let channel_state = &mut *channel_state_lock;
1847
1848                         for (short_chan_id, mut pending_forwards) in channel_state.forward_htlcs.drain() {
1849                                 if short_chan_id != 0 {
1850                                         let forward_chan_id = match channel_state.short_to_id.get(&short_chan_id) {
1851                                                 Some(chan_id) => chan_id.clone(),
1852                                                 None => {
1853                                                         failed_forwards.reserve(pending_forwards.len());
1854                                                         for forward_info in pending_forwards.drain(..) {
1855                                                                 match forward_info {
1856                                                                         HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info,
1857                                                                                                    prev_funding_outpoint } => {
1858                                                                                 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
1859                                                                                         short_channel_id: prev_short_channel_id,
1860                                                                                         outpoint: prev_funding_outpoint,
1861                                                                                         htlc_id: prev_htlc_id,
1862                                                                                         incoming_packet_shared_secret: forward_info.incoming_shared_secret,
1863                                                                                 });
1864                                                                                 failed_forwards.push((htlc_source, forward_info.payment_hash,
1865                                                                                         HTLCFailReason::Reason { failure_code: 0x4000 | 10, data: Vec::new() }
1866                                                                                 ));
1867                                                                         },
1868                                                                         HTLCForwardInfo::FailHTLC { .. } => {
1869                                                                                 // Channel went away before we could fail it. This implies
1870                                                                                 // the channel is now on chain and our counterparty is
1871                                                                                 // trying to broadcast the HTLC-Timeout, but that's their
1872                                                                                 // problem, not ours.
1873                                                                         }
1874                                                                 }
1875                                                         }
1876                                                         continue;
1877                                                 }
1878                                         };
1879                                         if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(forward_chan_id) {
1880                                                 let mut add_htlc_msgs = Vec::new();
1881                                                 let mut fail_htlc_msgs = Vec::new();
1882                                                 for forward_info in pending_forwards.drain(..) {
1883                                                         match forward_info {
1884                                                                 HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info: PendingHTLCInfo {
1885                                                                                 routing: PendingHTLCRouting::Forward {
1886                                                                                         onion_packet, ..
1887                                                                                 }, incoming_shared_secret, payment_hash, amt_to_forward, outgoing_cltv_value },
1888                                                                                 prev_funding_outpoint } => {
1889                                                                         log_trace!(self.logger, "Adding HTLC from short id {} with payment_hash {} to channel with short id {} after delay", log_bytes!(payment_hash.0), prev_short_channel_id, short_chan_id);
1890                                                                         let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
1891                                                                                 short_channel_id: prev_short_channel_id,
1892                                                                                 outpoint: prev_funding_outpoint,
1893                                                                                 htlc_id: prev_htlc_id,
1894                                                                                 incoming_packet_shared_secret: incoming_shared_secret,
1895                                                                         });
1896                                                                         match chan.get_mut().send_htlc(amt_to_forward, payment_hash, outgoing_cltv_value, htlc_source.clone(), onion_packet) {
1897                                                                                 Err(e) => {
1898                                                                                         if let ChannelError::Ignore(msg) = e {
1899                                                                                                 log_trace!(self.logger, "Failed to forward HTLC with payment_hash {}: {}", log_bytes!(payment_hash.0), msg);
1900                                                                                         } else {
1901                                                                                                 panic!("Stated return value requirements in send_htlc() were not met");
1902                                                                                         }
1903                                                                                         let chan_update = self.get_channel_update(chan.get()).unwrap();
1904                                                                                         failed_forwards.push((htlc_source, payment_hash,
1905                                                                                                 HTLCFailReason::Reason { failure_code: 0x1000 | 7, data: chan_update.encode_with_len() }
1906                                                                                         ));
1907                                                                                         continue;
1908                                                                                 },
1909                                                                                 Ok(update_add) => {
1910                                                                                         match update_add {
1911                                                                                                 Some(msg) => { add_htlc_msgs.push(msg); },
1912                                                                                                 None => {
1913                                                                                                         // Nothing to do here...we're waiting on a remote
1914                                                                                                         // revoke_and_ack before we can add anymore HTLCs. The Channel
1915                                                                                                         // will automatically handle building the update_add_htlc and
1916                                                                                                         // commitment_signed messages when we can.
1917                                                                                                         // TODO: Do some kind of timer to set the channel as !is_live()
1918                                                                                                         // as we don't really want others relying on us relaying through
1919                                                                                                         // this channel currently :/.
1920                                                                                                 }
1921                                                                                         }
1922                                                                                 }
1923                                                                         }
1924                                                                 },
1925                                                                 HTLCForwardInfo::AddHTLC { .. } => {
1926                                                                         panic!("short_channel_id != 0 should imply any pending_forward entries are of type Forward");
1927                                                                 },
1928                                                                 HTLCForwardInfo::FailHTLC { htlc_id, err_packet } => {
1929                                                                         log_trace!(self.logger, "Failing HTLC back to channel with short id {} after delay", short_chan_id);
1930                                                                         match chan.get_mut().get_update_fail_htlc(htlc_id, err_packet) {
1931                                                                                 Err(e) => {
1932                                                                                         if let ChannelError::Ignore(msg) = e {
1933                                                                                                 log_trace!(self.logger, "Failed to fail backwards to short_id {}: {}", short_chan_id, msg);
1934                                                                                         } else {
1935                                                                                                 panic!("Stated return value requirements in get_update_fail_htlc() were not met");
1936                                                                                         }
1937                                                                                         // fail-backs are best-effort, we probably already have one
1938                                                                                         // pending, and if not that's OK, if not, the channel is on
1939                                                                                         // the chain and sending the HTLC-Timeout is their problem.
1940                                                                                         continue;
1941                                                                                 },
1942                                                                                 Ok(Some(msg)) => { fail_htlc_msgs.push(msg); },
1943                                                                                 Ok(None) => {
1944                                                                                         // Nothing to do here...we're waiting on a remote
1945                                                                                         // revoke_and_ack before we can update the commitment
1946                                                                                         // transaction. The Channel will automatically handle
1947                                                                                         // building the update_fail_htlc and commitment_signed
1948                                                                                         // messages when we can.
1949                                                                                         // We don't need any kind of timer here as they should fail
1950                                                                                         // the channel onto the chain if they can't get our
1951                                                                                         // update_fail_htlc in time, it's not our problem.
1952                                                                                 }
1953                                                                         }
1954                                                                 },
1955                                                         }
1956                                                 }
1957
1958                                                 if !add_htlc_msgs.is_empty() || !fail_htlc_msgs.is_empty() {
1959                                                         let (commitment_msg, monitor_update) = match chan.get_mut().send_commitment(&self.logger) {
1960                                                                 Ok(res) => res,
1961                                                                 Err(e) => {
1962                                                                         // We surely failed send_commitment due to bad keys, in that case
1963                                                                         // close channel and then send error message to peer.
1964                                                                         let counterparty_node_id = chan.get().get_counterparty_node_id();
1965                                                                         let err: Result<(), _>  = match e {
1966                                                                                 ChannelError::Ignore(_) => {
1967                                                                                         panic!("Stated return value requirements in send_commitment() were not met");
1968                                                                                 },
1969                                                                                 ChannelError::Close(msg) => {
1970                                                                                         log_trace!(self.logger, "Closing channel {} due to Close-required error: {}", log_bytes!(chan.key()[..]), msg);
1971                                                                                         let (channel_id, mut channel) = chan.remove_entry();
1972                                                                                         if let Some(short_id) = channel.get_short_channel_id() {
1973                                                                                                 channel_state.short_to_id.remove(&short_id);
1974                                                                                         }
1975                                                                                         Err(MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, channel.force_shutdown(true), self.get_channel_update(&channel).ok()))
1976                                                                                 },
1977                                                                                 ChannelError::CloseDelayBroadcast(_) => { panic!("Wait is only generated on receipt of channel_reestablish, which is handled by try_chan_entry, we don't bother to support it here"); }
1978                                                                         };
1979                                                                         handle_errors.push((counterparty_node_id, err));
1980                                                                         continue;
1981                                                                 }
1982                                                         };
1983                                                         if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
1984                                                                 handle_errors.push((chan.get().get_counterparty_node_id(), handle_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, true)));
1985                                                                 continue;
1986                                                         }
1987                                                         channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
1988                                                                 node_id: chan.get().get_counterparty_node_id(),
1989                                                                 updates: msgs::CommitmentUpdate {
1990                                                                         update_add_htlcs: add_htlc_msgs,
1991                                                                         update_fulfill_htlcs: Vec::new(),
1992                                                                         update_fail_htlcs: fail_htlc_msgs,
1993                                                                         update_fail_malformed_htlcs: Vec::new(),
1994                                                                         update_fee: None,
1995                                                                         commitment_signed: commitment_msg,
1996                                                                 },
1997                                                         });
1998                                                 }
1999                                         } else {
2000                                                 unreachable!();
2001                                         }
2002                                 } else {
2003                                         for forward_info in pending_forwards.drain(..) {
2004                                                 match forward_info {
2005                                                         HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info: PendingHTLCInfo {
2006                                                                         routing: PendingHTLCRouting::Receive { payment_data, incoming_cltv_expiry },
2007                                                                         incoming_shared_secret, payment_hash, amt_to_forward, .. },
2008                                                                         prev_funding_outpoint } => {
2009                                                                 let claimable_htlc = ClaimableHTLC {
2010                                                                         prev_hop: HTLCPreviousHopData {
2011                                                                                 short_channel_id: prev_short_channel_id,
2012                                                                                 outpoint: prev_funding_outpoint,
2013                                                                                 htlc_id: prev_htlc_id,
2014                                                                                 incoming_packet_shared_secret: incoming_shared_secret,
2015                                                                         },
2016                                                                         value: amt_to_forward,
2017                                                                         payment_data: payment_data.clone(),
2018                                                                         cltv_expiry: incoming_cltv_expiry,
2019                                                                 };
2020
2021                                                                 macro_rules! fail_htlc {
2022                                                                         ($htlc: expr) => {
2023                                                                                 let mut htlc_msat_height_data = byte_utils::be64_to_array($htlc.value).to_vec();
2024                                                                                 htlc_msat_height_data.extend_from_slice(
2025                                                                                         &byte_utils::be32_to_array(self.best_block.read().unwrap().height()),
2026                                                                                 );
2027                                                                                 failed_forwards.push((HTLCSource::PreviousHopData(HTLCPreviousHopData {
2028                                                                                                 short_channel_id: $htlc.prev_hop.short_channel_id,
2029                                                                                                 outpoint: prev_funding_outpoint,
2030                                                                                                 htlc_id: $htlc.prev_hop.htlc_id,
2031                                                                                                 incoming_packet_shared_secret: $htlc.prev_hop.incoming_packet_shared_secret,
2032                                                                                         }), payment_hash,
2033                                                                                         HTLCFailReason::Reason { failure_code: 0x4000 | 15, data: htlc_msat_height_data }
2034                                                                                 ));
2035                                                                         }
2036                                                                 }
2037
2038                                                                 // Check that the payment hash and secret are known. Note that we
2039                                                                 // MUST take care to handle the "unknown payment hash" and
2040                                                                 // "incorrect payment secret" cases here identically or we'd expose
2041                                                                 // that we are the ultimate recipient of the given payment hash.
2042                                                                 // Further, we must not expose whether we have any other HTLCs
2043                                                                 // associated with the same payment_hash pending or not.
2044                                                                 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
2045                                                                 match payment_secrets.entry(payment_hash) {
2046                                                                         hash_map::Entry::Vacant(_) => {
2047                                                                                 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as we didn't have a corresponding inbound payment.", log_bytes!(payment_hash.0));
2048                                                                                 fail_htlc!(claimable_htlc);
2049                                                                         },
2050                                                                         hash_map::Entry::Occupied(inbound_payment) => {
2051                                                                                 if inbound_payment.get().payment_secret != payment_data.payment_secret {
2052                                                                                         log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our expected payment secret.", log_bytes!(payment_hash.0));
2053                                                                                         fail_htlc!(claimable_htlc);
2054                                                                                 } else if inbound_payment.get().min_value_msat.is_some() && payment_data.total_msat < inbound_payment.get().min_value_msat.unwrap() {
2055                                                                                         log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our minimum value (had {}, needed {}).",
2056                                                                                                 log_bytes!(payment_hash.0), payment_data.total_msat, inbound_payment.get().min_value_msat.unwrap());
2057                                                                                         fail_htlc!(claimable_htlc);
2058                                                                                 } else {
2059                                                                                         let mut total_value = 0;
2060                                                                                         let htlcs = channel_state.claimable_htlcs.entry(payment_hash)
2061                                                                                                 .or_insert(Vec::new());
2062                                                                                         htlcs.push(claimable_htlc);
2063                                                                                         for htlc in htlcs.iter() {
2064                                                                                                 total_value += htlc.value;
2065                                                                                                 if htlc.payment_data.total_msat != payment_data.total_msat {
2066                                                                                                         log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the HTLCs had inconsistent total values (eg {} and {})",
2067                                                                                                                 log_bytes!(payment_hash.0), payment_data.total_msat, htlc.payment_data.total_msat);
2068                                                                                                         total_value = msgs::MAX_VALUE_MSAT;
2069                                                                                                 }
2070                                                                                                 if total_value >= msgs::MAX_VALUE_MSAT { break; }
2071                                                                                         }
2072                                                                                         if total_value >= msgs::MAX_VALUE_MSAT || total_value > payment_data.total_msat {
2073                                                                                                 log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the total value {} ran over expected value {} (or HTLCs were inconsistent)",
2074                                                                                                         log_bytes!(payment_hash.0), total_value, payment_data.total_msat);
2075                                                                                                 for htlc in htlcs.iter() {
2076                                                                                                         fail_htlc!(htlc);
2077                                                                                                 }
2078                                                                                         } else if total_value == payment_data.total_msat {
2079                                                                                                 new_events.push(events::Event::PaymentReceived {
2080                                                                                                         payment_hash,
2081                                                                                                         payment_preimage: inbound_payment.get().payment_preimage,
2082                                                                                                         payment_secret: payment_data.payment_secret,
2083                                                                                                         amt: total_value,
2084                                                                                                         user_payment_id: inbound_payment.get().user_payment_id,
2085                                                                                                 });
2086                                                                                                 // Only ever generate at most one PaymentReceived
2087                                                                                                 // per registered payment_hash, even if it isn't
2088                                                                                                 // claimed.
2089                                                                                                 inbound_payment.remove_entry();
2090                                                                                         } else {
2091                                                                                                 // Nothing to do - we haven't reached the total
2092                                                                                                 // payment value yet, wait until we receive more
2093                                                                                                 // MPP parts.
2094                                                                                         }
2095                                                                                 }
2096                                                                         },
2097                                                                 };
2098                                                         },
2099                                                         HTLCForwardInfo::AddHTLC { .. } => {
2100                                                                 panic!("short_channel_id == 0 should imply any pending_forward entries are of type Receive");
2101                                                         },
2102                                                         HTLCForwardInfo::FailHTLC { .. } => {
2103                                                                 panic!("Got pending fail of our own HTLC");
2104                                                         }
2105                                                 }
2106                                         }
2107                                 }
2108                         }
2109                 }
2110
2111                 for (htlc_source, payment_hash, failure_reason) in failed_forwards.drain(..) {
2112                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source, &payment_hash, failure_reason);
2113                 }
2114
2115                 for (counterparty_node_id, err) in handle_errors.drain(..) {
2116                         let _ = handle_error!(self, err, counterparty_node_id);
2117                 }
2118
2119                 if new_events.is_empty() { return }
2120                 let mut events = self.pending_events.lock().unwrap();
2121                 events.append(&mut new_events);
2122         }
2123
2124         /// Free the background events, generally called from timer_tick_occurred.
2125         ///
2126         /// Exposed for testing to allow us to process events quickly without generating accidental
2127         /// BroadcastChannelUpdate events in timer_tick_occurred.
2128         ///
2129         /// Expects the caller to have a total_consistency_lock read lock.
2130         fn process_background_events(&self) -> bool {
2131                 let mut background_events = Vec::new();
2132                 mem::swap(&mut *self.pending_background_events.lock().unwrap(), &mut background_events);
2133                 if background_events.is_empty() {
2134                         return false;
2135                 }
2136
2137                 for event in background_events.drain(..) {
2138                         match event {
2139                                 BackgroundEvent::ClosingMonitorUpdate((funding_txo, update)) => {
2140                                         // The channel has already been closed, so no use bothering to care about the
2141                                         // monitor updating completing.
2142                                         let _ = self.chain_monitor.update_channel(funding_txo, update);
2143                                 },
2144                         }
2145                 }
2146                 true
2147         }
2148
2149         #[cfg(any(test, feature = "_test_utils"))]
2150         pub(crate) fn test_process_background_events(&self) {
2151                 self.process_background_events();
2152         }
2153
2154         /// If a peer is disconnected we mark any channels with that peer as 'disabled'.
2155         /// After some time, if channels are still disabled we need to broadcast a ChannelUpdate
2156         /// to inform the network about the uselessness of these channels.
2157         ///
2158         /// This method handles all the details, and must be called roughly once per minute.
2159         ///
2160         /// Note that in some rare cases this may generate a `chain::Watch::update_channel` call.
2161         pub fn timer_tick_occurred(&self) {
2162                 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
2163                         let mut should_persist = NotifyOption::SkipPersist;
2164                         if self.process_background_events() { should_persist = NotifyOption::DoPersist; }
2165
2166                         let mut channel_state_lock = self.channel_state.lock().unwrap();
2167                         let channel_state = &mut *channel_state_lock;
2168                         for (_, chan) in channel_state.by_id.iter_mut() {
2169                                 match chan.channel_update_status() {
2170                                         ChannelUpdateStatus::Enabled if !chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::DisabledStaged),
2171                                         ChannelUpdateStatus::Disabled if chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::EnabledStaged),
2172                                         ChannelUpdateStatus::DisabledStaged if chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::Enabled),
2173                                         ChannelUpdateStatus::EnabledStaged if !chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::Disabled),
2174                                         ChannelUpdateStatus::DisabledStaged if !chan.is_live() => {
2175                                                 if let Ok(update) = self.get_channel_update(&chan) {
2176                                                         channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2177                                                                 msg: update
2178                                                         });
2179                                                 }
2180                                                 should_persist = NotifyOption::DoPersist;
2181                                                 chan.set_channel_update_status(ChannelUpdateStatus::Disabled);
2182                                         },
2183                                         ChannelUpdateStatus::EnabledStaged if chan.is_live() => {
2184                                                 if let Ok(update) = self.get_channel_update(&chan) {
2185                                                         channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2186                                                                 msg: update
2187                                                         });
2188                                                 }
2189                                                 should_persist = NotifyOption::DoPersist;
2190                                                 chan.set_channel_update_status(ChannelUpdateStatus::Enabled);
2191                                         },
2192                                         _ => {},
2193                                 }
2194                         }
2195
2196                         should_persist
2197                 });
2198         }
2199
2200         /// Indicates that the preimage for payment_hash is unknown or the received amount is incorrect
2201         /// after a PaymentReceived event, failing the HTLC back to its origin and freeing resources
2202         /// along the path (including in our own channel on which we received it).
2203         /// Returns false if no payment was found to fail backwards, true if the process of failing the
2204         /// HTLC backwards has been started.
2205         pub fn fail_htlc_backwards(&self, payment_hash: &PaymentHash) -> bool {
2206                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2207
2208                 let mut channel_state = Some(self.channel_state.lock().unwrap());
2209                 let removed_source = channel_state.as_mut().unwrap().claimable_htlcs.remove(payment_hash);
2210                 if let Some(mut sources) = removed_source {
2211                         for htlc in sources.drain(..) {
2212                                 if channel_state.is_none() { channel_state = Some(self.channel_state.lock().unwrap()); }
2213                                 let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec();
2214                                 htlc_msat_height_data.extend_from_slice(&byte_utils::be32_to_array(
2215                                                 self.best_block.read().unwrap().height()));
2216                                 self.fail_htlc_backwards_internal(channel_state.take().unwrap(),
2217                                                 HTLCSource::PreviousHopData(htlc.prev_hop), payment_hash,
2218                                                 HTLCFailReason::Reason { failure_code: 0x4000 | 15, data: htlc_msat_height_data });
2219                         }
2220                         true
2221                 } else { false }
2222         }
2223
2224         // Fail a list of HTLCs that were just freed from the holding cell. The HTLCs need to be
2225         // failed backwards or, if they were one of our outgoing HTLCs, then their failure needs to
2226         // be surfaced to the user.
2227         fn fail_holding_cell_htlcs(&self, mut htlcs_to_fail: Vec<(HTLCSource, PaymentHash)>, channel_id: [u8; 32]) {
2228                 for (htlc_src, payment_hash) in htlcs_to_fail.drain(..) {
2229                         match htlc_src {
2230                                 HTLCSource::PreviousHopData(HTLCPreviousHopData { .. }) => {
2231                                         let (failure_code, onion_failure_data) =
2232                                                 match self.channel_state.lock().unwrap().by_id.entry(channel_id) {
2233                                                         hash_map::Entry::Occupied(chan_entry) => {
2234                                                                 if let Ok(upd) = self.get_channel_update(&chan_entry.get()) {
2235                                                                         (0x1000|7, upd.encode_with_len())
2236                                                                 } else {
2237                                                                         (0x4000|10, Vec::new())
2238                                                                 }
2239                                                         },
2240                                                         hash_map::Entry::Vacant(_) => (0x4000|10, Vec::new())
2241                                                 };
2242                                         let channel_state = self.channel_state.lock().unwrap();
2243                                         self.fail_htlc_backwards_internal(channel_state,
2244                                                 htlc_src, &payment_hash, HTLCFailReason::Reason { failure_code, data: onion_failure_data});
2245                                 },
2246                                 HTLCSource::OutboundRoute { session_priv, .. } => {
2247                                         if {
2248                                                 let mut session_priv_bytes = [0; 32];
2249                                                 session_priv_bytes.copy_from_slice(&session_priv[..]);
2250                                                 self.pending_outbound_payments.lock().unwrap().remove(&session_priv_bytes)
2251                                         } {
2252                                                 self.pending_events.lock().unwrap().push(
2253                                                         events::Event::PaymentFailed {
2254                                                                 payment_hash,
2255                                                                 rejected_by_dest: false,
2256 #[cfg(test)]
2257                                                                 error_code: None,
2258 #[cfg(test)]
2259                                                                 error_data: None,
2260                                                         }
2261                                                 )
2262                                         } else {
2263                                                 log_trace!(self.logger, "Received duplicative fail for HTLC with payment_hash {}", log_bytes!(payment_hash.0));
2264                                         }
2265                                 },
2266                         };
2267                 }
2268         }
2269
2270         /// Fails an HTLC backwards to the sender of it to us.
2271         /// Note that while we take a channel_state lock as input, we do *not* assume consistency here.
2272         /// There are several callsites that do stupid things like loop over a list of payment_hashes
2273         /// to fail and take the channel_state lock for each iteration (as we take ownership and may
2274         /// drop it). In other words, no assumptions are made that entries in claimable_htlcs point to
2275         /// still-available channels.
2276         fn fail_htlc_backwards_internal(&self, mut channel_state_lock: MutexGuard<ChannelHolder<Signer>>, source: HTLCSource, payment_hash: &PaymentHash, onion_error: HTLCFailReason) {
2277                 //TODO: There is a timing attack here where if a node fails an HTLC back to us they can
2278                 //identify whether we sent it or not based on the (I presume) very different runtime
2279                 //between the branches here. We should make this async and move it into the forward HTLCs
2280                 //timer handling.
2281
2282                 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
2283                 // from block_connected which may run during initialization prior to the chain_monitor
2284                 // being fully configured. See the docs for `ChannelManagerReadArgs` for more.
2285                 match source {
2286                         HTLCSource::OutboundRoute { ref path, session_priv, .. } => {
2287                                 if {
2288                                         let mut session_priv_bytes = [0; 32];
2289                                         session_priv_bytes.copy_from_slice(&session_priv[..]);
2290                                         !self.pending_outbound_payments.lock().unwrap().remove(&session_priv_bytes)
2291                                 } {
2292                                         log_trace!(self.logger, "Received duplicative fail for HTLC with payment_hash {}", log_bytes!(payment_hash.0));
2293                                         return;
2294                                 }
2295                                 log_trace!(self.logger, "Failing outbound payment HTLC with payment_hash {}", log_bytes!(payment_hash.0));
2296                                 mem::drop(channel_state_lock);
2297                                 match &onion_error {
2298                                         &HTLCFailReason::LightningError { ref err } => {
2299 #[cfg(test)]
2300                                                 let (channel_update, payment_retryable, onion_error_code, onion_error_data) = onion_utils::process_onion_failure(&self.secp_ctx, &self.logger, &source, err.data.clone());
2301 #[cfg(not(test))]
2302                                                 let (channel_update, payment_retryable, _, _) = onion_utils::process_onion_failure(&self.secp_ctx, &self.logger, &source, err.data.clone());
2303                                                 // TODO: If we decided to blame ourselves (or one of our channels) in
2304                                                 // process_onion_failure we should close that channel as it implies our
2305                                                 // next-hop is needlessly blaming us!
2306                                                 if let Some(update) = channel_update {
2307                                                         self.channel_state.lock().unwrap().pending_msg_events.push(
2308                                                                 events::MessageSendEvent::PaymentFailureNetworkUpdate {
2309                                                                         update,
2310                                                                 }
2311                                                         );
2312                                                 }
2313                                                 self.pending_events.lock().unwrap().push(
2314                                                         events::Event::PaymentFailed {
2315                                                                 payment_hash: payment_hash.clone(),
2316                                                                 rejected_by_dest: !payment_retryable,
2317 #[cfg(test)]
2318                                                                 error_code: onion_error_code,
2319 #[cfg(test)]
2320                                                                 error_data: onion_error_data
2321                                                         }
2322                                                 );
2323                                         },
2324                                         &HTLCFailReason::Reason {
2325 #[cfg(test)]
2326                                                         ref failure_code,
2327 #[cfg(test)]
2328                                                         ref data,
2329                                                         .. } => {
2330                                                 // we get a fail_malformed_htlc from the first hop
2331                                                 // TODO: We'd like to generate a PaymentFailureNetworkUpdate for temporary
2332                                                 // failures here, but that would be insufficient as get_route
2333                                                 // generally ignores its view of our own channels as we provide them via
2334                                                 // ChannelDetails.
2335                                                 // TODO: For non-temporary failures, we really should be closing the
2336                                                 // channel here as we apparently can't relay through them anyway.
2337                                                 self.pending_events.lock().unwrap().push(
2338                                                         events::Event::PaymentFailed {
2339                                                                 payment_hash: payment_hash.clone(),
2340                                                                 rejected_by_dest: path.len() == 1,
2341 #[cfg(test)]
2342                                                                 error_code: Some(*failure_code),
2343 #[cfg(test)]
2344                                                                 error_data: Some(data.clone()),
2345                                                         }
2346                                                 );
2347                                         }
2348                                 }
2349                         },
2350                         HTLCSource::PreviousHopData(HTLCPreviousHopData { short_channel_id, htlc_id, incoming_packet_shared_secret, .. }) => {
2351                                 let err_packet = match onion_error {
2352                                         HTLCFailReason::Reason { failure_code, data } => {
2353                                                 log_trace!(self.logger, "Failing HTLC with payment_hash {} backwards from us with code {}", log_bytes!(payment_hash.0), failure_code);
2354                                                 let packet = onion_utils::build_failure_packet(&incoming_packet_shared_secret, failure_code, &data[..]).encode();
2355                                                 onion_utils::encrypt_failure_packet(&incoming_packet_shared_secret, &packet)
2356                                         },
2357                                         HTLCFailReason::LightningError { err } => {
2358                                                 log_trace!(self.logger, "Failing HTLC with payment_hash {} backwards with pre-built LightningError", log_bytes!(payment_hash.0));
2359                                                 onion_utils::encrypt_failure_packet(&incoming_packet_shared_secret, &err.data)
2360                                         }
2361                                 };
2362
2363                                 let mut forward_event = None;
2364                                 if channel_state_lock.forward_htlcs.is_empty() {
2365                                         forward_event = Some(Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS));
2366                                 }
2367                                 match channel_state_lock.forward_htlcs.entry(short_channel_id) {
2368                                         hash_map::Entry::Occupied(mut entry) => {
2369                                                 entry.get_mut().push(HTLCForwardInfo::FailHTLC { htlc_id, err_packet });
2370                                         },
2371                                         hash_map::Entry::Vacant(entry) => {
2372                                                 entry.insert(vec!(HTLCForwardInfo::FailHTLC { htlc_id, err_packet }));
2373                                         }
2374                                 }
2375                                 mem::drop(channel_state_lock);
2376                                 if let Some(time) = forward_event {
2377                                         let mut pending_events = self.pending_events.lock().unwrap();
2378                                         pending_events.push(events::Event::PendingHTLCsForwardable {
2379                                                 time_forwardable: time
2380                                         });
2381                                 }
2382                         },
2383                 }
2384         }
2385
2386         /// Provides a payment preimage in response to a PaymentReceived event, returning true and
2387         /// generating message events for the net layer to claim the payment, if possible. Thus, you
2388         /// should probably kick the net layer to go send messages if this returns true!
2389         ///
2390         /// Note that if you did not set an `amount_msat` when calling [`create_inbound_payment`] or
2391         /// [`create_inbound_payment_for_hash`] you must check that the amount in the `PaymentReceived`
2392         /// event matches your expectation. If you fail to do so and call this method, you may provide
2393         /// the sender "proof-of-payment" when they did not fulfill the full expected payment.
2394         ///
2395         /// May panic if called except in response to a PaymentReceived event.
2396         ///
2397         /// [`create_inbound_payment`]: Self::create_inbound_payment
2398         /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
2399         pub fn claim_funds(&self, payment_preimage: PaymentPreimage) -> bool {
2400                 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
2401
2402                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2403
2404                 let mut channel_state = Some(self.channel_state.lock().unwrap());
2405                 let removed_source = channel_state.as_mut().unwrap().claimable_htlcs.remove(&payment_hash);
2406                 if let Some(mut sources) = removed_source {
2407                         assert!(!sources.is_empty());
2408
2409                         // If we are claiming an MPP payment, we have to take special care to ensure that each
2410                         // channel exists before claiming all of the payments (inside one lock).
2411                         // Note that channel existance is sufficient as we should always get a monitor update
2412                         // which will take care of the real HTLC claim enforcement.
2413                         //
2414                         // If we find an HTLC which we would need to claim but for which we do not have a
2415                         // channel, we will fail all parts of the MPP payment. While we could wait and see if
2416                         // the sender retries the already-failed path(s), it should be a pretty rare case where
2417                         // we got all the HTLCs and then a channel closed while we were waiting for the user to
2418                         // provide the preimage, so worrying too much about the optimal handling isn't worth
2419                         // it.
2420                         let mut valid_mpp = true;
2421                         for htlc in sources.iter() {
2422                                 if let None = channel_state.as_ref().unwrap().short_to_id.get(&htlc.prev_hop.short_channel_id) {
2423                                         valid_mpp = false;
2424                                         break;
2425                                 }
2426                         }
2427
2428                         let mut errs = Vec::new();
2429                         let mut claimed_any_htlcs = false;
2430                         for htlc in sources.drain(..) {
2431                                 if !valid_mpp {
2432                                         if channel_state.is_none() { channel_state = Some(self.channel_state.lock().unwrap()); }
2433                                         let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec();
2434                                         htlc_msat_height_data.extend_from_slice(&byte_utils::be32_to_array(
2435                                                         self.best_block.read().unwrap().height()));
2436                                         self.fail_htlc_backwards_internal(channel_state.take().unwrap(),
2437                                                                          HTLCSource::PreviousHopData(htlc.prev_hop), &payment_hash,
2438                                                                          HTLCFailReason::Reason { failure_code: 0x4000|15, data: htlc_msat_height_data });
2439                                 } else {
2440                                         match self.claim_funds_from_hop(channel_state.as_mut().unwrap(), htlc.prev_hop, payment_preimage) {
2441                                                 Err(Some(e)) => {
2442                                                         if let msgs::ErrorAction::IgnoreError = e.1.err.action {
2443                                                                 // We got a temporary failure updating monitor, but will claim the
2444                                                                 // HTLC when the monitor updating is restored (or on chain).
2445                                                                 log_error!(self.logger, "Temporary failure claiming HTLC, treating as success: {}", e.1.err.err);
2446                                                                 claimed_any_htlcs = true;
2447                                                         } else { errs.push(e); }
2448                                                 },
2449                                                 Err(None) => unreachable!("We already checked for channel existence, we can't fail here!"),
2450                                                 Ok(()) => claimed_any_htlcs = true,
2451                                         }
2452                                 }
2453                         }
2454
2455                         // Now that we've done the entire above loop in one lock, we can handle any errors
2456                         // which were generated.
2457                         channel_state.take();
2458
2459                         for (counterparty_node_id, err) in errs.drain(..) {
2460                                 let res: Result<(), _> = Err(err);
2461                                 let _ = handle_error!(self, res, counterparty_node_id);
2462                         }
2463
2464                         claimed_any_htlcs
2465                 } else { false }
2466         }
2467
2468         fn claim_funds_from_hop(&self, channel_state_lock: &mut MutexGuard<ChannelHolder<Signer>>, prev_hop: HTLCPreviousHopData, payment_preimage: PaymentPreimage) -> Result<(), Option<(PublicKey, MsgHandleErrInternal)>> {
2469                 //TODO: Delay the claimed_funds relaying just like we do outbound relay!
2470                 let channel_state = &mut **channel_state_lock;
2471                 let chan_id = match channel_state.short_to_id.get(&prev_hop.short_channel_id) {
2472                         Some(chan_id) => chan_id.clone(),
2473                         None => {
2474                                 return Err(None)
2475                         }
2476                 };
2477
2478                 if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(chan_id) {
2479                         let was_frozen_for_monitor = chan.get().is_awaiting_monitor_update();
2480                         match chan.get_mut().get_update_fulfill_htlc_and_commit(prev_hop.htlc_id, payment_preimage, &self.logger) {
2481                                 Ok((msgs, monitor_option)) => {
2482                                         if let Some(monitor_update) = monitor_option {
2483                                                 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
2484                                                         if was_frozen_for_monitor {
2485                                                                 assert!(msgs.is_none());
2486                                                         } else {
2487                                                                 return Err(Some((chan.get().get_counterparty_node_id(), handle_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, msgs.is_some()).unwrap_err())));
2488                                                         }
2489                                                 }
2490                                         }
2491                                         if let Some((msg, commitment_signed)) = msgs {
2492                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
2493                                                         node_id: chan.get().get_counterparty_node_id(),
2494                                                         updates: msgs::CommitmentUpdate {
2495                                                                 update_add_htlcs: Vec::new(),
2496                                                                 update_fulfill_htlcs: vec![msg],
2497                                                                 update_fail_htlcs: Vec::new(),
2498                                                                 update_fail_malformed_htlcs: Vec::new(),
2499                                                                 update_fee: None,
2500                                                                 commitment_signed,
2501                                                         }
2502                                                 });
2503                                         }
2504                                         return Ok(())
2505                                 },
2506                                 Err(e) => {
2507                                         // TODO: Do something with e?
2508                                         // This should only occur if we are claiming an HTLC at the same time as the
2509                                         // HTLC is being failed (eg because a block is being connected and this caused
2510                                         // an HTLC to time out). This should, of course, only occur if the user is the
2511                                         // one doing the claiming (as it being a part of a peer claim would imply we're
2512                                         // about to lose funds) and only if the lock in claim_funds was dropped as a
2513                                         // previous HTLC was failed (thus not for an MPP payment).
2514                                         debug_assert!(false, "This shouldn't be reachable except in absurdly rare cases between monitor updates and HTLC timeouts: {:?}", e);
2515                                         return Err(None)
2516                                 },
2517                         }
2518                 } else { unreachable!(); }
2519         }
2520
2521         fn claim_funds_internal(&self, mut channel_state_lock: MutexGuard<ChannelHolder<Signer>>, source: HTLCSource, payment_preimage: PaymentPreimage) {
2522                 match source {
2523                         HTLCSource::OutboundRoute { session_priv, .. } => {
2524                                 mem::drop(channel_state_lock);
2525                                 if {
2526                                         let mut session_priv_bytes = [0; 32];
2527                                         session_priv_bytes.copy_from_slice(&session_priv[..]);
2528                                         self.pending_outbound_payments.lock().unwrap().remove(&session_priv_bytes)
2529                                 } {
2530                                         let mut pending_events = self.pending_events.lock().unwrap();
2531                                         pending_events.push(events::Event::PaymentSent {
2532                                                 payment_preimage
2533                                         });
2534                                 } else {
2535                                         log_trace!(self.logger, "Received duplicative fulfill for HTLC with payment_preimage {}", log_bytes!(payment_preimage.0));
2536                                 }
2537                         },
2538                         HTLCSource::PreviousHopData(hop_data) => {
2539                                 let prev_outpoint = hop_data.outpoint;
2540                                 if let Err((counterparty_node_id, err)) = match self.claim_funds_from_hop(&mut channel_state_lock, hop_data, payment_preimage) {
2541                                         Ok(()) => Ok(()),
2542                                         Err(None) => {
2543                                                 let preimage_update = ChannelMonitorUpdate {
2544                                                         update_id: CLOSED_CHANNEL_UPDATE_ID,
2545                                                         updates: vec![ChannelMonitorUpdateStep::PaymentPreimage {
2546                                                                 payment_preimage: payment_preimage.clone(),
2547                                                         }],
2548                                                 };
2549                                                 // We update the ChannelMonitor on the backward link, after
2550                                                 // receiving an offchain preimage event from the forward link (the
2551                                                 // event being update_fulfill_htlc).
2552                                                 if let Err(e) = self.chain_monitor.update_channel(prev_outpoint, preimage_update) {
2553                                                         log_error!(self.logger, "Critical error: failed to update channel monitor with preimage {:?}: {:?}",
2554                                                                    payment_preimage, e);
2555                                                 }
2556                                                 Ok(())
2557                                         },
2558                                         Err(Some(res)) => Err(res),
2559                                 } {
2560                                         mem::drop(channel_state_lock);
2561                                         let res: Result<(), _> = Err(err);
2562                                         let _ = handle_error!(self, res, counterparty_node_id);
2563                                 }
2564                         },
2565                 }
2566         }
2567
2568         /// Gets the node_id held by this ChannelManager
2569         pub fn get_our_node_id(&self) -> PublicKey {
2570                 self.our_network_pubkey.clone()
2571         }
2572
2573         /// Restores a single, given channel to normal operation after a
2574         /// ChannelMonitorUpdateErr::TemporaryFailure was returned from a channel monitor update
2575         /// operation.
2576         ///
2577         /// All ChannelMonitor updates up to and including highest_applied_update_id must have been
2578         /// fully committed in every copy of the given channels' ChannelMonitors.
2579         ///
2580         /// Note that there is no effect to calling with a highest_applied_update_id other than the
2581         /// current latest ChannelMonitorUpdate and one call to this function after multiple
2582         /// ChannelMonitorUpdateErr::TemporaryFailures is fine. The highest_applied_update_id field
2583         /// exists largely only to prevent races between this and concurrent update_monitor calls.
2584         ///
2585         /// Thus, the anticipated use is, at a high level:
2586         ///  1) You register a chain::Watch with this ChannelManager,
2587         ///  2) it stores each update to disk, and begins updating any remote (eg watchtower) copies of
2588         ///     said ChannelMonitors as it can, returning ChannelMonitorUpdateErr::TemporaryFailures
2589         ///     any time it cannot do so instantly,
2590         ///  3) update(s) are applied to each remote copy of a ChannelMonitor,
2591         ///  4) once all remote copies are updated, you call this function with the update_id that
2592         ///     completed, and once it is the latest the Channel will be re-enabled.
2593         pub fn channel_monitor_updated(&self, funding_txo: &OutPoint, highest_applied_update_id: u64) {
2594                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2595
2596                 let mut close_results = Vec::new();
2597                 let mut htlc_forwards = Vec::new();
2598                 let mut htlc_failures = Vec::new();
2599                 let mut pending_events = Vec::new();
2600
2601                 {
2602                         let mut channel_lock = self.channel_state.lock().unwrap();
2603                         let channel_state = &mut *channel_lock;
2604                         let short_to_id = &mut channel_state.short_to_id;
2605                         let pending_msg_events = &mut channel_state.pending_msg_events;
2606                         let channel = match channel_state.by_id.get_mut(&funding_txo.to_channel_id()) {
2607                                 Some(chan) => chan,
2608                                 None => return,
2609                         };
2610                         if !channel.is_awaiting_monitor_update() || channel.get_latest_monitor_update_id() != highest_applied_update_id {
2611                                 return;
2612                         }
2613
2614                         let (raa, commitment_update, order, pending_forwards, mut pending_failures, funding_broadcastable, funding_locked) = channel.monitor_updating_restored(&self.logger);
2615                         if !pending_forwards.is_empty() {
2616                                 htlc_forwards.push((channel.get_short_channel_id().expect("We can't have pending forwards before funding confirmation"), funding_txo.clone(), pending_forwards));
2617                         }
2618                         htlc_failures.append(&mut pending_failures);
2619
2620                         macro_rules! handle_cs { () => {
2621                                 if let Some(update) = commitment_update {
2622                                         pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
2623                                                 node_id: channel.get_counterparty_node_id(),
2624                                                 updates: update,
2625                                         });
2626                                 }
2627                         } }
2628                         macro_rules! handle_raa { () => {
2629                                 if let Some(revoke_and_ack) = raa {
2630                                         pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
2631                                                 node_id: channel.get_counterparty_node_id(),
2632                                                 msg: revoke_and_ack,
2633                                         });
2634                                 }
2635                         } }
2636                         match order {
2637                                 RAACommitmentOrder::CommitmentFirst => {
2638                                         handle_cs!();
2639                                         handle_raa!();
2640                                 },
2641                                 RAACommitmentOrder::RevokeAndACKFirst => {
2642                                         handle_raa!();
2643                                         handle_cs!();
2644                                 },
2645                         }
2646                         if let Some(tx) = funding_broadcastable {
2647                                 log_info!(self.logger, "Broadcasting funding transaction with txid {}", tx.txid());
2648                                 self.tx_broadcaster.broadcast_transaction(&tx);
2649                         }
2650                         if let Some(msg) = funding_locked {
2651                                 pending_msg_events.push(events::MessageSendEvent::SendFundingLocked {
2652                                         node_id: channel.get_counterparty_node_id(),
2653                                         msg,
2654                                 });
2655                                 if let Some(announcement_sigs) = self.get_announcement_sigs(channel) {
2656                                         pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
2657                                                 node_id: channel.get_counterparty_node_id(),
2658                                                 msg: announcement_sigs,
2659                                         });
2660                                 }
2661                                 short_to_id.insert(channel.get_short_channel_id().unwrap(), channel.channel_id());
2662                         }
2663                 }
2664
2665                 self.pending_events.lock().unwrap().append(&mut pending_events);
2666
2667                 for failure in htlc_failures.drain(..) {
2668                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), failure.0, &failure.1, failure.2);
2669                 }
2670                 self.forward_htlcs(&mut htlc_forwards[..]);
2671
2672                 for res in close_results.drain(..) {
2673                         self.finish_force_close_channel(res);
2674                 }
2675         }
2676
2677         fn internal_open_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::OpenChannel) -> Result<(), MsgHandleErrInternal> {
2678                 if msg.chain_hash != self.genesis_hash {
2679                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Unknown genesis block hash".to_owned(), msg.temporary_channel_id.clone()));
2680                 }
2681
2682                 let channel = Channel::new_from_req(&self.fee_estimator, &self.keys_manager, counterparty_node_id.clone(), their_features, msg, 0, &self.default_configuration)
2683                         .map_err(|e| MsgHandleErrInternal::from_chan_no_close(e, msg.temporary_channel_id))?;
2684                 let mut channel_state_lock = self.channel_state.lock().unwrap();
2685                 let channel_state = &mut *channel_state_lock;
2686                 match channel_state.by_id.entry(channel.channel_id()) {
2687                         hash_map::Entry::Occupied(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("temporary_channel_id collision!".to_owned(), msg.temporary_channel_id.clone())),
2688                         hash_map::Entry::Vacant(entry) => {
2689                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
2690                                         node_id: counterparty_node_id.clone(),
2691                                         msg: channel.get_accept_channel(),
2692                                 });
2693                                 entry.insert(channel);
2694                         }
2695                 }
2696                 Ok(())
2697         }
2698
2699         fn internal_accept_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::AcceptChannel) -> Result<(), MsgHandleErrInternal> {
2700                 let (value, output_script, user_id) = {
2701                         let mut channel_lock = self.channel_state.lock().unwrap();
2702                         let channel_state = &mut *channel_lock;
2703                         match channel_state.by_id.entry(msg.temporary_channel_id) {
2704                                 hash_map::Entry::Occupied(mut chan) => {
2705                                         if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2706                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.temporary_channel_id));
2707                                         }
2708                                         try_chan_entry!(self, chan.get_mut().accept_channel(&msg, &self.default_configuration, their_features), channel_state, chan);
2709                                         (chan.get().get_value_satoshis(), chan.get().get_funding_redeemscript().to_v0_p2wsh(), chan.get().get_user_id())
2710                                 },
2711                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.temporary_channel_id))
2712                         }
2713                 };
2714                 let mut pending_events = self.pending_events.lock().unwrap();
2715                 pending_events.push(events::Event::FundingGenerationReady {
2716                         temporary_channel_id: msg.temporary_channel_id,
2717                         channel_value_satoshis: value,
2718                         output_script,
2719                         user_channel_id: user_id,
2720                 });
2721                 Ok(())
2722         }
2723
2724         fn internal_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) -> Result<(), MsgHandleErrInternal> {
2725                 let ((funding_msg, monitor), mut chan) = {
2726                         let best_block = *self.best_block.read().unwrap();
2727                         let mut channel_lock = self.channel_state.lock().unwrap();
2728                         let channel_state = &mut *channel_lock;
2729                         match channel_state.by_id.entry(msg.temporary_channel_id.clone()) {
2730                                 hash_map::Entry::Occupied(mut chan) => {
2731                                         if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2732                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.temporary_channel_id));
2733                                         }
2734                                         (try_chan_entry!(self, chan.get_mut().funding_created(msg, best_block, &self.logger), channel_state, chan), chan.remove())
2735                                 },
2736                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.temporary_channel_id))
2737                         }
2738                 };
2739                 // Because we have exclusive ownership of the channel here we can release the channel_state
2740                 // lock before watch_channel
2741                 if let Err(e) = self.chain_monitor.watch_channel(monitor.get_funding_txo().0, monitor) {
2742                         match e {
2743                                 ChannelMonitorUpdateErr::PermanentFailure => {
2744                                         // Note that we reply with the new channel_id in error messages if we gave up on the
2745                                         // channel, not the temporary_channel_id. This is compatible with ourselves, but the
2746                                         // spec is somewhat ambiguous here. Not a huge deal since we'll send error messages for
2747                                         // any messages referencing a previously-closed channel anyway.
2748                                         // We do not do a force-close here as that would generate a monitor update for
2749                                         // a monitor that we didn't manage to store (and that we don't care about - we
2750                                         // don't respond with the funding_signed so the channel can never go on chain).
2751                                         let (_monitor_update, failed_htlcs) = chan.force_shutdown(true);
2752                                         assert!(failed_htlcs.is_empty());
2753                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("ChannelMonitor storage failure".to_owned(), funding_msg.channel_id));
2754                                 },
2755                                 ChannelMonitorUpdateErr::TemporaryFailure => {
2756                                         // There's no problem signing a counterparty's funding transaction if our monitor
2757                                         // hasn't persisted to disk yet - we can't lose money on a transaction that we haven't
2758                                         // accepted payment from yet. We do, however, need to wait to send our funding_locked
2759                                         // until we have persisted our monitor.
2760                                         chan.monitor_update_failed(false, false, Vec::new(), Vec::new());
2761                                 },
2762                         }
2763                 }
2764                 let mut channel_state_lock = self.channel_state.lock().unwrap();
2765                 let channel_state = &mut *channel_state_lock;
2766                 match channel_state.by_id.entry(funding_msg.channel_id) {
2767                         hash_map::Entry::Occupied(_) => {
2768                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Already had channel with the new channel_id".to_owned(), funding_msg.channel_id))
2769                         },
2770                         hash_map::Entry::Vacant(e) => {
2771                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingSigned {
2772                                         node_id: counterparty_node_id.clone(),
2773                                         msg: funding_msg,
2774                                 });
2775                                 e.insert(chan);
2776                         }
2777                 }
2778                 Ok(())
2779         }
2780
2781         fn internal_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) -> Result<(), MsgHandleErrInternal> {
2782                 let funding_tx = {
2783                         let best_block = *self.best_block.read().unwrap();
2784                         let mut channel_lock = self.channel_state.lock().unwrap();
2785                         let channel_state = &mut *channel_lock;
2786                         match channel_state.by_id.entry(msg.channel_id) {
2787                                 hash_map::Entry::Occupied(mut chan) => {
2788                                         if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2789                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2790                                         }
2791                                         let (monitor, funding_tx) = match chan.get_mut().funding_signed(&msg, best_block, &self.logger) {
2792                                                 Ok(update) => update,
2793                                                 Err(e) => try_chan_entry!(self, Err(e), channel_state, chan),
2794                                         };
2795                                         if let Err(e) = self.chain_monitor.watch_channel(chan.get().get_funding_txo().unwrap(), monitor) {
2796                                                 return_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::RevokeAndACKFirst, false, false);
2797                                         }
2798                                         funding_tx
2799                                 },
2800                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2801                         }
2802                 };
2803                 log_info!(self.logger, "Broadcasting funding transaction with txid {}", funding_tx.txid());
2804                 self.tx_broadcaster.broadcast_transaction(&funding_tx);
2805                 Ok(())
2806         }
2807
2808         fn internal_funding_locked(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingLocked) -> Result<(), MsgHandleErrInternal> {
2809                 let mut channel_state_lock = self.channel_state.lock().unwrap();
2810                 let channel_state = &mut *channel_state_lock;
2811                 match channel_state.by_id.entry(msg.channel_id) {
2812                         hash_map::Entry::Occupied(mut chan) => {
2813                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2814                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2815                                 }
2816                                 try_chan_entry!(self, chan.get_mut().funding_locked(&msg), channel_state, chan);
2817                                 if let Some(announcement_sigs) = self.get_announcement_sigs(chan.get()) {
2818                                         log_trace!(self.logger, "Sending announcement_signatures for {} in response to funding_locked", log_bytes!(chan.get().channel_id()));
2819                                         // If we see locking block before receiving remote funding_locked, we broadcast our
2820                                         // announcement_sigs at remote funding_locked reception. If we receive remote
2821                                         // funding_locked before seeing locking block, we broadcast our announcement_sigs at locking
2822                                         // block connection. We should guanrantee to broadcast announcement_sigs to our peer whatever
2823                                         // the order of the events but our peer may not receive it due to disconnection. The specs
2824                                         // lacking an acknowledgement for announcement_sigs we may have to re-send them at peer
2825                                         // connection in the future if simultaneous misses by both peers due to network/hardware
2826                                         // failures is an issue. Note, to achieve its goal, only one of the announcement_sigs needs
2827                                         // to be received, from then sigs are going to be flood to the whole network.
2828                                         channel_state.pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
2829                                                 node_id: counterparty_node_id.clone(),
2830                                                 msg: announcement_sigs,
2831                                         });
2832                                 }
2833                                 Ok(())
2834                         },
2835                         hash_map::Entry::Vacant(_) => Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2836                 }
2837         }
2838
2839         fn internal_shutdown(&self, counterparty_node_id: &PublicKey, their_features: &InitFeatures, msg: &msgs::Shutdown) -> Result<(), MsgHandleErrInternal> {
2840                 let (mut dropped_htlcs, chan_option) = {
2841                         let mut channel_state_lock = self.channel_state.lock().unwrap();
2842                         let channel_state = &mut *channel_state_lock;
2843
2844                         match channel_state.by_id.entry(msg.channel_id.clone()) {
2845                                 hash_map::Entry::Occupied(mut chan_entry) => {
2846                                         if chan_entry.get().get_counterparty_node_id() != *counterparty_node_id {
2847                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2848                                         }
2849                                         let (shutdown, closing_signed, dropped_htlcs) = try_chan_entry!(self, chan_entry.get_mut().shutdown(&self.fee_estimator, &their_features, &msg), channel_state, chan_entry);
2850                                         if let Some(msg) = shutdown {
2851                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
2852                                                         node_id: counterparty_node_id.clone(),
2853                                                         msg,
2854                                                 });
2855                                         }
2856                                         if let Some(msg) = closing_signed {
2857                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
2858                                                         node_id: counterparty_node_id.clone(),
2859                                                         msg,
2860                                                 });
2861                                         }
2862                                         if chan_entry.get().is_shutdown() {
2863                                                 if let Some(short_id) = chan_entry.get().get_short_channel_id() {
2864                                                         channel_state.short_to_id.remove(&short_id);
2865                                                 }
2866                                                 (dropped_htlcs, Some(chan_entry.remove_entry().1))
2867                                         } else { (dropped_htlcs, None) }
2868                                 },
2869                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2870                         }
2871                 };
2872                 for htlc_source in dropped_htlcs.drain(..) {
2873                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
2874                 }
2875                 if let Some(chan) = chan_option {
2876                         if let Ok(update) = self.get_channel_update(&chan) {
2877                                 let mut channel_state = self.channel_state.lock().unwrap();
2878                                 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2879                                         msg: update
2880                                 });
2881                         }
2882                 }
2883                 Ok(())
2884         }
2885
2886         fn internal_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) -> Result<(), MsgHandleErrInternal> {
2887                 let (tx, chan_option) = {
2888                         let mut channel_state_lock = self.channel_state.lock().unwrap();
2889                         let channel_state = &mut *channel_state_lock;
2890                         match channel_state.by_id.entry(msg.channel_id.clone()) {
2891                                 hash_map::Entry::Occupied(mut chan_entry) => {
2892                                         if chan_entry.get().get_counterparty_node_id() != *counterparty_node_id {
2893                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2894                                         }
2895                                         let (closing_signed, tx) = try_chan_entry!(self, chan_entry.get_mut().closing_signed(&self.fee_estimator, &msg), channel_state, chan_entry);
2896                                         if let Some(msg) = closing_signed {
2897                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
2898                                                         node_id: counterparty_node_id.clone(),
2899                                                         msg,
2900                                                 });
2901                                         }
2902                                         if tx.is_some() {
2903                                                 // We're done with this channel, we've got a signed closing transaction and
2904                                                 // will send the closing_signed back to the remote peer upon return. This
2905                                                 // also implies there are no pending HTLCs left on the channel, so we can
2906                                                 // fully delete it from tracking (the channel monitor is still around to
2907                                                 // watch for old state broadcasts)!
2908                                                 if let Some(short_id) = chan_entry.get().get_short_channel_id() {
2909                                                         channel_state.short_to_id.remove(&short_id);
2910                                                 }
2911                                                 (tx, Some(chan_entry.remove_entry().1))
2912                                         } else { (tx, None) }
2913                                 },
2914                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2915                         }
2916                 };
2917                 if let Some(broadcast_tx) = tx {
2918                         log_info!(self.logger, "Broadcasting {}", log_tx!(broadcast_tx));
2919                         self.tx_broadcaster.broadcast_transaction(&broadcast_tx);
2920                 }
2921                 if let Some(chan) = chan_option {
2922                         if let Ok(update) = self.get_channel_update(&chan) {
2923                                 let mut channel_state = self.channel_state.lock().unwrap();
2924                                 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2925                                         msg: update
2926                                 });
2927                         }
2928                 }
2929                 Ok(())
2930         }
2931
2932         fn internal_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) -> Result<(), MsgHandleErrInternal> {
2933                 //TODO: BOLT 4 points out a specific attack where a peer may re-send an onion packet and
2934                 //determine the state of the payment based on our response/if we forward anything/the time
2935                 //we take to respond. We should take care to avoid allowing such an attack.
2936                 //
2937                 //TODO: There exists a further attack where a node may garble the onion data, forward it to
2938                 //us repeatedly garbled in different ways, and compare our error messages, which are
2939                 //encrypted with the same key. It's not immediately obvious how to usefully exploit that,
2940                 //but we should prevent it anyway.
2941
2942                 let (pending_forward_info, mut channel_state_lock) = self.decode_update_add_htlc_onion(msg);
2943                 let channel_state = &mut *channel_state_lock;
2944
2945                 match channel_state.by_id.entry(msg.channel_id) {
2946                         hash_map::Entry::Occupied(mut chan) => {
2947                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2948                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2949                                 }
2950
2951                                 let create_pending_htlc_status = |chan: &Channel<Signer>, pending_forward_info: PendingHTLCStatus, error_code: u16| {
2952                                         // Ensure error_code has the UPDATE flag set, since by default we send a
2953                                         // channel update along as part of failing the HTLC.
2954                                         assert!((error_code & 0x1000) != 0);
2955                                         // If the update_add is completely bogus, the call will Err and we will close,
2956                                         // but if we've sent a shutdown and they haven't acknowledged it yet, we just
2957                                         // want to reject the new HTLC and fail it backwards instead of forwarding.
2958                                         match pending_forward_info {
2959                                                 PendingHTLCStatus::Forward(PendingHTLCInfo { ref incoming_shared_secret, .. }) => {
2960                                                         let reason = if let Ok(upd) = self.get_channel_update(chan) {
2961                                                                 onion_utils::build_first_hop_failure_packet(incoming_shared_secret, error_code, &{
2962                                                                         let mut res = Vec::with_capacity(8 + 128);
2963                                                                         // TODO: underspecified, follow https://github.com/lightningnetwork/lightning-rfc/issues/791
2964                                                                         res.extend_from_slice(&byte_utils::be16_to_array(0));
2965                                                                         res.extend_from_slice(&upd.encode_with_len()[..]);
2966                                                                         res
2967                                                                 }[..])
2968                                                         } else {
2969                                                                 // The only case where we'd be unable to
2970                                                                 // successfully get a channel update is if the
2971                                                                 // channel isn't in the fully-funded state yet,
2972                                                                 // implying our counterparty is trying to route
2973                                                                 // payments over the channel back to themselves
2974                                                                 // (cause no one else should know the short_id
2975                                                                 // is a lightning channel yet). We should have
2976                                                                 // no problem just calling this
2977                                                                 // unknown_next_peer (0x4000|10).
2978                                                                 onion_utils::build_first_hop_failure_packet(incoming_shared_secret, 0x4000|10, &[])
2979                                                         };
2980                                                         let msg = msgs::UpdateFailHTLC {
2981                                                                 channel_id: msg.channel_id,
2982                                                                 htlc_id: msg.htlc_id,
2983                                                                 reason
2984                                                         };
2985                                                         PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msg))
2986                                                 },
2987                                                 _ => pending_forward_info
2988                                         }
2989                                 };
2990                                 try_chan_entry!(self, chan.get_mut().update_add_htlc(&msg, pending_forward_info, create_pending_htlc_status, &self.logger), channel_state, chan);
2991                         },
2992                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2993                 }
2994                 Ok(())
2995         }
2996
2997         fn internal_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) -> Result<(), MsgHandleErrInternal> {
2998                 let mut channel_lock = self.channel_state.lock().unwrap();
2999                 let htlc_source = {
3000                         let channel_state = &mut *channel_lock;
3001                         match channel_state.by_id.entry(msg.channel_id) {
3002                                 hash_map::Entry::Occupied(mut chan) => {
3003                                         if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3004                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3005                                         }
3006                                         try_chan_entry!(self, chan.get_mut().update_fulfill_htlc(&msg), channel_state, chan)
3007                                 },
3008                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3009                         }
3010                 };
3011                 self.claim_funds_internal(channel_lock, htlc_source, msg.payment_preimage.clone());
3012                 Ok(())
3013         }
3014
3015         fn internal_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) -> Result<(), MsgHandleErrInternal> {
3016                 let mut channel_lock = self.channel_state.lock().unwrap();
3017                 let channel_state = &mut *channel_lock;
3018                 match channel_state.by_id.entry(msg.channel_id) {
3019                         hash_map::Entry::Occupied(mut chan) => {
3020                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3021                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3022                                 }
3023                                 try_chan_entry!(self, chan.get_mut().update_fail_htlc(&msg, HTLCFailReason::LightningError { err: msg.reason.clone() }), channel_state, chan);
3024                         },
3025                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3026                 }
3027                 Ok(())
3028         }
3029
3030         fn internal_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) -> Result<(), MsgHandleErrInternal> {
3031                 let mut channel_lock = self.channel_state.lock().unwrap();
3032                 let channel_state = &mut *channel_lock;
3033                 match channel_state.by_id.entry(msg.channel_id) {
3034                         hash_map::Entry::Occupied(mut chan) => {
3035                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3036                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3037                                 }
3038                                 if (msg.failure_code & 0x8000) == 0 {
3039                                         let chan_err: ChannelError = ChannelError::Close("Got update_fail_malformed_htlc with BADONION not set".to_owned());
3040                                         try_chan_entry!(self, Err(chan_err), channel_state, chan);
3041                                 }
3042                                 try_chan_entry!(self, chan.get_mut().update_fail_malformed_htlc(&msg, HTLCFailReason::Reason { failure_code: msg.failure_code, data: Vec::new() }), channel_state, chan);
3043                                 Ok(())
3044                         },
3045                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3046                 }
3047         }
3048
3049         fn internal_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) -> Result<(), MsgHandleErrInternal> {
3050                 let mut channel_state_lock = self.channel_state.lock().unwrap();
3051                 let channel_state = &mut *channel_state_lock;
3052                 match channel_state.by_id.entry(msg.channel_id) {
3053                         hash_map::Entry::Occupied(mut chan) => {
3054                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3055                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3056                                 }
3057                                 let (revoke_and_ack, commitment_signed, closing_signed, monitor_update) =
3058                                         match chan.get_mut().commitment_signed(&msg, &self.fee_estimator, &self.logger) {
3059                                                 Err((None, e)) => try_chan_entry!(self, Err(e), channel_state, chan),
3060                                                 Err((Some(update), e)) => {
3061                                                         assert!(chan.get().is_awaiting_monitor_update());
3062                                                         let _ = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), update);
3063                                                         try_chan_entry!(self, Err(e), channel_state, chan);
3064                                                         unreachable!();
3065                                                 },
3066                                                 Ok(res) => res
3067                                         };
3068                                 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
3069                                         return_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::RevokeAndACKFirst, true, commitment_signed.is_some());
3070                                         //TODO: Rebroadcast closing_signed if present on monitor update restoration
3071                                 }
3072                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
3073                                         node_id: counterparty_node_id.clone(),
3074                                         msg: revoke_and_ack,
3075                                 });
3076                                 if let Some(msg) = commitment_signed {
3077                                         channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
3078                                                 node_id: counterparty_node_id.clone(),
3079                                                 updates: msgs::CommitmentUpdate {
3080                                                         update_add_htlcs: Vec::new(),
3081                                                         update_fulfill_htlcs: Vec::new(),
3082                                                         update_fail_htlcs: Vec::new(),
3083                                                         update_fail_malformed_htlcs: Vec::new(),
3084                                                         update_fee: None,
3085                                                         commitment_signed: msg,
3086                                                 },
3087                                         });
3088                                 }
3089                                 if let Some(msg) = closing_signed {
3090                                         channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
3091                                                 node_id: counterparty_node_id.clone(),
3092                                                 msg,
3093                                         });
3094                                 }
3095                                 Ok(())
3096                         },
3097                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3098                 }
3099         }
3100
3101         #[inline]
3102         fn forward_htlcs(&self, per_source_pending_forwards: &mut [(u64, OutPoint, Vec<(PendingHTLCInfo, u64)>)]) {
3103                 for &mut (prev_short_channel_id, prev_funding_outpoint, ref mut pending_forwards) in per_source_pending_forwards {
3104                         let mut forward_event = None;
3105                         if !pending_forwards.is_empty() {
3106                                 let mut channel_state = self.channel_state.lock().unwrap();
3107                                 if channel_state.forward_htlcs.is_empty() {
3108                                         forward_event = Some(Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS))
3109                                 }
3110                                 for (forward_info, prev_htlc_id) in pending_forwards.drain(..) {
3111                                         match channel_state.forward_htlcs.entry(match forward_info.routing {
3112                                                         PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
3113                                                         PendingHTLCRouting::Receive { .. } => 0,
3114                                         }) {
3115                                                 hash_map::Entry::Occupied(mut entry) => {
3116                                                         entry.get_mut().push(HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_funding_outpoint,
3117                                                                                                         prev_htlc_id, forward_info });
3118                                                 },
3119                                                 hash_map::Entry::Vacant(entry) => {
3120                                                         entry.insert(vec!(HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_funding_outpoint,
3121                                                                                                      prev_htlc_id, forward_info }));
3122                                                 }
3123                                         }
3124                                 }
3125                         }
3126                         match forward_event {
3127                                 Some(time) => {
3128                                         let mut pending_events = self.pending_events.lock().unwrap();
3129                                         pending_events.push(events::Event::PendingHTLCsForwardable {
3130                                                 time_forwardable: time
3131                                         });
3132                                 }
3133                                 None => {},
3134                         }
3135                 }
3136         }
3137
3138         fn internal_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) -> Result<(), MsgHandleErrInternal> {
3139                 let mut htlcs_to_fail = Vec::new();
3140                 let res = loop {
3141                         let mut channel_state_lock = self.channel_state.lock().unwrap();
3142                         let channel_state = &mut *channel_state_lock;
3143                         match channel_state.by_id.entry(msg.channel_id) {
3144                                 hash_map::Entry::Occupied(mut chan) => {
3145                                         if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3146                                                 break Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3147                                         }
3148                                         let was_frozen_for_monitor = chan.get().is_awaiting_monitor_update();
3149                                         let (commitment_update, pending_forwards, pending_failures, closing_signed, monitor_update, htlcs_to_fail_in) =
3150                                                 break_chan_entry!(self, chan.get_mut().revoke_and_ack(&msg, &self.fee_estimator, &self.logger), channel_state, chan);
3151                                         htlcs_to_fail = htlcs_to_fail_in;
3152                                         if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
3153                                                 if was_frozen_for_monitor {
3154                                                         assert!(commitment_update.is_none() && closing_signed.is_none() && pending_forwards.is_empty() && pending_failures.is_empty());
3155                                                         break Err(MsgHandleErrInternal::ignore_no_close("Previous monitor update failure prevented responses to RAA".to_owned()));
3156                                                 } else {
3157                                                         if let Err(e) = handle_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, commitment_update.is_some(), pending_forwards, pending_failures) {
3158                                                                 break Err(e);
3159                                                         } else { unreachable!(); }
3160                                                 }
3161                                         }
3162                                         if let Some(updates) = commitment_update {
3163                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
3164                                                         node_id: counterparty_node_id.clone(),
3165                                                         updates,
3166                                                 });
3167                                         }
3168                                         if let Some(msg) = closing_signed {
3169                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
3170                                                         node_id: counterparty_node_id.clone(),
3171                                                         msg,
3172                                                 });
3173                                         }
3174                                         break Ok((pending_forwards, pending_failures, chan.get().get_short_channel_id().expect("RAA should only work on a short-id-available channel"), chan.get().get_funding_txo().unwrap()))
3175                                 },
3176                                 hash_map::Entry::Vacant(_) => break Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3177                         }
3178                 };
3179                 self.fail_holding_cell_htlcs(htlcs_to_fail, msg.channel_id);
3180                 match res {
3181                         Ok((pending_forwards, mut pending_failures, short_channel_id, channel_outpoint)) => {
3182                                 for failure in pending_failures.drain(..) {
3183                                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), failure.0, &failure.1, failure.2);
3184                                 }
3185                                 self.forward_htlcs(&mut [(short_channel_id, channel_outpoint, pending_forwards)]);
3186                                 Ok(())
3187                         },
3188                         Err(e) => Err(e)
3189                 }
3190         }
3191
3192         fn internal_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) -> Result<(), MsgHandleErrInternal> {
3193                 let mut channel_lock = self.channel_state.lock().unwrap();
3194                 let channel_state = &mut *channel_lock;
3195                 match channel_state.by_id.entry(msg.channel_id) {
3196                         hash_map::Entry::Occupied(mut chan) => {
3197                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3198                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3199                                 }
3200                                 try_chan_entry!(self, chan.get_mut().update_fee(&self.fee_estimator, &msg), channel_state, chan);
3201                         },
3202                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3203                 }
3204                 Ok(())
3205         }
3206
3207         fn internal_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) -> Result<(), MsgHandleErrInternal> {
3208                 let mut channel_state_lock = self.channel_state.lock().unwrap();
3209                 let channel_state = &mut *channel_state_lock;
3210
3211                 match channel_state.by_id.entry(msg.channel_id) {
3212                         hash_map::Entry::Occupied(mut chan) => {
3213                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3214                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3215                                 }
3216                                 if !chan.get().is_usable() {
3217                                         return Err(MsgHandleErrInternal::from_no_close(LightningError{err: "Got an announcement_signatures before we were ready for it".to_owned(), action: msgs::ErrorAction::IgnoreError}));
3218                                 }
3219
3220                                 let our_node_id = self.get_our_node_id();
3221                                 let (announcement, our_bitcoin_sig) =
3222                                         try_chan_entry!(self, chan.get_mut().get_channel_announcement(our_node_id.clone(), self.genesis_hash.clone()), channel_state, chan);
3223
3224                                 let were_node_one = announcement.node_id_1 == our_node_id;
3225                                 let msghash = hash_to_message!(&Sha256dHash::hash(&announcement.encode()[..])[..]);
3226                                 {
3227                                         let their_node_key = if were_node_one { &announcement.node_id_2 } else { &announcement.node_id_1 };
3228                                         let their_bitcoin_key = if were_node_one { &announcement.bitcoin_key_2 } else { &announcement.bitcoin_key_1 };
3229                                         match (self.secp_ctx.verify(&msghash, &msg.node_signature, their_node_key),
3230                                                    self.secp_ctx.verify(&msghash, &msg.bitcoin_signature, their_bitcoin_key)) {
3231                                                 (Err(e), _) => {
3232                                                         let chan_err: ChannelError = ChannelError::Close(format!("Bad announcement_signatures. Failed to verify node_signature: {:?}. Maybe using different node_secret for transport and routing msg? UnsignedChannelAnnouncement used for verification is {:?}. their_node_key is {:?}", e, &announcement, their_node_key));
3233                                                         try_chan_entry!(self, Err(chan_err), channel_state, chan);
3234                                                 },
3235                                                 (_, Err(e)) => {
3236                                                         let chan_err: ChannelError = ChannelError::Close(format!("Bad announcement_signatures. Failed to verify bitcoin_signature: {:?}. UnsignedChannelAnnouncement used for verification is {:?}. their_bitcoin_key is ({:?})", e, &announcement, their_bitcoin_key));
3237                                                         try_chan_entry!(self, Err(chan_err), channel_state, chan);
3238                                                 },
3239                                                 _ => {}
3240                                         }
3241                                 }
3242
3243                                 let our_node_sig = self.secp_ctx.sign(&msghash, &self.our_network_key);
3244
3245                                 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
3246                                         msg: msgs::ChannelAnnouncement {
3247                                                 node_signature_1: if were_node_one { our_node_sig } else { msg.node_signature },
3248                                                 node_signature_2: if were_node_one { msg.node_signature } else { our_node_sig },
3249                                                 bitcoin_signature_1: if were_node_one { our_bitcoin_sig } else { msg.bitcoin_signature },
3250                                                 bitcoin_signature_2: if were_node_one { msg.bitcoin_signature } else { our_bitcoin_sig },
3251                                                 contents: announcement,
3252                                         },
3253                                         update_msg: self.get_channel_update(chan.get()).unwrap(), // can only fail if we're not in a ready state
3254                                 });
3255                         },
3256                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3257                 }
3258                 Ok(())
3259         }
3260
3261         fn internal_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) -> Result<(), MsgHandleErrInternal> {
3262                 let mut channel_state_lock = self.channel_state.lock().unwrap();
3263                 let channel_state = &mut *channel_state_lock;
3264                 let chan_id = match channel_state.short_to_id.get(&msg.contents.short_channel_id) {
3265                         Some(chan_id) => chan_id.clone(),
3266                         None => {
3267                                 // It's not a local channel
3268                                 return Ok(())
3269                         }
3270                 };
3271                 match channel_state.by_id.entry(chan_id) {
3272                         hash_map::Entry::Occupied(mut chan) => {
3273                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3274                                         // TODO: see issue #153, need a consistent behavior on obnoxious behavior from random node
3275                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), chan_id));
3276                                 }
3277                                 try_chan_entry!(self, chan.get_mut().channel_update(&msg), channel_state, chan);
3278                         },
3279                         hash_map::Entry::Vacant(_) => unreachable!()
3280                 }
3281                 Ok(())
3282         }
3283
3284         fn internal_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) -> Result<(), MsgHandleErrInternal> {
3285                 let mut channel_state_lock = self.channel_state.lock().unwrap();
3286                 let channel_state = &mut *channel_state_lock;
3287
3288                 match channel_state.by_id.entry(msg.channel_id) {
3289                         hash_map::Entry::Occupied(mut chan) => {
3290                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3291                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3292                                 }
3293                                 // Currently, we expect all holding cell update_adds to be dropped on peer
3294                                 // disconnect, so Channel's reestablish will never hand us any holding cell
3295                                 // freed HTLCs to fail backwards. If in the future we no longer drop pending
3296                                 // add-HTLCs on disconnect, we may be handed HTLCs to fail backwards here.
3297                                 let (funding_locked, revoke_and_ack, commitment_update, monitor_update_opt, mut order, shutdown) =
3298                                         try_chan_entry!(self, chan.get_mut().channel_reestablish(msg, &self.logger), channel_state, chan);
3299                                 if let Some(monitor_update) = monitor_update_opt {
3300                                         if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
3301                                                 // channel_reestablish doesn't guarantee the order it returns is sensical
3302                                                 // for the messages it returns, but if we're setting what messages to
3303                                                 // re-transmit on monitor update success, we need to make sure it is sane.
3304                                                 if revoke_and_ack.is_none() {
3305                                                         order = RAACommitmentOrder::CommitmentFirst;
3306                                                 }
3307                                                 if commitment_update.is_none() {
3308                                                         order = RAACommitmentOrder::RevokeAndACKFirst;
3309                                                 }
3310                                                 return_monitor_err!(self, e, channel_state, chan, order, revoke_and_ack.is_some(), commitment_update.is_some());
3311                                                 //TODO: Resend the funding_locked if needed once we get the monitor running again
3312                                         }
3313                                 }
3314                                 if let Some(msg) = funding_locked {
3315                                         channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingLocked {
3316                                                 node_id: counterparty_node_id.clone(),
3317                                                 msg
3318                                         });
3319                                 }
3320                                 macro_rules! send_raa { () => {
3321                                         if let Some(msg) = revoke_and_ack {
3322                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
3323                                                         node_id: counterparty_node_id.clone(),
3324                                                         msg
3325                                                 });
3326                                         }
3327                                 } }
3328                                 macro_rules! send_cu { () => {
3329                                         if let Some(updates) = commitment_update {
3330                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
3331                                                         node_id: counterparty_node_id.clone(),
3332                                                         updates
3333                                                 });
3334                                         }
3335                                 } }
3336                                 match order {
3337                                         RAACommitmentOrder::RevokeAndACKFirst => {
3338                                                 send_raa!();
3339                                                 send_cu!();
3340                                         },
3341                                         RAACommitmentOrder::CommitmentFirst => {
3342                                                 send_cu!();
3343                                                 send_raa!();
3344                                         },
3345                                 }
3346                                 if let Some(msg) = shutdown {
3347                                         channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
3348                                                 node_id: counterparty_node_id.clone(),
3349                                                 msg,
3350                                         });
3351                                 }
3352                                 Ok(())
3353                         },
3354                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3355                 }
3356         }
3357
3358         /// Begin Update fee process. Allowed only on an outbound channel.
3359         /// If successful, will generate a UpdateHTLCs event, so you should probably poll
3360         /// PeerManager::process_events afterwards.
3361         /// Note: This API is likely to change!
3362         /// (C-not exported) Cause its doc(hidden) anyway
3363         #[doc(hidden)]
3364         pub fn update_fee(&self, channel_id: [u8;32], feerate_per_kw: u32) -> Result<(), APIError> {
3365                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3366                 let counterparty_node_id;
3367                 let err: Result<(), _> = loop {
3368                         let mut channel_state_lock = self.channel_state.lock().unwrap();
3369                         let channel_state = &mut *channel_state_lock;
3370
3371                         match channel_state.by_id.entry(channel_id) {
3372                                 hash_map::Entry::Vacant(_) => return Err(APIError::APIMisuseError{err: format!("Failed to find corresponding channel for id {}", channel_id.to_hex())}),
3373                                 hash_map::Entry::Occupied(mut chan) => {
3374                                         if !chan.get().is_outbound() {
3375                                                 return Err(APIError::APIMisuseError{err: "update_fee cannot be sent for an inbound channel".to_owned()});
3376                                         }
3377                                         if chan.get().is_awaiting_monitor_update() {
3378                                                 return Err(APIError::MonitorUpdateFailed);
3379                                         }
3380                                         if !chan.get().is_live() {
3381                                                 return Err(APIError::ChannelUnavailable{err: "Channel is either not yet fully established or peer is currently disconnected".to_owned()});
3382                                         }
3383                                         counterparty_node_id = chan.get().get_counterparty_node_id();
3384                                         if let Some((update_fee, commitment_signed, monitor_update)) =
3385                                                         break_chan_entry!(self, chan.get_mut().send_update_fee_and_commit(feerate_per_kw, &self.logger), channel_state, chan)
3386                                         {
3387                                                 if let Err(_e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
3388                                                         unimplemented!();
3389                                                 }
3390                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
3391                                                         node_id: chan.get().get_counterparty_node_id(),
3392                                                         updates: msgs::CommitmentUpdate {
3393                                                                 update_add_htlcs: Vec::new(),
3394                                                                 update_fulfill_htlcs: Vec::new(),
3395                                                                 update_fail_htlcs: Vec::new(),
3396                                                                 update_fail_malformed_htlcs: Vec::new(),
3397                                                                 update_fee: Some(update_fee),
3398                                                                 commitment_signed,
3399                                                         },
3400                                                 });
3401                                         }
3402                                 },
3403                         }
3404                         return Ok(())
3405                 };
3406
3407                 match handle_error!(self, err, counterparty_node_id) {
3408                         Ok(_) => unreachable!(),
3409                         Err(e) => { Err(APIError::APIMisuseError { err: e.err })}
3410                 }
3411         }
3412
3413         /// Process pending events from the `chain::Watch`.
3414         fn process_pending_monitor_events(&self) {
3415                 let mut failed_channels = Vec::new();
3416                 {
3417                         for monitor_event in self.chain_monitor.release_pending_monitor_events() {
3418                                 match monitor_event {
3419                                         MonitorEvent::HTLCEvent(htlc_update) => {
3420                                                 if let Some(preimage) = htlc_update.payment_preimage {
3421                                                         log_trace!(self.logger, "Claiming HTLC with preimage {} from our monitor", log_bytes!(preimage.0));
3422                                                         self.claim_funds_internal(self.channel_state.lock().unwrap(), htlc_update.source, preimage);
3423                                                 } else {
3424                                                         log_trace!(self.logger, "Failing HTLC with hash {} from our monitor", log_bytes!(htlc_update.payment_hash.0));
3425                                                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_update.source, &htlc_update.payment_hash, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
3426                                                 }
3427                                         },
3428                                         MonitorEvent::CommitmentTxBroadcasted(funding_outpoint) => {
3429                                                 let mut channel_lock = self.channel_state.lock().unwrap();
3430                                                 let channel_state = &mut *channel_lock;
3431                                                 let by_id = &mut channel_state.by_id;
3432                                                 let short_to_id = &mut channel_state.short_to_id;
3433                                                 let pending_msg_events = &mut channel_state.pending_msg_events;
3434                                                 if let Some(mut chan) = by_id.remove(&funding_outpoint.to_channel_id()) {
3435                                                         if let Some(short_id) = chan.get_short_channel_id() {
3436                                                                 short_to_id.remove(&short_id);
3437                                                         }
3438                                                         failed_channels.push(chan.force_shutdown(false));
3439                                                         if let Ok(update) = self.get_channel_update(&chan) {
3440                                                                 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
3441                                                                         msg: update
3442                                                                 });
3443                                                         }
3444                                                         pending_msg_events.push(events::MessageSendEvent::HandleError {
3445                                                                 node_id: chan.get_counterparty_node_id(),
3446                                                                 action: msgs::ErrorAction::SendErrorMessage {
3447                                                                         msg: msgs::ErrorMessage { channel_id: chan.channel_id(), data: "Channel force-closed".to_owned() }
3448                                                                 },
3449                                                         });
3450                                                 }
3451                                         },
3452                                 }
3453                         }
3454                 }
3455
3456                 for failure in failed_channels.drain(..) {
3457                         self.finish_force_close_channel(failure);
3458                 }
3459         }
3460
3461         /// Handle a list of channel failures during a block_connected or block_disconnected call,
3462         /// pushing the channel monitor update (if any) to the background events queue and removing the
3463         /// Channel object.
3464         fn handle_init_event_channel_failures(&self, mut failed_channels: Vec<ShutdownResult>) {
3465                 for mut failure in failed_channels.drain(..) {
3466                         // Either a commitment transactions has been confirmed on-chain or
3467                         // Channel::block_disconnected detected that the funding transaction has been
3468                         // reorganized out of the main chain.
3469                         // We cannot broadcast our latest local state via monitor update (as
3470                         // Channel::force_shutdown tries to make us do) as we may still be in initialization,
3471                         // so we track the update internally and handle it when the user next calls
3472                         // timer_tick_occurred, guaranteeing we're running normally.
3473                         if let Some((funding_txo, update)) = failure.0.take() {
3474                                 assert_eq!(update.updates.len(), 1);
3475                                 if let ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast } = update.updates[0] {
3476                                         assert!(should_broadcast);
3477                                 } else { unreachable!(); }
3478                                 self.pending_background_events.lock().unwrap().push(BackgroundEvent::ClosingMonitorUpdate((funding_txo, update)));
3479                         }
3480                         self.finish_force_close_channel(failure);
3481                 }
3482         }
3483
3484         fn set_payment_hash_secret_map(&self, payment_hash: PaymentHash, payment_preimage: Option<PaymentPreimage>, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32, user_payment_id: u64) -> Result<PaymentSecret, APIError> {
3485                 assert!(invoice_expiry_delta_secs <= 60*60*24*365); // Sadly bitcoin timestamps are u32s, so panic before 2106
3486
3487                 let payment_secret = PaymentSecret(self.keys_manager.get_secure_random_bytes());
3488
3489                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3490                 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
3491                 match payment_secrets.entry(payment_hash) {
3492                         hash_map::Entry::Vacant(e) => {
3493                                 e.insert(PendingInboundPayment {
3494                                         payment_secret, min_value_msat, user_payment_id, payment_preimage,
3495                                         // We assume that highest_seen_timestamp is pretty close to the current time -
3496                                         // its updated when we receive a new block with the maximum time we've seen in
3497                                         // a header. It should never be more than two hours in the future.
3498                                         // Thus, we add two hours here as a buffer to ensure we absolutely
3499                                         // never fail a payment too early.
3500                                         // Note that we assume that received blocks have reasonably up-to-date
3501                                         // timestamps.
3502                                         expiry_time: self.highest_seen_timestamp.load(Ordering::Acquire) as u64 + invoice_expiry_delta_secs as u64 + 7200,
3503                                 });
3504                         },
3505                         hash_map::Entry::Occupied(_) => return Err(APIError::APIMisuseError { err: "Duplicate payment hash".to_owned() }),
3506                 }
3507                 Ok(payment_secret)
3508         }
3509
3510         /// Gets a payment secret and payment hash for use in an invoice given to a third party wishing
3511         /// to pay us.
3512         ///
3513         /// This differs from [`create_inbound_payment_for_hash`] only in that it generates the
3514         /// [`PaymentHash`] and [`PaymentPreimage`] for you, returning the first and storing the second.
3515         ///
3516         /// The [`PaymentPreimage`] will ultimately be returned to you in the [`PaymentReceived`], which
3517         /// will have the [`PaymentReceived::payment_preimage`] field filled in. That should then be
3518         /// passed directly to [`claim_funds`].
3519         ///
3520         /// See [`create_inbound_payment_for_hash`] for detailed documentation on behavior and requirements.
3521         ///
3522         /// [`claim_funds`]: Self::claim_funds
3523         /// [`PaymentReceived`]: events::Event::PaymentReceived
3524         /// [`PaymentReceived::payment_preimage`]: events::Event::PaymentReceived::payment_preimage
3525         /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
3526         pub fn create_inbound_payment(&self, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32, user_payment_id: u64) -> (PaymentHash, PaymentSecret) {
3527                 let payment_preimage = PaymentPreimage(self.keys_manager.get_secure_random_bytes());
3528                 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
3529
3530                 (payment_hash,
3531                         self.set_payment_hash_secret_map(payment_hash, Some(payment_preimage), min_value_msat, invoice_expiry_delta_secs, user_payment_id)
3532                                 .expect("RNG Generated Duplicate PaymentHash"))
3533         }
3534
3535         /// Gets a [`PaymentSecret`] for a given [`PaymentHash`], for which the payment preimage is
3536         /// stored external to LDK.
3537         ///
3538         /// A [`PaymentReceived`] event will only be generated if the [`PaymentSecret`] matches a
3539         /// payment secret fetched via this method or [`create_inbound_payment`], and which is at least
3540         /// the `min_value_msat` provided here, if one is provided.
3541         ///
3542         /// The [`PaymentHash`] (and corresponding [`PaymentPreimage`]) must be globally unique. This
3543         /// method may return an Err if another payment with the same payment_hash is still pending.
3544         ///
3545         /// `user_payment_id` will be provided back in [`PaymentReceived::user_payment_id`] events to
3546         /// allow tracking of which events correspond with which calls to this and
3547         /// [`create_inbound_payment`]. `user_payment_id` has no meaning inside of LDK, it is simply
3548         /// copied to events and otherwise ignored. It may be used to correlate PaymentReceived events
3549         /// with invoice metadata stored elsewhere.
3550         ///
3551         /// `min_value_msat` should be set if the invoice being generated contains a value. Any payment
3552         /// received for the returned [`PaymentHash`] will be required to be at least `min_value_msat`
3553         /// before a [`PaymentReceived`] event will be generated, ensuring that we do not provide the
3554         /// sender "proof-of-payment" unless they have paid the required amount.
3555         ///
3556         /// `invoice_expiry_delta_secs` describes the number of seconds that the invoice is valid for
3557         /// in excess of the current time. This should roughly match the expiry time set in the invoice.
3558         /// After this many seconds, we will remove the inbound payment, resulting in any attempts to
3559         /// pay the invoice failing. The BOLT spec suggests 3,600 secs as a default validity time for
3560         /// invoices when no timeout is set.
3561         ///
3562         /// Note that we use block header time to time-out pending inbound payments (with some margin
3563         /// to compensate for the inaccuracy of block header timestamps). Thus, in practice we will
3564         /// accept a payment and generate a [`PaymentReceived`] event for some time after the expiry.
3565         /// If you need exact expiry semantics, you should enforce them upon receipt of
3566         /// [`PaymentReceived`].
3567         ///
3568         /// Pending inbound payments are stored in memory and in serialized versions of this
3569         /// [`ChannelManager`]. If potentially unbounded numbers of inbound payments may exist and
3570         /// space is limited, you may wish to rate-limit inbound payment creation.
3571         ///
3572         /// May panic if `invoice_expiry_delta_secs` is greater than one year.
3573         ///
3574         /// Note that invoices generated for inbound payments should have their `min_final_cltv_expiry`
3575         /// set to at least [`MIN_FINAL_CLTV_EXPIRY`].
3576         ///
3577         /// [`create_inbound_payment`]: Self::create_inbound_payment
3578         /// [`PaymentReceived`]: events::Event::PaymentReceived
3579         /// [`PaymentReceived::user_payment_id`]: events::Event::PaymentReceived::user_payment_id
3580         pub fn create_inbound_payment_for_hash(&self, payment_hash: PaymentHash, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32, user_payment_id: u64) -> Result<PaymentSecret, APIError> {
3581                 self.set_payment_hash_secret_map(payment_hash, None, min_value_msat, invoice_expiry_delta_secs, user_payment_id)
3582         }
3583 }
3584
3585 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> MessageSendEventsProvider for ChannelManager<Signer, M, T, K, F, L>
3586         where M::Target: chain::Watch<Signer>,
3587         T::Target: BroadcasterInterface,
3588         K::Target: KeysInterface<Signer = Signer>,
3589         F::Target: FeeEstimator,
3590                                 L::Target: Logger,
3591 {
3592         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
3593                 //TODO: This behavior should be documented. It's non-intuitive that we query
3594                 // ChannelMonitors when clearing other events.
3595                 self.process_pending_monitor_events();
3596
3597                 let mut ret = Vec::new();
3598                 let mut channel_state = self.channel_state.lock().unwrap();
3599                 mem::swap(&mut ret, &mut channel_state.pending_msg_events);
3600                 ret
3601         }
3602 }
3603
3604 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> EventsProvider for ChannelManager<Signer, M, T, K, F, L>
3605         where M::Target: chain::Watch<Signer>,
3606         T::Target: BroadcasterInterface,
3607         K::Target: KeysInterface<Signer = Signer>,
3608         F::Target: FeeEstimator,
3609                                 L::Target: Logger,
3610 {
3611         fn get_and_clear_pending_events(&self) -> Vec<Event> {
3612                 //TODO: This behavior should be documented. It's non-intuitive that we query
3613                 // ChannelMonitors when clearing other events.
3614                 self.process_pending_monitor_events();
3615
3616                 let mut ret = Vec::new();
3617                 let mut pending_events = self.pending_events.lock().unwrap();
3618                 mem::swap(&mut ret, &mut *pending_events);
3619                 ret
3620         }
3621 }
3622
3623 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> chain::Listen for ChannelManager<Signer, M, T, K, F, L>
3624 where
3625         M::Target: chain::Watch<Signer>,
3626         T::Target: BroadcasterInterface,
3627         K::Target: KeysInterface<Signer = Signer>,
3628         F::Target: FeeEstimator,
3629         L::Target: Logger,
3630 {
3631         fn block_connected(&self, block: &Block, height: u32) {
3632                 {
3633                         let best_block = self.best_block.read().unwrap();
3634                         assert_eq!(best_block.block_hash(), block.header.prev_blockhash,
3635                                 "Blocks must be connected in chain-order - the connected header must build on the last connected header");
3636                         assert_eq!(best_block.height(), height - 1,
3637                                 "Blocks must be connected in chain-order - the connected block height must be one greater than the previous height");
3638                 }
3639
3640                 let txdata: Vec<_> = block.txdata.iter().enumerate().collect();
3641                 self.transactions_confirmed(&block.header, &txdata, height);
3642                 self.best_block_updated(&block.header, height);
3643         }
3644
3645         fn block_disconnected(&self, header: &BlockHeader, height: u32) {
3646                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3647                 let new_height = height - 1;
3648                 {
3649                         let mut best_block = self.best_block.write().unwrap();
3650                         assert_eq!(best_block.block_hash(), header.block_hash(),
3651                                 "Blocks must be disconnected in chain-order - the disconnected header must be the last connected header");
3652                         assert_eq!(best_block.height(), height,
3653                                 "Blocks must be disconnected in chain-order - the disconnected block must have the correct height");
3654                         *best_block = BestBlock::new(header.prev_blockhash, new_height)
3655                 }
3656
3657                 self.do_chain_event(Some(new_height), |channel| channel.best_block_updated(new_height, header.time));
3658         }
3659 }
3660
3661 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> chain::Confirm for ChannelManager<Signer, M, T, K, F, L>
3662 where
3663         M::Target: chain::Watch<Signer>,
3664         T::Target: BroadcasterInterface,
3665         K::Target: KeysInterface<Signer = Signer>,
3666         F::Target: FeeEstimator,
3667         L::Target: Logger,
3668 {
3669         fn transactions_confirmed(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
3670                 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
3671                 // during initialization prior to the chain_monitor being fully configured in some cases.
3672                 // See the docs for `ChannelManagerReadArgs` for more.
3673
3674                 let block_hash = header.block_hash();
3675                 log_trace!(self.logger, "{} transactions included in block {} at height {} provided", txdata.len(), block_hash, height);
3676
3677                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3678                 self.do_chain_event(Some(height), |channel| channel.transactions_confirmed(&block_hash, height, txdata, &self.logger).map(|a| (a, Vec::new())));
3679         }
3680
3681         fn best_block_updated(&self, header: &BlockHeader, height: u32) {
3682                 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
3683                 // during initialization prior to the chain_monitor being fully configured in some cases.
3684                 // See the docs for `ChannelManagerReadArgs` for more.
3685
3686                 let block_hash = header.block_hash();
3687                 log_trace!(self.logger, "New best block: {} at height {}", block_hash, height);
3688
3689                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3690
3691                 *self.best_block.write().unwrap() = BestBlock::new(block_hash, height);
3692
3693                 self.do_chain_event(Some(height), |channel| channel.best_block_updated(height, header.time));
3694
3695                 macro_rules! max_time {
3696                         ($timestamp: expr) => {
3697                                 loop {
3698                                         // Update $timestamp to be the max of its current value and the block
3699                                         // timestamp. This should keep us close to the current time without relying on
3700                                         // having an explicit local time source.
3701                                         // Just in case we end up in a race, we loop until we either successfully
3702                                         // update $timestamp or decide we don't need to.
3703                                         let old_serial = $timestamp.load(Ordering::Acquire);
3704                                         if old_serial >= header.time as usize { break; }
3705                                         if $timestamp.compare_exchange(old_serial, header.time as usize, Ordering::AcqRel, Ordering::Relaxed).is_ok() {
3706                                                 break;
3707                                         }
3708                                 }
3709                         }
3710                 }
3711                 max_time!(self.last_node_announcement_serial);
3712                 max_time!(self.highest_seen_timestamp);
3713                 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
3714                 payment_secrets.retain(|_, inbound_payment| {
3715                         inbound_payment.expiry_time > header.time as u64
3716                 });
3717         }
3718
3719         fn get_relevant_txids(&self) -> Vec<Txid> {
3720                 let channel_state = self.channel_state.lock().unwrap();
3721                 let mut res = Vec::with_capacity(channel_state.short_to_id.len());
3722                 for chan in channel_state.by_id.values() {
3723                         if let Some(funding_txo) = chan.get_funding_txo() {
3724                                 res.push(funding_txo.txid);
3725                         }
3726                 }
3727                 res
3728         }
3729
3730         fn transaction_unconfirmed(&self, txid: &Txid) {
3731                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3732                 self.do_chain_event(None, |channel| {
3733                         if let Some(funding_txo) = channel.get_funding_txo() {
3734                                 if funding_txo.txid == *txid {
3735                                         channel.funding_transaction_unconfirmed().map(|_| (None, Vec::new()))
3736                                 } else { Ok((None, Vec::new())) }
3737                         } else { Ok((None, Vec::new())) }
3738                 });
3739         }
3740 }
3741
3742 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> ChannelManager<Signer, M, T, K, F, L>
3743 where
3744         M::Target: chain::Watch<Signer>,
3745         T::Target: BroadcasterInterface,
3746         K::Target: KeysInterface<Signer = Signer>,
3747         F::Target: FeeEstimator,
3748         L::Target: Logger,
3749 {
3750         /// Calls a function which handles an on-chain event (blocks dis/connected, transactions
3751         /// un/confirmed, etc) on each channel, handling any resulting errors or messages generated by
3752         /// the function.
3753         fn do_chain_event<FN: Fn(&mut Channel<Signer>) -> Result<(Option<msgs::FundingLocked>, Vec<(HTLCSource, PaymentHash)>), msgs::ErrorMessage>>
3754                         (&self, height_opt: Option<u32>, f: FN) {
3755                 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
3756                 // during initialization prior to the chain_monitor being fully configured in some cases.
3757                 // See the docs for `ChannelManagerReadArgs` for more.
3758
3759                 let mut failed_channels = Vec::new();
3760                 let mut timed_out_htlcs = Vec::new();
3761                 {
3762                         let mut channel_lock = self.channel_state.lock().unwrap();
3763                         let channel_state = &mut *channel_lock;
3764                         let short_to_id = &mut channel_state.short_to_id;
3765                         let pending_msg_events = &mut channel_state.pending_msg_events;
3766                         channel_state.by_id.retain(|_, channel| {
3767                                 let res = f(channel);
3768                                 if let Ok((chan_res, mut timed_out_pending_htlcs)) = res {
3769                                         for (source, payment_hash) in timed_out_pending_htlcs.drain(..) {
3770                                                 let chan_update = self.get_channel_update(&channel).map(|u| u.encode_with_len()).unwrap(); // Cannot add/recv HTLCs before we have a short_id so unwrap is safe
3771                                                 timed_out_htlcs.push((source, payment_hash,  HTLCFailReason::Reason {
3772                                                         failure_code: 0x1000 | 14, // expiry_too_soon, or at least it is now
3773                                                         data: chan_update,
3774                                                 }));
3775                                         }
3776                                         if let Some(funding_locked) = chan_res {
3777                                                 pending_msg_events.push(events::MessageSendEvent::SendFundingLocked {
3778                                                         node_id: channel.get_counterparty_node_id(),
3779                                                         msg: funding_locked,
3780                                                 });
3781                                                 if let Some(announcement_sigs) = self.get_announcement_sigs(channel) {
3782                                                         log_trace!(self.logger, "Sending funding_locked and announcement_signatures for {}", log_bytes!(channel.channel_id()));
3783                                                         pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
3784                                                                 node_id: channel.get_counterparty_node_id(),
3785                                                                 msg: announcement_sigs,
3786                                                         });
3787                                                 } else {
3788                                                         log_trace!(self.logger, "Sending funding_locked WITHOUT announcement_signatures for {}", log_bytes!(channel.channel_id()));
3789                                                 }
3790                                                 short_to_id.insert(channel.get_short_channel_id().unwrap(), channel.channel_id());
3791                                         }
3792                                 } else if let Err(e) = res {
3793                                         if let Some(short_id) = channel.get_short_channel_id() {
3794                                                 short_to_id.remove(&short_id);
3795                                         }
3796                                         // It looks like our counterparty went on-chain or funding transaction was
3797                                         // reorged out of the main chain. Close the channel.
3798                                         failed_channels.push(channel.force_shutdown(true));
3799                                         if let Ok(update) = self.get_channel_update(&channel) {
3800                                                 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
3801                                                         msg: update
3802                                                 });
3803                                         }
3804                                         pending_msg_events.push(events::MessageSendEvent::HandleError {
3805                                                 node_id: channel.get_counterparty_node_id(),
3806                                                 action: msgs::ErrorAction::SendErrorMessage { msg: e },
3807                                         });
3808                                         return false;
3809                                 }
3810                                 true
3811                         });
3812
3813                         if let Some(height) = height_opt {
3814                                 channel_state.claimable_htlcs.retain(|payment_hash, htlcs| {
3815                                         htlcs.retain(|htlc| {
3816                                                 // If height is approaching the number of blocks we think it takes us to get
3817                                                 // our commitment transaction confirmed before the HTLC expires, plus the
3818                                                 // number of blocks we generally consider it to take to do a commitment update,
3819                                                 // just give up on it and fail the HTLC.
3820                                                 if height >= htlc.cltv_expiry - HTLC_FAIL_BACK_BUFFER {
3821                                                         let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec();
3822                                                         htlc_msat_height_data.extend_from_slice(&byte_utils::be32_to_array(height));
3823                                                         timed_out_htlcs.push((HTLCSource::PreviousHopData(htlc.prev_hop.clone()), payment_hash.clone(), HTLCFailReason::Reason {
3824                                                                 failure_code: 0x4000 | 15,
3825                                                                 data: htlc_msat_height_data
3826                                                         }));
3827                                                         false
3828                                                 } else { true }
3829                                         });
3830                                         !htlcs.is_empty() // Only retain this entry if htlcs has at least one entry.
3831                                 });
3832                         }
3833                 }
3834
3835                 self.handle_init_event_channel_failures(failed_channels);
3836
3837                 for (source, payment_hash, reason) in timed_out_htlcs.drain(..) {
3838                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), source, &payment_hash, reason);
3839                 }
3840         }
3841
3842         /// Blocks until ChannelManager needs to be persisted or a timeout is reached. It returns a bool
3843         /// indicating whether persistence is necessary. Only one listener on
3844         /// `await_persistable_update` or `await_persistable_update_timeout` is guaranteed to be woken
3845         /// up.
3846         /// Note that the feature `allow_wallclock_use` must be enabled to use this function.
3847         #[cfg(any(test, feature = "allow_wallclock_use"))]
3848         pub fn await_persistable_update_timeout(&self, max_wait: Duration) -> bool {
3849                 self.persistence_notifier.wait_timeout(max_wait)
3850         }
3851
3852         /// Blocks until ChannelManager needs to be persisted. Only one listener on
3853         /// `await_persistable_update` or `await_persistable_update_timeout` is guaranteed to be woken
3854         /// up.
3855         pub fn await_persistable_update(&self) {
3856                 self.persistence_notifier.wait()
3857         }
3858
3859         #[cfg(any(test, feature = "_test_utils"))]
3860         pub fn get_persistence_condvar_value(&self) -> bool {
3861                 let mutcond = &self.persistence_notifier.persistence_lock;
3862                 let &(ref mtx, _) = mutcond;
3863                 let guard = mtx.lock().unwrap();
3864                 *guard
3865         }
3866 }
3867
3868 impl<Signer: Sign, M: Deref , T: Deref , K: Deref , F: Deref , L: Deref >
3869         ChannelMessageHandler for ChannelManager<Signer, M, T, K, F, L>
3870         where M::Target: chain::Watch<Signer>,
3871         T::Target: BroadcasterInterface,
3872         K::Target: KeysInterface<Signer = Signer>,
3873         F::Target: FeeEstimator,
3874         L::Target: Logger,
3875 {
3876         fn handle_open_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::OpenChannel) {
3877                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3878                 let _ = handle_error!(self, self.internal_open_channel(counterparty_node_id, their_features, msg), *counterparty_node_id);
3879         }
3880
3881         fn handle_accept_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::AcceptChannel) {
3882                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3883                 let _ = handle_error!(self, self.internal_accept_channel(counterparty_node_id, their_features, msg), *counterparty_node_id);
3884         }
3885
3886         fn handle_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) {
3887                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3888                 let _ = handle_error!(self, self.internal_funding_created(counterparty_node_id, msg), *counterparty_node_id);
3889         }
3890
3891         fn handle_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) {
3892                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3893                 let _ = handle_error!(self, self.internal_funding_signed(counterparty_node_id, msg), *counterparty_node_id);
3894         }
3895
3896         fn handle_funding_locked(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingLocked) {
3897                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3898                 let _ = handle_error!(self, self.internal_funding_locked(counterparty_node_id, msg), *counterparty_node_id);
3899         }
3900
3901         fn handle_shutdown(&self, counterparty_node_id: &PublicKey, their_features: &InitFeatures, msg: &msgs::Shutdown) {
3902                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3903                 let _ = handle_error!(self, self.internal_shutdown(counterparty_node_id, their_features, msg), *counterparty_node_id);
3904         }
3905
3906         fn handle_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
3907                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3908                 let _ = handle_error!(self, self.internal_closing_signed(counterparty_node_id, msg), *counterparty_node_id);
3909         }
3910
3911         fn handle_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
3912                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3913                 let _ = handle_error!(self, self.internal_update_add_htlc(counterparty_node_id, msg), *counterparty_node_id);
3914         }
3915
3916         fn handle_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
3917                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3918                 let _ = handle_error!(self, self.internal_update_fulfill_htlc(counterparty_node_id, msg), *counterparty_node_id);
3919         }
3920
3921         fn handle_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
3922                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3923                 let _ = handle_error!(self, self.internal_update_fail_htlc(counterparty_node_id, msg), *counterparty_node_id);
3924         }
3925
3926         fn handle_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
3927                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3928                 let _ = handle_error!(self, self.internal_update_fail_malformed_htlc(counterparty_node_id, msg), *counterparty_node_id);
3929         }
3930
3931         fn handle_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
3932                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3933                 let _ = handle_error!(self, self.internal_commitment_signed(counterparty_node_id, msg), *counterparty_node_id);
3934         }
3935
3936         fn handle_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
3937                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3938                 let _ = handle_error!(self, self.internal_revoke_and_ack(counterparty_node_id, msg), *counterparty_node_id);
3939         }
3940
3941         fn handle_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) {
3942                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3943                 let _ = handle_error!(self, self.internal_update_fee(counterparty_node_id, msg), *counterparty_node_id);
3944         }
3945
3946         fn handle_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
3947                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3948                 let _ = handle_error!(self, self.internal_announcement_signatures(counterparty_node_id, msg), *counterparty_node_id);
3949         }
3950
3951         fn handle_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) {
3952                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3953                 let _ = handle_error!(self, self.internal_channel_update(counterparty_node_id, msg), *counterparty_node_id);
3954         }
3955
3956         fn handle_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
3957                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3958                 let _ = handle_error!(self, self.internal_channel_reestablish(counterparty_node_id, msg), *counterparty_node_id);
3959         }
3960
3961         fn peer_disconnected(&self, counterparty_node_id: &PublicKey, no_connection_possible: bool) {
3962                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3963                 let mut failed_channels = Vec::new();
3964                 let mut failed_payments = Vec::new();
3965                 let mut no_channels_remain = true;
3966                 {
3967                         let mut channel_state_lock = self.channel_state.lock().unwrap();
3968                         let channel_state = &mut *channel_state_lock;
3969                         let short_to_id = &mut channel_state.short_to_id;
3970                         let pending_msg_events = &mut channel_state.pending_msg_events;
3971                         if no_connection_possible {
3972                                 log_debug!(self.logger, "Failing all channels with {} due to no_connection_possible", log_pubkey!(counterparty_node_id));
3973                                 channel_state.by_id.retain(|_, chan| {
3974                                         if chan.get_counterparty_node_id() == *counterparty_node_id {
3975                                                 if let Some(short_id) = chan.get_short_channel_id() {
3976                                                         short_to_id.remove(&short_id);
3977                                                 }
3978                                                 failed_channels.push(chan.force_shutdown(true));
3979                                                 if let Ok(update) = self.get_channel_update(&chan) {
3980                                                         pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
3981                                                                 msg: update
3982                                                         });
3983                                                 }
3984                                                 false
3985                                         } else {
3986                                                 true
3987                                         }
3988                                 });
3989                         } else {
3990                                 log_debug!(self.logger, "Marking channels with {} disconnected and generating channel_updates", log_pubkey!(counterparty_node_id));
3991                                 channel_state.by_id.retain(|_, chan| {
3992                                         if chan.get_counterparty_node_id() == *counterparty_node_id {
3993                                                 // Note that currently on channel reestablish we assert that there are no
3994                                                 // holding cell add-HTLCs, so if in the future we stop removing uncommitted HTLCs
3995                                                 // on peer disconnect here, there will need to be corresponding changes in
3996                                                 // reestablish logic.
3997                                                 let failed_adds = chan.remove_uncommitted_htlcs_and_mark_paused(&self.logger);
3998                                                 if !failed_adds.is_empty() {
3999                                                         let chan_update = self.get_channel_update(&chan).map(|u| u.encode_with_len()).unwrap(); // Cannot add/recv HTLCs before we have a short_id so unwrap is safe
4000                                                         failed_payments.push((chan_update, failed_adds));
4001                                                 }
4002                                                 if chan.is_shutdown() {
4003                                                         if let Some(short_id) = chan.get_short_channel_id() {
4004                                                                 short_to_id.remove(&short_id);
4005                                                         }
4006                                                         return false;
4007                                                 } else {
4008                                                         no_channels_remain = false;
4009                                                 }
4010                                         }
4011                                         true
4012                                 })
4013                         }
4014                         pending_msg_events.retain(|msg| {
4015                                 match msg {
4016                                         &events::MessageSendEvent::SendAcceptChannel { ref node_id, .. } => node_id != counterparty_node_id,
4017                                         &events::MessageSendEvent::SendOpenChannel { ref node_id, .. } => node_id != counterparty_node_id,
4018                                         &events::MessageSendEvent::SendFundingCreated { ref node_id, .. } => node_id != counterparty_node_id,
4019                                         &events::MessageSendEvent::SendFundingSigned { ref node_id, .. } => node_id != counterparty_node_id,
4020                                         &events::MessageSendEvent::SendFundingLocked { ref node_id, .. } => node_id != counterparty_node_id,
4021                                         &events::MessageSendEvent::SendAnnouncementSignatures { ref node_id, .. } => node_id != counterparty_node_id,
4022                                         &events::MessageSendEvent::UpdateHTLCs { ref node_id, .. } => node_id != counterparty_node_id,
4023                                         &events::MessageSendEvent::SendRevokeAndACK { ref node_id, .. } => node_id != counterparty_node_id,
4024                                         &events::MessageSendEvent::SendClosingSigned { ref node_id, .. } => node_id != counterparty_node_id,
4025                                         &events::MessageSendEvent::SendShutdown { ref node_id, .. } => node_id != counterparty_node_id,
4026                                         &events::MessageSendEvent::SendChannelReestablish { ref node_id, .. } => node_id != counterparty_node_id,
4027                                         &events::MessageSendEvent::BroadcastChannelAnnouncement { .. } => true,
4028                                         &events::MessageSendEvent::BroadcastNodeAnnouncement { .. } => true,
4029                                         &events::MessageSendEvent::BroadcastChannelUpdate { .. } => true,
4030                                         &events::MessageSendEvent::HandleError { ref node_id, .. } => node_id != counterparty_node_id,
4031                                         &events::MessageSendEvent::PaymentFailureNetworkUpdate { .. } => true,
4032                                         &events::MessageSendEvent::SendChannelRangeQuery { .. } => false,
4033                                         &events::MessageSendEvent::SendShortIdsQuery { .. } => false,
4034                                         &events::MessageSendEvent::SendReplyChannelRange { .. } => false,
4035                                 }
4036                         });
4037                 }
4038                 if no_channels_remain {
4039                         self.per_peer_state.write().unwrap().remove(counterparty_node_id);
4040                 }
4041
4042                 for failure in failed_channels.drain(..) {
4043                         self.finish_force_close_channel(failure);
4044                 }
4045                 for (chan_update, mut htlc_sources) in failed_payments {
4046                         for (htlc_source, payment_hash) in htlc_sources.drain(..) {
4047                                 self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source, &payment_hash, HTLCFailReason::Reason { failure_code: 0x1000 | 7, data: chan_update.clone() });
4048                         }
4049                 }
4050         }
4051
4052         fn peer_connected(&self, counterparty_node_id: &PublicKey, init_msg: &msgs::Init) {
4053                 log_debug!(self.logger, "Generating channel_reestablish events for {}", log_pubkey!(counterparty_node_id));
4054
4055                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4056
4057                 {
4058                         let mut peer_state_lock = self.per_peer_state.write().unwrap();
4059                         match peer_state_lock.entry(counterparty_node_id.clone()) {
4060                                 hash_map::Entry::Vacant(e) => {
4061                                         e.insert(Mutex::new(PeerState {
4062                                                 latest_features: init_msg.features.clone(),
4063                                         }));
4064                                 },
4065                                 hash_map::Entry::Occupied(e) => {
4066                                         e.get().lock().unwrap().latest_features = init_msg.features.clone();
4067                                 },
4068                         }
4069                 }
4070
4071                 let mut channel_state_lock = self.channel_state.lock().unwrap();
4072                 let channel_state = &mut *channel_state_lock;
4073                 let pending_msg_events = &mut channel_state.pending_msg_events;
4074                 channel_state.by_id.retain(|_, chan| {
4075                         if chan.get_counterparty_node_id() == *counterparty_node_id {
4076                                 if !chan.have_received_message() {
4077                                         // If we created this (outbound) channel while we were disconnected from the
4078                                         // peer we probably failed to send the open_channel message, which is now
4079                                         // lost. We can't have had anything pending related to this channel, so we just
4080                                         // drop it.
4081                                         false
4082                                 } else {
4083                                         pending_msg_events.push(events::MessageSendEvent::SendChannelReestablish {
4084                                                 node_id: chan.get_counterparty_node_id(),
4085                                                 msg: chan.get_channel_reestablish(&self.logger),
4086                                         });
4087                                         true
4088                                 }
4089                         } else { true }
4090                 });
4091                 //TODO: Also re-broadcast announcement_signatures
4092         }
4093
4094         fn handle_error(&self, counterparty_node_id: &PublicKey, msg: &msgs::ErrorMessage) {
4095                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4096
4097                 if msg.channel_id == [0; 32] {
4098                         for chan in self.list_channels() {
4099                                 if chan.remote_network_id == *counterparty_node_id {
4100                                         // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
4101                                         let _ = self.force_close_channel_with_peer(&chan.channel_id, Some(counterparty_node_id));
4102                                 }
4103                         }
4104                 } else {
4105                         // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
4106                         let _ = self.force_close_channel_with_peer(&msg.channel_id, Some(counterparty_node_id));
4107                 }
4108         }
4109 }
4110
4111 /// Used to signal to the ChannelManager persister that the manager needs to be re-persisted to
4112 /// disk/backups, through `await_persistable_update_timeout` and `await_persistable_update`.
4113 struct PersistenceNotifier {
4114         /// Users won't access the persistence_lock directly, but rather wait on its bool using
4115         /// `wait_timeout` and `wait`.
4116         persistence_lock: (Mutex<bool>, Condvar),
4117 }
4118
4119 impl PersistenceNotifier {
4120         fn new() -> Self {
4121                 Self {
4122                         persistence_lock: (Mutex::new(false), Condvar::new()),
4123                 }
4124         }
4125
4126         fn wait(&self) {
4127                 loop {
4128                         let &(ref mtx, ref cvar) = &self.persistence_lock;
4129                         let mut guard = mtx.lock().unwrap();
4130                         if *guard {
4131                                 *guard = false;
4132                                 return;
4133                         }
4134                         guard = cvar.wait(guard).unwrap();
4135                         let result = *guard;
4136                         if result {
4137                                 *guard = false;
4138                                 return
4139                         }
4140                 }
4141         }
4142
4143         #[cfg(any(test, feature = "allow_wallclock_use"))]
4144         fn wait_timeout(&self, max_wait: Duration) -> bool {
4145                 let current_time = Instant::now();
4146                 loop {
4147                         let &(ref mtx, ref cvar) = &self.persistence_lock;
4148                         let mut guard = mtx.lock().unwrap();
4149                         if *guard {
4150                                 *guard = false;
4151                                 return true;
4152                         }
4153                         guard = cvar.wait_timeout(guard, max_wait).unwrap().0;
4154                         // Due to spurious wakeups that can happen on `wait_timeout`, here we need to check if the
4155                         // desired wait time has actually passed, and if not then restart the loop with a reduced wait
4156                         // time. Note that this logic can be highly simplified through the use of
4157                         // `Condvar::wait_while` and `Condvar::wait_timeout_while`, if and when our MSRV is raised to
4158                         // 1.42.0.
4159                         let elapsed = current_time.elapsed();
4160                         let result = *guard;
4161                         if result || elapsed >= max_wait {
4162                                 *guard = false;
4163                                 return result;
4164                         }
4165                         match max_wait.checked_sub(elapsed) {
4166                                 None => return result,
4167                                 Some(_) => continue
4168                         }
4169                 }
4170         }
4171
4172         // Signal to the ChannelManager persister that there are updates necessitating persisting to disk.
4173         fn notify(&self) {
4174                 let &(ref persist_mtx, ref cnd) = &self.persistence_lock;
4175                 let mut persistence_lock = persist_mtx.lock().unwrap();
4176                 *persistence_lock = true;
4177                 mem::drop(persistence_lock);
4178                 cnd.notify_all();
4179         }
4180 }
4181
4182 const SERIALIZATION_VERSION: u8 = 1;
4183 const MIN_SERIALIZATION_VERSION: u8 = 1;
4184
4185 impl Writeable for PendingHTLCInfo {
4186         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
4187                 match &self.routing {
4188                         &PendingHTLCRouting::Forward { ref onion_packet, ref short_channel_id } => {
4189                                 0u8.write(writer)?;
4190                                 onion_packet.write(writer)?;
4191                                 short_channel_id.write(writer)?;
4192                         },
4193                         &PendingHTLCRouting::Receive { ref payment_data, ref incoming_cltv_expiry } => {
4194                                 1u8.write(writer)?;
4195                                 payment_data.payment_secret.write(writer)?;
4196                                 payment_data.total_msat.write(writer)?;
4197                                 incoming_cltv_expiry.write(writer)?;
4198                         },
4199                 }
4200                 self.incoming_shared_secret.write(writer)?;
4201                 self.payment_hash.write(writer)?;
4202                 self.amt_to_forward.write(writer)?;
4203                 self.outgoing_cltv_value.write(writer)?;
4204                 Ok(())
4205         }
4206 }
4207
4208 impl Readable for PendingHTLCInfo {
4209         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<PendingHTLCInfo, DecodeError> {
4210                 Ok(PendingHTLCInfo {
4211                         routing: match Readable::read(reader)? {
4212                                 0u8 => PendingHTLCRouting::Forward {
4213                                         onion_packet: Readable::read(reader)?,
4214                                         short_channel_id: Readable::read(reader)?,
4215                                 },
4216                                 1u8 => PendingHTLCRouting::Receive {
4217                                         payment_data: msgs::FinalOnionHopData {
4218                                                 payment_secret: Readable::read(reader)?,
4219                                                 total_msat: Readable::read(reader)?,
4220                                         },
4221                                         incoming_cltv_expiry: Readable::read(reader)?,
4222                                 },
4223                                 _ => return Err(DecodeError::InvalidValue),
4224                         },
4225                         incoming_shared_secret: Readable::read(reader)?,
4226                         payment_hash: Readable::read(reader)?,
4227                         amt_to_forward: Readable::read(reader)?,
4228                         outgoing_cltv_value: Readable::read(reader)?,
4229                 })
4230         }
4231 }
4232
4233 impl Writeable for HTLCFailureMsg {
4234         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
4235                 match self {
4236                         &HTLCFailureMsg::Relay(ref fail_msg) => {
4237                                 0u8.write(writer)?;
4238                                 fail_msg.write(writer)?;
4239                         },
4240                         &HTLCFailureMsg::Malformed(ref fail_msg) => {
4241                                 1u8.write(writer)?;
4242                                 fail_msg.write(writer)?;
4243                         }
4244                 }
4245                 Ok(())
4246         }
4247 }
4248
4249 impl Readable for HTLCFailureMsg {
4250         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<HTLCFailureMsg, DecodeError> {
4251                 match <u8 as Readable>::read(reader)? {
4252                         0 => Ok(HTLCFailureMsg::Relay(Readable::read(reader)?)),
4253                         1 => Ok(HTLCFailureMsg::Malformed(Readable::read(reader)?)),
4254                         _ => Err(DecodeError::InvalidValue),
4255                 }
4256         }
4257 }
4258
4259 impl Writeable for PendingHTLCStatus {
4260         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
4261                 match self {
4262                         &PendingHTLCStatus::Forward(ref forward_info) => {
4263                                 0u8.write(writer)?;
4264                                 forward_info.write(writer)?;
4265                         },
4266                         &PendingHTLCStatus::Fail(ref fail_msg) => {
4267                                 1u8.write(writer)?;
4268                                 fail_msg.write(writer)?;
4269                         }
4270                 }
4271                 Ok(())
4272         }
4273 }
4274
4275 impl Readable for PendingHTLCStatus {
4276         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<PendingHTLCStatus, DecodeError> {
4277                 match <u8 as Readable>::read(reader)? {
4278                         0 => Ok(PendingHTLCStatus::Forward(Readable::read(reader)?)),
4279                         1 => Ok(PendingHTLCStatus::Fail(Readable::read(reader)?)),
4280                         _ => Err(DecodeError::InvalidValue),
4281                 }
4282         }
4283 }
4284
4285 impl_writeable!(HTLCPreviousHopData, 0, {
4286         short_channel_id,
4287         outpoint,
4288         htlc_id,
4289         incoming_packet_shared_secret
4290 });
4291
4292 impl Writeable for ClaimableHTLC {
4293         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
4294                 self.prev_hop.write(writer)?;
4295                 self.value.write(writer)?;
4296                 self.payment_data.payment_secret.write(writer)?;
4297                 self.payment_data.total_msat.write(writer)?;
4298                 self.cltv_expiry.write(writer)
4299         }
4300 }
4301
4302 impl Readable for ClaimableHTLC {
4303         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
4304                 Ok(ClaimableHTLC {
4305                         prev_hop: Readable::read(reader)?,
4306                         value: Readable::read(reader)?,
4307                         payment_data: msgs::FinalOnionHopData {
4308                                 payment_secret: Readable::read(reader)?,
4309                                 total_msat: Readable::read(reader)?,
4310                         },
4311                         cltv_expiry: Readable::read(reader)?,
4312                 })
4313         }
4314 }
4315
4316 impl Writeable for HTLCSource {
4317         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
4318                 match self {
4319                         &HTLCSource::PreviousHopData(ref hop_data) => {
4320                                 0u8.write(writer)?;
4321                                 hop_data.write(writer)?;
4322                         },
4323                         &HTLCSource::OutboundRoute { ref path, ref session_priv, ref first_hop_htlc_msat } => {
4324                                 1u8.write(writer)?;
4325                                 path.write(writer)?;
4326                                 session_priv.write(writer)?;
4327                                 first_hop_htlc_msat.write(writer)?;
4328                         }
4329                 }
4330                 Ok(())
4331         }
4332 }
4333
4334 impl Readable for HTLCSource {
4335         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<HTLCSource, DecodeError> {
4336                 match <u8 as Readable>::read(reader)? {
4337                         0 => Ok(HTLCSource::PreviousHopData(Readable::read(reader)?)),
4338                         1 => Ok(HTLCSource::OutboundRoute {
4339                                 path: Readable::read(reader)?,
4340                                 session_priv: Readable::read(reader)?,
4341                                 first_hop_htlc_msat: Readable::read(reader)?,
4342                         }),
4343                         _ => Err(DecodeError::InvalidValue),
4344                 }
4345         }
4346 }
4347
4348 impl Writeable for HTLCFailReason {
4349         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
4350                 match self {
4351                         &HTLCFailReason::LightningError { ref err } => {
4352                                 0u8.write(writer)?;
4353                                 err.write(writer)?;
4354                         },
4355                         &HTLCFailReason::Reason { ref failure_code, ref data } => {
4356                                 1u8.write(writer)?;
4357                                 failure_code.write(writer)?;
4358                                 data.write(writer)?;
4359                         }
4360                 }
4361                 Ok(())
4362         }
4363 }
4364
4365 impl Readable for HTLCFailReason {
4366         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<HTLCFailReason, DecodeError> {
4367                 match <u8 as Readable>::read(reader)? {
4368                         0 => Ok(HTLCFailReason::LightningError { err: Readable::read(reader)? }),
4369                         1 => Ok(HTLCFailReason::Reason {
4370                                 failure_code: Readable::read(reader)?,
4371                                 data: Readable::read(reader)?,
4372                         }),
4373                         _ => Err(DecodeError::InvalidValue),
4374                 }
4375         }
4376 }
4377
4378 impl Writeable for HTLCForwardInfo {
4379         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
4380                 match self {
4381                         &HTLCForwardInfo::AddHTLC { ref prev_short_channel_id, ref prev_funding_outpoint, ref prev_htlc_id, ref forward_info } => {
4382                                 0u8.write(writer)?;
4383                                 prev_short_channel_id.write(writer)?;
4384                                 prev_funding_outpoint.write(writer)?;
4385                                 prev_htlc_id.write(writer)?;
4386                                 forward_info.write(writer)?;
4387                         },
4388                         &HTLCForwardInfo::FailHTLC { ref htlc_id, ref err_packet } => {
4389                                 1u8.write(writer)?;
4390                                 htlc_id.write(writer)?;
4391                                 err_packet.write(writer)?;
4392                         },
4393                 }
4394                 Ok(())
4395         }
4396 }
4397
4398 impl Readable for HTLCForwardInfo {
4399         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<HTLCForwardInfo, DecodeError> {
4400                 match <u8 as Readable>::read(reader)? {
4401                         0 => Ok(HTLCForwardInfo::AddHTLC {
4402                                 prev_short_channel_id: Readable::read(reader)?,
4403                                 prev_funding_outpoint: Readable::read(reader)?,
4404                                 prev_htlc_id: Readable::read(reader)?,
4405                                 forward_info: Readable::read(reader)?,
4406                         }),
4407                         1 => Ok(HTLCForwardInfo::FailHTLC {
4408                                 htlc_id: Readable::read(reader)?,
4409                                 err_packet: Readable::read(reader)?,
4410                         }),
4411                         _ => Err(DecodeError::InvalidValue),
4412                 }
4413         }
4414 }
4415
4416 impl_writeable!(PendingInboundPayment, 0, {
4417         payment_secret,
4418         expiry_time,
4419         user_payment_id,
4420         payment_preimage,
4421         min_value_msat
4422 });
4423
4424 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> Writeable for ChannelManager<Signer, M, T, K, F, L>
4425         where M::Target: chain::Watch<Signer>,
4426         T::Target: BroadcasterInterface,
4427         K::Target: KeysInterface<Signer = Signer>,
4428         F::Target: FeeEstimator,
4429         L::Target: Logger,
4430 {
4431         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
4432                 let _consistency_lock = self.total_consistency_lock.write().unwrap();
4433
4434                 writer.write_all(&[SERIALIZATION_VERSION; 1])?;
4435                 writer.write_all(&[MIN_SERIALIZATION_VERSION; 1])?;
4436
4437                 self.genesis_hash.write(writer)?;
4438                 {
4439                         let best_block = self.best_block.read().unwrap();
4440                         best_block.height().write(writer)?;
4441                         best_block.block_hash().write(writer)?;
4442                 }
4443
4444                 let channel_state = self.channel_state.lock().unwrap();
4445                 let mut unfunded_channels = 0;
4446                 for (_, channel) in channel_state.by_id.iter() {
4447                         if !channel.is_funding_initiated() {
4448                                 unfunded_channels += 1;
4449                         }
4450                 }
4451                 ((channel_state.by_id.len() - unfunded_channels) as u64).write(writer)?;
4452                 for (_, channel) in channel_state.by_id.iter() {
4453                         if channel.is_funding_initiated() {
4454                                 channel.write(writer)?;
4455                         }
4456                 }
4457
4458                 (channel_state.forward_htlcs.len() as u64).write(writer)?;
4459                 for (short_channel_id, pending_forwards) in channel_state.forward_htlcs.iter() {
4460                         short_channel_id.write(writer)?;
4461                         (pending_forwards.len() as u64).write(writer)?;
4462                         for forward in pending_forwards {
4463                                 forward.write(writer)?;
4464                         }
4465                 }
4466
4467                 (channel_state.claimable_htlcs.len() as u64).write(writer)?;
4468                 for (payment_hash, previous_hops) in channel_state.claimable_htlcs.iter() {
4469                         payment_hash.write(writer)?;
4470                         (previous_hops.len() as u64).write(writer)?;
4471                         for htlc in previous_hops.iter() {
4472                                 htlc.write(writer)?;
4473                         }
4474                 }
4475
4476                 let per_peer_state = self.per_peer_state.write().unwrap();
4477                 (per_peer_state.len() as u64).write(writer)?;
4478                 for (peer_pubkey, peer_state_mutex) in per_peer_state.iter() {
4479                         peer_pubkey.write(writer)?;
4480                         let peer_state = peer_state_mutex.lock().unwrap();
4481                         peer_state.latest_features.write(writer)?;
4482                 }
4483
4484                 let events = self.pending_events.lock().unwrap();
4485                 (events.len() as u64).write(writer)?;
4486                 for event in events.iter() {
4487                         event.write(writer)?;
4488                 }
4489
4490                 let background_events = self.pending_background_events.lock().unwrap();
4491                 (background_events.len() as u64).write(writer)?;
4492                 for event in background_events.iter() {
4493                         match event {
4494                                 BackgroundEvent::ClosingMonitorUpdate((funding_txo, monitor_update)) => {
4495                                         0u8.write(writer)?;
4496                                         funding_txo.write(writer)?;
4497                                         monitor_update.write(writer)?;
4498                                 },
4499                         }
4500                 }
4501
4502                 (self.last_node_announcement_serial.load(Ordering::Acquire) as u32).write(writer)?;
4503                 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
4504
4505                 let pending_inbound_payments = self.pending_inbound_payments.lock().unwrap();
4506                 (pending_inbound_payments.len() as u64).write(writer)?;
4507                 for (hash, pending_payment) in pending_inbound_payments.iter() {
4508                         hash.write(writer)?;
4509                         pending_payment.write(writer)?;
4510                 }
4511
4512                 let pending_outbound_payments = self.pending_outbound_payments.lock().unwrap();
4513                 (pending_outbound_payments.len() as u64).write(writer)?;
4514                 for session_priv in pending_outbound_payments.iter() {
4515                         session_priv.write(writer)?;
4516                 }
4517
4518                 Ok(())
4519         }
4520 }
4521
4522 /// Arguments for the creation of a ChannelManager that are not deserialized.
4523 ///
4524 /// At a high-level, the process for deserializing a ChannelManager and resuming normal operation
4525 /// is:
4526 /// 1) Deserialize all stored ChannelMonitors.
4527 /// 2) Deserialize the ChannelManager by filling in this struct and calling:
4528 ///    <(BlockHash, ChannelManager)>::read(reader, args)
4529 ///    This may result in closing some Channels if the ChannelMonitor is newer than the stored
4530 ///    ChannelManager state to ensure no loss of funds. Thus, transactions may be broadcasted.
4531 /// 3) If you are not fetching full blocks, register all relevant ChannelMonitor outpoints the same
4532 ///    way you would handle a `chain::Filter` call using ChannelMonitor::get_outputs_to_watch() and
4533 ///    ChannelMonitor::get_funding_txo().
4534 /// 4) Reconnect blocks on your ChannelMonitors.
4535 /// 5) Disconnect/connect blocks on the ChannelManager.
4536 /// 6) Move the ChannelMonitors into your local chain::Watch.
4537 ///
4538 /// Note that the ordering of #4-6 is not of importance, however all three must occur before you
4539 /// call any other methods on the newly-deserialized ChannelManager.
4540 ///
4541 /// Note that because some channels may be closed during deserialization, it is critical that you
4542 /// always deserialize only the latest version of a ChannelManager and ChannelMonitors available to
4543 /// you. If you deserialize an old ChannelManager (during which force-closure transactions may be
4544 /// broadcast), and then later deserialize a newer version of the same ChannelManager (which will
4545 /// not force-close the same channels but consider them live), you may end up revoking a state for
4546 /// which you've already broadcasted the transaction.
4547 pub struct ChannelManagerReadArgs<'a, Signer: 'a + Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
4548         where M::Target: chain::Watch<Signer>,
4549         T::Target: BroadcasterInterface,
4550         K::Target: KeysInterface<Signer = Signer>,
4551         F::Target: FeeEstimator,
4552         L::Target: Logger,
4553 {
4554         /// The keys provider which will give us relevant keys. Some keys will be loaded during
4555         /// deserialization and KeysInterface::read_chan_signer will be used to read per-Channel
4556         /// signing data.
4557         pub keys_manager: K,
4558
4559         /// The fee_estimator for use in the ChannelManager in the future.
4560         ///
4561         /// No calls to the FeeEstimator will be made during deserialization.
4562         pub fee_estimator: F,
4563         /// The chain::Watch for use in the ChannelManager in the future.
4564         ///
4565         /// No calls to the chain::Watch will be made during deserialization. It is assumed that
4566         /// you have deserialized ChannelMonitors separately and will add them to your
4567         /// chain::Watch after deserializing this ChannelManager.
4568         pub chain_monitor: M,
4569
4570         /// The BroadcasterInterface which will be used in the ChannelManager in the future and may be
4571         /// used to broadcast the latest local commitment transactions of channels which must be
4572         /// force-closed during deserialization.
4573         pub tx_broadcaster: T,
4574         /// The Logger for use in the ChannelManager and which may be used to log information during
4575         /// deserialization.
4576         pub logger: L,
4577         /// Default settings used for new channels. Any existing channels will continue to use the
4578         /// runtime settings which were stored when the ChannelManager was serialized.
4579         pub default_config: UserConfig,
4580
4581         /// A map from channel funding outpoints to ChannelMonitors for those channels (ie
4582         /// value.get_funding_txo() should be the key).
4583         ///
4584         /// If a monitor is inconsistent with the channel state during deserialization the channel will
4585         /// be force-closed using the data in the ChannelMonitor and the channel will be dropped. This
4586         /// is true for missing channels as well. If there is a monitor missing for which we find
4587         /// channel data Err(DecodeError::InvalidValue) will be returned.
4588         ///
4589         /// In such cases the latest local transactions will be sent to the tx_broadcaster included in
4590         /// this struct.
4591         ///
4592         /// (C-not exported) because we have no HashMap bindings
4593         pub channel_monitors: HashMap<OutPoint, &'a mut ChannelMonitor<Signer>>,
4594 }
4595
4596 impl<'a, Signer: 'a + Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
4597                 ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>
4598         where M::Target: chain::Watch<Signer>,
4599                 T::Target: BroadcasterInterface,
4600                 K::Target: KeysInterface<Signer = Signer>,
4601                 F::Target: FeeEstimator,
4602                 L::Target: Logger,
4603         {
4604         /// Simple utility function to create a ChannelManagerReadArgs which creates the monitor
4605         /// HashMap for you. This is primarily useful for C bindings where it is not practical to
4606         /// populate a HashMap directly from C.
4607         pub fn new(keys_manager: K, fee_estimator: F, chain_monitor: M, tx_broadcaster: T, logger: L, default_config: UserConfig,
4608                         mut channel_monitors: Vec<&'a mut ChannelMonitor<Signer>>) -> Self {
4609                 Self {
4610                         keys_manager, fee_estimator, chain_monitor, tx_broadcaster, logger, default_config,
4611                         channel_monitors: channel_monitors.drain(..).map(|monitor| { (monitor.get_funding_txo().0, monitor) }).collect()
4612                 }
4613         }
4614 }
4615
4616 // Implement ReadableArgs for an Arc'd ChannelManager to make it a bit easier to work with the
4617 // SipmleArcChannelManager type:
4618 impl<'a, Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
4619         ReadableArgs<ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>> for (BlockHash, Arc<ChannelManager<Signer, M, T, K, F, L>>)
4620         where M::Target: chain::Watch<Signer>,
4621         T::Target: BroadcasterInterface,
4622         K::Target: KeysInterface<Signer = Signer>,
4623         F::Target: FeeEstimator,
4624         L::Target: Logger,
4625 {
4626         fn read<R: ::std::io::Read>(reader: &mut R, args: ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>) -> Result<Self, DecodeError> {
4627                 let (blockhash, chan_manager) = <(BlockHash, ChannelManager<Signer, M, T, K, F, L>)>::read(reader, args)?;
4628                 Ok((blockhash, Arc::new(chan_manager)))
4629         }
4630 }
4631
4632 impl<'a, Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
4633         ReadableArgs<ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>> for (BlockHash, ChannelManager<Signer, M, T, K, F, L>)
4634         where M::Target: chain::Watch<Signer>,
4635         T::Target: BroadcasterInterface,
4636         K::Target: KeysInterface<Signer = Signer>,
4637         F::Target: FeeEstimator,
4638         L::Target: Logger,
4639 {
4640         fn read<R: ::std::io::Read>(reader: &mut R, mut args: ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>) -> Result<Self, DecodeError> {
4641                 let _ver: u8 = Readable::read(reader)?;
4642                 let min_ver: u8 = Readable::read(reader)?;
4643                 if min_ver > SERIALIZATION_VERSION {
4644                         return Err(DecodeError::UnknownVersion);
4645                 }
4646
4647                 let genesis_hash: BlockHash = Readable::read(reader)?;
4648                 let best_block_height: u32 = Readable::read(reader)?;
4649                 let best_block_hash: BlockHash = Readable::read(reader)?;
4650
4651                 let mut failed_htlcs = Vec::new();
4652
4653                 let channel_count: u64 = Readable::read(reader)?;
4654                 let mut funding_txo_set = HashSet::with_capacity(cmp::min(channel_count as usize, 128));
4655                 let mut by_id = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
4656                 let mut short_to_id = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
4657                 for _ in 0..channel_count {
4658                         let mut channel: Channel<Signer> = Channel::read(reader, &args.keys_manager)?;
4659                         let funding_txo = channel.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
4660                         funding_txo_set.insert(funding_txo.clone());
4661                         if let Some(ref mut monitor) = args.channel_monitors.get_mut(&funding_txo) {
4662                                 if channel.get_cur_holder_commitment_transaction_number() < monitor.get_cur_holder_commitment_number() ||
4663                                                 channel.get_revoked_counterparty_commitment_transaction_number() < monitor.get_min_seen_secret() ||
4664                                                 channel.get_cur_counterparty_commitment_transaction_number() < monitor.get_cur_counterparty_commitment_number() ||
4665                                                 channel.get_latest_monitor_update_id() > monitor.get_latest_update_id() {
4666                                         // If the channel is ahead of the monitor, return InvalidValue:
4667                                         return Err(DecodeError::InvalidValue);
4668                                 } else if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() ||
4669                                                 channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() ||
4670                                                 channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() ||
4671                                                 channel.get_latest_monitor_update_id() < monitor.get_latest_update_id() {
4672                                         // But if the channel is behind of the monitor, close the channel:
4673                                         let (_, mut new_failed_htlcs) = channel.force_shutdown(true);
4674                                         failed_htlcs.append(&mut new_failed_htlcs);
4675                                         monitor.broadcast_latest_holder_commitment_txn(&args.tx_broadcaster, &args.logger);
4676                                 } else {
4677                                         if let Some(short_channel_id) = channel.get_short_channel_id() {
4678                                                 short_to_id.insert(short_channel_id, channel.channel_id());
4679                                         }
4680                                         by_id.insert(channel.channel_id(), channel);
4681                                 }
4682                         } else {
4683                                 return Err(DecodeError::InvalidValue);
4684                         }
4685                 }
4686
4687                 for (ref funding_txo, ref mut monitor) in args.channel_monitors.iter_mut() {
4688                         if !funding_txo_set.contains(funding_txo) {
4689                                 monitor.broadcast_latest_holder_commitment_txn(&args.tx_broadcaster, &args.logger);
4690                         }
4691                 }
4692
4693                 const MAX_ALLOC_SIZE: usize = 1024 * 64;
4694                 let forward_htlcs_count: u64 = Readable::read(reader)?;
4695                 let mut forward_htlcs = HashMap::with_capacity(cmp::min(forward_htlcs_count as usize, 128));
4696                 for _ in 0..forward_htlcs_count {
4697                         let short_channel_id = Readable::read(reader)?;
4698                         let pending_forwards_count: u64 = Readable::read(reader)?;
4699                         let mut pending_forwards = Vec::with_capacity(cmp::min(pending_forwards_count as usize, MAX_ALLOC_SIZE/mem::size_of::<HTLCForwardInfo>()));
4700                         for _ in 0..pending_forwards_count {
4701                                 pending_forwards.push(Readable::read(reader)?);
4702                         }
4703                         forward_htlcs.insert(short_channel_id, pending_forwards);
4704                 }
4705
4706                 let claimable_htlcs_count: u64 = Readable::read(reader)?;
4707                 let mut claimable_htlcs = HashMap::with_capacity(cmp::min(claimable_htlcs_count as usize, 128));
4708                 for _ in 0..claimable_htlcs_count {
4709                         let payment_hash = Readable::read(reader)?;
4710                         let previous_hops_len: u64 = Readable::read(reader)?;
4711                         let mut previous_hops = Vec::with_capacity(cmp::min(previous_hops_len as usize, MAX_ALLOC_SIZE/mem::size_of::<ClaimableHTLC>()));
4712                         for _ in 0..previous_hops_len {
4713                                 previous_hops.push(Readable::read(reader)?);
4714                         }
4715                         claimable_htlcs.insert(payment_hash, previous_hops);
4716                 }
4717
4718                 let peer_count: u64 = Readable::read(reader)?;
4719                 let mut per_peer_state = HashMap::with_capacity(cmp::min(peer_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(PublicKey, Mutex<PeerState>)>()));
4720                 for _ in 0..peer_count {
4721                         let peer_pubkey = Readable::read(reader)?;
4722                         let peer_state = PeerState {
4723                                 latest_features: Readable::read(reader)?,
4724                         };
4725                         per_peer_state.insert(peer_pubkey, Mutex::new(peer_state));
4726                 }
4727
4728                 let event_count: u64 = Readable::read(reader)?;
4729                 let mut pending_events_read: Vec<events::Event> = Vec::with_capacity(cmp::min(event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<events::Event>()));
4730                 for _ in 0..event_count {
4731                         match MaybeReadable::read(reader)? {
4732                                 Some(event) => pending_events_read.push(event),
4733                                 None => continue,
4734                         }
4735                 }
4736
4737                 let background_event_count: u64 = Readable::read(reader)?;
4738                 let mut pending_background_events_read: Vec<BackgroundEvent> = Vec::with_capacity(cmp::min(background_event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<BackgroundEvent>()));
4739                 for _ in 0..background_event_count {
4740                         match <u8 as Readable>::read(reader)? {
4741                                 0 => pending_background_events_read.push(BackgroundEvent::ClosingMonitorUpdate((Readable::read(reader)?, Readable::read(reader)?))),
4742                                 _ => return Err(DecodeError::InvalidValue),
4743                         }
4744                 }
4745
4746                 let last_node_announcement_serial: u32 = Readable::read(reader)?;
4747                 let highest_seen_timestamp: u32 = Readable::read(reader)?;
4748
4749                 let pending_inbound_payment_count: u64 = Readable::read(reader)?;
4750                 let mut pending_inbound_payments: HashMap<PaymentHash, PendingInboundPayment> = HashMap::with_capacity(cmp::min(pending_inbound_payment_count as usize, MAX_ALLOC_SIZE/(3*32)));
4751                 for _ in 0..pending_inbound_payment_count {
4752                         if pending_inbound_payments.insert(Readable::read(reader)?, Readable::read(reader)?).is_some() {
4753                                 return Err(DecodeError::InvalidValue);
4754                         }
4755                 }
4756
4757                 let pending_outbound_payments_count: u64 = Readable::read(reader)?;
4758                 let mut pending_outbound_payments: HashSet<[u8; 32]> = HashSet::with_capacity(cmp::min(pending_outbound_payments_count as usize, MAX_ALLOC_SIZE/32));
4759                 for _ in 0..pending_outbound_payments_count {
4760                         if !pending_outbound_payments.insert(Readable::read(reader)?) {
4761                                 return Err(DecodeError::InvalidValue);
4762                         }
4763                 }
4764
4765                 let mut secp_ctx = Secp256k1::new();
4766                 secp_ctx.seeded_randomize(&args.keys_manager.get_secure_random_bytes());
4767
4768                 let channel_manager = ChannelManager {
4769                         genesis_hash,
4770                         fee_estimator: args.fee_estimator,
4771                         chain_monitor: args.chain_monitor,
4772                         tx_broadcaster: args.tx_broadcaster,
4773
4774                         best_block: RwLock::new(BestBlock::new(best_block_hash, best_block_height)),
4775
4776                         channel_state: Mutex::new(ChannelHolder {
4777                                 by_id,
4778                                 short_to_id,
4779                                 forward_htlcs,
4780                                 claimable_htlcs,
4781                                 pending_msg_events: Vec::new(),
4782                         }),
4783                         pending_inbound_payments: Mutex::new(pending_inbound_payments),
4784                         pending_outbound_payments: Mutex::new(pending_outbound_payments),
4785
4786                         our_network_key: args.keys_manager.get_node_secret(),
4787                         our_network_pubkey: PublicKey::from_secret_key(&secp_ctx, &args.keys_manager.get_node_secret()),
4788                         secp_ctx,
4789
4790                         last_node_announcement_serial: AtomicUsize::new(last_node_announcement_serial as usize),
4791                         highest_seen_timestamp: AtomicUsize::new(highest_seen_timestamp as usize),
4792
4793                         per_peer_state: RwLock::new(per_peer_state),
4794
4795                         pending_events: Mutex::new(pending_events_read),
4796                         pending_background_events: Mutex::new(pending_background_events_read),
4797                         total_consistency_lock: RwLock::new(()),
4798                         persistence_notifier: PersistenceNotifier::new(),
4799
4800                         keys_manager: args.keys_manager,
4801                         logger: args.logger,
4802                         default_configuration: args.default_config,
4803                 };
4804
4805                 for htlc_source in failed_htlcs.drain(..) {
4806                         channel_manager.fail_htlc_backwards_internal(channel_manager.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
4807                 }
4808
4809                 //TODO: Broadcast channel update for closed channels, but only after we've made a
4810                 //connection or two.
4811
4812                 Ok((best_block_hash.clone(), channel_manager))
4813         }
4814 }
4815
4816 #[cfg(test)]
4817 mod tests {
4818         use ln::channelmanager::PersistenceNotifier;
4819         use std::sync::Arc;
4820         use core::sync::atomic::{AtomicBool, Ordering};
4821         use std::thread;
4822         use core::time::Duration;
4823
4824         #[test]
4825         fn test_wait_timeout() {
4826                 let persistence_notifier = Arc::new(PersistenceNotifier::new());
4827                 let thread_notifier = Arc::clone(&persistence_notifier);
4828
4829                 let exit_thread = Arc::new(AtomicBool::new(false));
4830                 let exit_thread_clone = exit_thread.clone();
4831                 thread::spawn(move || {
4832                         loop {
4833                                 let &(ref persist_mtx, ref cnd) = &thread_notifier.persistence_lock;
4834                                 let mut persistence_lock = persist_mtx.lock().unwrap();
4835                                 *persistence_lock = true;
4836                                 cnd.notify_all();
4837
4838                                 if exit_thread_clone.load(Ordering::SeqCst) {
4839                                         break
4840                                 }
4841                         }
4842                 });
4843
4844                 // Check that we can block indefinitely until updates are available.
4845                 let _ = persistence_notifier.wait();
4846
4847                 // Check that the PersistenceNotifier will return after the given duration if updates are
4848                 // available.
4849                 loop {
4850                         if persistence_notifier.wait_timeout(Duration::from_millis(100)) {
4851                                 break
4852                         }
4853                 }
4854
4855                 exit_thread.store(true, Ordering::SeqCst);
4856
4857                 // Check that the PersistenceNotifier will return after the given duration even if no updates
4858                 // are available.
4859                 loop {
4860                         if !persistence_notifier.wait_timeout(Duration::from_millis(100)) {
4861                                 break
4862                         }
4863                 }
4864         }
4865 }
4866
4867 #[cfg(all(any(test, feature = "_test_utils"), feature = "unstable"))]
4868 pub mod bench {
4869         use chain::Listen;
4870         use chain::chainmonitor::ChainMonitor;
4871         use chain::channelmonitor::Persist;
4872         use chain::keysinterface::{KeysManager, InMemorySigner};
4873         use ln::channelmanager::{BestBlock, ChainParameters, ChannelManager, PaymentHash, PaymentPreimage};
4874         use ln::features::{InitFeatures, InvoiceFeatures};
4875         use ln::functional_test_utils::*;
4876         use ln::msgs::ChannelMessageHandler;
4877         use routing::network_graph::NetworkGraph;
4878         use routing::router::get_route;
4879         use util::test_utils;
4880         use util::config::UserConfig;
4881         use util::events::{Event, EventsProvider, MessageSendEvent, MessageSendEventsProvider};
4882
4883         use bitcoin::hashes::Hash;
4884         use bitcoin::hashes::sha256::Hash as Sha256;
4885         use bitcoin::{Block, BlockHeader, Transaction, TxOut};
4886
4887         use std::sync::Mutex;
4888
4889         use test::Bencher;
4890
4891         struct NodeHolder<'a, P: Persist<InMemorySigner>> {
4892                 node: &'a ChannelManager<InMemorySigner,
4893                         &'a ChainMonitor<InMemorySigner, &'a test_utils::TestChainSource,
4894                                 &'a test_utils::TestBroadcaster, &'a test_utils::TestFeeEstimator,
4895                                 &'a test_utils::TestLogger, &'a P>,
4896                         &'a test_utils::TestBroadcaster, &'a KeysManager,
4897                         &'a test_utils::TestFeeEstimator, &'a test_utils::TestLogger>
4898         }
4899
4900         #[cfg(test)]
4901         #[bench]
4902         fn bench_sends(bench: &mut Bencher) {
4903                 bench_two_sends(bench, test_utils::TestPersister::new(), test_utils::TestPersister::new());
4904         }
4905
4906         pub fn bench_two_sends<P: Persist<InMemorySigner>>(bench: &mut Bencher, persister_a: P, persister_b: P) {
4907                 // Do a simple benchmark of sending a payment back and forth between two nodes.
4908                 // Note that this is unrealistic as each payment send will require at least two fsync
4909                 // calls per node.
4910                 let network = bitcoin::Network::Testnet;
4911                 let genesis_hash = bitcoin::blockdata::constants::genesis_block(network).header.block_hash();
4912
4913                 let tx_broadcaster = test_utils::TestBroadcaster{txn_broadcasted: Mutex::new(Vec::new())};
4914                 let fee_estimator = test_utils::TestFeeEstimator { sat_per_kw: 253 };
4915
4916                 let mut config: UserConfig = Default::default();
4917                 config.own_channel_config.minimum_depth = 1;
4918
4919                 let logger_a = test_utils::TestLogger::with_id("node a".to_owned());
4920                 let chain_monitor_a = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_a);
4921                 let seed_a = [1u8; 32];
4922                 let keys_manager_a = KeysManager::new(&seed_a, 42, 42);
4923                 let node_a = ChannelManager::new(&fee_estimator, &chain_monitor_a, &tx_broadcaster, &logger_a, &keys_manager_a, config.clone(), ChainParameters {
4924                         network,
4925                         best_block: BestBlock::from_genesis(network),
4926                 });
4927                 let node_a_holder = NodeHolder { node: &node_a };
4928
4929                 let logger_b = test_utils::TestLogger::with_id("node a".to_owned());
4930                 let chain_monitor_b = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_b);
4931                 let seed_b = [2u8; 32];
4932                 let keys_manager_b = KeysManager::new(&seed_b, 42, 42);
4933                 let node_b = ChannelManager::new(&fee_estimator, &chain_monitor_b, &tx_broadcaster, &logger_b, &keys_manager_b, config.clone(), ChainParameters {
4934                         network,
4935                         best_block: BestBlock::from_genesis(network),
4936                 });
4937                 let node_b_holder = NodeHolder { node: &node_b };
4938
4939                 node_a.create_channel(node_b.get_our_node_id(), 8_000_000, 100_000_000, 42, None).unwrap();
4940                 node_b.handle_open_channel(&node_a.get_our_node_id(), InitFeatures::known(), &get_event_msg!(node_a_holder, MessageSendEvent::SendOpenChannel, node_b.get_our_node_id()));
4941                 node_a.handle_accept_channel(&node_b.get_our_node_id(), InitFeatures::known(), &get_event_msg!(node_b_holder, MessageSendEvent::SendAcceptChannel, node_a.get_our_node_id()));
4942
4943                 let tx;
4944                 if let Event::FundingGenerationReady { temporary_channel_id, output_script, .. } = get_event!(node_a_holder, Event::FundingGenerationReady) {
4945                         tx = Transaction { version: 2, lock_time: 0, input: Vec::new(), output: vec![TxOut {
4946                                 value: 8_000_000, script_pubkey: output_script,
4947                         }]};
4948                         node_a.funding_transaction_generated(&temporary_channel_id, tx.clone()).unwrap();
4949                 } else { panic!(); }
4950
4951                 node_b.handle_funding_created(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendFundingCreated, node_b.get_our_node_id()));
4952                 node_a.handle_funding_signed(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendFundingSigned, node_a.get_our_node_id()));
4953
4954                 assert_eq!(&tx_broadcaster.txn_broadcasted.lock().unwrap()[..], &[tx.clone()]);
4955
4956                 let block = Block {
4957                         header: BlockHeader { version: 0x20000000, prev_blockhash: genesis_hash, merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 },
4958                         txdata: vec![tx],
4959                 };
4960                 Listen::block_connected(&node_a, &block, 1);
4961                 Listen::block_connected(&node_b, &block, 1);
4962
4963                 node_a.handle_funding_locked(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendFundingLocked, node_a.get_our_node_id()));
4964                 node_b.handle_funding_locked(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendFundingLocked, node_b.get_our_node_id()));
4965
4966                 let dummy_graph = NetworkGraph::new(genesis_hash);
4967
4968                 let mut payment_count: u64 = 0;
4969                 macro_rules! send_payment {
4970                         ($node_a: expr, $node_b: expr) => {
4971                                 let usable_channels = $node_a.list_usable_channels();
4972                                 let route = get_route(&$node_a.get_our_node_id(), &dummy_graph, &$node_b.get_our_node_id(), Some(InvoiceFeatures::known()),
4973                                         Some(&usable_channels.iter().map(|r| r).collect::<Vec<_>>()), &[], 10_000, TEST_FINAL_CLTV, &logger_a).unwrap();
4974
4975                                 let mut payment_preimage = PaymentPreimage([0; 32]);
4976                                 payment_preimage.0[0..8].copy_from_slice(&payment_count.to_le_bytes());
4977                                 payment_count += 1;
4978                                 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0[..]).into_inner());
4979                                 let payment_secret = $node_b.create_inbound_payment_for_hash(payment_hash, None, 7200, 0).unwrap();
4980
4981                                 $node_a.send_payment(&route, payment_hash, &Some(payment_secret)).unwrap();
4982                                 let payment_event = SendEvent::from_event($node_a.get_and_clear_pending_msg_events().pop().unwrap());
4983                                 $node_b.handle_update_add_htlc(&$node_a.get_our_node_id(), &payment_event.msgs[0]);
4984                                 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &payment_event.commitment_msg);
4985                                 let (raa, cs) = get_revoke_commit_msgs!(NodeHolder { node: &$node_b }, $node_a.get_our_node_id());
4986                                 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &raa);
4987                                 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &cs);
4988                                 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &get_event_msg!(NodeHolder { node: &$node_a }, MessageSendEvent::SendRevokeAndACK, $node_b.get_our_node_id()));
4989
4990                                 expect_pending_htlcs_forwardable!(NodeHolder { node: &$node_b });
4991                                 expect_payment_received!(NodeHolder { node: &$node_b }, payment_hash, payment_secret, 10_000);
4992                                 assert!($node_b.claim_funds(payment_preimage));
4993
4994                                 match $node_b.get_and_clear_pending_msg_events().pop().unwrap() {
4995                                         MessageSendEvent::UpdateHTLCs { node_id, updates } => {
4996                                                 assert_eq!(node_id, $node_a.get_our_node_id());
4997                                                 $node_a.handle_update_fulfill_htlc(&$node_b.get_our_node_id(), &updates.update_fulfill_htlcs[0]);
4998                                                 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &updates.commitment_signed);
4999                                         },
5000                                         _ => panic!("Failed to generate claim event"),
5001                                 }
5002
5003                                 let (raa, cs) = get_revoke_commit_msgs!(NodeHolder { node: &$node_a }, $node_b.get_our_node_id());
5004                                 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &raa);
5005                                 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &cs);
5006                                 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &get_event_msg!(NodeHolder { node: &$node_b }, MessageSendEvent::SendRevokeAndACK, $node_a.get_our_node_id()));
5007
5008                                 expect_payment_sent!(NodeHolder { node: &$node_a }, payment_preimage);
5009                         }
5010                 }
5011
5012                 bench.iter(|| {
5013                         send_payment!(node_a, node_b);
5014                         send_payment!(node_b, node_a);
5015                 });
5016         }
5017 }