Merge pull request #912 from TheBlueMatt/2021-05-more-chan-info
[rust-lightning] / lightning / src / ln / channelmanager.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! The top-level channel management and payment tracking stuff lives here.
11 //!
12 //! The ChannelManager is the main chunk of logic implementing the lightning protocol and is
13 //! responsible for tracking which channels are open, HTLCs are in flight and reestablishing those
14 //! upon reconnect to the relevant peer(s).
15 //!
16 //! It does not manage routing logic (see routing::router::get_route for that) nor does it manage constructing
17 //! on-chain transactions (it only monitors the chain to watch for any force-closes that might
18 //! imply it needs to fail HTLCs/payments/channels it manages).
19 //!
20
21 use bitcoin::blockdata::block::{Block, BlockHeader};
22 use bitcoin::blockdata::transaction::Transaction;
23 use bitcoin::blockdata::constants::genesis_block;
24 use bitcoin::network::constants::Network;
25
26 use bitcoin::hashes::{Hash, HashEngine};
27 use bitcoin::hashes::hmac::{Hmac, HmacEngine};
28 use bitcoin::hashes::sha256::Hash as Sha256;
29 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
30 use bitcoin::hashes::cmp::fixed_time_eq;
31 use bitcoin::hash_types::{BlockHash, Txid};
32
33 use bitcoin::secp256k1::key::{SecretKey,PublicKey};
34 use bitcoin::secp256k1::Secp256k1;
35 use bitcoin::secp256k1::ecdh::SharedSecret;
36 use bitcoin::secp256k1;
37
38 use chain;
39 use chain::Confirm;
40 use chain::Watch;
41 use chain::chaininterface::{BroadcasterInterface, FeeEstimator};
42 use chain::channelmonitor::{ChannelMonitor, ChannelMonitorUpdate, ChannelMonitorUpdateStep, ChannelMonitorUpdateErr, HTLC_FAIL_BACK_BUFFER, CLTV_CLAIM_BUFFER, LATENCY_GRACE_PERIOD_BLOCKS, ANTI_REORG_DELAY, MonitorEvent, CLOSED_CHANNEL_UPDATE_ID};
43 use chain::transaction::{OutPoint, TransactionData};
44 // Since this struct is returned in `list_channels` methods, expose it here in case users want to
45 // construct one themselves.
46 use ln::{PaymentHash, PaymentPreimage, PaymentSecret};
47 pub use ln::channel::CounterpartyForwardingInfo;
48 use ln::channel::{Channel, ChannelError};
49 use ln::features::{InitFeatures, NodeFeatures};
50 use routing::router::{Route, RouteHop};
51 use ln::msgs;
52 use ln::msgs::NetAddress;
53 use ln::onion_utils;
54 use ln::msgs::{ChannelMessageHandler, DecodeError, LightningError, OptionalField};
55 use chain::keysinterface::{Sign, KeysInterface, KeysManager, InMemorySigner};
56 use util::config::UserConfig;
57 use util::events::{Event, EventsProvider, MessageSendEvent, MessageSendEventsProvider};
58 use util::{byte_utils, events};
59 use util::ser::{Readable, ReadableArgs, MaybeReadable, Writeable, Writer};
60 use util::chacha20::{ChaCha20, ChaChaReader};
61 use util::logger::Logger;
62 use util::errors::APIError;
63
64 use std::{cmp, mem};
65 use std::collections::{HashMap, hash_map, HashSet};
66 use std::io::{Cursor, Read};
67 use std::sync::{Arc, Condvar, Mutex, MutexGuard, RwLock, RwLockReadGuard};
68 use std::sync::atomic::{AtomicUsize, Ordering};
69 use std::time::Duration;
70 #[cfg(any(test, feature = "allow_wallclock_use"))]
71 use std::time::Instant;
72 use std::ops::Deref;
73 use bitcoin::hashes::hex::ToHex;
74
75 // We hold various information about HTLC relay in the HTLC objects in Channel itself:
76 //
77 // Upon receipt of an HTLC from a peer, we'll give it a PendingHTLCStatus indicating if it should
78 // forward the HTLC with information it will give back to us when it does so, or if it should Fail
79 // the HTLC with the relevant message for the Channel to handle giving to the remote peer.
80 //
81 // Once said HTLC is committed in the Channel, if the PendingHTLCStatus indicated Forward, the
82 // Channel will return the PendingHTLCInfo back to us, and we will create an HTLCForwardInfo
83 // with it to track where it came from (in case of onwards-forward error), waiting a random delay
84 // before we forward it.
85 //
86 // We will then use HTLCForwardInfo's PendingHTLCInfo to construct an outbound HTLC, with a
87 // relevant HTLCSource::PreviousHopData filled in to indicate where it came from (which we can use
88 // to either fail-backwards or fulfill the HTLC backwards along the relevant path).
89 // Alternatively, we can fill an outbound HTLC with a HTLCSource::OutboundRoute indicating this is
90 // our payment, which we can use to decode errors or inform the user that the payment was sent.
91
92 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
93 enum PendingHTLCRouting {
94         Forward {
95                 onion_packet: msgs::OnionPacket,
96                 short_channel_id: u64, // This should be NonZero<u64> eventually when we bump MSRV
97         },
98         Receive {
99                 payment_data: msgs::FinalOnionHopData,
100                 incoming_cltv_expiry: u32, // Used to track when we should expire pending HTLCs that go unclaimed
101         },
102 }
103
104 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
105 pub(super) struct PendingHTLCInfo {
106         routing: PendingHTLCRouting,
107         incoming_shared_secret: [u8; 32],
108         payment_hash: PaymentHash,
109         pub(super) amt_to_forward: u64,
110         pub(super) outgoing_cltv_value: u32,
111 }
112
113 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
114 pub(super) enum HTLCFailureMsg {
115         Relay(msgs::UpdateFailHTLC),
116         Malformed(msgs::UpdateFailMalformedHTLC),
117 }
118
119 /// Stores whether we can't forward an HTLC or relevant forwarding info
120 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
121 pub(super) enum PendingHTLCStatus {
122         Forward(PendingHTLCInfo),
123         Fail(HTLCFailureMsg),
124 }
125
126 pub(super) enum HTLCForwardInfo {
127         AddHTLC {
128                 forward_info: PendingHTLCInfo,
129
130                 // These fields are produced in `forward_htlcs()` and consumed in
131                 // `process_pending_htlc_forwards()` for constructing the
132                 // `HTLCSource::PreviousHopData` for failed and forwarded
133                 // HTLCs.
134                 prev_short_channel_id: u64,
135                 prev_htlc_id: u64,
136                 prev_funding_outpoint: OutPoint,
137         },
138         FailHTLC {
139                 htlc_id: u64,
140                 err_packet: msgs::OnionErrorPacket,
141         },
142 }
143
144 /// Tracks the inbound corresponding to an outbound HTLC
145 #[derive(Clone, PartialEq)]
146 pub(crate) struct HTLCPreviousHopData {
147         short_channel_id: u64,
148         htlc_id: u64,
149         incoming_packet_shared_secret: [u8; 32],
150
151         // This field is consumed by `claim_funds_from_hop()` when updating a force-closed backwards
152         // channel with a preimage provided by the forward channel.
153         outpoint: OutPoint,
154 }
155
156 struct ClaimableHTLC {
157         prev_hop: HTLCPreviousHopData,
158         value: u64,
159         /// Contains a total_msat (which may differ from value if this is a Multi-Path Payment) and a
160         /// payment_secret which prevents path-probing attacks and can associate different HTLCs which
161         /// are part of the same payment.
162         payment_data: msgs::FinalOnionHopData,
163         cltv_expiry: u32,
164 }
165
166 /// Tracks the inbound corresponding to an outbound HTLC
167 #[derive(Clone, PartialEq)]
168 pub(crate) enum HTLCSource {
169         PreviousHopData(HTLCPreviousHopData),
170         OutboundRoute {
171                 path: Vec<RouteHop>,
172                 session_priv: SecretKey,
173                 /// Technically we can recalculate this from the route, but we cache it here to avoid
174                 /// doing a double-pass on route when we get a failure back
175                 first_hop_htlc_msat: u64,
176         },
177 }
178 #[cfg(test)]
179 impl HTLCSource {
180         pub fn dummy() -> Self {
181                 HTLCSource::OutboundRoute {
182                         path: Vec::new(),
183                         session_priv: SecretKey::from_slice(&[1; 32]).unwrap(),
184                         first_hop_htlc_msat: 0,
185                 }
186         }
187 }
188
189 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
190 pub(super) enum HTLCFailReason {
191         LightningError {
192                 err: msgs::OnionErrorPacket,
193         },
194         Reason {
195                 failure_code: u16,
196                 data: Vec<u8>,
197         }
198 }
199
200 type ShutdownResult = (Option<(OutPoint, ChannelMonitorUpdate)>, Vec<(HTLCSource, PaymentHash)>);
201
202 /// Error type returned across the channel_state mutex boundary. When an Err is generated for a
203 /// Channel, we generally end up with a ChannelError::Close for which we have to close the channel
204 /// immediately (ie with no further calls on it made). Thus, this step happens inside a
205 /// channel_state lock. We then return the set of things that need to be done outside the lock in
206 /// this struct and call handle_error!() on it.
207
208 struct MsgHandleErrInternal {
209         err: msgs::LightningError,
210         shutdown_finish: Option<(ShutdownResult, Option<msgs::ChannelUpdate>)>,
211 }
212 impl MsgHandleErrInternal {
213         #[inline]
214         fn send_err_msg_no_close(err: String, channel_id: [u8; 32]) -> Self {
215                 Self {
216                         err: LightningError {
217                                 err: err.clone(),
218                                 action: msgs::ErrorAction::SendErrorMessage {
219                                         msg: msgs::ErrorMessage {
220                                                 channel_id,
221                                                 data: err
222                                         },
223                                 },
224                         },
225                         shutdown_finish: None,
226                 }
227         }
228         #[inline]
229         fn ignore_no_close(err: String) -> Self {
230                 Self {
231                         err: LightningError {
232                                 err,
233                                 action: msgs::ErrorAction::IgnoreError,
234                         },
235                         shutdown_finish: None,
236                 }
237         }
238         #[inline]
239         fn from_no_close(err: msgs::LightningError) -> Self {
240                 Self { err, shutdown_finish: None }
241         }
242         #[inline]
243         fn from_finish_shutdown(err: String, channel_id: [u8; 32], shutdown_res: ShutdownResult, channel_update: Option<msgs::ChannelUpdate>) -> Self {
244                 Self {
245                         err: LightningError {
246                                 err: err.clone(),
247                                 action: msgs::ErrorAction::SendErrorMessage {
248                                         msg: msgs::ErrorMessage {
249                                                 channel_id,
250                                                 data: err
251                                         },
252                                 },
253                         },
254                         shutdown_finish: Some((shutdown_res, channel_update)),
255                 }
256         }
257         #[inline]
258         fn from_chan_no_close(err: ChannelError, channel_id: [u8; 32]) -> Self {
259                 Self {
260                         err: match err {
261                                 ChannelError::Ignore(msg) => LightningError {
262                                         err: msg,
263                                         action: msgs::ErrorAction::IgnoreError,
264                                 },
265                                 ChannelError::Close(msg) => LightningError {
266                                         err: msg.clone(),
267                                         action: msgs::ErrorAction::SendErrorMessage {
268                                                 msg: msgs::ErrorMessage {
269                                                         channel_id,
270                                                         data: msg
271                                                 },
272                                         },
273                                 },
274                                 ChannelError::CloseDelayBroadcast(msg) => LightningError {
275                                         err: msg.clone(),
276                                         action: msgs::ErrorAction::SendErrorMessage {
277                                                 msg: msgs::ErrorMessage {
278                                                         channel_id,
279                                                         data: msg
280                                                 },
281                                         },
282                                 },
283                         },
284                         shutdown_finish: None,
285                 }
286         }
287 }
288
289 /// We hold back HTLCs we intend to relay for a random interval greater than this (see
290 /// Event::PendingHTLCsForwardable for the API guidelines indicating how long should be waited).
291 /// This provides some limited amount of privacy. Ideally this would range from somewhere like one
292 /// second to 30 seconds, but people expect lightning to be, you know, kinda fast, sadly.
293 const MIN_HTLC_RELAY_HOLDING_CELL_MILLIS: u64 = 100;
294
295 /// For events which result in both a RevokeAndACK and a CommitmentUpdate, by default they should
296 /// be sent in the order they appear in the return value, however sometimes the order needs to be
297 /// variable at runtime (eg Channel::channel_reestablish needs to re-send messages in the order
298 /// they were originally sent). In those cases, this enum is also returned.
299 #[derive(Clone, PartialEq)]
300 pub(super) enum RAACommitmentOrder {
301         /// Send the CommitmentUpdate messages first
302         CommitmentFirst,
303         /// Send the RevokeAndACK message first
304         RevokeAndACKFirst,
305 }
306
307 // Note this is only exposed in cfg(test):
308 pub(super) struct ChannelHolder<Signer: Sign> {
309         pub(super) by_id: HashMap<[u8; 32], Channel<Signer>>,
310         pub(super) short_to_id: HashMap<u64, [u8; 32]>,
311         /// short channel id -> forward infos. Key of 0 means payments received
312         /// Note that while this is held in the same mutex as the channels themselves, no consistency
313         /// guarantees are made about the existence of a channel with the short id here, nor the short
314         /// ids in the PendingHTLCInfo!
315         pub(super) forward_htlcs: HashMap<u64, Vec<HTLCForwardInfo>>,
316         /// Map from payment hash to any HTLCs which are to us and can be failed/claimed by the user.
317         /// Note that while this is held in the same mutex as the channels themselves, no consistency
318         /// guarantees are made about the channels given here actually existing anymore by the time you
319         /// go to read them!
320         claimable_htlcs: HashMap<PaymentHash, Vec<ClaimableHTLC>>,
321         /// Messages to send to peers - pushed to in the same lock that they are generated in (except
322         /// for broadcast messages, where ordering isn't as strict).
323         pub(super) pending_msg_events: Vec<MessageSendEvent>,
324 }
325
326 /// Events which we process internally but cannot be procsesed immediately at the generation site
327 /// for some reason. They are handled in timer_tick_occurred, so may be processed with
328 /// quite some time lag.
329 enum BackgroundEvent {
330         /// Handle a ChannelMonitorUpdate that closes a channel, broadcasting its current latest holder
331         /// commitment transaction.
332         ClosingMonitorUpdate((OutPoint, ChannelMonitorUpdate)),
333 }
334
335 /// State we hold per-peer. In the future we should put channels in here, but for now we only hold
336 /// the latest Init features we heard from the peer.
337 struct PeerState {
338         latest_features: InitFeatures,
339 }
340
341 /// Stores a PaymentSecret and any other data we may need to validate an inbound payment is
342 /// actually ours and not some duplicate HTLC sent to us by a node along the route.
343 ///
344 /// For users who don't want to bother doing their own payment preimage storage, we also store that
345 /// here.
346 struct PendingInboundPayment {
347         /// The payment secret that the sender must use for us to accept this payment
348         payment_secret: PaymentSecret,
349         /// Time at which this HTLC expires - blocks with a header time above this value will result in
350         /// this payment being removed.
351         expiry_time: u64,
352         /// Arbitrary identifier the user specifies (or not)
353         user_payment_id: u64,
354         // Other required attributes of the payment, optionally enforced:
355         payment_preimage: Option<PaymentPreimage>,
356         min_value_msat: Option<u64>,
357 }
358
359 /// SimpleArcChannelManager is useful when you need a ChannelManager with a static lifetime, e.g.
360 /// when you're using lightning-net-tokio (since tokio::spawn requires parameters with static
361 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
362 /// SimpleRefChannelManager is the more appropriate type. Defining these type aliases prevents
363 /// issues such as overly long function definitions. Note that the ChannelManager can take any
364 /// type that implements KeysInterface for its keys manager, but this type alias chooses the
365 /// concrete type of the KeysManager.
366 pub type SimpleArcChannelManager<M, T, F, L> = ChannelManager<InMemorySigner, Arc<M>, Arc<T>, Arc<KeysManager>, Arc<F>, Arc<L>>;
367
368 /// SimpleRefChannelManager is a type alias for a ChannelManager reference, and is the reference
369 /// counterpart to the SimpleArcChannelManager type alias. Use this type by default when you don't
370 /// need a ChannelManager with a static lifetime. You'll need a static lifetime in cases such as
371 /// usage of lightning-net-tokio (since tokio::spawn requires parameters with static lifetimes).
372 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
373 /// helps with issues such as long function definitions. Note that the ChannelManager can take any
374 /// type that implements KeysInterface for its keys manager, but this type alias chooses the
375 /// concrete type of the KeysManager.
376 pub type SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, M, T, F, L> = ChannelManager<InMemorySigner, &'a M, &'b T, &'c KeysManager, &'d F, &'e L>;
377
378 /// Manager which keeps track of a number of channels and sends messages to the appropriate
379 /// channel, also tracking HTLC preimages and forwarding onion packets appropriately.
380 ///
381 /// Implements ChannelMessageHandler, handling the multi-channel parts and passing things through
382 /// to individual Channels.
383 ///
384 /// Implements Writeable to write out all channel state to disk. Implies peer_disconnected() for
385 /// all peers during write/read (though does not modify this instance, only the instance being
386 /// serialized). This will result in any channels which have not yet exchanged funding_created (ie
387 /// called funding_transaction_generated for outbound channels).
388 ///
389 /// Note that you can be a bit lazier about writing out ChannelManager than you can be with
390 /// ChannelMonitors. With ChannelMonitors you MUST write each monitor update out to disk before
391 /// returning from chain::Watch::watch_/update_channel, with ChannelManagers, writing updates
392 /// happens out-of-band (and will prevent any other ChannelManager operations from occurring during
393 /// the serialization process). If the deserialized version is out-of-date compared to the
394 /// ChannelMonitors passed by reference to read(), those channels will be force-closed based on the
395 /// ChannelMonitor state and no funds will be lost (mod on-chain transaction fees).
396 ///
397 /// Note that the deserializer is only implemented for (BlockHash, ChannelManager), which
398 /// tells you the last block hash which was block_connect()ed. You MUST rescan any blocks along
399 /// the "reorg path" (ie call block_disconnected() until you get to a common block and then call
400 /// block_connected() to step towards your best block) upon deserialization before using the
401 /// object!
402 ///
403 /// Note that ChannelManager is responsible for tracking liveness of its channels and generating
404 /// ChannelUpdate messages informing peers that the channel is temporarily disabled. To avoid
405 /// spam due to quick disconnection/reconnection, updates are not sent until the channel has been
406 /// offline for a full minute. In order to track this, you must call
407 /// timer_tick_occurred roughly once per minute, though it doesn't have to be perfect.
408 ///
409 /// Rather than using a plain ChannelManager, it is preferable to use either a SimpleArcChannelManager
410 /// a SimpleRefChannelManager, for conciseness. See their documentation for more details, but
411 /// essentially you should default to using a SimpleRefChannelManager, and use a
412 /// SimpleArcChannelManager when you require a ChannelManager with a static lifetime, such as when
413 /// you're using lightning-net-tokio.
414 pub struct ChannelManager<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
415         where M::Target: chain::Watch<Signer>,
416         T::Target: BroadcasterInterface,
417         K::Target: KeysInterface<Signer = Signer>,
418         F::Target: FeeEstimator,
419                                 L::Target: Logger,
420 {
421         default_configuration: UserConfig,
422         genesis_hash: BlockHash,
423         fee_estimator: F,
424         chain_monitor: M,
425         tx_broadcaster: T,
426
427         #[cfg(test)]
428         pub(super) best_block: RwLock<BestBlock>,
429         #[cfg(not(test))]
430         best_block: RwLock<BestBlock>,
431         secp_ctx: Secp256k1<secp256k1::All>,
432
433         #[cfg(any(test, feature = "_test_utils"))]
434         pub(super) channel_state: Mutex<ChannelHolder<Signer>>,
435         #[cfg(not(any(test, feature = "_test_utils")))]
436         channel_state: Mutex<ChannelHolder<Signer>>,
437
438         /// Storage for PaymentSecrets and any requirements on future inbound payments before we will
439         /// expose them to users via a PaymentReceived event. HTLCs which do not meet the requirements
440         /// here are failed when we process them as pending-forwardable-HTLCs, and entries are removed
441         /// after we generate a PaymentReceived upon receipt of all MPP parts or when they time out.
442         /// Locked *after* channel_state.
443         pending_inbound_payments: Mutex<HashMap<PaymentHash, PendingInboundPayment>>,
444
445         our_network_key: SecretKey,
446         our_network_pubkey: PublicKey,
447
448         /// Used to track the last value sent in a node_announcement "timestamp" field. We ensure this
449         /// value increases strictly since we don't assume access to a time source.
450         last_node_announcement_serial: AtomicUsize,
451
452         /// The highest block timestamp we've seen, which is usually a good guess at the current time.
453         /// Assuming most miners are generating blocks with reasonable timestamps, this shouldn't be
454         /// very far in the past, and can only ever be up to two hours in the future.
455         highest_seen_timestamp: AtomicUsize,
456
457         /// The bulk of our storage will eventually be here (channels and message queues and the like).
458         /// If we are connected to a peer we always at least have an entry here, even if no channels
459         /// are currently open with that peer.
460         /// Because adding or removing an entry is rare, we usually take an outer read lock and then
461         /// operate on the inner value freely. Sadly, this prevents parallel operation when opening a
462         /// new channel.
463         per_peer_state: RwLock<HashMap<PublicKey, Mutex<PeerState>>>,
464
465         pending_events: Mutex<Vec<events::Event>>,
466         pending_background_events: Mutex<Vec<BackgroundEvent>>,
467         /// Used when we have to take a BIG lock to make sure everything is self-consistent.
468         /// Essentially just when we're serializing ourselves out.
469         /// Taken first everywhere where we are making changes before any other locks.
470         /// When acquiring this lock in read mode, rather than acquiring it directly, call
471         /// `PersistenceNotifierGuard::new(..)` and pass the lock to it, to ensure the PersistenceNotifier
472         /// the lock contains sends out a notification when the lock is released.
473         total_consistency_lock: RwLock<()>,
474
475         persistence_notifier: PersistenceNotifier,
476
477         keys_manager: K,
478
479         logger: L,
480 }
481
482 /// Chain-related parameters used to construct a new `ChannelManager`.
483 ///
484 /// Typically, the block-specific parameters are derived from the best block hash for the network,
485 /// as a newly constructed `ChannelManager` will not have created any channels yet. These parameters
486 /// are not needed when deserializing a previously constructed `ChannelManager`.
487 pub struct ChainParameters {
488         /// The network for determining the `chain_hash` in Lightning messages.
489         pub network: Network,
490
491         /// The hash and height of the latest block successfully connected.
492         ///
493         /// Used to track on-chain channel funding outputs and send payments with reliable timelocks.
494         pub best_block: BestBlock,
495 }
496
497 /// The best known block as identified by its hash and height.
498 #[derive(Clone, Copy)]
499 pub struct BestBlock {
500         block_hash: BlockHash,
501         height: u32,
502 }
503
504 impl BestBlock {
505         /// Returns the best block from the genesis of the given network.
506         pub fn from_genesis(network: Network) -> Self {
507                 BestBlock {
508                         block_hash: genesis_block(network).header.block_hash(),
509                         height: 0,
510                 }
511         }
512
513         /// Returns the best block as identified by the given block hash and height.
514         pub fn new(block_hash: BlockHash, height: u32) -> Self {
515                 BestBlock { block_hash, height }
516         }
517
518         /// Returns the best block hash.
519         pub fn block_hash(&self) -> BlockHash { self.block_hash }
520
521         /// Returns the best block height.
522         pub fn height(&self) -> u32 { self.height }
523 }
524
525 /// Whenever we release the `ChannelManager`'s `total_consistency_lock`, from read mode, it is
526 /// desirable to notify any listeners on `await_persistable_update_timeout`/
527 /// `await_persistable_update` that new updates are available for persistence. Therefore, this
528 /// struct is responsible for locking the total consistency lock and, upon going out of scope,
529 /// sending the aforementioned notification (since the lock being released indicates that the
530 /// updates are ready for persistence).
531 struct PersistenceNotifierGuard<'a> {
532         persistence_notifier: &'a PersistenceNotifier,
533         // We hold onto this result so the lock doesn't get released immediately.
534         _read_guard: RwLockReadGuard<'a, ()>,
535 }
536
537 impl<'a> PersistenceNotifierGuard<'a> {
538         fn new(lock: &'a RwLock<()>, notifier: &'a PersistenceNotifier) -> Self {
539                 let read_guard = lock.read().unwrap();
540
541                 Self {
542                         persistence_notifier: notifier,
543                         _read_guard: read_guard,
544                 }
545         }
546 }
547
548 impl<'a> Drop for PersistenceNotifierGuard<'a> {
549         fn drop(&mut self) {
550                 self.persistence_notifier.notify();
551         }
552 }
553
554 /// The amount of time in blocks we require our counterparty wait to claim their money (ie time
555 /// between when we, or our watchtower, must check for them having broadcast a theft transaction).
556 ///
557 /// This can be increased (but not decreased) through [`ChannelHandshakeConfig::our_to_self_delay`]
558 ///
559 /// [`ChannelHandshakeConfig::our_to_self_delay`]: crate::util::config::ChannelHandshakeConfig::our_to_self_delay
560 pub const BREAKDOWN_TIMEOUT: u16 = 6 * 24;
561 /// The amount of time in blocks we're willing to wait to claim money back to us. This matches
562 /// the maximum required amount in lnd as of March 2021.
563 pub(crate) const MAX_LOCAL_BREAKDOWN_TIMEOUT: u16 = 2 * 6 * 24 * 7;
564
565 /// The minimum number of blocks between an inbound HTLC's CLTV and the corresponding outbound
566 /// HTLC's CLTV. The current default represents roughly seven hours of blocks at six blocks/hour.
567 ///
568 /// This can be increased (but not decreased) through [`ChannelConfig::cltv_expiry_delta`]
569 ///
570 /// [`ChannelConfig::cltv_expiry_delta`]: crate::util::config::ChannelConfig::cltv_expiry_delta
571 // This should always be a few blocks greater than channelmonitor::CLTV_CLAIM_BUFFER,
572 // i.e. the node we forwarded the payment on to should always have enough room to reliably time out
573 // the HTLC via a full update_fail_htlc/commitment_signed dance before we hit the
574 // CLTV_CLAIM_BUFFER point (we static assert that it's at least 3 blocks more).
575 pub const MIN_CLTV_EXPIRY_DELTA: u16 = 6*7;
576 pub(super) const CLTV_FAR_FAR_AWAY: u32 = 6 * 24 * 7; //TODO?
577
578 /// Minimum CLTV difference between the current block height and received inbound payments.
579 /// Invoices generated for payment to us must set their `min_final_cltv_expiry` field to at least
580 /// this value.
581 // Note that we fail if exactly HTLC_FAIL_BACK_BUFFER + 1 was used, so we need to add one for
582 // any payments to succeed. Further, we don't want payments to fail if a block was found while
583 // a payment was being routed, so we add an extra block to be safe.
584 pub const MIN_FINAL_CLTV_EXPIRY: u32 = HTLC_FAIL_BACK_BUFFER + 3;
585
586 // Check that our CLTV_EXPIRY is at least CLTV_CLAIM_BUFFER + ANTI_REORG_DELAY + LATENCY_GRACE_PERIOD_BLOCKS,
587 // ie that if the next-hop peer fails the HTLC within
588 // LATENCY_GRACE_PERIOD_BLOCKS then we'll still have CLTV_CLAIM_BUFFER left to timeout it onchain,
589 // then waiting ANTI_REORG_DELAY to be reorg-safe on the outbound HLTC and
590 // failing the corresponding htlc backward, and us now seeing the last block of ANTI_REORG_DELAY before
591 // LATENCY_GRACE_PERIOD_BLOCKS.
592 #[deny(const_err)]
593 #[allow(dead_code)]
594 const CHECK_CLTV_EXPIRY_SANITY: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - CLTV_CLAIM_BUFFER - ANTI_REORG_DELAY - LATENCY_GRACE_PERIOD_BLOCKS;
595
596 // Check for ability of an attacker to make us fail on-chain by delaying an HTLC claim. See
597 // ChannelMontior::would_broadcast_at_height for a description of why this is needed.
598 #[deny(const_err)]
599 #[allow(dead_code)]
600 const CHECK_CLTV_EXPIRY_SANITY_2: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - 2*CLTV_CLAIM_BUFFER;
601
602 /// Details of a channel, as returned by ChannelManager::list_channels and ChannelManager::list_usable_channels
603 #[derive(Clone)]
604 pub struct ChannelDetails {
605         /// The channel's ID (prior to funding transaction generation, this is a random 32 bytes,
606         /// thereafter this is the txid of the funding transaction xor the funding transaction output).
607         /// Note that this means this value is *not* persistent - it can change once during the
608         /// lifetime of the channel.
609         pub channel_id: [u8; 32],
610         /// The Channel's funding transaction output, if we've negotiated the funding transaction with
611         /// our counterparty already.
612         ///
613         /// Note that, if this has been set, `channel_id` will be equivalent to
614         /// `funding_txo.unwrap().to_channel_id()`.
615         pub funding_txo: Option<OutPoint>,
616         /// The position of the funding transaction in the chain. None if the funding transaction has
617         /// not yet been confirmed and the channel fully opened.
618         pub short_channel_id: Option<u64>,
619         /// The node_id of our counterparty
620         pub remote_network_id: PublicKey,
621         /// The Features the channel counterparty provided upon last connection.
622         /// Useful for routing as it is the most up-to-date copy of the counterparty's features and
623         /// many routing-relevant features are present in the init context.
624         pub counterparty_features: InitFeatures,
625         /// The value, in satoshis, of this channel as appears in the funding output
626         pub channel_value_satoshis: u64,
627         /// The user_id passed in to create_channel, or 0 if the channel was inbound.
628         pub user_id: u64,
629         /// The available outbound capacity for sending HTLCs to the remote peer. This does not include
630         /// any pending HTLCs which are not yet fully resolved (and, thus, who's balance is not
631         /// available for inclusion in new outbound HTLCs). This further does not include any pending
632         /// outgoing HTLCs which are awaiting some other resolution to be sent.
633         pub outbound_capacity_msat: u64,
634         /// The available inbound capacity for the remote peer to send HTLCs to us. This does not
635         /// include any pending HTLCs which are not yet fully resolved (and, thus, who's balance is not
636         /// available for inclusion in new inbound HTLCs).
637         /// Note that there are some corner cases not fully handled here, so the actual available
638         /// inbound capacity may be slightly higher than this.
639         pub inbound_capacity_msat: u64,
640         /// True if the channel was initiated (and thus funded) by us.
641         pub is_outbound: bool,
642         /// True if the channel is confirmed, funding_locked messages have been exchanged, and the
643         /// channel is not currently being shut down. `funding_locked` message exchange implies the
644         /// required confirmation count has been reached (and we were connected to the peer at some
645         /// point after the funding transaction received enough confirmations).
646         pub is_funding_locked: bool,
647         /// True if the channel is (a) confirmed and funding_locked messages have been exchanged, (b)
648         /// the peer is connected, (c) no monitor update failure is pending resolution, and (d) the
649         /// channel is not currently negotiating a shutdown.
650         ///
651         /// This is a strict superset of `is_funding_locked`.
652         pub is_usable: bool,
653         /// True if this channel is (or will be) publicly-announced.
654         pub is_public: bool,
655         /// Information on the fees and requirements that the counterparty requires when forwarding
656         /// payments to us through this channel.
657         pub counterparty_forwarding_info: Option<CounterpartyForwardingInfo>,
658 }
659
660 /// If a payment fails to send, it can be in one of several states. This enum is returned as the
661 /// Err() type describing which state the payment is in, see the description of individual enum
662 /// states for more.
663 #[derive(Clone, Debug)]
664 pub enum PaymentSendFailure {
665         /// A parameter which was passed to send_payment was invalid, preventing us from attempting to
666         /// send the payment at all. No channel state has been changed or messages sent to peers, and
667         /// once you've changed the parameter at error, you can freely retry the payment in full.
668         ParameterError(APIError),
669         /// A parameter in a single path which was passed to send_payment was invalid, preventing us
670         /// from attempting to send the payment at all. No channel state has been changed or messages
671         /// sent to peers, and once you've changed the parameter at error, you can freely retry the
672         /// payment in full.
673         ///
674         /// The results here are ordered the same as the paths in the route object which was passed to
675         /// send_payment.
676         PathParameterError(Vec<Result<(), APIError>>),
677         /// All paths which were attempted failed to send, with no channel state change taking place.
678         /// You can freely retry the payment in full (though you probably want to do so over different
679         /// paths than the ones selected).
680         AllFailedRetrySafe(Vec<APIError>),
681         /// Some paths which were attempted failed to send, though possibly not all. At least some
682         /// paths have irrevocably committed to the HTLC and retrying the payment in full would result
683         /// in over-/re-payment.
684         ///
685         /// The results here are ordered the same as the paths in the route object which was passed to
686         /// send_payment, and any Errs which are not APIError::MonitorUpdateFailed can be safely
687         /// retried (though there is currently no API with which to do so).
688         ///
689         /// Any entries which contain Err(APIError::MonitorUpdateFailed) or Ok(()) MUST NOT be retried
690         /// as they will result in over-/re-payment. These HTLCs all either successfully sent (in the
691         /// case of Ok(())) or will send once channel_monitor_updated is called on the next-hop channel
692         /// with the latest update_id.
693         PartialFailure(Vec<Result<(), APIError>>),
694 }
695
696 macro_rules! handle_error {
697         ($self: ident, $internal: expr, $counterparty_node_id: expr) => {
698                 match $internal {
699                         Ok(msg) => Ok(msg),
700                         Err(MsgHandleErrInternal { err, shutdown_finish }) => {
701                                 #[cfg(debug_assertions)]
702                                 {
703                                         // In testing, ensure there are no deadlocks where the lock is already held upon
704                                         // entering the macro.
705                                         assert!($self.channel_state.try_lock().is_ok());
706                                 }
707
708                                 let mut msg_events = Vec::with_capacity(2);
709
710                                 if let Some((shutdown_res, update_option)) = shutdown_finish {
711                                         $self.finish_force_close_channel(shutdown_res);
712                                         if let Some(update) = update_option {
713                                                 msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
714                                                         msg: update
715                                                 });
716                                         }
717                                 }
718
719                                 log_error!($self.logger, "{}", err.err);
720                                 if let msgs::ErrorAction::IgnoreError = err.action {
721                                 } else {
722                                         msg_events.push(events::MessageSendEvent::HandleError {
723                                                 node_id: $counterparty_node_id,
724                                                 action: err.action.clone()
725                                         });
726                                 }
727
728                                 if !msg_events.is_empty() {
729                                         $self.channel_state.lock().unwrap().pending_msg_events.append(&mut msg_events);
730                                 }
731
732                                 // Return error in case higher-API need one
733                                 Err(err)
734                         },
735                 }
736         }
737 }
738
739 macro_rules! break_chan_entry {
740         ($self: ident, $res: expr, $channel_state: expr, $entry: expr) => {
741                 match $res {
742                         Ok(res) => res,
743                         Err(ChannelError::Ignore(msg)) => {
744                                 break Err(MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore(msg), $entry.key().clone()))
745                         },
746                         Err(ChannelError::Close(msg)) => {
747                                 log_trace!($self.logger, "Closing channel {} due to Close-required error: {}", log_bytes!($entry.key()[..]), msg);
748                                 let (channel_id, mut chan) = $entry.remove_entry();
749                                 if let Some(short_id) = chan.get_short_channel_id() {
750                                         $channel_state.short_to_id.remove(&short_id);
751                                 }
752                                 break Err(MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, chan.force_shutdown(true), $self.get_channel_update(&chan).ok()))
753                         },
754                         Err(ChannelError::CloseDelayBroadcast(_)) => { panic!("Wait is only generated on receipt of channel_reestablish, which is handled by try_chan_entry, we don't bother to support it here"); }
755                 }
756         }
757 }
758
759 macro_rules! try_chan_entry {
760         ($self: ident, $res: expr, $channel_state: expr, $entry: expr) => {
761                 match $res {
762                         Ok(res) => res,
763                         Err(ChannelError::Ignore(msg)) => {
764                                 return Err(MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore(msg), $entry.key().clone()))
765                         },
766                         Err(ChannelError::Close(msg)) => {
767                                 log_trace!($self.logger, "Closing channel {} due to Close-required error: {}", log_bytes!($entry.key()[..]), msg);
768                                 let (channel_id, mut chan) = $entry.remove_entry();
769                                 if let Some(short_id) = chan.get_short_channel_id() {
770                                         $channel_state.short_to_id.remove(&short_id);
771                                 }
772                                 return Err(MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, chan.force_shutdown(true), $self.get_channel_update(&chan).ok()))
773                         },
774                         Err(ChannelError::CloseDelayBroadcast(msg)) => {
775                                 log_error!($self.logger, "Channel {} need to be shutdown but closing transactions not broadcast due to {}", log_bytes!($entry.key()[..]), msg);
776                                 let (channel_id, mut chan) = $entry.remove_entry();
777                                 if let Some(short_id) = chan.get_short_channel_id() {
778                                         $channel_state.short_to_id.remove(&short_id);
779                                 }
780                                 let shutdown_res = chan.force_shutdown(false);
781                                 return Err(MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, shutdown_res, $self.get_channel_update(&chan).ok()))
782                         }
783                 }
784         }
785 }
786
787 macro_rules! handle_monitor_err {
788         ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => {
789                 handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment, Vec::new(), Vec::new())
790         };
791         ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr, $failed_forwards: expr, $failed_fails: expr) => {
792                 match $err {
793                         ChannelMonitorUpdateErr::PermanentFailure => {
794                                 log_error!($self.logger, "Closing channel {} due to monitor update PermanentFailure", log_bytes!($entry.key()[..]));
795                                 let (channel_id, mut chan) = $entry.remove_entry();
796                                 if let Some(short_id) = chan.get_short_channel_id() {
797                                         $channel_state.short_to_id.remove(&short_id);
798                                 }
799                                 // TODO: $failed_fails is dropped here, which will cause other channels to hit the
800                                 // chain in a confused state! We need to move them into the ChannelMonitor which
801                                 // will be responsible for failing backwards once things confirm on-chain.
802                                 // It's ok that we drop $failed_forwards here - at this point we'd rather they
803                                 // broadcast HTLC-Timeout and pay the associated fees to get their funds back than
804                                 // us bother trying to claim it just to forward on to another peer. If we're
805                                 // splitting hairs we'd prefer to claim payments that were to us, but we haven't
806                                 // given up the preimage yet, so might as well just wait until the payment is
807                                 // retried, avoiding the on-chain fees.
808                                 let res: Result<(), _> = Err(MsgHandleErrInternal::from_finish_shutdown("ChannelMonitor storage failure".to_owned(), channel_id, chan.force_shutdown(true), $self.get_channel_update(&chan).ok()));
809                                 res
810                         },
811                         ChannelMonitorUpdateErr::TemporaryFailure => {
812                                 log_info!($self.logger, "Disabling channel {} due to monitor update TemporaryFailure. On restore will send {} and process {} forwards and {} fails",
813                                                 log_bytes!($entry.key()[..]),
814                                                 if $resend_commitment && $resend_raa {
815                                                                 match $action_type {
816                                                                         RAACommitmentOrder::CommitmentFirst => { "commitment then RAA" },
817                                                                         RAACommitmentOrder::RevokeAndACKFirst => { "RAA then commitment" },
818                                                                 }
819                                                         } else if $resend_commitment { "commitment" }
820                                                         else if $resend_raa { "RAA" }
821                                                         else { "nothing" },
822                                                 (&$failed_forwards as &Vec<(PendingHTLCInfo, u64)>).len(),
823                                                 (&$failed_fails as &Vec<(HTLCSource, PaymentHash, HTLCFailReason)>).len());
824                                 if !$resend_commitment {
825                                         debug_assert!($action_type == RAACommitmentOrder::RevokeAndACKFirst || !$resend_raa);
826                                 }
827                                 if !$resend_raa {
828                                         debug_assert!($action_type == RAACommitmentOrder::CommitmentFirst || !$resend_commitment);
829                                 }
830                                 $entry.get_mut().monitor_update_failed($resend_raa, $resend_commitment, $failed_forwards, $failed_fails);
831                                 Err(MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore("Failed to update ChannelMonitor".to_owned()), *$entry.key()))
832                         },
833                 }
834         }
835 }
836
837 macro_rules! return_monitor_err {
838         ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => {
839                 return handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment);
840         };
841         ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr, $failed_forwards: expr, $failed_fails: expr) => {
842                 return handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment, $failed_forwards, $failed_fails);
843         }
844 }
845
846 // Does not break in case of TemporaryFailure!
847 macro_rules! maybe_break_monitor_err {
848         ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => {
849                 match (handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment), $err) {
850                         (e, ChannelMonitorUpdateErr::PermanentFailure) => {
851                                 break e;
852                         },
853                         (_, ChannelMonitorUpdateErr::TemporaryFailure) => { },
854                 }
855         }
856 }
857
858 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> ChannelManager<Signer, M, T, K, F, L>
859         where M::Target: chain::Watch<Signer>,
860         T::Target: BroadcasterInterface,
861         K::Target: KeysInterface<Signer = Signer>,
862         F::Target: FeeEstimator,
863         L::Target: Logger,
864 {
865         /// Constructs a new ChannelManager to hold several channels and route between them.
866         ///
867         /// This is the main "logic hub" for all channel-related actions, and implements
868         /// ChannelMessageHandler.
869         ///
870         /// Non-proportional fees are fixed according to our risk using the provided fee estimator.
871         ///
872         /// panics if channel_value_satoshis is >= `MAX_FUNDING_SATOSHIS`!
873         ///
874         /// Users need to notify the new ChannelManager when a new block is connected or
875         /// disconnected using its `block_connected` and `block_disconnected` methods, starting
876         /// from after `params.latest_hash`.
877         pub fn new(fee_est: F, chain_monitor: M, tx_broadcaster: T, logger: L, keys_manager: K, config: UserConfig, params: ChainParameters) -> Self {
878                 let mut secp_ctx = Secp256k1::new();
879                 secp_ctx.seeded_randomize(&keys_manager.get_secure_random_bytes());
880
881                 ChannelManager {
882                         default_configuration: config.clone(),
883                         genesis_hash: genesis_block(params.network).header.block_hash(),
884                         fee_estimator: fee_est,
885                         chain_monitor,
886                         tx_broadcaster,
887
888                         best_block: RwLock::new(params.best_block),
889
890                         channel_state: Mutex::new(ChannelHolder{
891                                 by_id: HashMap::new(),
892                                 short_to_id: HashMap::new(),
893                                 forward_htlcs: HashMap::new(),
894                                 claimable_htlcs: HashMap::new(),
895                                 pending_msg_events: Vec::new(),
896                         }),
897                         pending_inbound_payments: Mutex::new(HashMap::new()),
898
899                         our_network_key: keys_manager.get_node_secret(),
900                         our_network_pubkey: PublicKey::from_secret_key(&secp_ctx, &keys_manager.get_node_secret()),
901                         secp_ctx,
902
903                         last_node_announcement_serial: AtomicUsize::new(0),
904                         highest_seen_timestamp: AtomicUsize::new(0),
905
906                         per_peer_state: RwLock::new(HashMap::new()),
907
908                         pending_events: Mutex::new(Vec::new()),
909                         pending_background_events: Mutex::new(Vec::new()),
910                         total_consistency_lock: RwLock::new(()),
911                         persistence_notifier: PersistenceNotifier::new(),
912
913                         keys_manager,
914
915                         logger,
916                 }
917         }
918
919         /// Gets the current configuration applied to all new channels,  as
920         pub fn get_current_default_configuration(&self) -> &UserConfig {
921                 &self.default_configuration
922         }
923
924         /// Creates a new outbound channel to the given remote node and with the given value.
925         ///
926         /// user_id will be provided back as user_channel_id in FundingGenerationReady events to allow
927         /// tracking of which events correspond with which create_channel call. Note that the
928         /// user_channel_id defaults to 0 for inbound channels, so you may wish to avoid using 0 for
929         /// user_id here. user_id has no meaning inside of LDK, it is simply copied to events and
930         /// otherwise ignored.
931         ///
932         /// If successful, will generate a SendOpenChannel message event, so you should probably poll
933         /// PeerManager::process_events afterwards.
934         ///
935         /// Raises APIError::APIMisuseError when channel_value_satoshis > 2**24 or push_msat is
936         /// greater than channel_value_satoshis * 1k or channel_value_satoshis is < 1000.
937         pub fn create_channel(&self, their_network_key: PublicKey, channel_value_satoshis: u64, push_msat: u64, user_id: u64, override_config: Option<UserConfig>) -> Result<(), APIError> {
938                 if channel_value_satoshis < 1000 {
939                         return Err(APIError::APIMisuseError { err: format!("Channel value must be at least 1000 satoshis. It was {}", channel_value_satoshis) });
940                 }
941
942                 let config = if override_config.is_some() { override_config.as_ref().unwrap() } else { &self.default_configuration };
943                 let channel = Channel::new_outbound(&self.fee_estimator, &self.keys_manager, their_network_key, channel_value_satoshis, push_msat, user_id, config)?;
944                 let res = channel.get_open_channel(self.genesis_hash.clone());
945
946                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
947                 // We want to make sure the lock is actually acquired by PersistenceNotifierGuard.
948                 debug_assert!(&self.total_consistency_lock.try_write().is_err());
949
950                 let mut channel_state = self.channel_state.lock().unwrap();
951                 match channel_state.by_id.entry(channel.channel_id()) {
952                         hash_map::Entry::Occupied(_) => {
953                                 if cfg!(feature = "fuzztarget") {
954                                         return Err(APIError::APIMisuseError { err: "Fuzzy bad RNG".to_owned() });
955                                 } else {
956                                         panic!("RNG is bad???");
957                                 }
958                         },
959                         hash_map::Entry::Vacant(entry) => { entry.insert(channel); }
960                 }
961                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
962                         node_id: their_network_key,
963                         msg: res,
964                 });
965                 Ok(())
966         }
967
968         fn list_channels_with_filter<Fn: FnMut(&(&[u8; 32], &Channel<Signer>)) -> bool>(&self, f: Fn) -> Vec<ChannelDetails> {
969                 let mut res = Vec::new();
970                 {
971                         let channel_state = self.channel_state.lock().unwrap();
972                         res.reserve(channel_state.by_id.len());
973                         for (channel_id, channel) in channel_state.by_id.iter().filter(f) {
974                                 let (inbound_capacity_msat, outbound_capacity_msat) = channel.get_inbound_outbound_available_balance_msat();
975                                 res.push(ChannelDetails {
976                                         channel_id: (*channel_id).clone(),
977                                         funding_txo: channel.get_funding_txo(),
978                                         short_channel_id: channel.get_short_channel_id(),
979                                         remote_network_id: channel.get_counterparty_node_id(),
980                                         counterparty_features: InitFeatures::empty(),
981                                         channel_value_satoshis: channel.get_value_satoshis(),
982                                         inbound_capacity_msat,
983                                         outbound_capacity_msat,
984                                         user_id: channel.get_user_id(),
985                                         is_outbound: channel.is_outbound(),
986                                         is_funding_locked: channel.is_usable(),
987                                         is_usable: channel.is_live(),
988                                         is_public: channel.should_announce(),
989                                         counterparty_forwarding_info: channel.counterparty_forwarding_info(),
990                                 });
991                         }
992                 }
993                 let per_peer_state = self.per_peer_state.read().unwrap();
994                 for chan in res.iter_mut() {
995                         if let Some(peer_state) = per_peer_state.get(&chan.remote_network_id) {
996                                 chan.counterparty_features = peer_state.lock().unwrap().latest_features.clone();
997                         }
998                 }
999                 res
1000         }
1001
1002         /// Gets the list of open channels, in random order. See ChannelDetail field documentation for
1003         /// more information.
1004         pub fn list_channels(&self) -> Vec<ChannelDetails> {
1005                 self.list_channels_with_filter(|_| true)
1006         }
1007
1008         /// Gets the list of usable channels, in random order. Useful as an argument to
1009         /// get_route to ensure non-announced channels are used.
1010         ///
1011         /// These are guaranteed to have their [`ChannelDetails::is_usable`] value set to true, see the
1012         /// documentation for [`ChannelDetails::is_usable`] for more info on exactly what the criteria
1013         /// are.
1014         pub fn list_usable_channels(&self) -> Vec<ChannelDetails> {
1015                 // Note we use is_live here instead of usable which leads to somewhat confused
1016                 // internal/external nomenclature, but that's ok cause that's probably what the user
1017                 // really wanted anyway.
1018                 self.list_channels_with_filter(|&(_, ref channel)| channel.is_live())
1019         }
1020
1021         /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
1022         /// will be accepted on the given channel, and after additional timeout/the closing of all
1023         /// pending HTLCs, the channel will be closed on chain.
1024         ///
1025         /// May generate a SendShutdown message event on success, which should be relayed.
1026         pub fn close_channel(&self, channel_id: &[u8; 32]) -> Result<(), APIError> {
1027                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
1028
1029                 let (mut failed_htlcs, chan_option) = {
1030                         let mut channel_state_lock = self.channel_state.lock().unwrap();
1031                         let channel_state = &mut *channel_state_lock;
1032                         match channel_state.by_id.entry(channel_id.clone()) {
1033                                 hash_map::Entry::Occupied(mut chan_entry) => {
1034                                         let (shutdown_msg, failed_htlcs) = chan_entry.get_mut().get_shutdown()?;
1035                                         channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
1036                                                 node_id: chan_entry.get().get_counterparty_node_id(),
1037                                                 msg: shutdown_msg
1038                                         });
1039                                         if chan_entry.get().is_shutdown() {
1040                                                 if let Some(short_id) = chan_entry.get().get_short_channel_id() {
1041                                                         channel_state.short_to_id.remove(&short_id);
1042                                                 }
1043                                                 (failed_htlcs, Some(chan_entry.remove_entry().1))
1044                                         } else { (failed_htlcs, None) }
1045                                 },
1046                                 hash_map::Entry::Vacant(_) => return Err(APIError::ChannelUnavailable{err: "No such channel".to_owned()})
1047                         }
1048                 };
1049                 for htlc_source in failed_htlcs.drain(..) {
1050                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
1051                 }
1052                 let chan_update = if let Some(chan) = chan_option {
1053                         if let Ok(update) = self.get_channel_update(&chan) {
1054                                 Some(update)
1055                         } else { None }
1056                 } else { None };
1057
1058                 if let Some(update) = chan_update {
1059                         let mut channel_state = self.channel_state.lock().unwrap();
1060                         channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
1061                                 msg: update
1062                         });
1063                 }
1064
1065                 Ok(())
1066         }
1067
1068         #[inline]
1069         fn finish_force_close_channel(&self, shutdown_res: ShutdownResult) {
1070                 let (monitor_update_option, mut failed_htlcs) = shutdown_res;
1071                 log_trace!(self.logger, "Finishing force-closure of channel {} HTLCs to fail", failed_htlcs.len());
1072                 for htlc_source in failed_htlcs.drain(..) {
1073                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
1074                 }
1075                 if let Some((funding_txo, monitor_update)) = monitor_update_option {
1076                         // There isn't anything we can do if we get an update failure - we're already
1077                         // force-closing. The monitor update on the required in-memory copy should broadcast
1078                         // the latest local state, which is the best we can do anyway. Thus, it is safe to
1079                         // ignore the result here.
1080                         let _ = self.chain_monitor.update_channel(funding_txo, monitor_update);
1081                 }
1082         }
1083
1084         fn force_close_channel_with_peer(&self, channel_id: &[u8; 32], peer_node_id: Option<&PublicKey>) -> Result<PublicKey, APIError> {
1085                 let mut chan = {
1086                         let mut channel_state_lock = self.channel_state.lock().unwrap();
1087                         let channel_state = &mut *channel_state_lock;
1088                         if let hash_map::Entry::Occupied(chan) = channel_state.by_id.entry(channel_id.clone()) {
1089                                 if let Some(node_id) = peer_node_id {
1090                                         if chan.get().get_counterparty_node_id() != *node_id {
1091                                                 return Err(APIError::ChannelUnavailable{err: "No such channel".to_owned()});
1092                                         }
1093                                 }
1094                                 if let Some(short_id) = chan.get().get_short_channel_id() {
1095                                         channel_state.short_to_id.remove(&short_id);
1096                                 }
1097                                 chan.remove_entry().1
1098                         } else {
1099                                 return Err(APIError::ChannelUnavailable{err: "No such channel".to_owned()});
1100                         }
1101                 };
1102                 log_trace!(self.logger, "Force-closing channel {}", log_bytes!(channel_id[..]));
1103                 self.finish_force_close_channel(chan.force_shutdown(true));
1104                 if let Ok(update) = self.get_channel_update(&chan) {
1105                         let mut channel_state = self.channel_state.lock().unwrap();
1106                         channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
1107                                 msg: update
1108                         });
1109                 }
1110
1111                 Ok(chan.get_counterparty_node_id())
1112         }
1113
1114         /// Force closes a channel, immediately broadcasting the latest local commitment transaction to
1115         /// the chain and rejecting new HTLCs on the given channel. Fails if channel_id is unknown to the manager.
1116         pub fn force_close_channel(&self, channel_id: &[u8; 32]) -> Result<(), APIError> {
1117                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
1118                 match self.force_close_channel_with_peer(channel_id, None) {
1119                         Ok(counterparty_node_id) => {
1120                                 self.channel_state.lock().unwrap().pending_msg_events.push(
1121                                         events::MessageSendEvent::HandleError {
1122                                                 node_id: counterparty_node_id,
1123                                                 action: msgs::ErrorAction::SendErrorMessage {
1124                                                         msg: msgs::ErrorMessage { channel_id: *channel_id, data: "Channel force-closed".to_owned() }
1125                                                 },
1126                                         }
1127                                 );
1128                                 Ok(())
1129                         },
1130                         Err(e) => Err(e)
1131                 }
1132         }
1133
1134         /// Force close all channels, immediately broadcasting the latest local commitment transaction
1135         /// for each to the chain and rejecting new HTLCs on each.
1136         pub fn force_close_all_channels(&self) {
1137                 for chan in self.list_channels() {
1138                         let _ = self.force_close_channel(&chan.channel_id);
1139                 }
1140         }
1141
1142         fn decode_update_add_htlc_onion(&self, msg: &msgs::UpdateAddHTLC) -> (PendingHTLCStatus, MutexGuard<ChannelHolder<Signer>>) {
1143                 macro_rules! return_malformed_err {
1144                         ($msg: expr, $err_code: expr) => {
1145                                 {
1146                                         log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
1147                                         return (PendingHTLCStatus::Fail(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
1148                                                 channel_id: msg.channel_id,
1149                                                 htlc_id: msg.htlc_id,
1150                                                 sha256_of_onion: Sha256::hash(&msg.onion_routing_packet.hop_data).into_inner(),
1151                                                 failure_code: $err_code,
1152                                         })), self.channel_state.lock().unwrap());
1153                                 }
1154                         }
1155                 }
1156
1157                 if let Err(_) = msg.onion_routing_packet.public_key {
1158                         return_malformed_err!("invalid ephemeral pubkey", 0x8000 | 0x4000 | 6);
1159                 }
1160
1161                 let shared_secret = {
1162                         let mut arr = [0; 32];
1163                         arr.copy_from_slice(&SharedSecret::new(&msg.onion_routing_packet.public_key.unwrap(), &self.our_network_key)[..]);
1164                         arr
1165                 };
1166                 let (rho, mu) = onion_utils::gen_rho_mu_from_shared_secret(&shared_secret);
1167
1168                 if msg.onion_routing_packet.version != 0 {
1169                         //TODO: Spec doesn't indicate if we should only hash hop_data here (and in other
1170                         //sha256_of_onion error data packets), or the entire onion_routing_packet. Either way,
1171                         //the hash doesn't really serve any purpose - in the case of hashing all data, the
1172                         //receiving node would have to brute force to figure out which version was put in the
1173                         //packet by the node that send us the message, in the case of hashing the hop_data, the
1174                         //node knows the HMAC matched, so they already know what is there...
1175                         return_malformed_err!("Unknown onion packet version", 0x8000 | 0x4000 | 4);
1176                 }
1177
1178                 let mut hmac = HmacEngine::<Sha256>::new(&mu);
1179                 hmac.input(&msg.onion_routing_packet.hop_data);
1180                 hmac.input(&msg.payment_hash.0[..]);
1181                 if !fixed_time_eq(&Hmac::from_engine(hmac).into_inner(), &msg.onion_routing_packet.hmac) {
1182                         return_malformed_err!("HMAC Check failed", 0x8000 | 0x4000 | 5);
1183                 }
1184
1185                 let mut channel_state = None;
1186                 macro_rules! return_err {
1187                         ($msg: expr, $err_code: expr, $data: expr) => {
1188                                 {
1189                                         log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
1190                                         if channel_state.is_none() {
1191                                                 channel_state = Some(self.channel_state.lock().unwrap());
1192                                         }
1193                                         return (PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
1194                                                 channel_id: msg.channel_id,
1195                                                 htlc_id: msg.htlc_id,
1196                                                 reason: onion_utils::build_first_hop_failure_packet(&shared_secret, $err_code, $data),
1197                                         })), channel_state.unwrap());
1198                                 }
1199                         }
1200                 }
1201
1202                 let mut chacha = ChaCha20::new(&rho, &[0u8; 8]);
1203                 let mut chacha_stream = ChaChaReader { chacha: &mut chacha, read: Cursor::new(&msg.onion_routing_packet.hop_data[..]) };
1204                 let (next_hop_data, next_hop_hmac) = {
1205                         match msgs::OnionHopData::read(&mut chacha_stream) {
1206                                 Err(err) => {
1207                                         let error_code = match err {
1208                                                 msgs::DecodeError::UnknownVersion => 0x4000 | 1, // unknown realm byte
1209                                                 msgs::DecodeError::UnknownRequiredFeature|
1210                                                 msgs::DecodeError::InvalidValue|
1211                                                 msgs::DecodeError::ShortRead => 0x4000 | 22, // invalid_onion_payload
1212                                                 _ => 0x2000 | 2, // Should never happen
1213                                         };
1214                                         return_err!("Unable to decode our hop data", error_code, &[0;0]);
1215                                 },
1216                                 Ok(msg) => {
1217                                         let mut hmac = [0; 32];
1218                                         if let Err(_) = chacha_stream.read_exact(&mut hmac[..]) {
1219                                                 return_err!("Unable to decode hop data", 0x4000 | 22, &[0;0]);
1220                                         }
1221                                         (msg, hmac)
1222                                 },
1223                         }
1224                 };
1225
1226                 let pending_forward_info = if next_hop_hmac == [0; 32] {
1227                                 #[cfg(test)]
1228                                 {
1229                                         // In tests, make sure that the initial onion pcket data is, at least, non-0.
1230                                         // We could do some fancy randomness test here, but, ehh, whatever.
1231                                         // This checks for the issue where you can calculate the path length given the
1232                                         // onion data as all the path entries that the originator sent will be here
1233                                         // as-is (and were originally 0s).
1234                                         // Of course reverse path calculation is still pretty easy given naive routing
1235                                         // algorithms, but this fixes the most-obvious case.
1236                                         let mut next_bytes = [0; 32];
1237                                         chacha_stream.read_exact(&mut next_bytes).unwrap();
1238                                         assert_ne!(next_bytes[..], [0; 32][..]);
1239                                         chacha_stream.read_exact(&mut next_bytes).unwrap();
1240                                         assert_ne!(next_bytes[..], [0; 32][..]);
1241                                 }
1242
1243                                 // OUR PAYMENT!
1244                                 // final_expiry_too_soon
1245                                 // We have to have some headroom to broadcast on chain if we have the preimage, so make sure we have at least
1246                                 // HTLC_FAIL_BACK_BUFFER blocks to go.
1247                                 // Also, ensure that, in the case of an unknown payment hash, our payment logic has enough time to fail the HTLC backward
1248                                 // before our onchain logic triggers a channel closure (see HTLC_FAIL_BACK_BUFFER rational).
1249                                 if (msg.cltv_expiry as u64) <= self.best_block.read().unwrap().height() as u64 + HTLC_FAIL_BACK_BUFFER as u64 + 1 {
1250                                         return_err!("The final CLTV expiry is too soon to handle", 17, &[0;0]);
1251                                 }
1252                                 // final_incorrect_htlc_amount
1253                                 if next_hop_data.amt_to_forward > msg.amount_msat {
1254                                         return_err!("Upstream node sent less than we were supposed to receive in payment", 19, &byte_utils::be64_to_array(msg.amount_msat));
1255                                 }
1256                                 // final_incorrect_cltv_expiry
1257                                 if next_hop_data.outgoing_cltv_value != msg.cltv_expiry {
1258                                         return_err!("Upstream node set CLTV to the wrong value", 18, &byte_utils::be32_to_array(msg.cltv_expiry));
1259                                 }
1260
1261                                 let payment_data = match next_hop_data.format {
1262                                         msgs::OnionHopDataFormat::Legacy { .. } => None,
1263                                         msgs::OnionHopDataFormat::NonFinalNode { .. } => return_err!("Got non final data with an HMAC of 0", 0x4000 | 22, &[0;0]),
1264                                         msgs::OnionHopDataFormat::FinalNode { payment_data } => payment_data,
1265                                 };
1266
1267                                 if payment_data.is_none() {
1268                                         return_err!("We require payment_secrets", 0x4000|0x2000|3, &[0;0]);
1269                                 }
1270
1271                                 // Note that we could obviously respond immediately with an update_fulfill_htlc
1272                                 // message, however that would leak that we are the recipient of this payment, so
1273                                 // instead we stay symmetric with the forwarding case, only responding (after a
1274                                 // delay) once they've send us a commitment_signed!
1275
1276                                 PendingHTLCStatus::Forward(PendingHTLCInfo {
1277                                         routing: PendingHTLCRouting::Receive {
1278                                                 payment_data: payment_data.unwrap(),
1279                                                 incoming_cltv_expiry: msg.cltv_expiry,
1280                                         },
1281                                         payment_hash: msg.payment_hash.clone(),
1282                                         incoming_shared_secret: shared_secret,
1283                                         amt_to_forward: next_hop_data.amt_to_forward,
1284                                         outgoing_cltv_value: next_hop_data.outgoing_cltv_value,
1285                                 })
1286                         } else {
1287                                 let mut new_packet_data = [0; 20*65];
1288                                 let read_pos = chacha_stream.read(&mut new_packet_data).unwrap();
1289                                 #[cfg(debug_assertions)]
1290                                 {
1291                                         // Check two things:
1292                                         // a) that the behavior of our stream here will return Ok(0) even if the TLV
1293                                         //    read above emptied out our buffer and the unwrap() wont needlessly panic
1294                                         // b) that we didn't somehow magically end up with extra data.
1295                                         let mut t = [0; 1];
1296                                         debug_assert!(chacha_stream.read(&mut t).unwrap() == 0);
1297                                 }
1298                                 // Once we've emptied the set of bytes our peer gave us, encrypt 0 bytes until we
1299                                 // fill the onion hop data we'll forward to our next-hop peer.
1300                                 chacha_stream.chacha.process_in_place(&mut new_packet_data[read_pos..]);
1301
1302                                 let mut new_pubkey = msg.onion_routing_packet.public_key.unwrap();
1303
1304                                 let blinding_factor = {
1305                                         let mut sha = Sha256::engine();
1306                                         sha.input(&new_pubkey.serialize()[..]);
1307                                         sha.input(&shared_secret);
1308                                         Sha256::from_engine(sha).into_inner()
1309                                 };
1310
1311                                 let public_key = if let Err(e) = new_pubkey.mul_assign(&self.secp_ctx, &blinding_factor[..]) {
1312                                         Err(e)
1313                                 } else { Ok(new_pubkey) };
1314
1315                                 let outgoing_packet = msgs::OnionPacket {
1316                                         version: 0,
1317                                         public_key,
1318                                         hop_data: new_packet_data,
1319                                         hmac: next_hop_hmac.clone(),
1320                                 };
1321
1322                                 let short_channel_id = match next_hop_data.format {
1323                                         msgs::OnionHopDataFormat::Legacy { short_channel_id } => short_channel_id,
1324                                         msgs::OnionHopDataFormat::NonFinalNode { short_channel_id } => short_channel_id,
1325                                         msgs::OnionHopDataFormat::FinalNode { .. } => {
1326                                                 return_err!("Final Node OnionHopData provided for us as an intermediary node", 0x4000 | 22, &[0;0]);
1327                                         },
1328                                 };
1329
1330                                 PendingHTLCStatus::Forward(PendingHTLCInfo {
1331                                         routing: PendingHTLCRouting::Forward {
1332                                                 onion_packet: outgoing_packet,
1333                                                 short_channel_id,
1334                                         },
1335                                         payment_hash: msg.payment_hash.clone(),
1336                                         incoming_shared_secret: shared_secret,
1337                                         amt_to_forward: next_hop_data.amt_to_forward,
1338                                         outgoing_cltv_value: next_hop_data.outgoing_cltv_value,
1339                                 })
1340                         };
1341
1342                 channel_state = Some(self.channel_state.lock().unwrap());
1343                 if let &PendingHTLCStatus::Forward(PendingHTLCInfo { ref routing, ref amt_to_forward, ref outgoing_cltv_value, .. }) = &pending_forward_info {
1344                         // If short_channel_id is 0 here, we'll reject the HTLC as there cannot be a channel
1345                         // with a short_channel_id of 0. This is important as various things later assume
1346                         // short_channel_id is non-0 in any ::Forward.
1347                         if let &PendingHTLCRouting::Forward { ref short_channel_id, .. } = routing {
1348                                 let id_option = channel_state.as_ref().unwrap().short_to_id.get(&short_channel_id).cloned();
1349                                 let forwarding_id = match id_option {
1350                                         None => { // unknown_next_peer
1351                                                 return_err!("Don't have available channel for forwarding as requested.", 0x4000 | 10, &[0;0]);
1352                                         },
1353                                         Some(id) => id.clone(),
1354                                 };
1355                                 if let Some((err, code, chan_update)) = loop {
1356                                         let chan = channel_state.as_mut().unwrap().by_id.get_mut(&forwarding_id).unwrap();
1357
1358                                         // Note that we could technically not return an error yet here and just hope
1359                                         // that the connection is reestablished or monitor updated by the time we get
1360                                         // around to doing the actual forward, but better to fail early if we can and
1361                                         // hopefully an attacker trying to path-trace payments cannot make this occur
1362                                         // on a small/per-node/per-channel scale.
1363                                         if !chan.is_live() { // channel_disabled
1364                                                 break Some(("Forwarding channel is not in a ready state.", 0x1000 | 20, Some(self.get_channel_update(chan).unwrap())));
1365                                         }
1366                                         if *amt_to_forward < chan.get_counterparty_htlc_minimum_msat() { // amount_below_minimum
1367                                                 break Some(("HTLC amount was below the htlc_minimum_msat", 0x1000 | 11, Some(self.get_channel_update(chan).unwrap())));
1368                                         }
1369                                         let fee = amt_to_forward.checked_mul(chan.get_fee_proportional_millionths() as u64).and_then(|prop_fee| { (prop_fee / 1000000).checked_add(chan.get_holder_fee_base_msat(&self.fee_estimator) as u64) });
1370                                         if fee.is_none() || msg.amount_msat < fee.unwrap() || (msg.amount_msat - fee.unwrap()) < *amt_to_forward { // fee_insufficient
1371                                                 break Some(("Prior hop has deviated from specified fees parameters or origin node has obsolete ones", 0x1000 | 12, Some(self.get_channel_update(chan).unwrap())));
1372                                         }
1373                                         if (msg.cltv_expiry as u64) < (*outgoing_cltv_value) as u64 + chan.get_cltv_expiry_delta() as u64 { // incorrect_cltv_expiry
1374                                                 break Some(("Forwarding node has tampered with the intended HTLC values or origin node has an obsolete cltv_expiry_delta", 0x1000 | 13, Some(self.get_channel_update(chan).unwrap())));
1375                                         }
1376                                         let cur_height = self.best_block.read().unwrap().height() + 1;
1377                                         // Theoretically, channel counterparty shouldn't send us a HTLC expiring now, but we want to be robust wrt to counterparty
1378                                         // packet sanitization (see HTLC_FAIL_BACK_BUFFER rational)
1379                                         if msg.cltv_expiry <= cur_height + HTLC_FAIL_BACK_BUFFER as u32 { // expiry_too_soon
1380                                                 break Some(("CLTV expiry is too close", 0x1000 | 14, Some(self.get_channel_update(chan).unwrap())));
1381                                         }
1382                                         if msg.cltv_expiry > cur_height + CLTV_FAR_FAR_AWAY as u32 { // expiry_too_far
1383                                                 break Some(("CLTV expiry is too far in the future", 21, None));
1384                                         }
1385                                         // In theory, we would be safe against unitentional channel-closure, if we only required a margin of LATENCY_GRACE_PERIOD_BLOCKS.
1386                                         // But, to be safe against policy reception, we use a longuer delay.
1387                                         if (*outgoing_cltv_value) as u64 <= (cur_height + HTLC_FAIL_BACK_BUFFER) as u64 {
1388                                                 break Some(("Outgoing CLTV value is too soon", 0x1000 | 14, Some(self.get_channel_update(chan).unwrap())));
1389                                         }
1390
1391                                         break None;
1392                                 }
1393                                 {
1394                                         let mut res = Vec::with_capacity(8 + 128);
1395                                         if let Some(chan_update) = chan_update {
1396                                                 if code == 0x1000 | 11 || code == 0x1000 | 12 {
1397                                                         res.extend_from_slice(&byte_utils::be64_to_array(msg.amount_msat));
1398                                                 }
1399                                                 else if code == 0x1000 | 13 {
1400                                                         res.extend_from_slice(&byte_utils::be32_to_array(msg.cltv_expiry));
1401                                                 }
1402                                                 else if code == 0x1000 | 20 {
1403                                                         // TODO: underspecified, follow https://github.com/lightningnetwork/lightning-rfc/issues/791
1404                                                         res.extend_from_slice(&byte_utils::be16_to_array(0));
1405                                                 }
1406                                                 res.extend_from_slice(&chan_update.encode_with_len()[..]);
1407                                         }
1408                                         return_err!(err, code, &res[..]);
1409                                 }
1410                         }
1411                 }
1412
1413                 (pending_forward_info, channel_state.unwrap())
1414         }
1415
1416         /// only fails if the channel does not yet have an assigned short_id
1417         /// May be called with channel_state already locked!
1418         fn get_channel_update(&self, chan: &Channel<Signer>) -> Result<msgs::ChannelUpdate, LightningError> {
1419                 let short_channel_id = match chan.get_short_channel_id() {
1420                         None => return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError}),
1421                         Some(id) => id,
1422                 };
1423
1424                 let were_node_one = PublicKey::from_secret_key(&self.secp_ctx, &self.our_network_key).serialize()[..] < chan.get_counterparty_node_id().serialize()[..];
1425
1426                 let unsigned = msgs::UnsignedChannelUpdate {
1427                         chain_hash: self.genesis_hash,
1428                         short_channel_id,
1429                         timestamp: chan.get_update_time_counter(),
1430                         flags: (!were_node_one) as u8 | ((!chan.is_live() as u8) << 1),
1431                         cltv_expiry_delta: chan.get_cltv_expiry_delta(),
1432                         htlc_minimum_msat: chan.get_counterparty_htlc_minimum_msat(),
1433                         htlc_maximum_msat: OptionalField::Present(chan.get_announced_htlc_max_msat()),
1434                         fee_base_msat: chan.get_holder_fee_base_msat(&self.fee_estimator),
1435                         fee_proportional_millionths: chan.get_fee_proportional_millionths(),
1436                         excess_data: Vec::new(),
1437                 };
1438
1439                 let msg_hash = Sha256dHash::hash(&unsigned.encode()[..]);
1440                 let sig = self.secp_ctx.sign(&hash_to_message!(&msg_hash[..]), &self.our_network_key);
1441
1442                 Ok(msgs::ChannelUpdate {
1443                         signature: sig,
1444                         contents: unsigned
1445                 })
1446         }
1447
1448         // Only public for testing, this should otherwise never be called direcly
1449         pub(crate) fn send_payment_along_path(&self, path: &Vec<RouteHop>, payment_hash: &PaymentHash, payment_secret: &Option<PaymentSecret>, total_value: u64, cur_height: u32) -> Result<(), APIError> {
1450                 log_trace!(self.logger, "Attempting to send payment for path with next hop {}", path.first().unwrap().short_channel_id);
1451                 let prng_seed = self.keys_manager.get_secure_random_bytes();
1452                 let session_priv = SecretKey::from_slice(&self.keys_manager.get_secure_random_bytes()[..]).expect("RNG is busted");
1453
1454                 let onion_keys = onion_utils::construct_onion_keys(&self.secp_ctx, &path, &session_priv)
1455                         .map_err(|_| APIError::RouteError{err: "Pubkey along hop was maliciously selected"})?;
1456                 let (onion_payloads, htlc_msat, htlc_cltv) = onion_utils::build_onion_payloads(path, total_value, payment_secret, cur_height)?;
1457                 if onion_utils::route_size_insane(&onion_payloads) {
1458                         return Err(APIError::RouteError{err: "Route size too large considering onion data"});
1459                 }
1460                 let onion_packet = onion_utils::construct_onion_packet(onion_payloads, onion_keys, prng_seed, payment_hash);
1461
1462                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
1463
1464                 let err: Result<(), _> = loop {
1465                         let mut channel_lock = self.channel_state.lock().unwrap();
1466                         let id = match channel_lock.short_to_id.get(&path.first().unwrap().short_channel_id) {
1467                                 None => return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()}),
1468                                 Some(id) => id.clone(),
1469                         };
1470
1471                         let channel_state = &mut *channel_lock;
1472                         if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(id) {
1473                                 match {
1474                                         if chan.get().get_counterparty_node_id() != path.first().unwrap().pubkey {
1475                                                 return Err(APIError::RouteError{err: "Node ID mismatch on first hop!"});
1476                                         }
1477                                         if !chan.get().is_live() {
1478                                                 return Err(APIError::ChannelUnavailable{err: "Peer for first hop currently disconnected/pending monitor update!".to_owned()});
1479                                         }
1480                                         break_chan_entry!(self, chan.get_mut().send_htlc_and_commit(htlc_msat, payment_hash.clone(), htlc_cltv, HTLCSource::OutboundRoute {
1481                                                 path: path.clone(),
1482                                                 session_priv: session_priv.clone(),
1483                                                 first_hop_htlc_msat: htlc_msat,
1484                                         }, onion_packet, &self.logger), channel_state, chan)
1485                                 } {
1486                                         Some((update_add, commitment_signed, monitor_update)) => {
1487                                                 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
1488                                                         maybe_break_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, true);
1489                                                         // Note that MonitorUpdateFailed here indicates (per function docs)
1490                                                         // that we will resend the commitment update once monitor updating
1491                                                         // is restored. Therefore, we must return an error indicating that
1492                                                         // it is unsafe to retry the payment wholesale, which we do in the
1493                                                         // send_payment check for MonitorUpdateFailed, below.
1494                                                         return Err(APIError::MonitorUpdateFailed);
1495                                                 }
1496
1497                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
1498                                                         node_id: path.first().unwrap().pubkey,
1499                                                         updates: msgs::CommitmentUpdate {
1500                                                                 update_add_htlcs: vec![update_add],
1501                                                                 update_fulfill_htlcs: Vec::new(),
1502                                                                 update_fail_htlcs: Vec::new(),
1503                                                                 update_fail_malformed_htlcs: Vec::new(),
1504                                                                 update_fee: None,
1505                                                                 commitment_signed,
1506                                                         },
1507                                                 });
1508                                         },
1509                                         None => {},
1510                                 }
1511                         } else { unreachable!(); }
1512                         return Ok(());
1513                 };
1514
1515                 match handle_error!(self, err, path.first().unwrap().pubkey) {
1516                         Ok(_) => unreachable!(),
1517                         Err(e) => {
1518                                 Err(APIError::ChannelUnavailable { err: e.err })
1519                         },
1520                 }
1521         }
1522
1523         /// Sends a payment along a given route.
1524         ///
1525         /// Value parameters are provided via the last hop in route, see documentation for RouteHop
1526         /// fields for more info.
1527         ///
1528         /// Note that if the payment_hash already exists elsewhere (eg you're sending a duplicative
1529         /// payment), we don't do anything to stop you! We always try to ensure that if the provided
1530         /// next hop knows the preimage to payment_hash they can claim an additional amount as
1531         /// specified in the last hop in the route! Thus, you should probably do your own
1532         /// payment_preimage tracking (which you should already be doing as they represent "proof of
1533         /// payment") and prevent double-sends yourself.
1534         ///
1535         /// May generate SendHTLCs message(s) event on success, which should be relayed.
1536         ///
1537         /// Each path may have a different return value, and PaymentSendValue may return a Vec with
1538         /// each entry matching the corresponding-index entry in the route paths, see
1539         /// PaymentSendFailure for more info.
1540         ///
1541         /// In general, a path may raise:
1542         ///  * APIError::RouteError when an invalid route or forwarding parameter (cltv_delta, fee,
1543         ///    node public key) is specified.
1544         ///  * APIError::ChannelUnavailable if the next-hop channel is not available for updates
1545         ///    (including due to previous monitor update failure or new permanent monitor update
1546         ///    failure).
1547         ///  * APIError::MonitorUpdateFailed if a new monitor update failure prevented sending the
1548         ///    relevant updates.
1549         ///
1550         /// Note that depending on the type of the PaymentSendFailure the HTLC may have been
1551         /// irrevocably committed to on our end. In such a case, do NOT retry the payment with a
1552         /// different route unless you intend to pay twice!
1553         ///
1554         /// payment_secret is unrelated to payment_hash (or PaymentPreimage) and exists to authenticate
1555         /// the sender to the recipient and prevent payment-probing (deanonymization) attacks. For
1556         /// newer nodes, it will be provided to you in the invoice. If you do not have one, the Route
1557         /// must not contain multiple paths as multi-path payments require a recipient-provided
1558         /// payment_secret.
1559         /// If a payment_secret *is* provided, we assume that the invoice had the payment_secret feature
1560         /// bit set (either as required or as available). If multiple paths are present in the Route,
1561         /// we assume the invoice had the basic_mpp feature set.
1562         pub fn send_payment(&self, route: &Route, payment_hash: PaymentHash, payment_secret: &Option<PaymentSecret>) -> Result<(), PaymentSendFailure> {
1563                 if route.paths.len() < 1 {
1564                         return Err(PaymentSendFailure::ParameterError(APIError::RouteError{err: "There must be at least one path to send over"}));
1565                 }
1566                 if route.paths.len() > 10 {
1567                         // This limit is completely arbitrary - there aren't any real fundamental path-count
1568                         // limits. After we support retrying individual paths we should likely bump this, but
1569                         // for now more than 10 paths likely carries too much one-path failure.
1570                         return Err(PaymentSendFailure::ParameterError(APIError::RouteError{err: "Sending over more than 10 paths is not currently supported"}));
1571                 }
1572                 let mut total_value = 0;
1573                 let our_node_id = self.get_our_node_id();
1574                 let mut path_errs = Vec::with_capacity(route.paths.len());
1575                 'path_check: for path in route.paths.iter() {
1576                         if path.len() < 1 || path.len() > 20 {
1577                                 path_errs.push(Err(APIError::RouteError{err: "Path didn't go anywhere/had bogus size"}));
1578                                 continue 'path_check;
1579                         }
1580                         for (idx, hop) in path.iter().enumerate() {
1581                                 if idx != path.len() - 1 && hop.pubkey == our_node_id {
1582                                         path_errs.push(Err(APIError::RouteError{err: "Path went through us but wasn't a simple rebalance loop to us"}));
1583                                         continue 'path_check;
1584                                 }
1585                         }
1586                         total_value += path.last().unwrap().fee_msat;
1587                         path_errs.push(Ok(()));
1588                 }
1589                 if path_errs.iter().any(|e| e.is_err()) {
1590                         return Err(PaymentSendFailure::PathParameterError(path_errs));
1591                 }
1592
1593                 let cur_height = self.best_block.read().unwrap().height() + 1;
1594                 let mut results = Vec::new();
1595                 for path in route.paths.iter() {
1596                         results.push(self.send_payment_along_path(&path, &payment_hash, payment_secret, total_value, cur_height));
1597                 }
1598                 let mut has_ok = false;
1599                 let mut has_err = false;
1600                 for res in results.iter() {
1601                         if res.is_ok() { has_ok = true; }
1602                         if res.is_err() { has_err = true; }
1603                         if let &Err(APIError::MonitorUpdateFailed) = res {
1604                                 // MonitorUpdateFailed is inherently unsafe to retry, so we call it a
1605                                 // PartialFailure.
1606                                 has_err = true;
1607                                 has_ok = true;
1608                                 break;
1609                         }
1610                 }
1611                 if has_err && has_ok {
1612                         Err(PaymentSendFailure::PartialFailure(results))
1613                 } else if has_err {
1614                         Err(PaymentSendFailure::AllFailedRetrySafe(results.drain(..).map(|r| r.unwrap_err()).collect()))
1615                 } else {
1616                         Ok(())
1617                 }
1618         }
1619
1620         /// Handles the generation of a funding transaction, optionally (for tests) with a function
1621         /// which checks the correctness of the funding transaction given the associated channel.
1622         fn funding_transaction_generated_intern<FundingOutput: Fn(&Channel<Signer>, &Transaction) -> Result<OutPoint, APIError>>
1623                         (&self, temporary_channel_id: &[u8; 32], funding_transaction: Transaction, find_funding_output: FundingOutput) -> Result<(), APIError> {
1624                 let (chan, msg) = {
1625                         let (res, chan) = match self.channel_state.lock().unwrap().by_id.remove(temporary_channel_id) {
1626                                 Some(mut chan) => {
1627                                         let funding_txo = find_funding_output(&chan, &funding_transaction)?;
1628
1629                                         (chan.get_outbound_funding_created(funding_transaction, funding_txo, &self.logger)
1630                                                 .map_err(|e| if let ChannelError::Close(msg) = e {
1631                                                         MsgHandleErrInternal::from_finish_shutdown(msg, chan.channel_id(), chan.force_shutdown(true), None)
1632                                                 } else { unreachable!(); })
1633                                         , chan)
1634                                 },
1635                                 None => { return Err(APIError::ChannelUnavailable { err: "No such channel".to_owned() }) },
1636                         };
1637                         match handle_error!(self, res, chan.get_counterparty_node_id()) {
1638                                 Ok(funding_msg) => {
1639                                         (chan, funding_msg)
1640                                 },
1641                                 Err(_) => { return Err(APIError::ChannelUnavailable {
1642                                         err: "Error deriving keys or signing initial commitment transactions - either our RNG or our counterparty's RNG is broken or the Signer refused to sign".to_owned()
1643                                 }) },
1644                         }
1645                 };
1646
1647                 let mut channel_state = self.channel_state.lock().unwrap();
1648                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingCreated {
1649                         node_id: chan.get_counterparty_node_id(),
1650                         msg,
1651                 });
1652                 match channel_state.by_id.entry(chan.channel_id()) {
1653                         hash_map::Entry::Occupied(_) => {
1654                                 panic!("Generated duplicate funding txid?");
1655                         },
1656                         hash_map::Entry::Vacant(e) => {
1657                                 e.insert(chan);
1658                         }
1659                 }
1660                 Ok(())
1661         }
1662
1663         #[cfg(test)]
1664         pub(crate) fn funding_transaction_generated_unchecked(&self, temporary_channel_id: &[u8; 32], funding_transaction: Transaction, output_index: u16) -> Result<(), APIError> {
1665                 self.funding_transaction_generated_intern(temporary_channel_id, funding_transaction, |_, tx| {
1666                         Ok(OutPoint { txid: tx.txid(), index: output_index })
1667                 })
1668         }
1669
1670         /// Call this upon creation of a funding transaction for the given channel.
1671         ///
1672         /// Returns an [`APIError::APIMisuseError`] if the funding_transaction spent non-SegWit outputs
1673         /// or if no output was found which matches the parameters in [`Event::FundingGenerationReady`].
1674         ///
1675         /// Panics if a funding transaction has already been provided for this channel.
1676         ///
1677         /// May panic if the output found in the funding transaction is duplicative with some other
1678         /// channel (note that this should be trivially prevented by using unique funding transaction
1679         /// keys per-channel).
1680         ///
1681         /// Do NOT broadcast the funding transaction yourself. When we have safely received our
1682         /// counterparty's signature the funding transaction will automatically be broadcast via the
1683         /// [`BroadcasterInterface`] provided when this `ChannelManager` was constructed.
1684         ///
1685         /// Note that this includes RBF or similar transaction replacement strategies - lightning does
1686         /// not currently support replacing a funding transaction on an existing channel. Instead,
1687         /// create a new channel with a conflicting funding transaction.
1688         pub fn funding_transaction_generated(&self, temporary_channel_id: &[u8; 32], funding_transaction: Transaction) -> Result<(), APIError> {
1689                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
1690
1691                 for inp in funding_transaction.input.iter() {
1692                         if inp.witness.is_empty() {
1693                                 return Err(APIError::APIMisuseError {
1694                                         err: "Funding transaction must be fully signed and spend Segwit outputs".to_owned()
1695                                 });
1696                         }
1697                 }
1698                 self.funding_transaction_generated_intern(temporary_channel_id, funding_transaction, |chan, tx| {
1699                         let mut output_index = None;
1700                         let expected_spk = chan.get_funding_redeemscript().to_v0_p2wsh();
1701                         for (idx, outp) in tx.output.iter().enumerate() {
1702                                 if outp.script_pubkey == expected_spk && outp.value == chan.get_value_satoshis() {
1703                                         if output_index.is_some() {
1704                                                 return Err(APIError::APIMisuseError {
1705                                                         err: "Multiple outputs matched the expected script and value".to_owned()
1706                                                 });
1707                                         }
1708                                         if idx > u16::max_value() as usize {
1709                                                 return Err(APIError::APIMisuseError {
1710                                                         err: "Transaction had more than 2^16 outputs, which is not supported".to_owned()
1711                                                 });
1712                                         }
1713                                         output_index = Some(idx as u16);
1714                                 }
1715                         }
1716                         if output_index.is_none() {
1717                                 return Err(APIError::APIMisuseError {
1718                                         err: "No output matched the script_pubkey and value in the FundingGenerationReady event".to_owned()
1719                                 });
1720                         }
1721                         Ok(OutPoint { txid: tx.txid(), index: output_index.unwrap() })
1722                 })
1723         }
1724
1725         fn get_announcement_sigs(&self, chan: &Channel<Signer>) -> Option<msgs::AnnouncementSignatures> {
1726                 if !chan.should_announce() {
1727                         log_trace!(self.logger, "Can't send announcement_signatures for private channel {}", log_bytes!(chan.channel_id()));
1728                         return None
1729                 }
1730
1731                 let (announcement, our_bitcoin_sig) = match chan.get_channel_announcement(self.get_our_node_id(), self.genesis_hash.clone()) {
1732                         Ok(res) => res,
1733                         Err(_) => return None, // Only in case of state precondition violations eg channel is closing
1734                 };
1735                 let msghash = hash_to_message!(&Sha256dHash::hash(&announcement.encode()[..])[..]);
1736                 let our_node_sig = self.secp_ctx.sign(&msghash, &self.our_network_key);
1737
1738                 Some(msgs::AnnouncementSignatures {
1739                         channel_id: chan.channel_id(),
1740                         short_channel_id: chan.get_short_channel_id().unwrap(),
1741                         node_signature: our_node_sig,
1742                         bitcoin_signature: our_bitcoin_sig,
1743                 })
1744         }
1745
1746         #[allow(dead_code)]
1747         // Messages of up to 64KB should never end up more than half full with addresses, as that would
1748         // be absurd. We ensure this by checking that at least 500 (our stated public contract on when
1749         // broadcast_node_announcement panics) of the maximum-length addresses would fit in a 64KB
1750         // message...
1751         const HALF_MESSAGE_IS_ADDRS: u32 = ::std::u16::MAX as u32 / (NetAddress::MAX_LEN as u32 + 1) / 2;
1752         #[deny(const_err)]
1753         #[allow(dead_code)]
1754         // ...by failing to compile if the number of addresses that would be half of a message is
1755         // smaller than 500:
1756         const STATIC_ASSERT: u32 = Self::HALF_MESSAGE_IS_ADDRS - 500;
1757
1758         /// Generates a signed node_announcement from the given arguments and creates a
1759         /// BroadcastNodeAnnouncement event. Note that such messages will be ignored unless peers have
1760         /// seen a channel_announcement from us (ie unless we have public channels open).
1761         ///
1762         /// RGB is a node "color" and alias is a printable human-readable string to describe this node
1763         /// to humans. They carry no in-protocol meaning.
1764         ///
1765         /// addresses represent the set (possibly empty) of socket addresses on which this node accepts
1766         /// incoming connections. These will be broadcast to the network, publicly tying these
1767         /// addresses together. If you wish to preserve user privacy, addresses should likely contain
1768         /// only Tor Onion addresses.
1769         ///
1770         /// Panics if addresses is absurdly large (more than 500).
1771         pub fn broadcast_node_announcement(&self, rgb: [u8; 3], alias: [u8; 32], mut addresses: Vec<NetAddress>) {
1772                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
1773
1774                 if addresses.len() > 500 {
1775                         panic!("More than half the message size was taken up by public addresses!");
1776                 }
1777
1778                 // While all existing nodes handle unsorted addresses just fine, the spec requires that
1779                 // addresses be sorted for future compatibility.
1780                 addresses.sort_by_key(|addr| addr.get_id());
1781
1782                 let announcement = msgs::UnsignedNodeAnnouncement {
1783                         features: NodeFeatures::known(),
1784                         timestamp: self.last_node_announcement_serial.fetch_add(1, Ordering::AcqRel) as u32,
1785                         node_id: self.get_our_node_id(),
1786                         rgb, alias, addresses,
1787                         excess_address_data: Vec::new(),
1788                         excess_data: Vec::new(),
1789                 };
1790                 let msghash = hash_to_message!(&Sha256dHash::hash(&announcement.encode()[..])[..]);
1791
1792                 let mut channel_state = self.channel_state.lock().unwrap();
1793                 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastNodeAnnouncement {
1794                         msg: msgs::NodeAnnouncement {
1795                                 signature: self.secp_ctx.sign(&msghash, &self.our_network_key),
1796                                 contents: announcement
1797                         },
1798                 });
1799         }
1800
1801         /// Processes HTLCs which are pending waiting on random forward delay.
1802         ///
1803         /// Should only really ever be called in response to a PendingHTLCsForwardable event.
1804         /// Will likely generate further events.
1805         pub fn process_pending_htlc_forwards(&self) {
1806                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
1807
1808                 let mut new_events = Vec::new();
1809                 let mut failed_forwards = Vec::new();
1810                 let mut handle_errors = Vec::new();
1811                 {
1812                         let mut channel_state_lock = self.channel_state.lock().unwrap();
1813                         let channel_state = &mut *channel_state_lock;
1814
1815                         for (short_chan_id, mut pending_forwards) in channel_state.forward_htlcs.drain() {
1816                                 if short_chan_id != 0 {
1817                                         let forward_chan_id = match channel_state.short_to_id.get(&short_chan_id) {
1818                                                 Some(chan_id) => chan_id.clone(),
1819                                                 None => {
1820                                                         failed_forwards.reserve(pending_forwards.len());
1821                                                         for forward_info in pending_forwards.drain(..) {
1822                                                                 match forward_info {
1823                                                                         HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info,
1824                                                                                                    prev_funding_outpoint } => {
1825                                                                                 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
1826                                                                                         short_channel_id: prev_short_channel_id,
1827                                                                                         outpoint: prev_funding_outpoint,
1828                                                                                         htlc_id: prev_htlc_id,
1829                                                                                         incoming_packet_shared_secret: forward_info.incoming_shared_secret,
1830                                                                                 });
1831                                                                                 failed_forwards.push((htlc_source, forward_info.payment_hash,
1832                                                                                         HTLCFailReason::Reason { failure_code: 0x4000 | 10, data: Vec::new() }
1833                                                                                 ));
1834                                                                         },
1835                                                                         HTLCForwardInfo::FailHTLC { .. } => {
1836                                                                                 // Channel went away before we could fail it. This implies
1837                                                                                 // the channel is now on chain and our counterparty is
1838                                                                                 // trying to broadcast the HTLC-Timeout, but that's their
1839                                                                                 // problem, not ours.
1840                                                                         }
1841                                                                 }
1842                                                         }
1843                                                         continue;
1844                                                 }
1845                                         };
1846                                         if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(forward_chan_id) {
1847                                                 let mut add_htlc_msgs = Vec::new();
1848                                                 let mut fail_htlc_msgs = Vec::new();
1849                                                 for forward_info in pending_forwards.drain(..) {
1850                                                         match forward_info {
1851                                                                 HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info: PendingHTLCInfo {
1852                                                                                 routing: PendingHTLCRouting::Forward {
1853                                                                                         onion_packet, ..
1854                                                                                 }, incoming_shared_secret, payment_hash, amt_to_forward, outgoing_cltv_value },
1855                                                                                 prev_funding_outpoint } => {
1856                                                                         log_trace!(self.logger, "Adding HTLC from short id {} with payment_hash {} to channel with short id {} after delay", log_bytes!(payment_hash.0), prev_short_channel_id, short_chan_id);
1857                                                                         let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
1858                                                                                 short_channel_id: prev_short_channel_id,
1859                                                                                 outpoint: prev_funding_outpoint,
1860                                                                                 htlc_id: prev_htlc_id,
1861                                                                                 incoming_packet_shared_secret: incoming_shared_secret,
1862                                                                         });
1863                                                                         match chan.get_mut().send_htlc(amt_to_forward, payment_hash, outgoing_cltv_value, htlc_source.clone(), onion_packet) {
1864                                                                                 Err(e) => {
1865                                                                                         if let ChannelError::Ignore(msg) = e {
1866                                                                                                 log_trace!(self.logger, "Failed to forward HTLC with payment_hash {}: {}", log_bytes!(payment_hash.0), msg);
1867                                                                                         } else {
1868                                                                                                 panic!("Stated return value requirements in send_htlc() were not met");
1869                                                                                         }
1870                                                                                         let chan_update = self.get_channel_update(chan.get()).unwrap();
1871                                                                                         failed_forwards.push((htlc_source, payment_hash,
1872                                                                                                 HTLCFailReason::Reason { failure_code: 0x1000 | 7, data: chan_update.encode_with_len() }
1873                                                                                         ));
1874                                                                                         continue;
1875                                                                                 },
1876                                                                                 Ok(update_add) => {
1877                                                                                         match update_add {
1878                                                                                                 Some(msg) => { add_htlc_msgs.push(msg); },
1879                                                                                                 None => {
1880                                                                                                         // Nothing to do here...we're waiting on a remote
1881                                                                                                         // revoke_and_ack before we can add anymore HTLCs. The Channel
1882                                                                                                         // will automatically handle building the update_add_htlc and
1883                                                                                                         // commitment_signed messages when we can.
1884                                                                                                         // TODO: Do some kind of timer to set the channel as !is_live()
1885                                                                                                         // as we don't really want others relying on us relaying through
1886                                                                                                         // this channel currently :/.
1887                                                                                                 }
1888                                                                                         }
1889                                                                                 }
1890                                                                         }
1891                                                                 },
1892                                                                 HTLCForwardInfo::AddHTLC { .. } => {
1893                                                                         panic!("short_channel_id != 0 should imply any pending_forward entries are of type Forward");
1894                                                                 },
1895                                                                 HTLCForwardInfo::FailHTLC { htlc_id, err_packet } => {
1896                                                                         log_trace!(self.logger, "Failing HTLC back to channel with short id {} after delay", short_chan_id);
1897                                                                         match chan.get_mut().get_update_fail_htlc(htlc_id, err_packet) {
1898                                                                                 Err(e) => {
1899                                                                                         if let ChannelError::Ignore(msg) = e {
1900                                                                                                 log_trace!(self.logger, "Failed to fail backwards to short_id {}: {}", short_chan_id, msg);
1901                                                                                         } else {
1902                                                                                                 panic!("Stated return value requirements in get_update_fail_htlc() were not met");
1903                                                                                         }
1904                                                                                         // fail-backs are best-effort, we probably already have one
1905                                                                                         // pending, and if not that's OK, if not, the channel is on
1906                                                                                         // the chain and sending the HTLC-Timeout is their problem.
1907                                                                                         continue;
1908                                                                                 },
1909                                                                                 Ok(Some(msg)) => { fail_htlc_msgs.push(msg); },
1910                                                                                 Ok(None) => {
1911                                                                                         // Nothing to do here...we're waiting on a remote
1912                                                                                         // revoke_and_ack before we can update the commitment
1913                                                                                         // transaction. The Channel will automatically handle
1914                                                                                         // building the update_fail_htlc and commitment_signed
1915                                                                                         // messages when we can.
1916                                                                                         // We don't need any kind of timer here as they should fail
1917                                                                                         // the channel onto the chain if they can't get our
1918                                                                                         // update_fail_htlc in time, it's not our problem.
1919                                                                                 }
1920                                                                         }
1921                                                                 },
1922                                                         }
1923                                                 }
1924
1925                                                 if !add_htlc_msgs.is_empty() || !fail_htlc_msgs.is_empty() {
1926                                                         let (commitment_msg, monitor_update) = match chan.get_mut().send_commitment(&self.logger) {
1927                                                                 Ok(res) => res,
1928                                                                 Err(e) => {
1929                                                                         // We surely failed send_commitment due to bad keys, in that case
1930                                                                         // close channel and then send error message to peer.
1931                                                                         let counterparty_node_id = chan.get().get_counterparty_node_id();
1932                                                                         let err: Result<(), _>  = match e {
1933                                                                                 ChannelError::Ignore(_) => {
1934                                                                                         panic!("Stated return value requirements in send_commitment() were not met");
1935                                                                                 },
1936                                                                                 ChannelError::Close(msg) => {
1937                                                                                         log_trace!(self.logger, "Closing channel {} due to Close-required error: {}", log_bytes!(chan.key()[..]), msg);
1938                                                                                         let (channel_id, mut channel) = chan.remove_entry();
1939                                                                                         if let Some(short_id) = channel.get_short_channel_id() {
1940                                                                                                 channel_state.short_to_id.remove(&short_id);
1941                                                                                         }
1942                                                                                         Err(MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, channel.force_shutdown(true), self.get_channel_update(&channel).ok()))
1943                                                                                 },
1944                                                                                 ChannelError::CloseDelayBroadcast(_) => { panic!("Wait is only generated on receipt of channel_reestablish, which is handled by try_chan_entry, we don't bother to support it here"); }
1945                                                                         };
1946                                                                         handle_errors.push((counterparty_node_id, err));
1947                                                                         continue;
1948                                                                 }
1949                                                         };
1950                                                         if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
1951                                                                 handle_errors.push((chan.get().get_counterparty_node_id(), handle_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, true)));
1952                                                                 continue;
1953                                                         }
1954                                                         channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
1955                                                                 node_id: chan.get().get_counterparty_node_id(),
1956                                                                 updates: msgs::CommitmentUpdate {
1957                                                                         update_add_htlcs: add_htlc_msgs,
1958                                                                         update_fulfill_htlcs: Vec::new(),
1959                                                                         update_fail_htlcs: fail_htlc_msgs,
1960                                                                         update_fail_malformed_htlcs: Vec::new(),
1961                                                                         update_fee: None,
1962                                                                         commitment_signed: commitment_msg,
1963                                                                 },
1964                                                         });
1965                                                 }
1966                                         } else {
1967                                                 unreachable!();
1968                                         }
1969                                 } else {
1970                                         for forward_info in pending_forwards.drain(..) {
1971                                                 match forward_info {
1972                                                         HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info: PendingHTLCInfo {
1973                                                                         routing: PendingHTLCRouting::Receive { payment_data, incoming_cltv_expiry },
1974                                                                         incoming_shared_secret, payment_hash, amt_to_forward, .. },
1975                                                                         prev_funding_outpoint } => {
1976                                                                 let claimable_htlc = ClaimableHTLC {
1977                                                                         prev_hop: HTLCPreviousHopData {
1978                                                                                 short_channel_id: prev_short_channel_id,
1979                                                                                 outpoint: prev_funding_outpoint,
1980                                                                                 htlc_id: prev_htlc_id,
1981                                                                                 incoming_packet_shared_secret: incoming_shared_secret,
1982                                                                         },
1983                                                                         value: amt_to_forward,
1984                                                                         payment_data: payment_data.clone(),
1985                                                                         cltv_expiry: incoming_cltv_expiry,
1986                                                                 };
1987
1988                                                                 macro_rules! fail_htlc {
1989                                                                         ($htlc: expr) => {
1990                                                                                 let mut htlc_msat_height_data = byte_utils::be64_to_array($htlc.value).to_vec();
1991                                                                                 htlc_msat_height_data.extend_from_slice(
1992                                                                                         &byte_utils::be32_to_array(self.best_block.read().unwrap().height()),
1993                                                                                 );
1994                                                                                 failed_forwards.push((HTLCSource::PreviousHopData(HTLCPreviousHopData {
1995                                                                                                 short_channel_id: $htlc.prev_hop.short_channel_id,
1996                                                                                                 outpoint: prev_funding_outpoint,
1997                                                                                                 htlc_id: $htlc.prev_hop.htlc_id,
1998                                                                                                 incoming_packet_shared_secret: $htlc.prev_hop.incoming_packet_shared_secret,
1999                                                                                         }), payment_hash,
2000                                                                                         HTLCFailReason::Reason { failure_code: 0x4000 | 15, data: htlc_msat_height_data }
2001                                                                                 ));
2002                                                                         }
2003                                                                 }
2004
2005                                                                 // Check that the payment hash and secret are known. Note that we
2006                                                                 // MUST take care to handle the "unknown payment hash" and
2007                                                                 // "incorrect payment secret" cases here identically or we'd expose
2008                                                                 // that we are the ultimate recipient of the given payment hash.
2009                                                                 // Further, we must not expose whether we have any other HTLCs
2010                                                                 // associated with the same payment_hash pending or not.
2011                                                                 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
2012                                                                 match payment_secrets.entry(payment_hash) {
2013                                                                         hash_map::Entry::Vacant(_) => {
2014                                                                                 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as we didn't have a corresponding inbound payment.", log_bytes!(payment_hash.0));
2015                                                                                 fail_htlc!(claimable_htlc);
2016                                                                         },
2017                                                                         hash_map::Entry::Occupied(inbound_payment) => {
2018                                                                                 if inbound_payment.get().payment_secret != payment_data.payment_secret {
2019                                                                                         log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our expected payment secret.", log_bytes!(payment_hash.0));
2020                                                                                         fail_htlc!(claimable_htlc);
2021                                                                                 } else if inbound_payment.get().min_value_msat.is_some() && payment_data.total_msat < inbound_payment.get().min_value_msat.unwrap() {
2022                                                                                         log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our minimum value (had {}, needed {}).",
2023                                                                                                 log_bytes!(payment_hash.0), payment_data.total_msat, inbound_payment.get().min_value_msat.unwrap());
2024                                                                                         fail_htlc!(claimable_htlc);
2025                                                                                 } else {
2026                                                                                         let mut total_value = 0;
2027                                                                                         let htlcs = channel_state.claimable_htlcs.entry(payment_hash)
2028                                                                                                 .or_insert(Vec::new());
2029                                                                                         htlcs.push(claimable_htlc);
2030                                                                                         for htlc in htlcs.iter() {
2031                                                                                                 total_value += htlc.value;
2032                                                                                                 if htlc.payment_data.total_msat != payment_data.total_msat {
2033                                                                                                         log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the HTLCs had inconsistent total values (eg {} and {})",
2034                                                                                                                 log_bytes!(payment_hash.0), payment_data.total_msat, htlc.payment_data.total_msat);
2035                                                                                                         total_value = msgs::MAX_VALUE_MSAT;
2036                                                                                                 }
2037                                                                                                 if total_value >= msgs::MAX_VALUE_MSAT { break; }
2038                                                                                         }
2039                                                                                         if total_value >= msgs::MAX_VALUE_MSAT || total_value > payment_data.total_msat {
2040                                                                                                 log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the total value {} ran over expected value {} (or HTLCs were inconsistent)",
2041                                                                                                         log_bytes!(payment_hash.0), total_value, payment_data.total_msat);
2042                                                                                                 for htlc in htlcs.iter() {
2043                                                                                                         fail_htlc!(htlc);
2044                                                                                                 }
2045                                                                                         } else if total_value == payment_data.total_msat {
2046                                                                                                 new_events.push(events::Event::PaymentReceived {
2047                                                                                                         payment_hash,
2048                                                                                                         payment_preimage: inbound_payment.get().payment_preimage,
2049                                                                                                         payment_secret: payment_data.payment_secret,
2050                                                                                                         amt: total_value,
2051                                                                                                         user_payment_id: inbound_payment.get().user_payment_id,
2052                                                                                                 });
2053                                                                                                 // Only ever generate at most one PaymentReceived
2054                                                                                                 // per registered payment_hash, even if it isn't
2055                                                                                                 // claimed.
2056                                                                                                 inbound_payment.remove_entry();
2057                                                                                         } else {
2058                                                                                                 // Nothing to do - we haven't reached the total
2059                                                                                                 // payment value yet, wait until we receive more
2060                                                                                                 // MPP parts.
2061                                                                                         }
2062                                                                                 }
2063                                                                         },
2064                                                                 };
2065                                                         },
2066                                                         HTLCForwardInfo::AddHTLC { .. } => {
2067                                                                 panic!("short_channel_id == 0 should imply any pending_forward entries are of type Receive");
2068                                                         },
2069                                                         HTLCForwardInfo::FailHTLC { .. } => {
2070                                                                 panic!("Got pending fail of our own HTLC");
2071                                                         }
2072                                                 }
2073                                         }
2074                                 }
2075                         }
2076                 }
2077
2078                 for (htlc_source, payment_hash, failure_reason) in failed_forwards.drain(..) {
2079                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source, &payment_hash, failure_reason);
2080                 }
2081
2082                 for (counterparty_node_id, err) in handle_errors.drain(..) {
2083                         let _ = handle_error!(self, err, counterparty_node_id);
2084                 }
2085
2086                 if new_events.is_empty() { return }
2087                 let mut events = self.pending_events.lock().unwrap();
2088                 events.append(&mut new_events);
2089         }
2090
2091         /// Free the background events, generally called from timer_tick_occurred.
2092         ///
2093         /// Exposed for testing to allow us to process events quickly without generating accidental
2094         /// BroadcastChannelUpdate events in timer_tick_occurred.
2095         ///
2096         /// Expects the caller to have a total_consistency_lock read lock.
2097         fn process_background_events(&self) {
2098                 let mut background_events = Vec::new();
2099                 mem::swap(&mut *self.pending_background_events.lock().unwrap(), &mut background_events);
2100                 for event in background_events.drain(..) {
2101                         match event {
2102                                 BackgroundEvent::ClosingMonitorUpdate((funding_txo, update)) => {
2103                                         // The channel has already been closed, so no use bothering to care about the
2104                                         // monitor updating completing.
2105                                         let _ = self.chain_monitor.update_channel(funding_txo, update);
2106                                 },
2107                         }
2108                 }
2109         }
2110
2111         #[cfg(any(test, feature = "_test_utils"))]
2112         pub(crate) fn test_process_background_events(&self) {
2113                 self.process_background_events();
2114         }
2115
2116         /// If a peer is disconnected we mark any channels with that peer as 'disabled'.
2117         /// After some time, if channels are still disabled we need to broadcast a ChannelUpdate
2118         /// to inform the network about the uselessness of these channels.
2119         ///
2120         /// This method handles all the details, and must be called roughly once per minute.
2121         ///
2122         /// Note that in some rare cases this may generate a `chain::Watch::update_channel` call.
2123         pub fn timer_tick_occurred(&self) {
2124                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
2125                 self.process_background_events();
2126
2127                 let mut channel_state_lock = self.channel_state.lock().unwrap();
2128                 let channel_state = &mut *channel_state_lock;
2129                 for (_, chan) in channel_state.by_id.iter_mut() {
2130                         if chan.is_disabled_staged() && !chan.is_live() {
2131                                 if let Ok(update) = self.get_channel_update(&chan) {
2132                                         channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2133                                                 msg: update
2134                                         });
2135                                 }
2136                                 chan.to_fresh();
2137                         } else if chan.is_disabled_staged() && chan.is_live() {
2138                                 chan.to_fresh();
2139                         } else if chan.is_disabled_marked() {
2140                                 chan.to_disabled_staged();
2141                         }
2142                 }
2143         }
2144
2145         /// Indicates that the preimage for payment_hash is unknown or the received amount is incorrect
2146         /// after a PaymentReceived event, failing the HTLC back to its origin and freeing resources
2147         /// along the path (including in our own channel on which we received it).
2148         /// Returns false if no payment was found to fail backwards, true if the process of failing the
2149         /// HTLC backwards has been started.
2150         pub fn fail_htlc_backwards(&self, payment_hash: &PaymentHash) -> bool {
2151                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
2152
2153                 let mut channel_state = Some(self.channel_state.lock().unwrap());
2154                 let removed_source = channel_state.as_mut().unwrap().claimable_htlcs.remove(payment_hash);
2155                 if let Some(mut sources) = removed_source {
2156                         for htlc in sources.drain(..) {
2157                                 if channel_state.is_none() { channel_state = Some(self.channel_state.lock().unwrap()); }
2158                                 let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec();
2159                                 htlc_msat_height_data.extend_from_slice(&byte_utils::be32_to_array(
2160                                                 self.best_block.read().unwrap().height()));
2161                                 self.fail_htlc_backwards_internal(channel_state.take().unwrap(),
2162                                                 HTLCSource::PreviousHopData(htlc.prev_hop), payment_hash,
2163                                                 HTLCFailReason::Reason { failure_code: 0x4000 | 15, data: htlc_msat_height_data });
2164                         }
2165                         true
2166                 } else { false }
2167         }
2168
2169         // Fail a list of HTLCs that were just freed from the holding cell. The HTLCs need to be
2170         // failed backwards or, if they were one of our outgoing HTLCs, then their failure needs to
2171         // be surfaced to the user.
2172         fn fail_holding_cell_htlcs(&self, mut htlcs_to_fail: Vec<(HTLCSource, PaymentHash)>, channel_id: [u8; 32]) {
2173                 for (htlc_src, payment_hash) in htlcs_to_fail.drain(..) {
2174                         match htlc_src {
2175                                 HTLCSource::PreviousHopData(HTLCPreviousHopData { .. }) => {
2176                                         let (failure_code, onion_failure_data) =
2177                                                 match self.channel_state.lock().unwrap().by_id.entry(channel_id) {
2178                                                         hash_map::Entry::Occupied(chan_entry) => {
2179                                                                 if let Ok(upd) = self.get_channel_update(&chan_entry.get()) {
2180                                                                         (0x1000|7, upd.encode_with_len())
2181                                                                 } else {
2182                                                                         (0x4000|10, Vec::new())
2183                                                                 }
2184                                                         },
2185                                                         hash_map::Entry::Vacant(_) => (0x4000|10, Vec::new())
2186                                                 };
2187                                         let channel_state = self.channel_state.lock().unwrap();
2188                                         self.fail_htlc_backwards_internal(channel_state,
2189                                                 htlc_src, &payment_hash, HTLCFailReason::Reason { failure_code, data: onion_failure_data});
2190                                 },
2191                                 HTLCSource::OutboundRoute { .. } => {
2192                                         self.pending_events.lock().unwrap().push(
2193                                                 events::Event::PaymentFailed {
2194                                                         payment_hash,
2195                                                         rejected_by_dest: false,
2196 #[cfg(test)]
2197                                                         error_code: None,
2198 #[cfg(test)]
2199                                                         error_data: None,
2200                                                 }
2201                                         )
2202                                 },
2203                         };
2204                 }
2205         }
2206
2207         /// Fails an HTLC backwards to the sender of it to us.
2208         /// Note that while we take a channel_state lock as input, we do *not* assume consistency here.
2209         /// There are several callsites that do stupid things like loop over a list of payment_hashes
2210         /// to fail and take the channel_state lock for each iteration (as we take ownership and may
2211         /// drop it). In other words, no assumptions are made that entries in claimable_htlcs point to
2212         /// still-available channels.
2213         fn fail_htlc_backwards_internal(&self, mut channel_state_lock: MutexGuard<ChannelHolder<Signer>>, source: HTLCSource, payment_hash: &PaymentHash, onion_error: HTLCFailReason) {
2214                 //TODO: There is a timing attack here where if a node fails an HTLC back to us they can
2215                 //identify whether we sent it or not based on the (I presume) very different runtime
2216                 //between the branches here. We should make this async and move it into the forward HTLCs
2217                 //timer handling.
2218
2219                 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
2220                 // from block_connected which may run during initialization prior to the chain_monitor
2221                 // being fully configured. See the docs for `ChannelManagerReadArgs` for more.
2222                 match source {
2223                         HTLCSource::OutboundRoute { ref path, .. } => {
2224                                 log_trace!(self.logger, "Failing outbound payment HTLC with payment_hash {}", log_bytes!(payment_hash.0));
2225                                 mem::drop(channel_state_lock);
2226                                 match &onion_error {
2227                                         &HTLCFailReason::LightningError { ref err } => {
2228 #[cfg(test)]
2229                                                 let (channel_update, payment_retryable, onion_error_code, onion_error_data) = onion_utils::process_onion_failure(&self.secp_ctx, &self.logger, &source, err.data.clone());
2230 #[cfg(not(test))]
2231                                                 let (channel_update, payment_retryable, _, _) = onion_utils::process_onion_failure(&self.secp_ctx, &self.logger, &source, err.data.clone());
2232                                                 // TODO: If we decided to blame ourselves (or one of our channels) in
2233                                                 // process_onion_failure we should close that channel as it implies our
2234                                                 // next-hop is needlessly blaming us!
2235                                                 if let Some(update) = channel_update {
2236                                                         self.channel_state.lock().unwrap().pending_msg_events.push(
2237                                                                 events::MessageSendEvent::PaymentFailureNetworkUpdate {
2238                                                                         update,
2239                                                                 }
2240                                                         );
2241                                                 }
2242                                                 self.pending_events.lock().unwrap().push(
2243                                                         events::Event::PaymentFailed {
2244                                                                 payment_hash: payment_hash.clone(),
2245                                                                 rejected_by_dest: !payment_retryable,
2246 #[cfg(test)]
2247                                                                 error_code: onion_error_code,
2248 #[cfg(test)]
2249                                                                 error_data: onion_error_data
2250                                                         }
2251                                                 );
2252                                         },
2253                                         &HTLCFailReason::Reason {
2254 #[cfg(test)]
2255                                                         ref failure_code,
2256 #[cfg(test)]
2257                                                         ref data,
2258                                                         .. } => {
2259                                                 // we get a fail_malformed_htlc from the first hop
2260                                                 // TODO: We'd like to generate a PaymentFailureNetworkUpdate for temporary
2261                                                 // failures here, but that would be insufficient as get_route
2262                                                 // generally ignores its view of our own channels as we provide them via
2263                                                 // ChannelDetails.
2264                                                 // TODO: For non-temporary failures, we really should be closing the
2265                                                 // channel here as we apparently can't relay through them anyway.
2266                                                 self.pending_events.lock().unwrap().push(
2267                                                         events::Event::PaymentFailed {
2268                                                                 payment_hash: payment_hash.clone(),
2269                                                                 rejected_by_dest: path.len() == 1,
2270 #[cfg(test)]
2271                                                                 error_code: Some(*failure_code),
2272 #[cfg(test)]
2273                                                                 error_data: Some(data.clone()),
2274                                                         }
2275                                                 );
2276                                         }
2277                                 }
2278                         },
2279                         HTLCSource::PreviousHopData(HTLCPreviousHopData { short_channel_id, htlc_id, incoming_packet_shared_secret, .. }) => {
2280                                 let err_packet = match onion_error {
2281                                         HTLCFailReason::Reason { failure_code, data } => {
2282                                                 log_trace!(self.logger, "Failing HTLC with payment_hash {} backwards from us with code {}", log_bytes!(payment_hash.0), failure_code);
2283                                                 let packet = onion_utils::build_failure_packet(&incoming_packet_shared_secret, failure_code, &data[..]).encode();
2284                                                 onion_utils::encrypt_failure_packet(&incoming_packet_shared_secret, &packet)
2285                                         },
2286                                         HTLCFailReason::LightningError { err } => {
2287                                                 log_trace!(self.logger, "Failing HTLC with payment_hash {} backwards with pre-built LightningError", log_bytes!(payment_hash.0));
2288                                                 onion_utils::encrypt_failure_packet(&incoming_packet_shared_secret, &err.data)
2289                                         }
2290                                 };
2291
2292                                 let mut forward_event = None;
2293                                 if channel_state_lock.forward_htlcs.is_empty() {
2294                                         forward_event = Some(Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS));
2295                                 }
2296                                 match channel_state_lock.forward_htlcs.entry(short_channel_id) {
2297                                         hash_map::Entry::Occupied(mut entry) => {
2298                                                 entry.get_mut().push(HTLCForwardInfo::FailHTLC { htlc_id, err_packet });
2299                                         },
2300                                         hash_map::Entry::Vacant(entry) => {
2301                                                 entry.insert(vec!(HTLCForwardInfo::FailHTLC { htlc_id, err_packet }));
2302                                         }
2303                                 }
2304                                 mem::drop(channel_state_lock);
2305                                 if let Some(time) = forward_event {
2306                                         let mut pending_events = self.pending_events.lock().unwrap();
2307                                         pending_events.push(events::Event::PendingHTLCsForwardable {
2308                                                 time_forwardable: time
2309                                         });
2310                                 }
2311                         },
2312                 }
2313         }
2314
2315         /// Provides a payment preimage in response to a PaymentReceived event, returning true and
2316         /// generating message events for the net layer to claim the payment, if possible. Thus, you
2317         /// should probably kick the net layer to go send messages if this returns true!
2318         ///
2319         /// Note that if you did not set an `amount_msat` when calling [`create_inbound_payment`] or
2320         /// [`create_inbound_payment_for_hash`] you must check that the amount in the `PaymentReceived`
2321         /// event matches your expectation. If you fail to do so and call this method, you may provide
2322         /// the sender "proof-of-payment" when they did not fulfill the full expected payment.
2323         ///
2324         /// May panic if called except in response to a PaymentReceived event.
2325         ///
2326         /// [`create_inbound_payment`]: Self::create_inbound_payment
2327         /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
2328         pub fn claim_funds(&self, payment_preimage: PaymentPreimage) -> bool {
2329                 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
2330
2331                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
2332
2333                 let mut channel_state = Some(self.channel_state.lock().unwrap());
2334                 let removed_source = channel_state.as_mut().unwrap().claimable_htlcs.remove(&payment_hash);
2335                 if let Some(mut sources) = removed_source {
2336                         assert!(!sources.is_empty());
2337
2338                         // If we are claiming an MPP payment, we have to take special care to ensure that each
2339                         // channel exists before claiming all of the payments (inside one lock).
2340                         // Note that channel existance is sufficient as we should always get a monitor update
2341                         // which will take care of the real HTLC claim enforcement.
2342                         //
2343                         // If we find an HTLC which we would need to claim but for which we do not have a
2344                         // channel, we will fail all parts of the MPP payment. While we could wait and see if
2345                         // the sender retries the already-failed path(s), it should be a pretty rare case where
2346                         // we got all the HTLCs and then a channel closed while we were waiting for the user to
2347                         // provide the preimage, so worrying too much about the optimal handling isn't worth
2348                         // it.
2349                         let mut valid_mpp = true;
2350                         for htlc in sources.iter() {
2351                                 if let None = channel_state.as_ref().unwrap().short_to_id.get(&htlc.prev_hop.short_channel_id) {
2352                                         valid_mpp = false;
2353                                         break;
2354                                 }
2355                         }
2356
2357                         let mut errs = Vec::new();
2358                         let mut claimed_any_htlcs = false;
2359                         for htlc in sources.drain(..) {
2360                                 if !valid_mpp {
2361                                         if channel_state.is_none() { channel_state = Some(self.channel_state.lock().unwrap()); }
2362                                         let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec();
2363                                         htlc_msat_height_data.extend_from_slice(&byte_utils::be32_to_array(
2364                                                         self.best_block.read().unwrap().height()));
2365                                         self.fail_htlc_backwards_internal(channel_state.take().unwrap(),
2366                                                                          HTLCSource::PreviousHopData(htlc.prev_hop), &payment_hash,
2367                                                                          HTLCFailReason::Reason { failure_code: 0x4000|15, data: htlc_msat_height_data });
2368                                 } else {
2369                                         match self.claim_funds_from_hop(channel_state.as_mut().unwrap(), htlc.prev_hop, payment_preimage) {
2370                                                 Err(Some(e)) => {
2371                                                         if let msgs::ErrorAction::IgnoreError = e.1.err.action {
2372                                                                 // We got a temporary failure updating monitor, but will claim the
2373                                                                 // HTLC when the monitor updating is restored (or on chain).
2374                                                                 log_error!(self.logger, "Temporary failure claiming HTLC, treating as success: {}", e.1.err.err);
2375                                                                 claimed_any_htlcs = true;
2376                                                         } else { errs.push(e); }
2377                                                 },
2378                                                 Err(None) => unreachable!("We already checked for channel existence, we can't fail here!"),
2379                                                 Ok(()) => claimed_any_htlcs = true,
2380                                         }
2381                                 }
2382                         }
2383
2384                         // Now that we've done the entire above loop in one lock, we can handle any errors
2385                         // which were generated.
2386                         channel_state.take();
2387
2388                         for (counterparty_node_id, err) in errs.drain(..) {
2389                                 let res: Result<(), _> = Err(err);
2390                                 let _ = handle_error!(self, res, counterparty_node_id);
2391                         }
2392
2393                         claimed_any_htlcs
2394                 } else { false }
2395         }
2396
2397         fn claim_funds_from_hop(&self, channel_state_lock: &mut MutexGuard<ChannelHolder<Signer>>, prev_hop: HTLCPreviousHopData, payment_preimage: PaymentPreimage) -> Result<(), Option<(PublicKey, MsgHandleErrInternal)>> {
2398                 //TODO: Delay the claimed_funds relaying just like we do outbound relay!
2399                 let channel_state = &mut **channel_state_lock;
2400                 let chan_id = match channel_state.short_to_id.get(&prev_hop.short_channel_id) {
2401                         Some(chan_id) => chan_id.clone(),
2402                         None => {
2403                                 return Err(None)
2404                         }
2405                 };
2406
2407                 if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(chan_id) {
2408                         let was_frozen_for_monitor = chan.get().is_awaiting_monitor_update();
2409                         match chan.get_mut().get_update_fulfill_htlc_and_commit(prev_hop.htlc_id, payment_preimage, &self.logger) {
2410                                 Ok((msgs, monitor_option)) => {
2411                                         if let Some(monitor_update) = monitor_option {
2412                                                 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
2413                                                         if was_frozen_for_monitor {
2414                                                                 assert!(msgs.is_none());
2415                                                         } else {
2416                                                                 return Err(Some((chan.get().get_counterparty_node_id(), handle_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, msgs.is_some()).unwrap_err())));
2417                                                         }
2418                                                 }
2419                                         }
2420                                         if let Some((msg, commitment_signed)) = msgs {
2421                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
2422                                                         node_id: chan.get().get_counterparty_node_id(),
2423                                                         updates: msgs::CommitmentUpdate {
2424                                                                 update_add_htlcs: Vec::new(),
2425                                                                 update_fulfill_htlcs: vec![msg],
2426                                                                 update_fail_htlcs: Vec::new(),
2427                                                                 update_fail_malformed_htlcs: Vec::new(),
2428                                                                 update_fee: None,
2429                                                                 commitment_signed,
2430                                                         }
2431                                                 });
2432                                         }
2433                                         return Ok(())
2434                                 },
2435                                 Err(e) => {
2436                                         // TODO: Do something with e?
2437                                         // This should only occur if we are claiming an HTLC at the same time as the
2438                                         // HTLC is being failed (eg because a block is being connected and this caused
2439                                         // an HTLC to time out). This should, of course, only occur if the user is the
2440                                         // one doing the claiming (as it being a part of a peer claim would imply we're
2441                                         // about to lose funds) and only if the lock in claim_funds was dropped as a
2442                                         // previous HTLC was failed (thus not for an MPP payment).
2443                                         debug_assert!(false, "This shouldn't be reachable except in absurdly rare cases between monitor updates and HTLC timeouts: {:?}", e);
2444                                         return Err(None)
2445                                 },
2446                         }
2447                 } else { unreachable!(); }
2448         }
2449
2450         fn claim_funds_internal(&self, mut channel_state_lock: MutexGuard<ChannelHolder<Signer>>, source: HTLCSource, payment_preimage: PaymentPreimage) {
2451                 match source {
2452                         HTLCSource::OutboundRoute { .. } => {
2453                                 mem::drop(channel_state_lock);
2454                                 let mut pending_events = self.pending_events.lock().unwrap();
2455                                 pending_events.push(events::Event::PaymentSent {
2456                                         payment_preimage
2457                                 });
2458                         },
2459                         HTLCSource::PreviousHopData(hop_data) => {
2460                                 let prev_outpoint = hop_data.outpoint;
2461                                 if let Err((counterparty_node_id, err)) = match self.claim_funds_from_hop(&mut channel_state_lock, hop_data, payment_preimage) {
2462                                         Ok(()) => Ok(()),
2463                                         Err(None) => {
2464                                                 let preimage_update = ChannelMonitorUpdate {
2465                                                         update_id: CLOSED_CHANNEL_UPDATE_ID,
2466                                                         updates: vec![ChannelMonitorUpdateStep::PaymentPreimage {
2467                                                                 payment_preimage: payment_preimage.clone(),
2468                                                         }],
2469                                                 };
2470                                                 // We update the ChannelMonitor on the backward link, after
2471                                                 // receiving an offchain preimage event from the forward link (the
2472                                                 // event being update_fulfill_htlc).
2473                                                 if let Err(e) = self.chain_monitor.update_channel(prev_outpoint, preimage_update) {
2474                                                         log_error!(self.logger, "Critical error: failed to update channel monitor with preimage {:?}: {:?}",
2475                                                                    payment_preimage, e);
2476                                                 }
2477                                                 Ok(())
2478                                         },
2479                                         Err(Some(res)) => Err(res),
2480                                 } {
2481                                         mem::drop(channel_state_lock);
2482                                         let res: Result<(), _> = Err(err);
2483                                         let _ = handle_error!(self, res, counterparty_node_id);
2484                                 }
2485                         },
2486                 }
2487         }
2488
2489         /// Gets the node_id held by this ChannelManager
2490         pub fn get_our_node_id(&self) -> PublicKey {
2491                 self.our_network_pubkey.clone()
2492         }
2493
2494         /// Restores a single, given channel to normal operation after a
2495         /// ChannelMonitorUpdateErr::TemporaryFailure was returned from a channel monitor update
2496         /// operation.
2497         ///
2498         /// All ChannelMonitor updates up to and including highest_applied_update_id must have been
2499         /// fully committed in every copy of the given channels' ChannelMonitors.
2500         ///
2501         /// Note that there is no effect to calling with a highest_applied_update_id other than the
2502         /// current latest ChannelMonitorUpdate and one call to this function after multiple
2503         /// ChannelMonitorUpdateErr::TemporaryFailures is fine. The highest_applied_update_id field
2504         /// exists largely only to prevent races between this and concurrent update_monitor calls.
2505         ///
2506         /// Thus, the anticipated use is, at a high level:
2507         ///  1) You register a chain::Watch with this ChannelManager,
2508         ///  2) it stores each update to disk, and begins updating any remote (eg watchtower) copies of
2509         ///     said ChannelMonitors as it can, returning ChannelMonitorUpdateErr::TemporaryFailures
2510         ///     any time it cannot do so instantly,
2511         ///  3) update(s) are applied to each remote copy of a ChannelMonitor,
2512         ///  4) once all remote copies are updated, you call this function with the update_id that
2513         ///     completed, and once it is the latest the Channel will be re-enabled.
2514         pub fn channel_monitor_updated(&self, funding_txo: &OutPoint, highest_applied_update_id: u64) {
2515                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
2516
2517                 let mut close_results = Vec::new();
2518                 let mut htlc_forwards = Vec::new();
2519                 let mut htlc_failures = Vec::new();
2520                 let mut pending_events = Vec::new();
2521
2522                 {
2523                         let mut channel_lock = self.channel_state.lock().unwrap();
2524                         let channel_state = &mut *channel_lock;
2525                         let short_to_id = &mut channel_state.short_to_id;
2526                         let pending_msg_events = &mut channel_state.pending_msg_events;
2527                         let channel = match channel_state.by_id.get_mut(&funding_txo.to_channel_id()) {
2528                                 Some(chan) => chan,
2529                                 None => return,
2530                         };
2531                         if !channel.is_awaiting_monitor_update() || channel.get_latest_monitor_update_id() != highest_applied_update_id {
2532                                 return;
2533                         }
2534
2535                         let (raa, commitment_update, order, pending_forwards, mut pending_failures, funding_broadcastable, funding_locked) = channel.monitor_updating_restored(&self.logger);
2536                         if !pending_forwards.is_empty() {
2537                                 htlc_forwards.push((channel.get_short_channel_id().expect("We can't have pending forwards before funding confirmation"), funding_txo.clone(), pending_forwards));
2538                         }
2539                         htlc_failures.append(&mut pending_failures);
2540
2541                         macro_rules! handle_cs { () => {
2542                                 if let Some(update) = commitment_update {
2543                                         pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
2544                                                 node_id: channel.get_counterparty_node_id(),
2545                                                 updates: update,
2546                                         });
2547                                 }
2548                         } }
2549                         macro_rules! handle_raa { () => {
2550                                 if let Some(revoke_and_ack) = raa {
2551                                         pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
2552                                                 node_id: channel.get_counterparty_node_id(),
2553                                                 msg: revoke_and_ack,
2554                                         });
2555                                 }
2556                         } }
2557                         match order {
2558                                 RAACommitmentOrder::CommitmentFirst => {
2559                                         handle_cs!();
2560                                         handle_raa!();
2561                                 },
2562                                 RAACommitmentOrder::RevokeAndACKFirst => {
2563                                         handle_raa!();
2564                                         handle_cs!();
2565                                 },
2566                         }
2567                         if let Some(tx) = funding_broadcastable {
2568                                 log_info!(self.logger, "Broadcasting funding transaction with txid {}", tx.txid());
2569                                 self.tx_broadcaster.broadcast_transaction(&tx);
2570                         }
2571                         if let Some(msg) = funding_locked {
2572                                 pending_msg_events.push(events::MessageSendEvent::SendFundingLocked {
2573                                         node_id: channel.get_counterparty_node_id(),
2574                                         msg,
2575                                 });
2576                                 if let Some(announcement_sigs) = self.get_announcement_sigs(channel) {
2577                                         pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
2578                                                 node_id: channel.get_counterparty_node_id(),
2579                                                 msg: announcement_sigs,
2580                                         });
2581                                 }
2582                                 short_to_id.insert(channel.get_short_channel_id().unwrap(), channel.channel_id());
2583                         }
2584                 }
2585
2586                 self.pending_events.lock().unwrap().append(&mut pending_events);
2587
2588                 for failure in htlc_failures.drain(..) {
2589                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), failure.0, &failure.1, failure.2);
2590                 }
2591                 self.forward_htlcs(&mut htlc_forwards[..]);
2592
2593                 for res in close_results.drain(..) {
2594                         self.finish_force_close_channel(res);
2595                 }
2596         }
2597
2598         fn internal_open_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::OpenChannel) -> Result<(), MsgHandleErrInternal> {
2599                 if msg.chain_hash != self.genesis_hash {
2600                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Unknown genesis block hash".to_owned(), msg.temporary_channel_id.clone()));
2601                 }
2602
2603                 let channel = Channel::new_from_req(&self.fee_estimator, &self.keys_manager, counterparty_node_id.clone(), their_features, msg, 0, &self.default_configuration)
2604                         .map_err(|e| MsgHandleErrInternal::from_chan_no_close(e, msg.temporary_channel_id))?;
2605                 let mut channel_state_lock = self.channel_state.lock().unwrap();
2606                 let channel_state = &mut *channel_state_lock;
2607                 match channel_state.by_id.entry(channel.channel_id()) {
2608                         hash_map::Entry::Occupied(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("temporary_channel_id collision!".to_owned(), msg.temporary_channel_id.clone())),
2609                         hash_map::Entry::Vacant(entry) => {
2610                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
2611                                         node_id: counterparty_node_id.clone(),
2612                                         msg: channel.get_accept_channel(),
2613                                 });
2614                                 entry.insert(channel);
2615                         }
2616                 }
2617                 Ok(())
2618         }
2619
2620         fn internal_accept_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::AcceptChannel) -> Result<(), MsgHandleErrInternal> {
2621                 let (value, output_script, user_id) = {
2622                         let mut channel_lock = self.channel_state.lock().unwrap();
2623                         let channel_state = &mut *channel_lock;
2624                         match channel_state.by_id.entry(msg.temporary_channel_id) {
2625                                 hash_map::Entry::Occupied(mut chan) => {
2626                                         if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2627                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.temporary_channel_id));
2628                                         }
2629                                         try_chan_entry!(self, chan.get_mut().accept_channel(&msg, &self.default_configuration, their_features), channel_state, chan);
2630                                         (chan.get().get_value_satoshis(), chan.get().get_funding_redeemscript().to_v0_p2wsh(), chan.get().get_user_id())
2631                                 },
2632                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.temporary_channel_id))
2633                         }
2634                 };
2635                 let mut pending_events = self.pending_events.lock().unwrap();
2636                 pending_events.push(events::Event::FundingGenerationReady {
2637                         temporary_channel_id: msg.temporary_channel_id,
2638                         channel_value_satoshis: value,
2639                         output_script,
2640                         user_channel_id: user_id,
2641                 });
2642                 Ok(())
2643         }
2644
2645         fn internal_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) -> Result<(), MsgHandleErrInternal> {
2646                 let ((funding_msg, monitor), mut chan) = {
2647                         let best_block = *self.best_block.read().unwrap();
2648                         let mut channel_lock = self.channel_state.lock().unwrap();
2649                         let channel_state = &mut *channel_lock;
2650                         match channel_state.by_id.entry(msg.temporary_channel_id.clone()) {
2651                                 hash_map::Entry::Occupied(mut chan) => {
2652                                         if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2653                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.temporary_channel_id));
2654                                         }
2655                                         (try_chan_entry!(self, chan.get_mut().funding_created(msg, best_block, &self.logger), channel_state, chan), chan.remove())
2656                                 },
2657                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.temporary_channel_id))
2658                         }
2659                 };
2660                 // Because we have exclusive ownership of the channel here we can release the channel_state
2661                 // lock before watch_channel
2662                 if let Err(e) = self.chain_monitor.watch_channel(monitor.get_funding_txo().0, monitor) {
2663                         match e {
2664                                 ChannelMonitorUpdateErr::PermanentFailure => {
2665                                         // Note that we reply with the new channel_id in error messages if we gave up on the
2666                                         // channel, not the temporary_channel_id. This is compatible with ourselves, but the
2667                                         // spec is somewhat ambiguous here. Not a huge deal since we'll send error messages for
2668                                         // any messages referencing a previously-closed channel anyway.
2669                                         // We do not do a force-close here as that would generate a monitor update for
2670                                         // a monitor that we didn't manage to store (and that we don't care about - we
2671                                         // don't respond with the funding_signed so the channel can never go on chain).
2672                                         let (_monitor_update, failed_htlcs) = chan.force_shutdown(true);
2673                                         assert!(failed_htlcs.is_empty());
2674                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("ChannelMonitor storage failure".to_owned(), funding_msg.channel_id));
2675                                 },
2676                                 ChannelMonitorUpdateErr::TemporaryFailure => {
2677                                         // There's no problem signing a counterparty's funding transaction if our monitor
2678                                         // hasn't persisted to disk yet - we can't lose money on a transaction that we haven't
2679                                         // accepted payment from yet. We do, however, need to wait to send our funding_locked
2680                                         // until we have persisted our monitor.
2681                                         chan.monitor_update_failed(false, false, Vec::new(), Vec::new());
2682                                 },
2683                         }
2684                 }
2685                 let mut channel_state_lock = self.channel_state.lock().unwrap();
2686                 let channel_state = &mut *channel_state_lock;
2687                 match channel_state.by_id.entry(funding_msg.channel_id) {
2688                         hash_map::Entry::Occupied(_) => {
2689                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Already had channel with the new channel_id".to_owned(), funding_msg.channel_id))
2690                         },
2691                         hash_map::Entry::Vacant(e) => {
2692                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingSigned {
2693                                         node_id: counterparty_node_id.clone(),
2694                                         msg: funding_msg,
2695                                 });
2696                                 e.insert(chan);
2697                         }
2698                 }
2699                 Ok(())
2700         }
2701
2702         fn internal_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) -> Result<(), MsgHandleErrInternal> {
2703                 let funding_tx = {
2704                         let best_block = *self.best_block.read().unwrap();
2705                         let mut channel_lock = self.channel_state.lock().unwrap();
2706                         let channel_state = &mut *channel_lock;
2707                         match channel_state.by_id.entry(msg.channel_id) {
2708                                 hash_map::Entry::Occupied(mut chan) => {
2709                                         if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2710                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2711                                         }
2712                                         let (monitor, funding_tx) = match chan.get_mut().funding_signed(&msg, best_block, &self.logger) {
2713                                                 Ok(update) => update,
2714                                                 Err(e) => try_chan_entry!(self, Err(e), channel_state, chan),
2715                                         };
2716                                         if let Err(e) = self.chain_monitor.watch_channel(chan.get().get_funding_txo().unwrap(), monitor) {
2717                                                 return_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::RevokeAndACKFirst, false, false);
2718                                         }
2719                                         funding_tx
2720                                 },
2721                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2722                         }
2723                 };
2724                 log_info!(self.logger, "Broadcasting funding transaction with txid {}", funding_tx.txid());
2725                 self.tx_broadcaster.broadcast_transaction(&funding_tx);
2726                 Ok(())
2727         }
2728
2729         fn internal_funding_locked(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingLocked) -> Result<(), MsgHandleErrInternal> {
2730                 let mut channel_state_lock = self.channel_state.lock().unwrap();
2731                 let channel_state = &mut *channel_state_lock;
2732                 match channel_state.by_id.entry(msg.channel_id) {
2733                         hash_map::Entry::Occupied(mut chan) => {
2734                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2735                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2736                                 }
2737                                 try_chan_entry!(self, chan.get_mut().funding_locked(&msg), channel_state, chan);
2738                                 if let Some(announcement_sigs) = self.get_announcement_sigs(chan.get()) {
2739                                         log_trace!(self.logger, "Sending announcement_signatures for {} in response to funding_locked", log_bytes!(chan.get().channel_id()));
2740                                         // If we see locking block before receiving remote funding_locked, we broadcast our
2741                                         // announcement_sigs at remote funding_locked reception. If we receive remote
2742                                         // funding_locked before seeing locking block, we broadcast our announcement_sigs at locking
2743                                         // block connection. We should guanrantee to broadcast announcement_sigs to our peer whatever
2744                                         // the order of the events but our peer may not receive it due to disconnection. The specs
2745                                         // lacking an acknowledgement for announcement_sigs we may have to re-send them at peer
2746                                         // connection in the future if simultaneous misses by both peers due to network/hardware
2747                                         // failures is an issue. Note, to achieve its goal, only one of the announcement_sigs needs
2748                                         // to be received, from then sigs are going to be flood to the whole network.
2749                                         channel_state.pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
2750                                                 node_id: counterparty_node_id.clone(),
2751                                                 msg: announcement_sigs,
2752                                         });
2753                                 }
2754                                 Ok(())
2755                         },
2756                         hash_map::Entry::Vacant(_) => Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2757                 }
2758         }
2759
2760         fn internal_shutdown(&self, counterparty_node_id: &PublicKey, their_features: &InitFeatures, msg: &msgs::Shutdown) -> Result<(), MsgHandleErrInternal> {
2761                 let (mut dropped_htlcs, chan_option) = {
2762                         let mut channel_state_lock = self.channel_state.lock().unwrap();
2763                         let channel_state = &mut *channel_state_lock;
2764
2765                         match channel_state.by_id.entry(msg.channel_id.clone()) {
2766                                 hash_map::Entry::Occupied(mut chan_entry) => {
2767                                         if chan_entry.get().get_counterparty_node_id() != *counterparty_node_id {
2768                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2769                                         }
2770                                         let (shutdown, closing_signed, dropped_htlcs) = try_chan_entry!(self, chan_entry.get_mut().shutdown(&self.fee_estimator, &their_features, &msg), channel_state, chan_entry);
2771                                         if let Some(msg) = shutdown {
2772                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
2773                                                         node_id: counterparty_node_id.clone(),
2774                                                         msg,
2775                                                 });
2776                                         }
2777                                         if let Some(msg) = closing_signed {
2778                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
2779                                                         node_id: counterparty_node_id.clone(),
2780                                                         msg,
2781                                                 });
2782                                         }
2783                                         if chan_entry.get().is_shutdown() {
2784                                                 if let Some(short_id) = chan_entry.get().get_short_channel_id() {
2785                                                         channel_state.short_to_id.remove(&short_id);
2786                                                 }
2787                                                 (dropped_htlcs, Some(chan_entry.remove_entry().1))
2788                                         } else { (dropped_htlcs, None) }
2789                                 },
2790                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2791                         }
2792                 };
2793                 for htlc_source in dropped_htlcs.drain(..) {
2794                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
2795                 }
2796                 if let Some(chan) = chan_option {
2797                         if let Ok(update) = self.get_channel_update(&chan) {
2798                                 let mut channel_state = self.channel_state.lock().unwrap();
2799                                 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2800                                         msg: update
2801                                 });
2802                         }
2803                 }
2804                 Ok(())
2805         }
2806
2807         fn internal_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) -> Result<(), MsgHandleErrInternal> {
2808                 let (tx, chan_option) = {
2809                         let mut channel_state_lock = self.channel_state.lock().unwrap();
2810                         let channel_state = &mut *channel_state_lock;
2811                         match channel_state.by_id.entry(msg.channel_id.clone()) {
2812                                 hash_map::Entry::Occupied(mut chan_entry) => {
2813                                         if chan_entry.get().get_counterparty_node_id() != *counterparty_node_id {
2814                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2815                                         }
2816                                         let (closing_signed, tx) = try_chan_entry!(self, chan_entry.get_mut().closing_signed(&self.fee_estimator, &msg), channel_state, chan_entry);
2817                                         if let Some(msg) = closing_signed {
2818                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
2819                                                         node_id: counterparty_node_id.clone(),
2820                                                         msg,
2821                                                 });
2822                                         }
2823                                         if tx.is_some() {
2824                                                 // We're done with this channel, we've got a signed closing transaction and
2825                                                 // will send the closing_signed back to the remote peer upon return. This
2826                                                 // also implies there are no pending HTLCs left on the channel, so we can
2827                                                 // fully delete it from tracking (the channel monitor is still around to
2828                                                 // watch for old state broadcasts)!
2829                                                 if let Some(short_id) = chan_entry.get().get_short_channel_id() {
2830                                                         channel_state.short_to_id.remove(&short_id);
2831                                                 }
2832                                                 (tx, Some(chan_entry.remove_entry().1))
2833                                         } else { (tx, None) }
2834                                 },
2835                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2836                         }
2837                 };
2838                 if let Some(broadcast_tx) = tx {
2839                         log_info!(self.logger, "Broadcasting {}", log_tx!(broadcast_tx));
2840                         self.tx_broadcaster.broadcast_transaction(&broadcast_tx);
2841                 }
2842                 if let Some(chan) = chan_option {
2843                         if let Ok(update) = self.get_channel_update(&chan) {
2844                                 let mut channel_state = self.channel_state.lock().unwrap();
2845                                 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2846                                         msg: update
2847                                 });
2848                         }
2849                 }
2850                 Ok(())
2851         }
2852
2853         fn internal_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) -> Result<(), MsgHandleErrInternal> {
2854                 //TODO: BOLT 4 points out a specific attack where a peer may re-send an onion packet and
2855                 //determine the state of the payment based on our response/if we forward anything/the time
2856                 //we take to respond. We should take care to avoid allowing such an attack.
2857                 //
2858                 //TODO: There exists a further attack where a node may garble the onion data, forward it to
2859                 //us repeatedly garbled in different ways, and compare our error messages, which are
2860                 //encrypted with the same key. It's not immediately obvious how to usefully exploit that,
2861                 //but we should prevent it anyway.
2862
2863                 let (pending_forward_info, mut channel_state_lock) = self.decode_update_add_htlc_onion(msg);
2864                 let channel_state = &mut *channel_state_lock;
2865
2866                 match channel_state.by_id.entry(msg.channel_id) {
2867                         hash_map::Entry::Occupied(mut chan) => {
2868                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2869                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2870                                 }
2871
2872                                 let create_pending_htlc_status = |chan: &Channel<Signer>, pending_forward_info: PendingHTLCStatus, error_code: u16| {
2873                                         // Ensure error_code has the UPDATE flag set, since by default we send a
2874                                         // channel update along as part of failing the HTLC.
2875                                         assert!((error_code & 0x1000) != 0);
2876                                         // If the update_add is completely bogus, the call will Err and we will close,
2877                                         // but if we've sent a shutdown and they haven't acknowledged it yet, we just
2878                                         // want to reject the new HTLC and fail it backwards instead of forwarding.
2879                                         match pending_forward_info {
2880                                                 PendingHTLCStatus::Forward(PendingHTLCInfo { ref incoming_shared_secret, .. }) => {
2881                                                         let reason = if let Ok(upd) = self.get_channel_update(chan) {
2882                                                                 onion_utils::build_first_hop_failure_packet(incoming_shared_secret, error_code, &{
2883                                                                         let mut res = Vec::with_capacity(8 + 128);
2884                                                                         // TODO: underspecified, follow https://github.com/lightningnetwork/lightning-rfc/issues/791
2885                                                                         res.extend_from_slice(&byte_utils::be16_to_array(0));
2886                                                                         res.extend_from_slice(&upd.encode_with_len()[..]);
2887                                                                         res
2888                                                                 }[..])
2889                                                         } else {
2890                                                                 // The only case where we'd be unable to
2891                                                                 // successfully get a channel update is if the
2892                                                                 // channel isn't in the fully-funded state yet,
2893                                                                 // implying our counterparty is trying to route
2894                                                                 // payments over the channel back to themselves
2895                                                                 // (cause no one else should know the short_id
2896                                                                 // is a lightning channel yet). We should have
2897                                                                 // no problem just calling this
2898                                                                 // unknown_next_peer (0x4000|10).
2899                                                                 onion_utils::build_first_hop_failure_packet(incoming_shared_secret, 0x4000|10, &[])
2900                                                         };
2901                                                         let msg = msgs::UpdateFailHTLC {
2902                                                                 channel_id: msg.channel_id,
2903                                                                 htlc_id: msg.htlc_id,
2904                                                                 reason
2905                                                         };
2906                                                         PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msg))
2907                                                 },
2908                                                 _ => pending_forward_info
2909                                         }
2910                                 };
2911                                 try_chan_entry!(self, chan.get_mut().update_add_htlc(&msg, pending_forward_info, create_pending_htlc_status, &self.logger), channel_state, chan);
2912                         },
2913                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2914                 }
2915                 Ok(())
2916         }
2917
2918         fn internal_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) -> Result<(), MsgHandleErrInternal> {
2919                 let mut channel_lock = self.channel_state.lock().unwrap();
2920                 let htlc_source = {
2921                         let channel_state = &mut *channel_lock;
2922                         match channel_state.by_id.entry(msg.channel_id) {
2923                                 hash_map::Entry::Occupied(mut chan) => {
2924                                         if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2925                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2926                                         }
2927                                         try_chan_entry!(self, chan.get_mut().update_fulfill_htlc(&msg), channel_state, chan)
2928                                 },
2929                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2930                         }
2931                 };
2932                 self.claim_funds_internal(channel_lock, htlc_source, msg.payment_preimage.clone());
2933                 Ok(())
2934         }
2935
2936         fn internal_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) -> Result<(), MsgHandleErrInternal> {
2937                 let mut channel_lock = self.channel_state.lock().unwrap();
2938                 let channel_state = &mut *channel_lock;
2939                 match channel_state.by_id.entry(msg.channel_id) {
2940                         hash_map::Entry::Occupied(mut chan) => {
2941                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2942                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2943                                 }
2944                                 try_chan_entry!(self, chan.get_mut().update_fail_htlc(&msg, HTLCFailReason::LightningError { err: msg.reason.clone() }), channel_state, chan);
2945                         },
2946                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2947                 }
2948                 Ok(())
2949         }
2950
2951         fn internal_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) -> Result<(), MsgHandleErrInternal> {
2952                 let mut channel_lock = self.channel_state.lock().unwrap();
2953                 let channel_state = &mut *channel_lock;
2954                 match channel_state.by_id.entry(msg.channel_id) {
2955                         hash_map::Entry::Occupied(mut chan) => {
2956                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2957                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2958                                 }
2959                                 if (msg.failure_code & 0x8000) == 0 {
2960                                         let chan_err: ChannelError = ChannelError::Close("Got update_fail_malformed_htlc with BADONION not set".to_owned());
2961                                         try_chan_entry!(self, Err(chan_err), channel_state, chan);
2962                                 }
2963                                 try_chan_entry!(self, chan.get_mut().update_fail_malformed_htlc(&msg, HTLCFailReason::Reason { failure_code: msg.failure_code, data: Vec::new() }), channel_state, chan);
2964                                 Ok(())
2965                         },
2966                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2967                 }
2968         }
2969
2970         fn internal_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) -> Result<(), MsgHandleErrInternal> {
2971                 let mut channel_state_lock = self.channel_state.lock().unwrap();
2972                 let channel_state = &mut *channel_state_lock;
2973                 match channel_state.by_id.entry(msg.channel_id) {
2974                         hash_map::Entry::Occupied(mut chan) => {
2975                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2976                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2977                                 }
2978                                 let (revoke_and_ack, commitment_signed, closing_signed, monitor_update) =
2979                                         match chan.get_mut().commitment_signed(&msg, &self.fee_estimator, &self.logger) {
2980                                                 Err((None, e)) => try_chan_entry!(self, Err(e), channel_state, chan),
2981                                                 Err((Some(update), e)) => {
2982                                                         assert!(chan.get().is_awaiting_monitor_update());
2983                                                         let _ = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), update);
2984                                                         try_chan_entry!(self, Err(e), channel_state, chan);
2985                                                         unreachable!();
2986                                                 },
2987                                                 Ok(res) => res
2988                                         };
2989                                 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
2990                                         return_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::RevokeAndACKFirst, true, commitment_signed.is_some());
2991                                         //TODO: Rebroadcast closing_signed if present on monitor update restoration
2992                                 }
2993                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
2994                                         node_id: counterparty_node_id.clone(),
2995                                         msg: revoke_and_ack,
2996                                 });
2997                                 if let Some(msg) = commitment_signed {
2998                                         channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
2999                                                 node_id: counterparty_node_id.clone(),
3000                                                 updates: msgs::CommitmentUpdate {
3001                                                         update_add_htlcs: Vec::new(),
3002                                                         update_fulfill_htlcs: Vec::new(),
3003                                                         update_fail_htlcs: Vec::new(),
3004                                                         update_fail_malformed_htlcs: Vec::new(),
3005                                                         update_fee: None,
3006                                                         commitment_signed: msg,
3007                                                 },
3008                                         });
3009                                 }
3010                                 if let Some(msg) = closing_signed {
3011                                         channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
3012                                                 node_id: counterparty_node_id.clone(),
3013                                                 msg,
3014                                         });
3015                                 }
3016                                 Ok(())
3017                         },
3018                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3019                 }
3020         }
3021
3022         #[inline]
3023         fn forward_htlcs(&self, per_source_pending_forwards: &mut [(u64, OutPoint, Vec<(PendingHTLCInfo, u64)>)]) {
3024                 for &mut (prev_short_channel_id, prev_funding_outpoint, ref mut pending_forwards) in per_source_pending_forwards {
3025                         let mut forward_event = None;
3026                         if !pending_forwards.is_empty() {
3027                                 let mut channel_state = self.channel_state.lock().unwrap();
3028                                 if channel_state.forward_htlcs.is_empty() {
3029                                         forward_event = Some(Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS))
3030                                 }
3031                                 for (forward_info, prev_htlc_id) in pending_forwards.drain(..) {
3032                                         match channel_state.forward_htlcs.entry(match forward_info.routing {
3033                                                         PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
3034                                                         PendingHTLCRouting::Receive { .. } => 0,
3035                                         }) {
3036                                                 hash_map::Entry::Occupied(mut entry) => {
3037                                                         entry.get_mut().push(HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_funding_outpoint,
3038                                                                                                         prev_htlc_id, forward_info });
3039                                                 },
3040                                                 hash_map::Entry::Vacant(entry) => {
3041                                                         entry.insert(vec!(HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_funding_outpoint,
3042                                                                                                      prev_htlc_id, forward_info }));
3043                                                 }
3044                                         }
3045                                 }
3046                         }
3047                         match forward_event {
3048                                 Some(time) => {
3049                                         let mut pending_events = self.pending_events.lock().unwrap();
3050                                         pending_events.push(events::Event::PendingHTLCsForwardable {
3051                                                 time_forwardable: time
3052                                         });
3053                                 }
3054                                 None => {},
3055                         }
3056                 }
3057         }
3058
3059         fn internal_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) -> Result<(), MsgHandleErrInternal> {
3060                 let mut htlcs_to_fail = Vec::new();
3061                 let res = loop {
3062                         let mut channel_state_lock = self.channel_state.lock().unwrap();
3063                         let channel_state = &mut *channel_state_lock;
3064                         match channel_state.by_id.entry(msg.channel_id) {
3065                                 hash_map::Entry::Occupied(mut chan) => {
3066                                         if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3067                                                 break Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3068                                         }
3069                                         let was_frozen_for_monitor = chan.get().is_awaiting_monitor_update();
3070                                         let (commitment_update, pending_forwards, pending_failures, closing_signed, monitor_update, htlcs_to_fail_in) =
3071                                                 break_chan_entry!(self, chan.get_mut().revoke_and_ack(&msg, &self.fee_estimator, &self.logger), channel_state, chan);
3072                                         htlcs_to_fail = htlcs_to_fail_in;
3073                                         if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
3074                                                 if was_frozen_for_monitor {
3075                                                         assert!(commitment_update.is_none() && closing_signed.is_none() && pending_forwards.is_empty() && pending_failures.is_empty());
3076                                                         break Err(MsgHandleErrInternal::ignore_no_close("Previous monitor update failure prevented responses to RAA".to_owned()));
3077                                                 } else {
3078                                                         if let Err(e) = handle_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, commitment_update.is_some(), pending_forwards, pending_failures) {
3079                                                                 break Err(e);
3080                                                         } else { unreachable!(); }
3081                                                 }
3082                                         }
3083                                         if let Some(updates) = commitment_update {
3084                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
3085                                                         node_id: counterparty_node_id.clone(),
3086                                                         updates,
3087                                                 });
3088                                         }
3089                                         if let Some(msg) = closing_signed {
3090                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
3091                                                         node_id: counterparty_node_id.clone(),
3092                                                         msg,
3093                                                 });
3094                                         }
3095                                         break Ok((pending_forwards, pending_failures, chan.get().get_short_channel_id().expect("RAA should only work on a short-id-available channel"), chan.get().get_funding_txo().unwrap()))
3096                                 },
3097                                 hash_map::Entry::Vacant(_) => break Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3098                         }
3099                 };
3100                 self.fail_holding_cell_htlcs(htlcs_to_fail, msg.channel_id);
3101                 match res {
3102                         Ok((pending_forwards, mut pending_failures, short_channel_id, channel_outpoint)) => {
3103                                 for failure in pending_failures.drain(..) {
3104                                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), failure.0, &failure.1, failure.2);
3105                                 }
3106                                 self.forward_htlcs(&mut [(short_channel_id, channel_outpoint, pending_forwards)]);
3107                                 Ok(())
3108                         },
3109                         Err(e) => Err(e)
3110                 }
3111         }
3112
3113         fn internal_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) -> Result<(), MsgHandleErrInternal> {
3114                 let mut channel_lock = self.channel_state.lock().unwrap();
3115                 let channel_state = &mut *channel_lock;
3116                 match channel_state.by_id.entry(msg.channel_id) {
3117                         hash_map::Entry::Occupied(mut chan) => {
3118                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3119                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3120                                 }
3121                                 try_chan_entry!(self, chan.get_mut().update_fee(&self.fee_estimator, &msg), channel_state, chan);
3122                         },
3123                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3124                 }
3125                 Ok(())
3126         }
3127
3128         fn internal_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) -> Result<(), MsgHandleErrInternal> {
3129                 let mut channel_state_lock = self.channel_state.lock().unwrap();
3130                 let channel_state = &mut *channel_state_lock;
3131
3132                 match channel_state.by_id.entry(msg.channel_id) {
3133                         hash_map::Entry::Occupied(mut chan) => {
3134                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3135                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3136                                 }
3137                                 if !chan.get().is_usable() {
3138                                         return Err(MsgHandleErrInternal::from_no_close(LightningError{err: "Got an announcement_signatures before we were ready for it".to_owned(), action: msgs::ErrorAction::IgnoreError}));
3139                                 }
3140
3141                                 let our_node_id = self.get_our_node_id();
3142                                 let (announcement, our_bitcoin_sig) =
3143                                         try_chan_entry!(self, chan.get_mut().get_channel_announcement(our_node_id.clone(), self.genesis_hash.clone()), channel_state, chan);
3144
3145                                 let were_node_one = announcement.node_id_1 == our_node_id;
3146                                 let msghash = hash_to_message!(&Sha256dHash::hash(&announcement.encode()[..])[..]);
3147                                 {
3148                                         let their_node_key = if were_node_one { &announcement.node_id_2 } else { &announcement.node_id_1 };
3149                                         let their_bitcoin_key = if were_node_one { &announcement.bitcoin_key_2 } else { &announcement.bitcoin_key_1 };
3150                                         match (self.secp_ctx.verify(&msghash, &msg.node_signature, their_node_key),
3151                                                    self.secp_ctx.verify(&msghash, &msg.bitcoin_signature, their_bitcoin_key)) {
3152                                                 (Err(e), _) => {
3153                                                         let chan_err: ChannelError = ChannelError::Close(format!("Bad announcement_signatures. Failed to verify node_signature: {:?}. Maybe using different node_secret for transport and routing msg? UnsignedChannelAnnouncement used for verification is {:?}. their_node_key is {:?}", e, &announcement, their_node_key));
3154                                                         try_chan_entry!(self, Err(chan_err), channel_state, chan);
3155                                                 },
3156                                                 (_, Err(e)) => {
3157                                                         let chan_err: ChannelError = ChannelError::Close(format!("Bad announcement_signatures. Failed to verify bitcoin_signature: {:?}. UnsignedChannelAnnouncement used for verification is {:?}. their_bitcoin_key is ({:?})", e, &announcement, their_bitcoin_key));
3158                                                         try_chan_entry!(self, Err(chan_err), channel_state, chan);
3159                                                 },
3160                                                 _ => {}
3161                                         }
3162                                 }
3163
3164                                 let our_node_sig = self.secp_ctx.sign(&msghash, &self.our_network_key);
3165
3166                                 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
3167                                         msg: msgs::ChannelAnnouncement {
3168                                                 node_signature_1: if were_node_one { our_node_sig } else { msg.node_signature },
3169                                                 node_signature_2: if were_node_one { msg.node_signature } else { our_node_sig },
3170                                                 bitcoin_signature_1: if were_node_one { our_bitcoin_sig } else { msg.bitcoin_signature },
3171                                                 bitcoin_signature_2: if were_node_one { msg.bitcoin_signature } else { our_bitcoin_sig },
3172                                                 contents: announcement,
3173                                         },
3174                                         update_msg: self.get_channel_update(chan.get()).unwrap(), // can only fail if we're not in a ready state
3175                                 });
3176                         },
3177                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3178                 }
3179                 Ok(())
3180         }
3181
3182         fn internal_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) -> Result<(), MsgHandleErrInternal> {
3183                 let mut channel_state_lock = self.channel_state.lock().unwrap();
3184                 let channel_state = &mut *channel_state_lock;
3185                 let chan_id = match channel_state.short_to_id.get(&msg.contents.short_channel_id) {
3186                         Some(chan_id) => chan_id.clone(),
3187                         None => {
3188                                 // It's not a local channel
3189                                 return Ok(())
3190                         }
3191                 };
3192                 match channel_state.by_id.entry(chan_id) {
3193                         hash_map::Entry::Occupied(mut chan) => {
3194                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3195                                         // TODO: see issue #153, need a consistent behavior on obnoxious behavior from random node
3196                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), chan_id));
3197                                 }
3198                                 try_chan_entry!(self, chan.get_mut().channel_update(&msg), channel_state, chan);
3199                         },
3200                         hash_map::Entry::Vacant(_) => unreachable!()
3201                 }
3202                 Ok(())
3203         }
3204
3205         fn internal_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) -> Result<(), MsgHandleErrInternal> {
3206                 let mut channel_state_lock = self.channel_state.lock().unwrap();
3207                 let channel_state = &mut *channel_state_lock;
3208
3209                 match channel_state.by_id.entry(msg.channel_id) {
3210                         hash_map::Entry::Occupied(mut chan) => {
3211                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3212                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3213                                 }
3214                                 // Currently, we expect all holding cell update_adds to be dropped on peer
3215                                 // disconnect, so Channel's reestablish will never hand us any holding cell
3216                                 // freed HTLCs to fail backwards. If in the future we no longer drop pending
3217                                 // add-HTLCs on disconnect, we may be handed HTLCs to fail backwards here.
3218                                 let (funding_locked, revoke_and_ack, commitment_update, monitor_update_opt, mut order, shutdown) =
3219                                         try_chan_entry!(self, chan.get_mut().channel_reestablish(msg, &self.logger), channel_state, chan);
3220                                 if let Some(monitor_update) = monitor_update_opt {
3221                                         if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
3222                                                 // channel_reestablish doesn't guarantee the order it returns is sensical
3223                                                 // for the messages it returns, but if we're setting what messages to
3224                                                 // re-transmit on monitor update success, we need to make sure it is sane.
3225                                                 if revoke_and_ack.is_none() {
3226                                                         order = RAACommitmentOrder::CommitmentFirst;
3227                                                 }
3228                                                 if commitment_update.is_none() {
3229                                                         order = RAACommitmentOrder::RevokeAndACKFirst;
3230                                                 }
3231                                                 return_monitor_err!(self, e, channel_state, chan, order, revoke_and_ack.is_some(), commitment_update.is_some());
3232                                                 //TODO: Resend the funding_locked if needed once we get the monitor running again
3233                                         }
3234                                 }
3235                                 if let Some(msg) = funding_locked {
3236                                         channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingLocked {
3237                                                 node_id: counterparty_node_id.clone(),
3238                                                 msg
3239                                         });
3240                                 }
3241                                 macro_rules! send_raa { () => {
3242                                         if let Some(msg) = revoke_and_ack {
3243                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
3244                                                         node_id: counterparty_node_id.clone(),
3245                                                         msg
3246                                                 });
3247                                         }
3248                                 } }
3249                                 macro_rules! send_cu { () => {
3250                                         if let Some(updates) = commitment_update {
3251                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
3252                                                         node_id: counterparty_node_id.clone(),
3253                                                         updates
3254                                                 });
3255                                         }
3256                                 } }
3257                                 match order {
3258                                         RAACommitmentOrder::RevokeAndACKFirst => {
3259                                                 send_raa!();
3260                                                 send_cu!();
3261                                         },
3262                                         RAACommitmentOrder::CommitmentFirst => {
3263                                                 send_cu!();
3264                                                 send_raa!();
3265                                         },
3266                                 }
3267                                 if let Some(msg) = shutdown {
3268                                         channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
3269                                                 node_id: counterparty_node_id.clone(),
3270                                                 msg,
3271                                         });
3272                                 }
3273                                 Ok(())
3274                         },
3275                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3276                 }
3277         }
3278
3279         /// Begin Update fee process. Allowed only on an outbound channel.
3280         /// If successful, will generate a UpdateHTLCs event, so you should probably poll
3281         /// PeerManager::process_events afterwards.
3282         /// Note: This API is likely to change!
3283         /// (C-not exported) Cause its doc(hidden) anyway
3284         #[doc(hidden)]
3285         pub fn update_fee(&self, channel_id: [u8;32], feerate_per_kw: u32) -> Result<(), APIError> {
3286                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3287                 let counterparty_node_id;
3288                 let err: Result<(), _> = loop {
3289                         let mut channel_state_lock = self.channel_state.lock().unwrap();
3290                         let channel_state = &mut *channel_state_lock;
3291
3292                         match channel_state.by_id.entry(channel_id) {
3293                                 hash_map::Entry::Vacant(_) => return Err(APIError::APIMisuseError{err: format!("Failed to find corresponding channel for id {}", channel_id.to_hex())}),
3294                                 hash_map::Entry::Occupied(mut chan) => {
3295                                         if !chan.get().is_outbound() {
3296                                                 return Err(APIError::APIMisuseError{err: "update_fee cannot be sent for an inbound channel".to_owned()});
3297                                         }
3298                                         if chan.get().is_awaiting_monitor_update() {
3299                                                 return Err(APIError::MonitorUpdateFailed);
3300                                         }
3301                                         if !chan.get().is_live() {
3302                                                 return Err(APIError::ChannelUnavailable{err: "Channel is either not yet fully established or peer is currently disconnected".to_owned()});
3303                                         }
3304                                         counterparty_node_id = chan.get().get_counterparty_node_id();
3305                                         if let Some((update_fee, commitment_signed, monitor_update)) =
3306                                                         break_chan_entry!(self, chan.get_mut().send_update_fee_and_commit(feerate_per_kw, &self.logger), channel_state, chan)
3307                                         {
3308                                                 if let Err(_e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
3309                                                         unimplemented!();
3310                                                 }
3311                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
3312                                                         node_id: chan.get().get_counterparty_node_id(),
3313                                                         updates: msgs::CommitmentUpdate {
3314                                                                 update_add_htlcs: Vec::new(),
3315                                                                 update_fulfill_htlcs: Vec::new(),
3316                                                                 update_fail_htlcs: Vec::new(),
3317                                                                 update_fail_malformed_htlcs: Vec::new(),
3318                                                                 update_fee: Some(update_fee),
3319                                                                 commitment_signed,
3320                                                         },
3321                                                 });
3322                                         }
3323                                 },
3324                         }
3325                         return Ok(())
3326                 };
3327
3328                 match handle_error!(self, err, counterparty_node_id) {
3329                         Ok(_) => unreachable!(),
3330                         Err(e) => { Err(APIError::APIMisuseError { err: e.err })}
3331                 }
3332         }
3333
3334         /// Process pending events from the `chain::Watch`.
3335         fn process_pending_monitor_events(&self) {
3336                 let mut failed_channels = Vec::new();
3337                 {
3338                         for monitor_event in self.chain_monitor.release_pending_monitor_events() {
3339                                 match monitor_event {
3340                                         MonitorEvent::HTLCEvent(htlc_update) => {
3341                                                 if let Some(preimage) = htlc_update.payment_preimage {
3342                                                         log_trace!(self.logger, "Claiming HTLC with preimage {} from our monitor", log_bytes!(preimage.0));
3343                                                         self.claim_funds_internal(self.channel_state.lock().unwrap(), htlc_update.source, preimage);
3344                                                 } else {
3345                                                         log_trace!(self.logger, "Failing HTLC with hash {} from our monitor", log_bytes!(htlc_update.payment_hash.0));
3346                                                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_update.source, &htlc_update.payment_hash, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
3347                                                 }
3348                                         },
3349                                         MonitorEvent::CommitmentTxBroadcasted(funding_outpoint) => {
3350                                                 let mut channel_lock = self.channel_state.lock().unwrap();
3351                                                 let channel_state = &mut *channel_lock;
3352                                                 let by_id = &mut channel_state.by_id;
3353                                                 let short_to_id = &mut channel_state.short_to_id;
3354                                                 let pending_msg_events = &mut channel_state.pending_msg_events;
3355                                                 if let Some(mut chan) = by_id.remove(&funding_outpoint.to_channel_id()) {
3356                                                         if let Some(short_id) = chan.get_short_channel_id() {
3357                                                                 short_to_id.remove(&short_id);
3358                                                         }
3359                                                         failed_channels.push(chan.force_shutdown(false));
3360                                                         if let Ok(update) = self.get_channel_update(&chan) {
3361                                                                 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
3362                                                                         msg: update
3363                                                                 });
3364                                                         }
3365                                                         pending_msg_events.push(events::MessageSendEvent::HandleError {
3366                                                                 node_id: chan.get_counterparty_node_id(),
3367                                                                 action: msgs::ErrorAction::SendErrorMessage {
3368                                                                         msg: msgs::ErrorMessage { channel_id: chan.channel_id(), data: "Channel force-closed".to_owned() }
3369                                                                 },
3370                                                         });
3371                                                 }
3372                                         },
3373                                 }
3374                         }
3375                 }
3376
3377                 for failure in failed_channels.drain(..) {
3378                         self.finish_force_close_channel(failure);
3379                 }
3380         }
3381
3382         /// Handle a list of channel failures during a block_connected or block_disconnected call,
3383         /// pushing the channel monitor update (if any) to the background events queue and removing the
3384         /// Channel object.
3385         fn handle_init_event_channel_failures(&self, mut failed_channels: Vec<ShutdownResult>) {
3386                 for mut failure in failed_channels.drain(..) {
3387                         // Either a commitment transactions has been confirmed on-chain or
3388                         // Channel::block_disconnected detected that the funding transaction has been
3389                         // reorganized out of the main chain.
3390                         // We cannot broadcast our latest local state via monitor update (as
3391                         // Channel::force_shutdown tries to make us do) as we may still be in initialization,
3392                         // so we track the update internally and handle it when the user next calls
3393                         // timer_tick_occurred, guaranteeing we're running normally.
3394                         if let Some((funding_txo, update)) = failure.0.take() {
3395                                 assert_eq!(update.updates.len(), 1);
3396                                 if let ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast } = update.updates[0] {
3397                                         assert!(should_broadcast);
3398                                 } else { unreachable!(); }
3399                                 self.pending_background_events.lock().unwrap().push(BackgroundEvent::ClosingMonitorUpdate((funding_txo, update)));
3400                         }
3401                         self.finish_force_close_channel(failure);
3402                 }
3403         }
3404
3405         fn set_payment_hash_secret_map(&self, payment_hash: PaymentHash, payment_preimage: Option<PaymentPreimage>, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32, user_payment_id: u64) -> Result<PaymentSecret, APIError> {
3406                 assert!(invoice_expiry_delta_secs <= 60*60*24*365); // Sadly bitcoin timestamps are u32s, so panic before 2106
3407
3408                 let payment_secret = PaymentSecret(self.keys_manager.get_secure_random_bytes());
3409
3410                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3411                 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
3412                 match payment_secrets.entry(payment_hash) {
3413                         hash_map::Entry::Vacant(e) => {
3414                                 e.insert(PendingInboundPayment {
3415                                         payment_secret, min_value_msat, user_payment_id, payment_preimage,
3416                                         // We assume that highest_seen_timestamp is pretty close to the current time -
3417                                         // its updated when we receive a new block with the maximum time we've seen in
3418                                         // a header. It should never be more than two hours in the future.
3419                                         // Thus, we add two hours here as a buffer to ensure we absolutely
3420                                         // never fail a payment too early.
3421                                         // Note that we assume that received blocks have reasonably up-to-date
3422                                         // timestamps.
3423                                         expiry_time: self.highest_seen_timestamp.load(Ordering::Acquire) as u64 + invoice_expiry_delta_secs as u64 + 7200,
3424                                 });
3425                         },
3426                         hash_map::Entry::Occupied(_) => return Err(APIError::APIMisuseError { err: "Duplicate payment hash".to_owned() }),
3427                 }
3428                 Ok(payment_secret)
3429         }
3430
3431         /// Gets a payment secret and payment hash for use in an invoice given to a third party wishing
3432         /// to pay us.
3433         ///
3434         /// This differs from [`create_inbound_payment_for_hash`] only in that it generates the
3435         /// [`PaymentHash`] and [`PaymentPreimage`] for you, returning the first and storing the second.
3436         ///
3437         /// The [`PaymentPreimage`] will ultimately be returned to you in the [`PaymentReceived`], which
3438         /// will have the [`PaymentReceived::payment_preimage`] field filled in. That should then be
3439         /// passed directly to [`claim_funds`].
3440         ///
3441         /// See [`create_inbound_payment_for_hash`] for detailed documentation on behavior and requirements.
3442         ///
3443         /// [`claim_funds`]: Self::claim_funds
3444         /// [`PaymentReceived`]: events::Event::PaymentReceived
3445         /// [`PaymentReceived::payment_preimage`]: events::Event::PaymentReceived::payment_preimage
3446         /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
3447         pub fn create_inbound_payment(&self, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32, user_payment_id: u64) -> (PaymentHash, PaymentSecret) {
3448                 let payment_preimage = PaymentPreimage(self.keys_manager.get_secure_random_bytes());
3449                 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
3450
3451                 (payment_hash,
3452                         self.set_payment_hash_secret_map(payment_hash, Some(payment_preimage), min_value_msat, invoice_expiry_delta_secs, user_payment_id)
3453                                 .expect("RNG Generated Duplicate PaymentHash"))
3454         }
3455
3456         /// Gets a [`PaymentSecret`] for a given [`PaymentHash`], for which the payment preimage is
3457         /// stored external to LDK.
3458         ///
3459         /// A [`PaymentReceived`] event will only be generated if the [`PaymentSecret`] matches a
3460         /// payment secret fetched via this method or [`create_inbound_payment`], and which is at least
3461         /// the `min_value_msat` provided here, if one is provided.
3462         ///
3463         /// The [`PaymentHash`] (and corresponding [`PaymentPreimage`]) must be globally unique. This
3464         /// method may return an Err if another payment with the same payment_hash is still pending.
3465         ///
3466         /// `user_payment_id` will be provided back in [`PaymentReceived::user_payment_id`] events to
3467         /// allow tracking of which events correspond with which calls to this and
3468         /// [`create_inbound_payment`]. `user_payment_id` has no meaning inside of LDK, it is simply
3469         /// copied to events and otherwise ignored. It may be used to correlate PaymentReceived events
3470         /// with invoice metadata stored elsewhere.
3471         ///
3472         /// `min_value_msat` should be set if the invoice being generated contains a value. Any payment
3473         /// received for the returned [`PaymentHash`] will be required to be at least `min_value_msat`
3474         /// before a [`PaymentReceived`] event will be generated, ensuring that we do not provide the
3475         /// sender "proof-of-payment" unless they have paid the required amount.
3476         ///
3477         /// `invoice_expiry_delta_secs` describes the number of seconds that the invoice is valid for
3478         /// in excess of the current time. This should roughly match the expiry time set in the invoice.
3479         /// After this many seconds, we will remove the inbound payment, resulting in any attempts to
3480         /// pay the invoice failing. The BOLT spec suggests 7,200 secs as a default validity time for
3481         /// invoices when no timeout is set.
3482         ///
3483         /// Note that we use block header time to time-out pending inbound payments (with some margin
3484         /// to compensate for the inaccuracy of block header timestamps). Thus, in practice we will
3485         /// accept a payment and generate a [`PaymentReceived`] event for some time after the expiry.
3486         /// If you need exact expiry semantics, you should enforce them upon receipt of
3487         /// [`PaymentReceived`].
3488         ///
3489         /// Pending inbound payments are stored in memory and in serialized versions of this
3490         /// [`ChannelManager`]. If potentially unbounded numbers of inbound payments may exist and
3491         /// space is limited, you may wish to rate-limit inbound payment creation.
3492         ///
3493         /// May panic if `invoice_expiry_delta_secs` is greater than one year.
3494         ///
3495         /// Note that invoices generated for inbound payments should have their `min_final_cltv_expiry`
3496         /// set to at least [`MIN_FINAL_CLTV_EXPIRY`].
3497         ///
3498         /// [`create_inbound_payment`]: Self::create_inbound_payment
3499         /// [`PaymentReceived`]: events::Event::PaymentReceived
3500         /// [`PaymentReceived::user_payment_id`]: events::Event::PaymentReceived::user_payment_id
3501         pub fn create_inbound_payment_for_hash(&self, payment_hash: PaymentHash, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32, user_payment_id: u64) -> Result<PaymentSecret, APIError> {
3502                 self.set_payment_hash_secret_map(payment_hash, None, min_value_msat, invoice_expiry_delta_secs, user_payment_id)
3503         }
3504 }
3505
3506 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> MessageSendEventsProvider for ChannelManager<Signer, M, T, K, F, L>
3507         where M::Target: chain::Watch<Signer>,
3508         T::Target: BroadcasterInterface,
3509         K::Target: KeysInterface<Signer = Signer>,
3510         F::Target: FeeEstimator,
3511                                 L::Target: Logger,
3512 {
3513         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
3514                 //TODO: This behavior should be documented. It's non-intuitive that we query
3515                 // ChannelMonitors when clearing other events.
3516                 self.process_pending_monitor_events();
3517
3518                 let mut ret = Vec::new();
3519                 let mut channel_state = self.channel_state.lock().unwrap();
3520                 mem::swap(&mut ret, &mut channel_state.pending_msg_events);
3521                 ret
3522         }
3523 }
3524
3525 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> EventsProvider for ChannelManager<Signer, M, T, K, F, L>
3526         where M::Target: chain::Watch<Signer>,
3527         T::Target: BroadcasterInterface,
3528         K::Target: KeysInterface<Signer = Signer>,
3529         F::Target: FeeEstimator,
3530                                 L::Target: Logger,
3531 {
3532         fn get_and_clear_pending_events(&self) -> Vec<Event> {
3533                 //TODO: This behavior should be documented. It's non-intuitive that we query
3534                 // ChannelMonitors when clearing other events.
3535                 self.process_pending_monitor_events();
3536
3537                 let mut ret = Vec::new();
3538                 let mut pending_events = self.pending_events.lock().unwrap();
3539                 mem::swap(&mut ret, &mut *pending_events);
3540                 ret
3541         }
3542 }
3543
3544 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> chain::Listen for ChannelManager<Signer, M, T, K, F, L>
3545 where
3546         M::Target: chain::Watch<Signer>,
3547         T::Target: BroadcasterInterface,
3548         K::Target: KeysInterface<Signer = Signer>,
3549         F::Target: FeeEstimator,
3550         L::Target: Logger,
3551 {
3552         fn block_connected(&self, block: &Block, height: u32) {
3553                 {
3554                         let best_block = self.best_block.read().unwrap();
3555                         assert_eq!(best_block.block_hash(), block.header.prev_blockhash,
3556                                 "Blocks must be connected in chain-order - the connected header must build on the last connected header");
3557                         assert_eq!(best_block.height(), height - 1,
3558                                 "Blocks must be connected in chain-order - the connected block height must be one greater than the previous height");
3559                 }
3560
3561                 let txdata: Vec<_> = block.txdata.iter().enumerate().collect();
3562                 self.transactions_confirmed(&block.header, &txdata, height);
3563                 self.best_block_updated(&block.header, height);
3564         }
3565
3566         fn block_disconnected(&self, header: &BlockHeader, height: u32) {
3567                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3568                 let new_height = height - 1;
3569                 {
3570                         let mut best_block = self.best_block.write().unwrap();
3571                         assert_eq!(best_block.block_hash(), header.block_hash(),
3572                                 "Blocks must be disconnected in chain-order - the disconnected header must be the last connected header");
3573                         assert_eq!(best_block.height(), height,
3574                                 "Blocks must be disconnected in chain-order - the disconnected block must have the correct height");
3575                         *best_block = BestBlock::new(header.prev_blockhash, new_height)
3576                 }
3577
3578                 self.do_chain_event(Some(new_height), |channel| channel.best_block_updated(new_height, header.time));
3579         }
3580 }
3581
3582 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> chain::Confirm for ChannelManager<Signer, M, T, K, F, L>
3583 where
3584         M::Target: chain::Watch<Signer>,
3585         T::Target: BroadcasterInterface,
3586         K::Target: KeysInterface<Signer = Signer>,
3587         F::Target: FeeEstimator,
3588         L::Target: Logger,
3589 {
3590         fn transactions_confirmed(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
3591                 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
3592                 // during initialization prior to the chain_monitor being fully configured in some cases.
3593                 // See the docs for `ChannelManagerReadArgs` for more.
3594
3595                 let block_hash = header.block_hash();
3596                 log_trace!(self.logger, "{} transactions included in block {} at height {} provided", txdata.len(), block_hash, height);
3597
3598                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3599                 self.do_chain_event(Some(height), |channel| channel.transactions_confirmed(&block_hash, height, txdata, &self.logger).map(|a| (a, Vec::new())));
3600         }
3601
3602         fn best_block_updated(&self, header: &BlockHeader, height: u32) {
3603                 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
3604                 // during initialization prior to the chain_monitor being fully configured in some cases.
3605                 // See the docs for `ChannelManagerReadArgs` for more.
3606
3607                 let block_hash = header.block_hash();
3608                 log_trace!(self.logger, "New best block: {} at height {}", block_hash, height);
3609
3610                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3611
3612                 *self.best_block.write().unwrap() = BestBlock::new(block_hash, height);
3613
3614                 self.do_chain_event(Some(height), |channel| channel.best_block_updated(height, header.time));
3615
3616                 macro_rules! max_time {
3617                         ($timestamp: expr) => {
3618                                 loop {
3619                                         // Update $timestamp to be the max of its current value and the block
3620                                         // timestamp. This should keep us close to the current time without relying on
3621                                         // having an explicit local time source.
3622                                         // Just in case we end up in a race, we loop until we either successfully
3623                                         // update $timestamp or decide we don't need to.
3624                                         let old_serial = $timestamp.load(Ordering::Acquire);
3625                                         if old_serial >= header.time as usize { break; }
3626                                         if $timestamp.compare_exchange(old_serial, header.time as usize, Ordering::AcqRel, Ordering::Relaxed).is_ok() {
3627                                                 break;
3628                                         }
3629                                 }
3630                         }
3631                 }
3632                 max_time!(self.last_node_announcement_serial);
3633                 max_time!(self.highest_seen_timestamp);
3634                 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
3635                 payment_secrets.retain(|_, inbound_payment| {
3636                         inbound_payment.expiry_time > header.time as u64
3637                 });
3638         }
3639
3640         fn get_relevant_txids(&self) -> Vec<Txid> {
3641                 let channel_state = self.channel_state.lock().unwrap();
3642                 let mut res = Vec::with_capacity(channel_state.short_to_id.len());
3643                 for chan in channel_state.by_id.values() {
3644                         if let Some(funding_txo) = chan.get_funding_txo() {
3645                                 res.push(funding_txo.txid);
3646                         }
3647                 }
3648                 res
3649         }
3650
3651         fn transaction_unconfirmed(&self, txid: &Txid) {
3652                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3653                 self.do_chain_event(None, |channel| {
3654                         if let Some(funding_txo) = channel.get_funding_txo() {
3655                                 if funding_txo.txid == *txid {
3656                                         channel.funding_transaction_unconfirmed().map(|_| (None, Vec::new()))
3657                                 } else { Ok((None, Vec::new())) }
3658                         } else { Ok((None, Vec::new())) }
3659                 });
3660         }
3661 }
3662
3663 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> ChannelManager<Signer, M, T, K, F, L>
3664 where
3665         M::Target: chain::Watch<Signer>,
3666         T::Target: BroadcasterInterface,
3667         K::Target: KeysInterface<Signer = Signer>,
3668         F::Target: FeeEstimator,
3669         L::Target: Logger,
3670 {
3671         /// Calls a function which handles an on-chain event (blocks dis/connected, transactions
3672         /// un/confirmed, etc) on each channel, handling any resulting errors or messages generated by
3673         /// the function.
3674         fn do_chain_event<FN: Fn(&mut Channel<Signer>) -> Result<(Option<msgs::FundingLocked>, Vec<(HTLCSource, PaymentHash)>), msgs::ErrorMessage>>
3675                         (&self, height_opt: Option<u32>, f: FN) {
3676                 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
3677                 // during initialization prior to the chain_monitor being fully configured in some cases.
3678                 // See the docs for `ChannelManagerReadArgs` for more.
3679
3680                 let mut failed_channels = Vec::new();
3681                 let mut timed_out_htlcs = Vec::new();
3682                 {
3683                         let mut channel_lock = self.channel_state.lock().unwrap();
3684                         let channel_state = &mut *channel_lock;
3685                         let short_to_id = &mut channel_state.short_to_id;
3686                         let pending_msg_events = &mut channel_state.pending_msg_events;
3687                         channel_state.by_id.retain(|_, channel| {
3688                                 let res = f(channel);
3689                                 if let Ok((chan_res, mut timed_out_pending_htlcs)) = res {
3690                                         for (source, payment_hash) in timed_out_pending_htlcs.drain(..) {
3691                                                 let chan_update = self.get_channel_update(&channel).map(|u| u.encode_with_len()).unwrap(); // Cannot add/recv HTLCs before we have a short_id so unwrap is safe
3692                                                 timed_out_htlcs.push((source, payment_hash,  HTLCFailReason::Reason {
3693                                                         failure_code: 0x1000 | 14, // expiry_too_soon, or at least it is now
3694                                                         data: chan_update,
3695                                                 }));
3696                                         }
3697                                         if let Some(funding_locked) = chan_res {
3698                                                 pending_msg_events.push(events::MessageSendEvent::SendFundingLocked {
3699                                                         node_id: channel.get_counterparty_node_id(),
3700                                                         msg: funding_locked,
3701                                                 });
3702                                                 if let Some(announcement_sigs) = self.get_announcement_sigs(channel) {
3703                                                         log_trace!(self.logger, "Sending funding_locked and announcement_signatures for {}", log_bytes!(channel.channel_id()));
3704                                                         pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
3705                                                                 node_id: channel.get_counterparty_node_id(),
3706                                                                 msg: announcement_sigs,
3707                                                         });
3708                                                 } else {
3709                                                         log_trace!(self.logger, "Sending funding_locked WITHOUT announcement_signatures for {}", log_bytes!(channel.channel_id()));
3710                                                 }
3711                                                 short_to_id.insert(channel.get_short_channel_id().unwrap(), channel.channel_id());
3712                                         }
3713                                 } else if let Err(e) = res {
3714                                         if let Some(short_id) = channel.get_short_channel_id() {
3715                                                 short_to_id.remove(&short_id);
3716                                         }
3717                                         // It looks like our counterparty went on-chain or funding transaction was
3718                                         // reorged out of the main chain. Close the channel.
3719                                         failed_channels.push(channel.force_shutdown(true));
3720                                         if let Ok(update) = self.get_channel_update(&channel) {
3721                                                 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
3722                                                         msg: update
3723                                                 });
3724                                         }
3725                                         pending_msg_events.push(events::MessageSendEvent::HandleError {
3726                                                 node_id: channel.get_counterparty_node_id(),
3727                                                 action: msgs::ErrorAction::SendErrorMessage { msg: e },
3728                                         });
3729                                         return false;
3730                                 }
3731                                 true
3732                         });
3733
3734                         if let Some(height) = height_opt {
3735                                 channel_state.claimable_htlcs.retain(|payment_hash, htlcs| {
3736                                         htlcs.retain(|htlc| {
3737                                                 // If height is approaching the number of blocks we think it takes us to get
3738                                                 // our commitment transaction confirmed before the HTLC expires, plus the
3739                                                 // number of blocks we generally consider it to take to do a commitment update,
3740                                                 // just give up on it and fail the HTLC.
3741                                                 if height >= htlc.cltv_expiry - HTLC_FAIL_BACK_BUFFER {
3742                                                         let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec();
3743                                                         htlc_msat_height_data.extend_from_slice(&byte_utils::be32_to_array(height));
3744                                                         timed_out_htlcs.push((HTLCSource::PreviousHopData(htlc.prev_hop.clone()), payment_hash.clone(), HTLCFailReason::Reason {
3745                                                                 failure_code: 0x4000 | 15,
3746                                                                 data: htlc_msat_height_data
3747                                                         }));
3748                                                         false
3749                                                 } else { true }
3750                                         });
3751                                         !htlcs.is_empty() // Only retain this entry if htlcs has at least one entry.
3752                                 });
3753                         }
3754                 }
3755
3756                 self.handle_init_event_channel_failures(failed_channels);
3757
3758                 for (source, payment_hash, reason) in timed_out_htlcs.drain(..) {
3759                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), source, &payment_hash, reason);
3760                 }
3761         }
3762
3763         /// Blocks until ChannelManager needs to be persisted or a timeout is reached. It returns a bool
3764         /// indicating whether persistence is necessary. Only one listener on
3765         /// `await_persistable_update` or `await_persistable_update_timeout` is guaranteed to be woken
3766         /// up.
3767         /// Note that the feature `allow_wallclock_use` must be enabled to use this function.
3768         #[cfg(any(test, feature = "allow_wallclock_use"))]
3769         pub fn await_persistable_update_timeout(&self, max_wait: Duration) -> bool {
3770                 self.persistence_notifier.wait_timeout(max_wait)
3771         }
3772
3773         /// Blocks until ChannelManager needs to be persisted. Only one listener on
3774         /// `await_persistable_update` or `await_persistable_update_timeout` is guaranteed to be woken
3775         /// up.
3776         pub fn await_persistable_update(&self) {
3777                 self.persistence_notifier.wait()
3778         }
3779
3780         #[cfg(any(test, feature = "_test_utils"))]
3781         pub fn get_persistence_condvar_value(&self) -> bool {
3782                 let mutcond = &self.persistence_notifier.persistence_lock;
3783                 let &(ref mtx, _) = mutcond;
3784                 let guard = mtx.lock().unwrap();
3785                 *guard
3786         }
3787 }
3788
3789 impl<Signer: Sign, M: Deref , T: Deref , K: Deref , F: Deref , L: Deref >
3790         ChannelMessageHandler for ChannelManager<Signer, M, T, K, F, L>
3791         where M::Target: chain::Watch<Signer>,
3792         T::Target: BroadcasterInterface,
3793         K::Target: KeysInterface<Signer = Signer>,
3794         F::Target: FeeEstimator,
3795         L::Target: Logger,
3796 {
3797         fn handle_open_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::OpenChannel) {
3798                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3799                 let _ = handle_error!(self, self.internal_open_channel(counterparty_node_id, their_features, msg), *counterparty_node_id);
3800         }
3801
3802         fn handle_accept_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::AcceptChannel) {
3803                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3804                 let _ = handle_error!(self, self.internal_accept_channel(counterparty_node_id, their_features, msg), *counterparty_node_id);
3805         }
3806
3807         fn handle_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) {
3808                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3809                 let _ = handle_error!(self, self.internal_funding_created(counterparty_node_id, msg), *counterparty_node_id);
3810         }
3811
3812         fn handle_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) {
3813                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3814                 let _ = handle_error!(self, self.internal_funding_signed(counterparty_node_id, msg), *counterparty_node_id);
3815         }
3816
3817         fn handle_funding_locked(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingLocked) {
3818                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3819                 let _ = handle_error!(self, self.internal_funding_locked(counterparty_node_id, msg), *counterparty_node_id);
3820         }
3821
3822         fn handle_shutdown(&self, counterparty_node_id: &PublicKey, their_features: &InitFeatures, msg: &msgs::Shutdown) {
3823                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3824                 let _ = handle_error!(self, self.internal_shutdown(counterparty_node_id, their_features, msg), *counterparty_node_id);
3825         }
3826
3827         fn handle_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
3828                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3829                 let _ = handle_error!(self, self.internal_closing_signed(counterparty_node_id, msg), *counterparty_node_id);
3830         }
3831
3832         fn handle_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
3833                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3834                 let _ = handle_error!(self, self.internal_update_add_htlc(counterparty_node_id, msg), *counterparty_node_id);
3835         }
3836
3837         fn handle_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
3838                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3839                 let _ = handle_error!(self, self.internal_update_fulfill_htlc(counterparty_node_id, msg), *counterparty_node_id);
3840         }
3841
3842         fn handle_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
3843                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3844                 let _ = handle_error!(self, self.internal_update_fail_htlc(counterparty_node_id, msg), *counterparty_node_id);
3845         }
3846
3847         fn handle_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
3848                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3849                 let _ = handle_error!(self, self.internal_update_fail_malformed_htlc(counterparty_node_id, msg), *counterparty_node_id);
3850         }
3851
3852         fn handle_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
3853                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3854                 let _ = handle_error!(self, self.internal_commitment_signed(counterparty_node_id, msg), *counterparty_node_id);
3855         }
3856
3857         fn handle_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
3858                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3859                 let _ = handle_error!(self, self.internal_revoke_and_ack(counterparty_node_id, msg), *counterparty_node_id);
3860         }
3861
3862         fn handle_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) {
3863                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3864                 let _ = handle_error!(self, self.internal_update_fee(counterparty_node_id, msg), *counterparty_node_id);
3865         }
3866
3867         fn handle_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
3868                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3869                 let _ = handle_error!(self, self.internal_announcement_signatures(counterparty_node_id, msg), *counterparty_node_id);
3870         }
3871
3872         fn handle_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) {
3873                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3874                 let _ = handle_error!(self, self.internal_channel_update(counterparty_node_id, msg), *counterparty_node_id);
3875         }
3876
3877         fn handle_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
3878                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3879                 let _ = handle_error!(self, self.internal_channel_reestablish(counterparty_node_id, msg), *counterparty_node_id);
3880         }
3881
3882         fn peer_disconnected(&self, counterparty_node_id: &PublicKey, no_connection_possible: bool) {
3883                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3884                 let mut failed_channels = Vec::new();
3885                 let mut failed_payments = Vec::new();
3886                 let mut no_channels_remain = true;
3887                 {
3888                         let mut channel_state_lock = self.channel_state.lock().unwrap();
3889                         let channel_state = &mut *channel_state_lock;
3890                         let short_to_id = &mut channel_state.short_to_id;
3891                         let pending_msg_events = &mut channel_state.pending_msg_events;
3892                         if no_connection_possible {
3893                                 log_debug!(self.logger, "Failing all channels with {} due to no_connection_possible", log_pubkey!(counterparty_node_id));
3894                                 channel_state.by_id.retain(|_, chan| {
3895                                         if chan.get_counterparty_node_id() == *counterparty_node_id {
3896                                                 if let Some(short_id) = chan.get_short_channel_id() {
3897                                                         short_to_id.remove(&short_id);
3898                                                 }
3899                                                 failed_channels.push(chan.force_shutdown(true));
3900                                                 if let Ok(update) = self.get_channel_update(&chan) {
3901                                                         pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
3902                                                                 msg: update
3903                                                         });
3904                                                 }
3905                                                 false
3906                                         } else {
3907                                                 true
3908                                         }
3909                                 });
3910                         } else {
3911                                 log_debug!(self.logger, "Marking channels with {} disconnected and generating channel_updates", log_pubkey!(counterparty_node_id));
3912                                 channel_state.by_id.retain(|_, chan| {
3913                                         if chan.get_counterparty_node_id() == *counterparty_node_id {
3914                                                 // Note that currently on channel reestablish we assert that there are no
3915                                                 // holding cell add-HTLCs, so if in the future we stop removing uncommitted HTLCs
3916                                                 // on peer disconnect here, there will need to be corresponding changes in
3917                                                 // reestablish logic.
3918                                                 let failed_adds = chan.remove_uncommitted_htlcs_and_mark_paused(&self.logger);
3919                                                 chan.to_disabled_marked();
3920                                                 if !failed_adds.is_empty() {
3921                                                         let chan_update = self.get_channel_update(&chan).map(|u| u.encode_with_len()).unwrap(); // Cannot add/recv HTLCs before we have a short_id so unwrap is safe
3922                                                         failed_payments.push((chan_update, failed_adds));
3923                                                 }
3924                                                 if chan.is_shutdown() {
3925                                                         if let Some(short_id) = chan.get_short_channel_id() {
3926                                                                 short_to_id.remove(&short_id);
3927                                                         }
3928                                                         return false;
3929                                                 } else {
3930                                                         no_channels_remain = false;
3931                                                 }
3932                                         }
3933                                         true
3934                                 })
3935                         }
3936                         pending_msg_events.retain(|msg| {
3937                                 match msg {
3938                                         &events::MessageSendEvent::SendAcceptChannel { ref node_id, .. } => node_id != counterparty_node_id,
3939                                         &events::MessageSendEvent::SendOpenChannel { ref node_id, .. } => node_id != counterparty_node_id,
3940                                         &events::MessageSendEvent::SendFundingCreated { ref node_id, .. } => node_id != counterparty_node_id,
3941                                         &events::MessageSendEvent::SendFundingSigned { ref node_id, .. } => node_id != counterparty_node_id,
3942                                         &events::MessageSendEvent::SendFundingLocked { ref node_id, .. } => node_id != counterparty_node_id,
3943                                         &events::MessageSendEvent::SendAnnouncementSignatures { ref node_id, .. } => node_id != counterparty_node_id,
3944                                         &events::MessageSendEvent::UpdateHTLCs { ref node_id, .. } => node_id != counterparty_node_id,
3945                                         &events::MessageSendEvent::SendRevokeAndACK { ref node_id, .. } => node_id != counterparty_node_id,
3946                                         &events::MessageSendEvent::SendClosingSigned { ref node_id, .. } => node_id != counterparty_node_id,
3947                                         &events::MessageSendEvent::SendShutdown { ref node_id, .. } => node_id != counterparty_node_id,
3948                                         &events::MessageSendEvent::SendChannelReestablish { ref node_id, .. } => node_id != counterparty_node_id,
3949                                         &events::MessageSendEvent::BroadcastChannelAnnouncement { .. } => true,
3950                                         &events::MessageSendEvent::BroadcastNodeAnnouncement { .. } => true,
3951                                         &events::MessageSendEvent::BroadcastChannelUpdate { .. } => true,
3952                                         &events::MessageSendEvent::HandleError { ref node_id, .. } => node_id != counterparty_node_id,
3953                                         &events::MessageSendEvent::PaymentFailureNetworkUpdate { .. } => true,
3954                                         &events::MessageSendEvent::SendChannelRangeQuery { .. } => false,
3955                                         &events::MessageSendEvent::SendShortIdsQuery { .. } => false,
3956                                         &events::MessageSendEvent::SendReplyChannelRange { .. } => false,
3957                                 }
3958                         });
3959                 }
3960                 if no_channels_remain {
3961                         self.per_peer_state.write().unwrap().remove(counterparty_node_id);
3962                 }
3963
3964                 for failure in failed_channels.drain(..) {
3965                         self.finish_force_close_channel(failure);
3966                 }
3967                 for (chan_update, mut htlc_sources) in failed_payments {
3968                         for (htlc_source, payment_hash) in htlc_sources.drain(..) {
3969                                 self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source, &payment_hash, HTLCFailReason::Reason { failure_code: 0x1000 | 7, data: chan_update.clone() });
3970                         }
3971                 }
3972         }
3973
3974         fn peer_connected(&self, counterparty_node_id: &PublicKey, init_msg: &msgs::Init) {
3975                 log_debug!(self.logger, "Generating channel_reestablish events for {}", log_pubkey!(counterparty_node_id));
3976
3977                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3978
3979                 {
3980                         let mut peer_state_lock = self.per_peer_state.write().unwrap();
3981                         match peer_state_lock.entry(counterparty_node_id.clone()) {
3982                                 hash_map::Entry::Vacant(e) => {
3983                                         e.insert(Mutex::new(PeerState {
3984                                                 latest_features: init_msg.features.clone(),
3985                                         }));
3986                                 },
3987                                 hash_map::Entry::Occupied(e) => {
3988                                         e.get().lock().unwrap().latest_features = init_msg.features.clone();
3989                                 },
3990                         }
3991                 }
3992
3993                 let mut channel_state_lock = self.channel_state.lock().unwrap();
3994                 let channel_state = &mut *channel_state_lock;
3995                 let pending_msg_events = &mut channel_state.pending_msg_events;
3996                 channel_state.by_id.retain(|_, chan| {
3997                         if chan.get_counterparty_node_id() == *counterparty_node_id {
3998                                 if !chan.have_received_message() {
3999                                         // If we created this (outbound) channel while we were disconnected from the
4000                                         // peer we probably failed to send the open_channel message, which is now
4001                                         // lost. We can't have had anything pending related to this channel, so we just
4002                                         // drop it.
4003                                         false
4004                                 } else {
4005                                         pending_msg_events.push(events::MessageSendEvent::SendChannelReestablish {
4006                                                 node_id: chan.get_counterparty_node_id(),
4007                                                 msg: chan.get_channel_reestablish(&self.logger),
4008                                         });
4009                                         true
4010                                 }
4011                         } else { true }
4012                 });
4013                 //TODO: Also re-broadcast announcement_signatures
4014         }
4015
4016         fn handle_error(&self, counterparty_node_id: &PublicKey, msg: &msgs::ErrorMessage) {
4017                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
4018
4019                 if msg.channel_id == [0; 32] {
4020                         for chan in self.list_channels() {
4021                                 if chan.remote_network_id == *counterparty_node_id {
4022                                         // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
4023                                         let _ = self.force_close_channel_with_peer(&chan.channel_id, Some(counterparty_node_id));
4024                                 }
4025                         }
4026                 } else {
4027                         // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
4028                         let _ = self.force_close_channel_with_peer(&msg.channel_id, Some(counterparty_node_id));
4029                 }
4030         }
4031 }
4032
4033 /// Used to signal to the ChannelManager persister that the manager needs to be re-persisted to
4034 /// disk/backups, through `await_persistable_update_timeout` and `await_persistable_update`.
4035 struct PersistenceNotifier {
4036         /// Users won't access the persistence_lock directly, but rather wait on its bool using
4037         /// `wait_timeout` and `wait`.
4038         persistence_lock: (Mutex<bool>, Condvar),
4039 }
4040
4041 impl PersistenceNotifier {
4042         fn new() -> Self {
4043                 Self {
4044                         persistence_lock: (Mutex::new(false), Condvar::new()),
4045                 }
4046         }
4047
4048         fn wait(&self) {
4049                 loop {
4050                         let &(ref mtx, ref cvar) = &self.persistence_lock;
4051                         let mut guard = mtx.lock().unwrap();
4052                         guard = cvar.wait(guard).unwrap();
4053                         let result = *guard;
4054                         if result {
4055                                 *guard = false;
4056                                 return
4057                         }
4058                 }
4059         }
4060
4061         #[cfg(any(test, feature = "allow_wallclock_use"))]
4062         fn wait_timeout(&self, max_wait: Duration) -> bool {
4063                 let current_time = Instant::now();
4064                 loop {
4065                         let &(ref mtx, ref cvar) = &self.persistence_lock;
4066                         let mut guard = mtx.lock().unwrap();
4067                         guard = cvar.wait_timeout(guard, max_wait).unwrap().0;
4068                         // Due to spurious wakeups that can happen on `wait_timeout`, here we need to check if the
4069                         // desired wait time has actually passed, and if not then restart the loop with a reduced wait
4070                         // time. Note that this logic can be highly simplified through the use of
4071                         // `Condvar::wait_while` and `Condvar::wait_timeout_while`, if and when our MSRV is raised to
4072                         // 1.42.0.
4073                         let elapsed = current_time.elapsed();
4074                         let result = *guard;
4075                         if result || elapsed >= max_wait {
4076                                 *guard = false;
4077                                 return result;
4078                         }
4079                         match max_wait.checked_sub(elapsed) {
4080                                 None => return result,
4081                                 Some(_) => continue
4082                         }
4083                 }
4084         }
4085
4086         // Signal to the ChannelManager persister that there are updates necessitating persisting to disk.
4087         fn notify(&self) {
4088                 let &(ref persist_mtx, ref cnd) = &self.persistence_lock;
4089                 let mut persistence_lock = persist_mtx.lock().unwrap();
4090                 *persistence_lock = true;
4091                 mem::drop(persistence_lock);
4092                 cnd.notify_all();
4093         }
4094 }
4095
4096 const SERIALIZATION_VERSION: u8 = 1;
4097 const MIN_SERIALIZATION_VERSION: u8 = 1;
4098
4099 impl Writeable for PendingHTLCInfo {
4100         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
4101                 match &self.routing {
4102                         &PendingHTLCRouting::Forward { ref onion_packet, ref short_channel_id } => {
4103                                 0u8.write(writer)?;
4104                                 onion_packet.write(writer)?;
4105                                 short_channel_id.write(writer)?;
4106                         },
4107                         &PendingHTLCRouting::Receive { ref payment_data, ref incoming_cltv_expiry } => {
4108                                 1u8.write(writer)?;
4109                                 payment_data.payment_secret.write(writer)?;
4110                                 payment_data.total_msat.write(writer)?;
4111                                 incoming_cltv_expiry.write(writer)?;
4112                         },
4113                 }
4114                 self.incoming_shared_secret.write(writer)?;
4115                 self.payment_hash.write(writer)?;
4116                 self.amt_to_forward.write(writer)?;
4117                 self.outgoing_cltv_value.write(writer)?;
4118                 Ok(())
4119         }
4120 }
4121
4122 impl Readable for PendingHTLCInfo {
4123         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<PendingHTLCInfo, DecodeError> {
4124                 Ok(PendingHTLCInfo {
4125                         routing: match Readable::read(reader)? {
4126                                 0u8 => PendingHTLCRouting::Forward {
4127                                         onion_packet: Readable::read(reader)?,
4128                                         short_channel_id: Readable::read(reader)?,
4129                                 },
4130                                 1u8 => PendingHTLCRouting::Receive {
4131                                         payment_data: msgs::FinalOnionHopData {
4132                                                 payment_secret: Readable::read(reader)?,
4133                                                 total_msat: Readable::read(reader)?,
4134                                         },
4135                                         incoming_cltv_expiry: Readable::read(reader)?,
4136                                 },
4137                                 _ => return Err(DecodeError::InvalidValue),
4138                         },
4139                         incoming_shared_secret: Readable::read(reader)?,
4140                         payment_hash: Readable::read(reader)?,
4141                         amt_to_forward: Readable::read(reader)?,
4142                         outgoing_cltv_value: Readable::read(reader)?,
4143                 })
4144         }
4145 }
4146
4147 impl Writeable for HTLCFailureMsg {
4148         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
4149                 match self {
4150                         &HTLCFailureMsg::Relay(ref fail_msg) => {
4151                                 0u8.write(writer)?;
4152                                 fail_msg.write(writer)?;
4153                         },
4154                         &HTLCFailureMsg::Malformed(ref fail_msg) => {
4155                                 1u8.write(writer)?;
4156                                 fail_msg.write(writer)?;
4157                         }
4158                 }
4159                 Ok(())
4160         }
4161 }
4162
4163 impl Readable for HTLCFailureMsg {
4164         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<HTLCFailureMsg, DecodeError> {
4165                 match <u8 as Readable>::read(reader)? {
4166                         0 => Ok(HTLCFailureMsg::Relay(Readable::read(reader)?)),
4167                         1 => Ok(HTLCFailureMsg::Malformed(Readable::read(reader)?)),
4168                         _ => Err(DecodeError::InvalidValue),
4169                 }
4170         }
4171 }
4172
4173 impl Writeable for PendingHTLCStatus {
4174         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
4175                 match self {
4176                         &PendingHTLCStatus::Forward(ref forward_info) => {
4177                                 0u8.write(writer)?;
4178                                 forward_info.write(writer)?;
4179                         },
4180                         &PendingHTLCStatus::Fail(ref fail_msg) => {
4181                                 1u8.write(writer)?;
4182                                 fail_msg.write(writer)?;
4183                         }
4184                 }
4185                 Ok(())
4186         }
4187 }
4188
4189 impl Readable for PendingHTLCStatus {
4190         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<PendingHTLCStatus, DecodeError> {
4191                 match <u8 as Readable>::read(reader)? {
4192                         0 => Ok(PendingHTLCStatus::Forward(Readable::read(reader)?)),
4193                         1 => Ok(PendingHTLCStatus::Fail(Readable::read(reader)?)),
4194                         _ => Err(DecodeError::InvalidValue),
4195                 }
4196         }
4197 }
4198
4199 impl_writeable!(HTLCPreviousHopData, 0, {
4200         short_channel_id,
4201         outpoint,
4202         htlc_id,
4203         incoming_packet_shared_secret
4204 });
4205
4206 impl Writeable for ClaimableHTLC {
4207         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
4208                 self.prev_hop.write(writer)?;
4209                 self.value.write(writer)?;
4210                 self.payment_data.payment_secret.write(writer)?;
4211                 self.payment_data.total_msat.write(writer)?;
4212                 self.cltv_expiry.write(writer)
4213         }
4214 }
4215
4216 impl Readable for ClaimableHTLC {
4217         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
4218                 Ok(ClaimableHTLC {
4219                         prev_hop: Readable::read(reader)?,
4220                         value: Readable::read(reader)?,
4221                         payment_data: msgs::FinalOnionHopData {
4222                                 payment_secret: Readable::read(reader)?,
4223                                 total_msat: Readable::read(reader)?,
4224                         },
4225                         cltv_expiry: Readable::read(reader)?,
4226                 })
4227         }
4228 }
4229
4230 impl Writeable for HTLCSource {
4231         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
4232                 match self {
4233                         &HTLCSource::PreviousHopData(ref hop_data) => {
4234                                 0u8.write(writer)?;
4235                                 hop_data.write(writer)?;
4236                         },
4237                         &HTLCSource::OutboundRoute { ref path, ref session_priv, ref first_hop_htlc_msat } => {
4238                                 1u8.write(writer)?;
4239                                 path.write(writer)?;
4240                                 session_priv.write(writer)?;
4241                                 first_hop_htlc_msat.write(writer)?;
4242                         }
4243                 }
4244                 Ok(())
4245         }
4246 }
4247
4248 impl Readable for HTLCSource {
4249         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<HTLCSource, DecodeError> {
4250                 match <u8 as Readable>::read(reader)? {
4251                         0 => Ok(HTLCSource::PreviousHopData(Readable::read(reader)?)),
4252                         1 => Ok(HTLCSource::OutboundRoute {
4253                                 path: Readable::read(reader)?,
4254                                 session_priv: Readable::read(reader)?,
4255                                 first_hop_htlc_msat: Readable::read(reader)?,
4256                         }),
4257                         _ => Err(DecodeError::InvalidValue),
4258                 }
4259         }
4260 }
4261
4262 impl Writeable for HTLCFailReason {
4263         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
4264                 match self {
4265                         &HTLCFailReason::LightningError { ref err } => {
4266                                 0u8.write(writer)?;
4267                                 err.write(writer)?;
4268                         },
4269                         &HTLCFailReason::Reason { ref failure_code, ref data } => {
4270                                 1u8.write(writer)?;
4271                                 failure_code.write(writer)?;
4272                                 data.write(writer)?;
4273                         }
4274                 }
4275                 Ok(())
4276         }
4277 }
4278
4279 impl Readable for HTLCFailReason {
4280         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<HTLCFailReason, DecodeError> {
4281                 match <u8 as Readable>::read(reader)? {
4282                         0 => Ok(HTLCFailReason::LightningError { err: Readable::read(reader)? }),
4283                         1 => Ok(HTLCFailReason::Reason {
4284                                 failure_code: Readable::read(reader)?,
4285                                 data: Readable::read(reader)?,
4286                         }),
4287                         _ => Err(DecodeError::InvalidValue),
4288                 }
4289         }
4290 }
4291
4292 impl Writeable for HTLCForwardInfo {
4293         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
4294                 match self {
4295                         &HTLCForwardInfo::AddHTLC { ref prev_short_channel_id, ref prev_funding_outpoint, ref prev_htlc_id, ref forward_info } => {
4296                                 0u8.write(writer)?;
4297                                 prev_short_channel_id.write(writer)?;
4298                                 prev_funding_outpoint.write(writer)?;
4299                                 prev_htlc_id.write(writer)?;
4300                                 forward_info.write(writer)?;
4301                         },
4302                         &HTLCForwardInfo::FailHTLC { ref htlc_id, ref err_packet } => {
4303                                 1u8.write(writer)?;
4304                                 htlc_id.write(writer)?;
4305                                 err_packet.write(writer)?;
4306                         },
4307                 }
4308                 Ok(())
4309         }
4310 }
4311
4312 impl Readable for HTLCForwardInfo {
4313         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<HTLCForwardInfo, DecodeError> {
4314                 match <u8 as Readable>::read(reader)? {
4315                         0 => Ok(HTLCForwardInfo::AddHTLC {
4316                                 prev_short_channel_id: Readable::read(reader)?,
4317                                 prev_funding_outpoint: Readable::read(reader)?,
4318                                 prev_htlc_id: Readable::read(reader)?,
4319                                 forward_info: Readable::read(reader)?,
4320                         }),
4321                         1 => Ok(HTLCForwardInfo::FailHTLC {
4322                                 htlc_id: Readable::read(reader)?,
4323                                 err_packet: Readable::read(reader)?,
4324                         }),
4325                         _ => Err(DecodeError::InvalidValue),
4326                 }
4327         }
4328 }
4329
4330 impl_writeable!(PendingInboundPayment, 0, {
4331         payment_secret,
4332         expiry_time,
4333         user_payment_id,
4334         payment_preimage,
4335         min_value_msat
4336 });
4337
4338 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> Writeable for ChannelManager<Signer, M, T, K, F, L>
4339         where M::Target: chain::Watch<Signer>,
4340         T::Target: BroadcasterInterface,
4341         K::Target: KeysInterface<Signer = Signer>,
4342         F::Target: FeeEstimator,
4343         L::Target: Logger,
4344 {
4345         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
4346                 let _consistency_lock = self.total_consistency_lock.write().unwrap();
4347
4348                 writer.write_all(&[SERIALIZATION_VERSION; 1])?;
4349                 writer.write_all(&[MIN_SERIALIZATION_VERSION; 1])?;
4350
4351                 self.genesis_hash.write(writer)?;
4352                 {
4353                         let best_block = self.best_block.read().unwrap();
4354                         best_block.height().write(writer)?;
4355                         best_block.block_hash().write(writer)?;
4356                 }
4357
4358                 let channel_state = self.channel_state.lock().unwrap();
4359                 let mut unfunded_channels = 0;
4360                 for (_, channel) in channel_state.by_id.iter() {
4361                         if !channel.is_funding_initiated() {
4362                                 unfunded_channels += 1;
4363                         }
4364                 }
4365                 ((channel_state.by_id.len() - unfunded_channels) as u64).write(writer)?;
4366                 for (_, channel) in channel_state.by_id.iter() {
4367                         if channel.is_funding_initiated() {
4368                                 channel.write(writer)?;
4369                         }
4370                 }
4371
4372                 (channel_state.forward_htlcs.len() as u64).write(writer)?;
4373                 for (short_channel_id, pending_forwards) in channel_state.forward_htlcs.iter() {
4374                         short_channel_id.write(writer)?;
4375                         (pending_forwards.len() as u64).write(writer)?;
4376                         for forward in pending_forwards {
4377                                 forward.write(writer)?;
4378                         }
4379                 }
4380
4381                 (channel_state.claimable_htlcs.len() as u64).write(writer)?;
4382                 for (payment_hash, previous_hops) in channel_state.claimable_htlcs.iter() {
4383                         payment_hash.write(writer)?;
4384                         (previous_hops.len() as u64).write(writer)?;
4385                         for htlc in previous_hops.iter() {
4386                                 htlc.write(writer)?;
4387                         }
4388                 }
4389
4390                 let per_peer_state = self.per_peer_state.write().unwrap();
4391                 (per_peer_state.len() as u64).write(writer)?;
4392                 for (peer_pubkey, peer_state_mutex) in per_peer_state.iter() {
4393                         peer_pubkey.write(writer)?;
4394                         let peer_state = peer_state_mutex.lock().unwrap();
4395                         peer_state.latest_features.write(writer)?;
4396                 }
4397
4398                 let events = self.pending_events.lock().unwrap();
4399                 (events.len() as u64).write(writer)?;
4400                 for event in events.iter() {
4401                         event.write(writer)?;
4402                 }
4403
4404                 let background_events = self.pending_background_events.lock().unwrap();
4405                 (background_events.len() as u64).write(writer)?;
4406                 for event in background_events.iter() {
4407                         match event {
4408                                 BackgroundEvent::ClosingMonitorUpdate((funding_txo, monitor_update)) => {
4409                                         0u8.write(writer)?;
4410                                         funding_txo.write(writer)?;
4411                                         monitor_update.write(writer)?;
4412                                 },
4413                         }
4414                 }
4415
4416                 (self.last_node_announcement_serial.load(Ordering::Acquire) as u32).write(writer)?;
4417                 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
4418
4419                 let pending_inbound_payments = self.pending_inbound_payments.lock().unwrap();
4420                 (pending_inbound_payments.len() as u64).write(writer)?;
4421                 for (hash, pending_payment) in pending_inbound_payments.iter() {
4422                         hash.write(writer)?;
4423                         pending_payment.write(writer)?;
4424                 }
4425
4426                 Ok(())
4427         }
4428 }
4429
4430 /// Arguments for the creation of a ChannelManager that are not deserialized.
4431 ///
4432 /// At a high-level, the process for deserializing a ChannelManager and resuming normal operation
4433 /// is:
4434 /// 1) Deserialize all stored ChannelMonitors.
4435 /// 2) Deserialize the ChannelManager by filling in this struct and calling:
4436 ///    <(BlockHash, ChannelManager)>::read(reader, args)
4437 ///    This may result in closing some Channels if the ChannelMonitor is newer than the stored
4438 ///    ChannelManager state to ensure no loss of funds. Thus, transactions may be broadcasted.
4439 /// 3) If you are not fetching full blocks, register all relevant ChannelMonitor outpoints the same
4440 ///    way you would handle a `chain::Filter` call using ChannelMonitor::get_outputs_to_watch() and
4441 ///    ChannelMonitor::get_funding_txo().
4442 /// 4) Reconnect blocks on your ChannelMonitors.
4443 /// 5) Disconnect/connect blocks on the ChannelManager.
4444 /// 6) Move the ChannelMonitors into your local chain::Watch.
4445 ///
4446 /// Note that the ordering of #4-6 is not of importance, however all three must occur before you
4447 /// call any other methods on the newly-deserialized ChannelManager.
4448 ///
4449 /// Note that because some channels may be closed during deserialization, it is critical that you
4450 /// always deserialize only the latest version of a ChannelManager and ChannelMonitors available to
4451 /// you. If you deserialize an old ChannelManager (during which force-closure transactions may be
4452 /// broadcast), and then later deserialize a newer version of the same ChannelManager (which will
4453 /// not force-close the same channels but consider them live), you may end up revoking a state for
4454 /// which you've already broadcasted the transaction.
4455 pub struct ChannelManagerReadArgs<'a, Signer: 'a + Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
4456         where M::Target: chain::Watch<Signer>,
4457         T::Target: BroadcasterInterface,
4458         K::Target: KeysInterface<Signer = Signer>,
4459         F::Target: FeeEstimator,
4460         L::Target: Logger,
4461 {
4462         /// The keys provider which will give us relevant keys. Some keys will be loaded during
4463         /// deserialization and KeysInterface::read_chan_signer will be used to read per-Channel
4464         /// signing data.
4465         pub keys_manager: K,
4466
4467         /// The fee_estimator for use in the ChannelManager in the future.
4468         ///
4469         /// No calls to the FeeEstimator will be made during deserialization.
4470         pub fee_estimator: F,
4471         /// The chain::Watch for use in the ChannelManager in the future.
4472         ///
4473         /// No calls to the chain::Watch will be made during deserialization. It is assumed that
4474         /// you have deserialized ChannelMonitors separately and will add them to your
4475         /// chain::Watch after deserializing this ChannelManager.
4476         pub chain_monitor: M,
4477
4478         /// The BroadcasterInterface which will be used in the ChannelManager in the future and may be
4479         /// used to broadcast the latest local commitment transactions of channels which must be
4480         /// force-closed during deserialization.
4481         pub tx_broadcaster: T,
4482         /// The Logger for use in the ChannelManager and which may be used to log information during
4483         /// deserialization.
4484         pub logger: L,
4485         /// Default settings used for new channels. Any existing channels will continue to use the
4486         /// runtime settings which were stored when the ChannelManager was serialized.
4487         pub default_config: UserConfig,
4488
4489         /// A map from channel funding outpoints to ChannelMonitors for those channels (ie
4490         /// value.get_funding_txo() should be the key).
4491         ///
4492         /// If a monitor is inconsistent with the channel state during deserialization the channel will
4493         /// be force-closed using the data in the ChannelMonitor and the channel will be dropped. This
4494         /// is true for missing channels as well. If there is a monitor missing for which we find
4495         /// channel data Err(DecodeError::InvalidValue) will be returned.
4496         ///
4497         /// In such cases the latest local transactions will be sent to the tx_broadcaster included in
4498         /// this struct.
4499         ///
4500         /// (C-not exported) because we have no HashMap bindings
4501         pub channel_monitors: HashMap<OutPoint, &'a mut ChannelMonitor<Signer>>,
4502 }
4503
4504 impl<'a, Signer: 'a + Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
4505                 ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>
4506         where M::Target: chain::Watch<Signer>,
4507                 T::Target: BroadcasterInterface,
4508                 K::Target: KeysInterface<Signer = Signer>,
4509                 F::Target: FeeEstimator,
4510                 L::Target: Logger,
4511         {
4512         /// Simple utility function to create a ChannelManagerReadArgs which creates the monitor
4513         /// HashMap for you. This is primarily useful for C bindings where it is not practical to
4514         /// populate a HashMap directly from C.
4515         pub fn new(keys_manager: K, fee_estimator: F, chain_monitor: M, tx_broadcaster: T, logger: L, default_config: UserConfig,
4516                         mut channel_monitors: Vec<&'a mut ChannelMonitor<Signer>>) -> Self {
4517                 Self {
4518                         keys_manager, fee_estimator, chain_monitor, tx_broadcaster, logger, default_config,
4519                         channel_monitors: channel_monitors.drain(..).map(|monitor| { (monitor.get_funding_txo().0, monitor) }).collect()
4520                 }
4521         }
4522 }
4523
4524 // Implement ReadableArgs for an Arc'd ChannelManager to make it a bit easier to work with the
4525 // SipmleArcChannelManager type:
4526 impl<'a, Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
4527         ReadableArgs<ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>> for (BlockHash, Arc<ChannelManager<Signer, M, T, K, F, L>>)
4528         where M::Target: chain::Watch<Signer>,
4529         T::Target: BroadcasterInterface,
4530         K::Target: KeysInterface<Signer = Signer>,
4531         F::Target: FeeEstimator,
4532         L::Target: Logger,
4533 {
4534         fn read<R: ::std::io::Read>(reader: &mut R, args: ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>) -> Result<Self, DecodeError> {
4535                 let (blockhash, chan_manager) = <(BlockHash, ChannelManager<Signer, M, T, K, F, L>)>::read(reader, args)?;
4536                 Ok((blockhash, Arc::new(chan_manager)))
4537         }
4538 }
4539
4540 impl<'a, Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
4541         ReadableArgs<ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>> for (BlockHash, ChannelManager<Signer, M, T, K, F, L>)
4542         where M::Target: chain::Watch<Signer>,
4543         T::Target: BroadcasterInterface,
4544         K::Target: KeysInterface<Signer = Signer>,
4545         F::Target: FeeEstimator,
4546         L::Target: Logger,
4547 {
4548         fn read<R: ::std::io::Read>(reader: &mut R, mut args: ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>) -> Result<Self, DecodeError> {
4549                 let _ver: u8 = Readable::read(reader)?;
4550                 let min_ver: u8 = Readable::read(reader)?;
4551                 if min_ver > SERIALIZATION_VERSION {
4552                         return Err(DecodeError::UnknownVersion);
4553                 }
4554
4555                 let genesis_hash: BlockHash = Readable::read(reader)?;
4556                 let best_block_height: u32 = Readable::read(reader)?;
4557                 let best_block_hash: BlockHash = Readable::read(reader)?;
4558
4559                 let mut failed_htlcs = Vec::new();
4560
4561                 let channel_count: u64 = Readable::read(reader)?;
4562                 let mut funding_txo_set = HashSet::with_capacity(cmp::min(channel_count as usize, 128));
4563                 let mut by_id = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
4564                 let mut short_to_id = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
4565                 for _ in 0..channel_count {
4566                         let mut channel: Channel<Signer> = Channel::read(reader, &args.keys_manager)?;
4567                         let funding_txo = channel.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
4568                         funding_txo_set.insert(funding_txo.clone());
4569                         if let Some(ref mut monitor) = args.channel_monitors.get_mut(&funding_txo) {
4570                                 if channel.get_cur_holder_commitment_transaction_number() < monitor.get_cur_holder_commitment_number() ||
4571                                                 channel.get_revoked_counterparty_commitment_transaction_number() < monitor.get_min_seen_secret() ||
4572                                                 channel.get_cur_counterparty_commitment_transaction_number() < monitor.get_cur_counterparty_commitment_number() ||
4573                                                 channel.get_latest_monitor_update_id() > monitor.get_latest_update_id() {
4574                                         // If the channel is ahead of the monitor, return InvalidValue:
4575                                         return Err(DecodeError::InvalidValue);
4576                                 } else if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() ||
4577                                                 channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() ||
4578                                                 channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() ||
4579                                                 channel.get_latest_monitor_update_id() < monitor.get_latest_update_id() {
4580                                         // But if the channel is behind of the monitor, close the channel:
4581                                         let (_, mut new_failed_htlcs) = channel.force_shutdown(true);
4582                                         failed_htlcs.append(&mut new_failed_htlcs);
4583                                         monitor.broadcast_latest_holder_commitment_txn(&args.tx_broadcaster, &args.logger);
4584                                 } else {
4585                                         if let Some(short_channel_id) = channel.get_short_channel_id() {
4586                                                 short_to_id.insert(short_channel_id, channel.channel_id());
4587                                         }
4588                                         by_id.insert(channel.channel_id(), channel);
4589                                 }
4590                         } else {
4591                                 return Err(DecodeError::InvalidValue);
4592                         }
4593                 }
4594
4595                 for (ref funding_txo, ref mut monitor) in args.channel_monitors.iter_mut() {
4596                         if !funding_txo_set.contains(funding_txo) {
4597                                 monitor.broadcast_latest_holder_commitment_txn(&args.tx_broadcaster, &args.logger);
4598                         }
4599                 }
4600
4601                 const MAX_ALLOC_SIZE: usize = 1024 * 64;
4602                 let forward_htlcs_count: u64 = Readable::read(reader)?;
4603                 let mut forward_htlcs = HashMap::with_capacity(cmp::min(forward_htlcs_count as usize, 128));
4604                 for _ in 0..forward_htlcs_count {
4605                         let short_channel_id = Readable::read(reader)?;
4606                         let pending_forwards_count: u64 = Readable::read(reader)?;
4607                         let mut pending_forwards = Vec::with_capacity(cmp::min(pending_forwards_count as usize, MAX_ALLOC_SIZE/mem::size_of::<HTLCForwardInfo>()));
4608                         for _ in 0..pending_forwards_count {
4609                                 pending_forwards.push(Readable::read(reader)?);
4610                         }
4611                         forward_htlcs.insert(short_channel_id, pending_forwards);
4612                 }
4613
4614                 let claimable_htlcs_count: u64 = Readable::read(reader)?;
4615                 let mut claimable_htlcs = HashMap::with_capacity(cmp::min(claimable_htlcs_count as usize, 128));
4616                 for _ in 0..claimable_htlcs_count {
4617                         let payment_hash = Readable::read(reader)?;
4618                         let previous_hops_len: u64 = Readable::read(reader)?;
4619                         let mut previous_hops = Vec::with_capacity(cmp::min(previous_hops_len as usize, MAX_ALLOC_SIZE/mem::size_of::<ClaimableHTLC>()));
4620                         for _ in 0..previous_hops_len {
4621                                 previous_hops.push(Readable::read(reader)?);
4622                         }
4623                         claimable_htlcs.insert(payment_hash, previous_hops);
4624                 }
4625
4626                 let peer_count: u64 = Readable::read(reader)?;
4627                 let mut per_peer_state = HashMap::with_capacity(cmp::min(peer_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(PublicKey, Mutex<PeerState>)>()));
4628                 for _ in 0..peer_count {
4629                         let peer_pubkey = Readable::read(reader)?;
4630                         let peer_state = PeerState {
4631                                 latest_features: Readable::read(reader)?,
4632                         };
4633                         per_peer_state.insert(peer_pubkey, Mutex::new(peer_state));
4634                 }
4635
4636                 let event_count: u64 = Readable::read(reader)?;
4637                 let mut pending_events_read: Vec<events::Event> = Vec::with_capacity(cmp::min(event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<events::Event>()));
4638                 for _ in 0..event_count {
4639                         match MaybeReadable::read(reader)? {
4640                                 Some(event) => pending_events_read.push(event),
4641                                 None => continue,
4642                         }
4643                 }
4644
4645                 let background_event_count: u64 = Readable::read(reader)?;
4646                 let mut pending_background_events_read: Vec<BackgroundEvent> = Vec::with_capacity(cmp::min(background_event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<BackgroundEvent>()));
4647                 for _ in 0..background_event_count {
4648                         match <u8 as Readable>::read(reader)? {
4649                                 0 => pending_background_events_read.push(BackgroundEvent::ClosingMonitorUpdate((Readable::read(reader)?, Readable::read(reader)?))),
4650                                 _ => return Err(DecodeError::InvalidValue),
4651                         }
4652                 }
4653
4654                 let last_node_announcement_serial: u32 = Readable::read(reader)?;
4655                 let highest_seen_timestamp: u32 = Readable::read(reader)?;
4656
4657                 let pending_inbound_payment_count: u64 = Readable::read(reader)?;
4658                 let mut pending_inbound_payments: HashMap<PaymentHash, PendingInboundPayment> = HashMap::with_capacity(cmp::min(pending_inbound_payment_count as usize, MAX_ALLOC_SIZE/(3*32)));
4659                 for _ in 0..pending_inbound_payment_count {
4660                         if pending_inbound_payments.insert(Readable::read(reader)?, Readable::read(reader)?).is_some() {
4661                                 return Err(DecodeError::InvalidValue);
4662                         }
4663                 }
4664
4665                 let mut secp_ctx = Secp256k1::new();
4666                 secp_ctx.seeded_randomize(&args.keys_manager.get_secure_random_bytes());
4667
4668                 let channel_manager = ChannelManager {
4669                         genesis_hash,
4670                         fee_estimator: args.fee_estimator,
4671                         chain_monitor: args.chain_monitor,
4672                         tx_broadcaster: args.tx_broadcaster,
4673
4674                         best_block: RwLock::new(BestBlock::new(best_block_hash, best_block_height)),
4675
4676                         channel_state: Mutex::new(ChannelHolder {
4677                                 by_id,
4678                                 short_to_id,
4679                                 forward_htlcs,
4680                                 claimable_htlcs,
4681                                 pending_msg_events: Vec::new(),
4682                         }),
4683                         pending_inbound_payments: Mutex::new(pending_inbound_payments),
4684
4685                         our_network_key: args.keys_manager.get_node_secret(),
4686                         our_network_pubkey: PublicKey::from_secret_key(&secp_ctx, &args.keys_manager.get_node_secret()),
4687                         secp_ctx,
4688
4689                         last_node_announcement_serial: AtomicUsize::new(last_node_announcement_serial as usize),
4690                         highest_seen_timestamp: AtomicUsize::new(highest_seen_timestamp as usize),
4691
4692                         per_peer_state: RwLock::new(per_peer_state),
4693
4694                         pending_events: Mutex::new(pending_events_read),
4695                         pending_background_events: Mutex::new(pending_background_events_read),
4696                         total_consistency_lock: RwLock::new(()),
4697                         persistence_notifier: PersistenceNotifier::new(),
4698
4699                         keys_manager: args.keys_manager,
4700                         logger: args.logger,
4701                         default_configuration: args.default_config,
4702                 };
4703
4704                 for htlc_source in failed_htlcs.drain(..) {
4705                         channel_manager.fail_htlc_backwards_internal(channel_manager.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
4706                 }
4707
4708                 //TODO: Broadcast channel update for closed channels, but only after we've made a
4709                 //connection or two.
4710
4711                 Ok((best_block_hash.clone(), channel_manager))
4712         }
4713 }
4714
4715 #[cfg(test)]
4716 mod tests {
4717         use ln::channelmanager::PersistenceNotifier;
4718         use std::sync::Arc;
4719         use std::sync::atomic::{AtomicBool, Ordering};
4720         use std::thread;
4721         use std::time::Duration;
4722
4723         #[test]
4724         fn test_wait_timeout() {
4725                 let persistence_notifier = Arc::new(PersistenceNotifier::new());
4726                 let thread_notifier = Arc::clone(&persistence_notifier);
4727
4728                 let exit_thread = Arc::new(AtomicBool::new(false));
4729                 let exit_thread_clone = exit_thread.clone();
4730                 thread::spawn(move || {
4731                         loop {
4732                                 let &(ref persist_mtx, ref cnd) = &thread_notifier.persistence_lock;
4733                                 let mut persistence_lock = persist_mtx.lock().unwrap();
4734                                 *persistence_lock = true;
4735                                 cnd.notify_all();
4736
4737                                 if exit_thread_clone.load(Ordering::SeqCst) {
4738                                         break
4739                                 }
4740                         }
4741                 });
4742
4743                 // Check that we can block indefinitely until updates are available.
4744                 let _ = persistence_notifier.wait();
4745
4746                 // Check that the PersistenceNotifier will return after the given duration if updates are
4747                 // available.
4748                 loop {
4749                         if persistence_notifier.wait_timeout(Duration::from_millis(100)) {
4750                                 break
4751                         }
4752                 }
4753
4754                 exit_thread.store(true, Ordering::SeqCst);
4755
4756                 // Check that the PersistenceNotifier will return after the given duration even if no updates
4757                 // are available.
4758                 loop {
4759                         if !persistence_notifier.wait_timeout(Duration::from_millis(100)) {
4760                                 break
4761                         }
4762                 }
4763         }
4764 }
4765
4766 #[cfg(all(any(test, feature = "_test_utils"), feature = "unstable"))]
4767 pub mod bench {
4768         use chain::Listen;
4769         use chain::chainmonitor::ChainMonitor;
4770         use chain::channelmonitor::Persist;
4771         use chain::keysinterface::{KeysManager, InMemorySigner};
4772         use ln::channelmanager::{BestBlock, ChainParameters, ChannelManager, PaymentHash, PaymentPreimage};
4773         use ln::features::{InitFeatures, InvoiceFeatures};
4774         use ln::functional_test_utils::*;
4775         use ln::msgs::ChannelMessageHandler;
4776         use routing::network_graph::NetworkGraph;
4777         use routing::router::get_route;
4778         use util::test_utils;
4779         use util::config::UserConfig;
4780         use util::events::{Event, EventsProvider, MessageSendEvent, MessageSendEventsProvider};
4781
4782         use bitcoin::hashes::Hash;
4783         use bitcoin::hashes::sha256::Hash as Sha256;
4784         use bitcoin::{Block, BlockHeader, Transaction, TxOut};
4785
4786         use std::sync::Mutex;
4787
4788         use test::Bencher;
4789
4790         struct NodeHolder<'a, P: Persist<InMemorySigner>> {
4791                 node: &'a ChannelManager<InMemorySigner,
4792                         &'a ChainMonitor<InMemorySigner, &'a test_utils::TestChainSource,
4793                                 &'a test_utils::TestBroadcaster, &'a test_utils::TestFeeEstimator,
4794                                 &'a test_utils::TestLogger, &'a P>,
4795                         &'a test_utils::TestBroadcaster, &'a KeysManager,
4796                         &'a test_utils::TestFeeEstimator, &'a test_utils::TestLogger>
4797         }
4798
4799         #[cfg(test)]
4800         #[bench]
4801         fn bench_sends(bench: &mut Bencher) {
4802                 bench_two_sends(bench, test_utils::TestPersister::new(), test_utils::TestPersister::new());
4803         }
4804
4805         pub fn bench_two_sends<P: Persist<InMemorySigner>>(bench: &mut Bencher, persister_a: P, persister_b: P) {
4806                 // Do a simple benchmark of sending a payment back and forth between two nodes.
4807                 // Note that this is unrealistic as each payment send will require at least two fsync
4808                 // calls per node.
4809                 let network = bitcoin::Network::Testnet;
4810                 let genesis_hash = bitcoin::blockdata::constants::genesis_block(network).header.block_hash();
4811
4812                 let tx_broadcaster = test_utils::TestBroadcaster{txn_broadcasted: Mutex::new(Vec::new())};
4813                 let fee_estimator = test_utils::TestFeeEstimator { sat_per_kw: 253 };
4814
4815                 let mut config: UserConfig = Default::default();
4816                 config.own_channel_config.minimum_depth = 1;
4817
4818                 let logger_a = test_utils::TestLogger::with_id("node a".to_owned());
4819                 let chain_monitor_a = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_a);
4820                 let seed_a = [1u8; 32];
4821                 let keys_manager_a = KeysManager::new(&seed_a, 42, 42);
4822                 let node_a = ChannelManager::new(&fee_estimator, &chain_monitor_a, &tx_broadcaster, &logger_a, &keys_manager_a, config.clone(), ChainParameters {
4823                         network,
4824                         best_block: BestBlock::from_genesis(network),
4825                 });
4826                 let node_a_holder = NodeHolder { node: &node_a };
4827
4828                 let logger_b = test_utils::TestLogger::with_id("node a".to_owned());
4829                 let chain_monitor_b = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_b);
4830                 let seed_b = [2u8; 32];
4831                 let keys_manager_b = KeysManager::new(&seed_b, 42, 42);
4832                 let node_b = ChannelManager::new(&fee_estimator, &chain_monitor_b, &tx_broadcaster, &logger_b, &keys_manager_b, config.clone(), ChainParameters {
4833                         network,
4834                         best_block: BestBlock::from_genesis(network),
4835                 });
4836                 let node_b_holder = NodeHolder { node: &node_b };
4837
4838                 node_a.create_channel(node_b.get_our_node_id(), 8_000_000, 100_000_000, 42, None).unwrap();
4839                 node_b.handle_open_channel(&node_a.get_our_node_id(), InitFeatures::known(), &get_event_msg!(node_a_holder, MessageSendEvent::SendOpenChannel, node_b.get_our_node_id()));
4840                 node_a.handle_accept_channel(&node_b.get_our_node_id(), InitFeatures::known(), &get_event_msg!(node_b_holder, MessageSendEvent::SendAcceptChannel, node_a.get_our_node_id()));
4841
4842                 let tx;
4843                 if let Event::FundingGenerationReady { temporary_channel_id, output_script, .. } = get_event!(node_a_holder, Event::FundingGenerationReady) {
4844                         tx = Transaction { version: 2, lock_time: 0, input: Vec::new(), output: vec![TxOut {
4845                                 value: 8_000_000, script_pubkey: output_script,
4846                         }]};
4847                         node_a.funding_transaction_generated(&temporary_channel_id, tx.clone()).unwrap();
4848                 } else { panic!(); }
4849
4850                 node_b.handle_funding_created(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendFundingCreated, node_b.get_our_node_id()));
4851                 node_a.handle_funding_signed(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendFundingSigned, node_a.get_our_node_id()));
4852
4853                 assert_eq!(&tx_broadcaster.txn_broadcasted.lock().unwrap()[..], &[tx.clone()]);
4854
4855                 let block = Block {
4856                         header: BlockHeader { version: 0x20000000, prev_blockhash: genesis_hash, merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 },
4857                         txdata: vec![tx],
4858                 };
4859                 Listen::block_connected(&node_a, &block, 1);
4860                 Listen::block_connected(&node_b, &block, 1);
4861
4862                 node_a.handle_funding_locked(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendFundingLocked, node_a.get_our_node_id()));
4863                 node_b.handle_funding_locked(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendFundingLocked, node_b.get_our_node_id()));
4864
4865                 let dummy_graph = NetworkGraph::new(genesis_hash);
4866
4867                 let mut payment_count: u64 = 0;
4868                 macro_rules! send_payment {
4869                         ($node_a: expr, $node_b: expr) => {
4870                                 let usable_channels = $node_a.list_usable_channels();
4871                                 let route = get_route(&$node_a.get_our_node_id(), &dummy_graph, &$node_b.get_our_node_id(), Some(InvoiceFeatures::known()),
4872                                         Some(&usable_channels.iter().map(|r| r).collect::<Vec<_>>()), &[], 10_000, TEST_FINAL_CLTV, &logger_a).unwrap();
4873
4874                                 let mut payment_preimage = PaymentPreimage([0; 32]);
4875                                 payment_preimage.0[0..8].copy_from_slice(&payment_count.to_le_bytes());
4876                                 payment_count += 1;
4877                                 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0[..]).into_inner());
4878                                 let payment_secret = $node_b.create_inbound_payment_for_hash(payment_hash, None, 7200, 0).unwrap();
4879
4880                                 $node_a.send_payment(&route, payment_hash, &Some(payment_secret)).unwrap();
4881                                 let payment_event = SendEvent::from_event($node_a.get_and_clear_pending_msg_events().pop().unwrap());
4882                                 $node_b.handle_update_add_htlc(&$node_a.get_our_node_id(), &payment_event.msgs[0]);
4883                                 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &payment_event.commitment_msg);
4884                                 let (raa, cs) = get_revoke_commit_msgs!(NodeHolder { node: &$node_b }, $node_a.get_our_node_id());
4885                                 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &raa);
4886                                 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &cs);
4887                                 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &get_event_msg!(NodeHolder { node: &$node_a }, MessageSendEvent::SendRevokeAndACK, $node_b.get_our_node_id()));
4888
4889                                 expect_pending_htlcs_forwardable!(NodeHolder { node: &$node_b });
4890                                 expect_payment_received!(NodeHolder { node: &$node_b }, payment_hash, payment_secret, 10_000);
4891                                 assert!($node_b.claim_funds(payment_preimage));
4892
4893                                 match $node_b.get_and_clear_pending_msg_events().pop().unwrap() {
4894                                         MessageSendEvent::UpdateHTLCs { node_id, updates } => {
4895                                                 assert_eq!(node_id, $node_a.get_our_node_id());
4896                                                 $node_a.handle_update_fulfill_htlc(&$node_b.get_our_node_id(), &updates.update_fulfill_htlcs[0]);
4897                                                 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &updates.commitment_signed);
4898                                         },
4899                                         _ => panic!("Failed to generate claim event"),
4900                                 }
4901
4902                                 let (raa, cs) = get_revoke_commit_msgs!(NodeHolder { node: &$node_a }, $node_b.get_our_node_id());
4903                                 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &raa);
4904                                 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &cs);
4905                                 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &get_event_msg!(NodeHolder { node: &$node_b }, MessageSendEvent::SendRevokeAndACK, $node_a.get_our_node_id()));
4906
4907                                 expect_payment_sent!(NodeHolder { node: &$node_a }, payment_preimage);
4908                         }
4909                 }
4910
4911                 bench.iter(|| {
4912                         send_payment!(node_a, node_b);
4913                         send_payment!(node_b, node_a);
4914                 });
4915         }
4916 }