Req+check payment secrets for inbound payments pre-PaymentReceived
[rust-lightning] / lightning / src / ln / channelmanager.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! The top-level channel management and payment tracking stuff lives here.
11 //!
12 //! The ChannelManager is the main chunk of logic implementing the lightning protocol and is
13 //! responsible for tracking which channels are open, HTLCs are in flight and reestablishing those
14 //! upon reconnect to the relevant peer(s).
15 //!
16 //! It does not manage routing logic (see routing::router::get_route for that) nor does it manage constructing
17 //! on-chain transactions (it only monitors the chain to watch for any force-closes that might
18 //! imply it needs to fail HTLCs/payments/channels it manages).
19 //!
20
21 use bitcoin::blockdata::block::{Block, BlockHeader};
22 use bitcoin::blockdata::transaction::Transaction;
23 use bitcoin::blockdata::constants::genesis_block;
24 use bitcoin::network::constants::Network;
25
26 use bitcoin::hashes::{Hash, HashEngine};
27 use bitcoin::hashes::hmac::{Hmac, HmacEngine};
28 use bitcoin::hashes::sha256::Hash as Sha256;
29 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
30 use bitcoin::hashes::cmp::fixed_time_eq;
31 use bitcoin::hash_types::{BlockHash, Txid};
32
33 use bitcoin::secp256k1::key::{SecretKey,PublicKey};
34 use bitcoin::secp256k1::Secp256k1;
35 use bitcoin::secp256k1::ecdh::SharedSecret;
36 use bitcoin::secp256k1;
37
38 use chain;
39 use chain::Confirm;
40 use chain::Watch;
41 use chain::chaininterface::{BroadcasterInterface, FeeEstimator};
42 use chain::channelmonitor::{ChannelMonitor, ChannelMonitorUpdate, ChannelMonitorUpdateStep, ChannelMonitorUpdateErr, HTLC_FAIL_BACK_BUFFER, CLTV_CLAIM_BUFFER, LATENCY_GRACE_PERIOD_BLOCKS, ANTI_REORG_DELAY, MonitorEvent, CLOSED_CHANNEL_UPDATE_ID};
43 use chain::transaction::{OutPoint, TransactionData};
44 // Since this struct is returned in `list_channels` methods, expose it here in case users want to
45 // construct one themselves.
46 pub use ln::channel::CounterpartyForwardingInfo;
47 use ln::channel::{Channel, ChannelError};
48 use ln::features::{InitFeatures, NodeFeatures};
49 use routing::router::{Route, RouteHop};
50 use ln::msgs;
51 use ln::msgs::NetAddress;
52 use ln::onion_utils;
53 use ln::msgs::{ChannelMessageHandler, DecodeError, LightningError, OptionalField};
54 use chain::keysinterface::{Sign, KeysInterface, KeysManager, InMemorySigner};
55 use util::config::UserConfig;
56 use util::events::{Event, EventsProvider, MessageSendEvent, MessageSendEventsProvider};
57 use util::{byte_utils, events};
58 use util::ser::{Readable, ReadableArgs, MaybeReadable, Writeable, Writer};
59 use util::chacha20::{ChaCha20, ChaChaReader};
60 use util::logger::Logger;
61 use util::errors::APIError;
62
63 use std::{cmp, mem};
64 use std::collections::{HashMap, hash_map, HashSet};
65 use std::io::{Cursor, Read};
66 use std::sync::{Arc, Condvar, Mutex, MutexGuard, RwLock, RwLockReadGuard};
67 use std::sync::atomic::{AtomicUsize, Ordering};
68 use std::time::Duration;
69 #[cfg(any(test, feature = "allow_wallclock_use"))]
70 use std::time::Instant;
71 use std::marker::{Sync, Send};
72 use std::ops::Deref;
73 use bitcoin::hashes::hex::ToHex;
74
75 // We hold various information about HTLC relay in the HTLC objects in Channel itself:
76 //
77 // Upon receipt of an HTLC from a peer, we'll give it a PendingHTLCStatus indicating if it should
78 // forward the HTLC with information it will give back to us when it does so, or if it should Fail
79 // the HTLC with the relevant message for the Channel to handle giving to the remote peer.
80 //
81 // Once said HTLC is committed in the Channel, if the PendingHTLCStatus indicated Forward, the
82 // Channel will return the PendingHTLCInfo back to us, and we will create an HTLCForwardInfo
83 // with it to track where it came from (in case of onwards-forward error), waiting a random delay
84 // before we forward it.
85 //
86 // We will then use HTLCForwardInfo's PendingHTLCInfo to construct an outbound HTLC, with a
87 // relevant HTLCSource::PreviousHopData filled in to indicate where it came from (which we can use
88 // to either fail-backwards or fulfill the HTLC backwards along the relevant path).
89 // Alternatively, we can fill an outbound HTLC with a HTLCSource::OutboundRoute indicating this is
90 // our payment, which we can use to decode errors or inform the user that the payment was sent.
91
92 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
93 enum PendingHTLCRouting {
94         Forward {
95                 onion_packet: msgs::OnionPacket,
96                 short_channel_id: u64, // This should be NonZero<u64> eventually when we bump MSRV
97         },
98         Receive {
99                 payment_data: msgs::FinalOnionHopData,
100                 incoming_cltv_expiry: u32, // Used to track when we should expire pending HTLCs that go unclaimed
101         },
102 }
103
104 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
105 pub(super) struct PendingHTLCInfo {
106         routing: PendingHTLCRouting,
107         incoming_shared_secret: [u8; 32],
108         payment_hash: PaymentHash,
109         pub(super) amt_to_forward: u64,
110         pub(super) outgoing_cltv_value: u32,
111 }
112
113 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
114 pub(super) enum HTLCFailureMsg {
115         Relay(msgs::UpdateFailHTLC),
116         Malformed(msgs::UpdateFailMalformedHTLC),
117 }
118
119 /// Stores whether we can't forward an HTLC or relevant forwarding info
120 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
121 pub(super) enum PendingHTLCStatus {
122         Forward(PendingHTLCInfo),
123         Fail(HTLCFailureMsg),
124 }
125
126 pub(super) enum HTLCForwardInfo {
127         AddHTLC {
128                 forward_info: PendingHTLCInfo,
129
130                 // These fields are produced in `forward_htlcs()` and consumed in
131                 // `process_pending_htlc_forwards()` for constructing the
132                 // `HTLCSource::PreviousHopData` for failed and forwarded
133                 // HTLCs.
134                 prev_short_channel_id: u64,
135                 prev_htlc_id: u64,
136                 prev_funding_outpoint: OutPoint,
137         },
138         FailHTLC {
139                 htlc_id: u64,
140                 err_packet: msgs::OnionErrorPacket,
141         },
142 }
143
144 /// Tracks the inbound corresponding to an outbound HTLC
145 #[derive(Clone, PartialEq)]
146 pub(crate) struct HTLCPreviousHopData {
147         short_channel_id: u64,
148         htlc_id: u64,
149         incoming_packet_shared_secret: [u8; 32],
150
151         // This field is consumed by `claim_funds_from_hop()` when updating a force-closed backwards
152         // channel with a preimage provided by the forward channel.
153         outpoint: OutPoint,
154 }
155
156 struct ClaimableHTLC {
157         prev_hop: HTLCPreviousHopData,
158         value: u64,
159         /// Contains a total_msat (which may differ from value if this is a Multi-Path Payment) and a
160         /// payment_secret which prevents path-probing attacks and can associate different HTLCs which
161         /// are part of the same payment.
162         payment_data: msgs::FinalOnionHopData,
163         cltv_expiry: u32,
164 }
165
166 /// Tracks the inbound corresponding to an outbound HTLC
167 #[derive(Clone, PartialEq)]
168 pub(crate) enum HTLCSource {
169         PreviousHopData(HTLCPreviousHopData),
170         OutboundRoute {
171                 path: Vec<RouteHop>,
172                 session_priv: SecretKey,
173                 /// Technically we can recalculate this from the route, but we cache it here to avoid
174                 /// doing a double-pass on route when we get a failure back
175                 first_hop_htlc_msat: u64,
176         },
177 }
178 #[cfg(test)]
179 impl HTLCSource {
180         pub fn dummy() -> Self {
181                 HTLCSource::OutboundRoute {
182                         path: Vec::new(),
183                         session_priv: SecretKey::from_slice(&[1; 32]).unwrap(),
184                         first_hop_htlc_msat: 0,
185                 }
186         }
187 }
188
189 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
190 pub(super) enum HTLCFailReason {
191         LightningError {
192                 err: msgs::OnionErrorPacket,
193         },
194         Reason {
195                 failure_code: u16,
196                 data: Vec<u8>,
197         }
198 }
199
200 /// payment_hash type, use to cross-lock hop
201 /// (C-not exported) as we just use [u8; 32] directly
202 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
203 pub struct PaymentHash(pub [u8;32]);
204 /// payment_preimage type, use to route payment between hop
205 /// (C-not exported) as we just use [u8; 32] directly
206 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
207 pub struct PaymentPreimage(pub [u8;32]);
208 /// payment_secret type, use to authenticate sender to the receiver and tie MPP HTLCs together
209 /// (C-not exported) as we just use [u8; 32] directly
210 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
211 pub struct PaymentSecret(pub [u8;32]);
212
213 type ShutdownResult = (Option<(OutPoint, ChannelMonitorUpdate)>, Vec<(HTLCSource, PaymentHash)>);
214
215 /// Error type returned across the channel_state mutex boundary. When an Err is generated for a
216 /// Channel, we generally end up with a ChannelError::Close for which we have to close the channel
217 /// immediately (ie with no further calls on it made). Thus, this step happens inside a
218 /// channel_state lock. We then return the set of things that need to be done outside the lock in
219 /// this struct and call handle_error!() on it.
220
221 struct MsgHandleErrInternal {
222         err: msgs::LightningError,
223         shutdown_finish: Option<(ShutdownResult, Option<msgs::ChannelUpdate>)>,
224 }
225 impl MsgHandleErrInternal {
226         #[inline]
227         fn send_err_msg_no_close(err: String, channel_id: [u8; 32]) -> Self {
228                 Self {
229                         err: LightningError {
230                                 err: err.clone(),
231                                 action: msgs::ErrorAction::SendErrorMessage {
232                                         msg: msgs::ErrorMessage {
233                                                 channel_id,
234                                                 data: err
235                                         },
236                                 },
237                         },
238                         shutdown_finish: None,
239                 }
240         }
241         #[inline]
242         fn ignore_no_close(err: String) -> Self {
243                 Self {
244                         err: LightningError {
245                                 err,
246                                 action: msgs::ErrorAction::IgnoreError,
247                         },
248                         shutdown_finish: None,
249                 }
250         }
251         #[inline]
252         fn from_no_close(err: msgs::LightningError) -> Self {
253                 Self { err, shutdown_finish: None }
254         }
255         #[inline]
256         fn from_finish_shutdown(err: String, channel_id: [u8; 32], shutdown_res: ShutdownResult, channel_update: Option<msgs::ChannelUpdate>) -> Self {
257                 Self {
258                         err: LightningError {
259                                 err: err.clone(),
260                                 action: msgs::ErrorAction::SendErrorMessage {
261                                         msg: msgs::ErrorMessage {
262                                                 channel_id,
263                                                 data: err
264                                         },
265                                 },
266                         },
267                         shutdown_finish: Some((shutdown_res, channel_update)),
268                 }
269         }
270         #[inline]
271         fn from_chan_no_close(err: ChannelError, channel_id: [u8; 32]) -> Self {
272                 Self {
273                         err: match err {
274                                 ChannelError::Ignore(msg) => LightningError {
275                                         err: msg,
276                                         action: msgs::ErrorAction::IgnoreError,
277                                 },
278                                 ChannelError::Close(msg) => LightningError {
279                                         err: msg.clone(),
280                                         action: msgs::ErrorAction::SendErrorMessage {
281                                                 msg: msgs::ErrorMessage {
282                                                         channel_id,
283                                                         data: msg
284                                                 },
285                                         },
286                                 },
287                                 ChannelError::CloseDelayBroadcast(msg) => LightningError {
288                                         err: msg.clone(),
289                                         action: msgs::ErrorAction::SendErrorMessage {
290                                                 msg: msgs::ErrorMessage {
291                                                         channel_id,
292                                                         data: msg
293                                                 },
294                                         },
295                                 },
296                         },
297                         shutdown_finish: None,
298                 }
299         }
300 }
301
302 /// We hold back HTLCs we intend to relay for a random interval greater than this (see
303 /// Event::PendingHTLCsForwardable for the API guidelines indicating how long should be waited).
304 /// This provides some limited amount of privacy. Ideally this would range from somewhere like one
305 /// second to 30 seconds, but people expect lightning to be, you know, kinda fast, sadly.
306 const MIN_HTLC_RELAY_HOLDING_CELL_MILLIS: u64 = 100;
307
308 /// For events which result in both a RevokeAndACK and a CommitmentUpdate, by default they should
309 /// be sent in the order they appear in the return value, however sometimes the order needs to be
310 /// variable at runtime (eg Channel::channel_reestablish needs to re-send messages in the order
311 /// they were originally sent). In those cases, this enum is also returned.
312 #[derive(Clone, PartialEq)]
313 pub(super) enum RAACommitmentOrder {
314         /// Send the CommitmentUpdate messages first
315         CommitmentFirst,
316         /// Send the RevokeAndACK message first
317         RevokeAndACKFirst,
318 }
319
320 // Note this is only exposed in cfg(test):
321 pub(super) struct ChannelHolder<Signer: Sign> {
322         pub(super) by_id: HashMap<[u8; 32], Channel<Signer>>,
323         pub(super) short_to_id: HashMap<u64, [u8; 32]>,
324         /// short channel id -> forward infos. Key of 0 means payments received
325         /// Note that while this is held in the same mutex as the channels themselves, no consistency
326         /// guarantees are made about the existence of a channel with the short id here, nor the short
327         /// ids in the PendingHTLCInfo!
328         pub(super) forward_htlcs: HashMap<u64, Vec<HTLCForwardInfo>>,
329         /// Map from payment hash to any HTLCs which are to us and can be failed/claimed by the user.
330         /// Note that while this is held in the same mutex as the channels themselves, no consistency
331         /// guarantees are made about the channels given here actually existing anymore by the time you
332         /// go to read them!
333         claimable_htlcs: HashMap<PaymentHash, Vec<ClaimableHTLC>>,
334         /// Messages to send to peers - pushed to in the same lock that they are generated in (except
335         /// for broadcast messages, where ordering isn't as strict).
336         pub(super) pending_msg_events: Vec<MessageSendEvent>,
337 }
338
339 /// Events which we process internally but cannot be procsesed immediately at the generation site
340 /// for some reason. They are handled in timer_tick_occurred, so may be processed with
341 /// quite some time lag.
342 enum BackgroundEvent {
343         /// Handle a ChannelMonitorUpdate that closes a channel, broadcasting its current latest holder
344         /// commitment transaction.
345         ClosingMonitorUpdate((OutPoint, ChannelMonitorUpdate)),
346 }
347
348 /// State we hold per-peer. In the future we should put channels in here, but for now we only hold
349 /// the latest Init features we heard from the peer.
350 struct PeerState {
351         latest_features: InitFeatures,
352 }
353
354 /// Stores a PaymentSecret and any other data we may need to validate an inbound payment is
355 /// actually ours and not some duplicate HTLC sent to us by a node along the route.
356 ///
357 /// For users who don't want to bother doing their own payment preimage storage, we also store that
358 /// here.
359 struct PendingInboundPayment {
360         /// The payment secret that the sender must use for us to accept this payment
361         payment_secret: PaymentSecret,
362         /// Time at which this HTLC expires - blocks with a header time above this value will result in
363         /// this payment being removed.
364         expiry_time: u64,
365         // Other required attributes of the payment, optionally enforced:
366         payment_preimage: Option<PaymentPreimage>,
367         min_value_msat: Option<u64>,
368 }
369
370 /// SimpleArcChannelManager is useful when you need a ChannelManager with a static lifetime, e.g.
371 /// when you're using lightning-net-tokio (since tokio::spawn requires parameters with static
372 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
373 /// SimpleRefChannelManager is the more appropriate type. Defining these type aliases prevents
374 /// issues such as overly long function definitions. Note that the ChannelManager can take any
375 /// type that implements KeysInterface for its keys manager, but this type alias chooses the
376 /// concrete type of the KeysManager.
377 pub type SimpleArcChannelManager<M, T, F, L> = ChannelManager<InMemorySigner, Arc<M>, Arc<T>, Arc<KeysManager>, Arc<F>, Arc<L>>;
378
379 /// SimpleRefChannelManager is a type alias for a ChannelManager reference, and is the reference
380 /// counterpart to the SimpleArcChannelManager type alias. Use this type by default when you don't
381 /// need a ChannelManager with a static lifetime. You'll need a static lifetime in cases such as
382 /// usage of lightning-net-tokio (since tokio::spawn requires parameters with static lifetimes).
383 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
384 /// helps with issues such as long function definitions. Note that the ChannelManager can take any
385 /// type that implements KeysInterface for its keys manager, but this type alias chooses the
386 /// concrete type of the KeysManager.
387 pub type SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, M, T, F, L> = ChannelManager<InMemorySigner, &'a M, &'b T, &'c KeysManager, &'d F, &'e L>;
388
389 /// Manager which keeps track of a number of channels and sends messages to the appropriate
390 /// channel, also tracking HTLC preimages and forwarding onion packets appropriately.
391 ///
392 /// Implements ChannelMessageHandler, handling the multi-channel parts and passing things through
393 /// to individual Channels.
394 ///
395 /// Implements Writeable to write out all channel state to disk. Implies peer_disconnected() for
396 /// all peers during write/read (though does not modify this instance, only the instance being
397 /// serialized). This will result in any channels which have not yet exchanged funding_created (ie
398 /// called funding_transaction_generated for outbound channels).
399 ///
400 /// Note that you can be a bit lazier about writing out ChannelManager than you can be with
401 /// ChannelMonitors. With ChannelMonitors you MUST write each monitor update out to disk before
402 /// returning from chain::Watch::watch_/update_channel, with ChannelManagers, writing updates
403 /// happens out-of-band (and will prevent any other ChannelManager operations from occurring during
404 /// the serialization process). If the deserialized version is out-of-date compared to the
405 /// ChannelMonitors passed by reference to read(), those channels will be force-closed based on the
406 /// ChannelMonitor state and no funds will be lost (mod on-chain transaction fees).
407 ///
408 /// Note that the deserializer is only implemented for (BlockHash, ChannelManager), which
409 /// tells you the last block hash which was block_connect()ed. You MUST rescan any blocks along
410 /// the "reorg path" (ie call block_disconnected() until you get to a common block and then call
411 /// block_connected() to step towards your best block) upon deserialization before using the
412 /// object!
413 ///
414 /// Note that ChannelManager is responsible for tracking liveness of its channels and generating
415 /// ChannelUpdate messages informing peers that the channel is temporarily disabled. To avoid
416 /// spam due to quick disconnection/reconnection, updates are not sent until the channel has been
417 /// offline for a full minute. In order to track this, you must call
418 /// timer_tick_occurred roughly once per minute, though it doesn't have to be perfect.
419 ///
420 /// Rather than using a plain ChannelManager, it is preferable to use either a SimpleArcChannelManager
421 /// a SimpleRefChannelManager, for conciseness. See their documentation for more details, but
422 /// essentially you should default to using a SimpleRefChannelManager, and use a
423 /// SimpleArcChannelManager when you require a ChannelManager with a static lifetime, such as when
424 /// you're using lightning-net-tokio.
425 pub struct ChannelManager<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
426         where M::Target: chain::Watch<Signer>,
427         T::Target: BroadcasterInterface,
428         K::Target: KeysInterface<Signer = Signer>,
429         F::Target: FeeEstimator,
430                                 L::Target: Logger,
431 {
432         default_configuration: UserConfig,
433         genesis_hash: BlockHash,
434         fee_estimator: F,
435         chain_monitor: M,
436         tx_broadcaster: T,
437
438         #[cfg(test)]
439         pub(super) best_block: RwLock<BestBlock>,
440         #[cfg(not(test))]
441         best_block: RwLock<BestBlock>,
442         secp_ctx: Secp256k1<secp256k1::All>,
443
444         #[cfg(any(test, feature = "_test_utils"))]
445         pub(super) channel_state: Mutex<ChannelHolder<Signer>>,
446         #[cfg(not(any(test, feature = "_test_utils")))]
447         channel_state: Mutex<ChannelHolder<Signer>>,
448
449         /// Storage for PaymentSecrets and any requirements on future inbound payments before we will
450         /// expose them to users via a PaymentReceived event. HTLCs which do not meet the requirements
451         /// here are failed when we process them as pending-forwardable-HTLCs, and entries are removed
452         /// after we generate a PaymentReceived upon receipt of all MPP parts.
453         /// Locked *after* channel_state.
454         pending_inbound_payments: Mutex<HashMap<PaymentHash, PendingInboundPayment>>,
455
456         our_network_key: SecretKey,
457         our_network_pubkey: PublicKey,
458
459         /// Used to track the last value sent in a node_announcement "timestamp" field. We ensure this
460         /// value increases strictly since we don't assume access to a time source.
461         last_node_announcement_serial: AtomicUsize,
462
463         /// The highest block timestamp we've seen, which is usually a good guess at the current time.
464         /// Assuming most miners are generating blocks with reasonable timestamps, this shouldn't be
465         /// very far in the past, and can only ever be up to two hours in the future.
466         highest_seen_timestamp: AtomicUsize,
467
468         /// The bulk of our storage will eventually be here (channels and message queues and the like).
469         /// If we are connected to a peer we always at least have an entry here, even if no channels
470         /// are currently open with that peer.
471         /// Because adding or removing an entry is rare, we usually take an outer read lock and then
472         /// operate on the inner value freely. Sadly, this prevents parallel operation when opening a
473         /// new channel.
474         per_peer_state: RwLock<HashMap<PublicKey, Mutex<PeerState>>>,
475
476         pending_events: Mutex<Vec<events::Event>>,
477         pending_background_events: Mutex<Vec<BackgroundEvent>>,
478         /// Used when we have to take a BIG lock to make sure everything is self-consistent.
479         /// Essentially just when we're serializing ourselves out.
480         /// Taken first everywhere where we are making changes before any other locks.
481         /// When acquiring this lock in read mode, rather than acquiring it directly, call
482         /// `PersistenceNotifierGuard::new(..)` and pass the lock to it, to ensure the PersistenceNotifier
483         /// the lock contains sends out a notification when the lock is released.
484         total_consistency_lock: RwLock<()>,
485
486         persistence_notifier: PersistenceNotifier,
487
488         keys_manager: K,
489
490         logger: L,
491 }
492
493 /// Chain-related parameters used to construct a new `ChannelManager`.
494 ///
495 /// Typically, the block-specific parameters are derived from the best block hash for the network,
496 /// as a newly constructed `ChannelManager` will not have created any channels yet. These parameters
497 /// are not needed when deserializing a previously constructed `ChannelManager`.
498 pub struct ChainParameters {
499         /// The network for determining the `chain_hash` in Lightning messages.
500         pub network: Network,
501
502         /// The hash and height of the latest block successfully connected.
503         ///
504         /// Used to track on-chain channel funding outputs and send payments with reliable timelocks.
505         pub best_block: BestBlock,
506 }
507
508 /// The best known block as identified by its hash and height.
509 #[derive(Clone, Copy)]
510 pub struct BestBlock {
511         block_hash: BlockHash,
512         height: u32,
513 }
514
515 impl BestBlock {
516         /// Returns the best block from the genesis of the given network.
517         pub fn from_genesis(network: Network) -> Self {
518                 BestBlock {
519                         block_hash: genesis_block(network).header.block_hash(),
520                         height: 0,
521                 }
522         }
523
524         /// Returns the best block as identified by the given block hash and height.
525         pub fn new(block_hash: BlockHash, height: u32) -> Self {
526                 BestBlock { block_hash, height }
527         }
528
529         /// Returns the best block hash.
530         pub fn block_hash(&self) -> BlockHash { self.block_hash }
531
532         /// Returns the best block height.
533         pub fn height(&self) -> u32 { self.height }
534 }
535
536 /// Whenever we release the `ChannelManager`'s `total_consistency_lock`, from read mode, it is
537 /// desirable to notify any listeners on `await_persistable_update_timeout`/
538 /// `await_persistable_update` that new updates are available for persistence. Therefore, this
539 /// struct is responsible for locking the total consistency lock and, upon going out of scope,
540 /// sending the aforementioned notification (since the lock being released indicates that the
541 /// updates are ready for persistence).
542 struct PersistenceNotifierGuard<'a> {
543         persistence_notifier: &'a PersistenceNotifier,
544         // We hold onto this result so the lock doesn't get released immediately.
545         _read_guard: RwLockReadGuard<'a, ()>,
546 }
547
548 impl<'a> PersistenceNotifierGuard<'a> {
549         fn new(lock: &'a RwLock<()>, notifier: &'a PersistenceNotifier) -> Self {
550                 let read_guard = lock.read().unwrap();
551
552                 Self {
553                         persistence_notifier: notifier,
554                         _read_guard: read_guard,
555                 }
556         }
557 }
558
559 impl<'a> Drop for PersistenceNotifierGuard<'a> {
560         fn drop(&mut self) {
561                 self.persistence_notifier.notify();
562         }
563 }
564
565 /// The amount of time in blocks we require our counterparty wait to claim their money (ie time
566 /// between when we, or our watchtower, must check for them having broadcast a theft transaction).
567 ///
568 /// This can be increased (but not decreased) through [`ChannelHandshakeConfig::our_to_self_delay`]
569 ///
570 /// [`ChannelHandshakeConfig::our_to_self_delay`]: crate::util::config::ChannelHandshakeConfig::our_to_self_delay
571 pub const BREAKDOWN_TIMEOUT: u16 = 6 * 24;
572 /// The amount of time in blocks we're willing to wait to claim money back to us. This matches
573 /// the maximum required amount in lnd as of March 2021.
574 pub(crate) const MAX_LOCAL_BREAKDOWN_TIMEOUT: u16 = 2 * 6 * 24 * 7;
575
576 /// The minimum number of blocks between an inbound HTLC's CLTV and the corresponding outbound
577 /// HTLC's CLTV. The current default represents roughly six hours of blocks at six blocks/hour.
578 ///
579 /// This can be increased (but not decreased) through [`ChannelConfig::cltv_expiry_delta`]
580 ///
581 /// [`ChannelConfig::cltv_expiry_delta`]: crate::util::config::ChannelConfig::cltv_expiry_delta
582 // This should always be a few blocks greater than channelmonitor::CLTV_CLAIM_BUFFER,
583 // i.e. the node we forwarded the payment on to should always have enough room to reliably time out
584 // the HTLC via a full update_fail_htlc/commitment_signed dance before we hit the
585 // CLTV_CLAIM_BUFFER point (we static assert that it's at least 3 blocks more).
586 pub const MIN_CLTV_EXPIRY_DELTA: u16 = 6 * 6;
587 pub(super) const CLTV_FAR_FAR_AWAY: u32 = 6 * 24 * 7; //TODO?
588
589 // Check that our CLTV_EXPIRY is at least CLTV_CLAIM_BUFFER + ANTI_REORG_DELAY + LATENCY_GRACE_PERIOD_BLOCKS,
590 // ie that if the next-hop peer fails the HTLC within
591 // LATENCY_GRACE_PERIOD_BLOCKS then we'll still have CLTV_CLAIM_BUFFER left to timeout it onchain,
592 // then waiting ANTI_REORG_DELAY to be reorg-safe on the outbound HLTC and
593 // failing the corresponding htlc backward, and us now seeing the last block of ANTI_REORG_DELAY before
594 // LATENCY_GRACE_PERIOD_BLOCKS.
595 #[deny(const_err)]
596 #[allow(dead_code)]
597 const CHECK_CLTV_EXPIRY_SANITY: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - CLTV_CLAIM_BUFFER - ANTI_REORG_DELAY - LATENCY_GRACE_PERIOD_BLOCKS;
598
599 // Check for ability of an attacker to make us fail on-chain by delaying inbound claim. See
600 // ChannelMontior::would_broadcast_at_height for a description of why this is needed.
601 #[deny(const_err)]
602 #[allow(dead_code)]
603 const CHECK_CLTV_EXPIRY_SANITY_2: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - 2*CLTV_CLAIM_BUFFER;
604
605 /// Details of a channel, as returned by ChannelManager::list_channels and ChannelManager::list_usable_channels
606 #[derive(Clone)]
607 pub struct ChannelDetails {
608         /// The channel's ID (prior to funding transaction generation, this is a random 32 bytes,
609         /// thereafter this is the txid of the funding transaction xor the funding transaction output).
610         /// Note that this means this value is *not* persistent - it can change once during the
611         /// lifetime of the channel.
612         pub channel_id: [u8; 32],
613         /// The position of the funding transaction in the chain. None if the funding transaction has
614         /// not yet been confirmed and the channel fully opened.
615         pub short_channel_id: Option<u64>,
616         /// The node_id of our counterparty
617         pub remote_network_id: PublicKey,
618         /// The Features the channel counterparty provided upon last connection.
619         /// Useful for routing as it is the most up-to-date copy of the counterparty's features and
620         /// many routing-relevant features are present in the init context.
621         pub counterparty_features: InitFeatures,
622         /// The value, in satoshis, of this channel as appears in the funding output
623         pub channel_value_satoshis: u64,
624         /// The user_id passed in to create_channel, or 0 if the channel was inbound.
625         pub user_id: u64,
626         /// The available outbound capacity for sending HTLCs to the remote peer. This does not include
627         /// any pending HTLCs which are not yet fully resolved (and, thus, who's balance is not
628         /// available for inclusion in new outbound HTLCs). This further does not include any pending
629         /// outgoing HTLCs which are awaiting some other resolution to be sent.
630         pub outbound_capacity_msat: u64,
631         /// The available inbound capacity for the remote peer to send HTLCs to us. This does not
632         /// include any pending HTLCs which are not yet fully resolved (and, thus, who's balance is not
633         /// available for inclusion in new inbound HTLCs).
634         /// Note that there are some corner cases not fully handled here, so the actual available
635         /// inbound capacity may be slightly higher than this.
636         pub inbound_capacity_msat: u64,
637         /// True if the channel is (a) confirmed and funding_locked messages have been exchanged, (b)
638         /// the peer is connected, and (c) no monitor update failure is pending resolution.
639         pub is_live: bool,
640
641         /// Information on the fees and requirements that the counterparty requires when forwarding
642         /// payments to us through this channel.
643         pub counterparty_forwarding_info: Option<CounterpartyForwardingInfo>,
644 }
645
646 /// If a payment fails to send, it can be in one of several states. This enum is returned as the
647 /// Err() type describing which state the payment is in, see the description of individual enum
648 /// states for more.
649 #[derive(Clone, Debug)]
650 pub enum PaymentSendFailure {
651         /// A parameter which was passed to send_payment was invalid, preventing us from attempting to
652         /// send the payment at all. No channel state has been changed or messages sent to peers, and
653         /// once you've changed the parameter at error, you can freely retry the payment in full.
654         ParameterError(APIError),
655         /// A parameter in a single path which was passed to send_payment was invalid, preventing us
656         /// from attempting to send the payment at all. No channel state has been changed or messages
657         /// sent to peers, and once you've changed the parameter at error, you can freely retry the
658         /// payment in full.
659         ///
660         /// The results here are ordered the same as the paths in the route object which was passed to
661         /// send_payment.
662         PathParameterError(Vec<Result<(), APIError>>),
663         /// All paths which were attempted failed to send, with no channel state change taking place.
664         /// You can freely retry the payment in full (though you probably want to do so over different
665         /// paths than the ones selected).
666         AllFailedRetrySafe(Vec<APIError>),
667         /// Some paths which were attempted failed to send, though possibly not all. At least some
668         /// paths have irrevocably committed to the HTLC and retrying the payment in full would result
669         /// in over-/re-payment.
670         ///
671         /// The results here are ordered the same as the paths in the route object which was passed to
672         /// send_payment, and any Errs which are not APIError::MonitorUpdateFailed can be safely
673         /// retried (though there is currently no API with which to do so).
674         ///
675         /// Any entries which contain Err(APIError::MonitorUpdateFailed) or Ok(()) MUST NOT be retried
676         /// as they will result in over-/re-payment. These HTLCs all either successfully sent (in the
677         /// case of Ok(())) or will send once channel_monitor_updated is called on the next-hop channel
678         /// with the latest update_id.
679         PartialFailure(Vec<Result<(), APIError>>),
680 }
681
682 macro_rules! handle_error {
683         ($self: ident, $internal: expr, $counterparty_node_id: expr) => {
684                 match $internal {
685                         Ok(msg) => Ok(msg),
686                         Err(MsgHandleErrInternal { err, shutdown_finish }) => {
687                                 #[cfg(debug_assertions)]
688                                 {
689                                         // In testing, ensure there are no deadlocks where the lock is already held upon
690                                         // entering the macro.
691                                         assert!($self.channel_state.try_lock().is_ok());
692                                 }
693
694                                 let mut msg_events = Vec::with_capacity(2);
695
696                                 if let Some((shutdown_res, update_option)) = shutdown_finish {
697                                         $self.finish_force_close_channel(shutdown_res);
698                                         if let Some(update) = update_option {
699                                                 msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
700                                                         msg: update
701                                                 });
702                                         }
703                                 }
704
705                                 log_error!($self.logger, "{}", err.err);
706                                 if let msgs::ErrorAction::IgnoreError = err.action {
707                                 } else {
708                                         msg_events.push(events::MessageSendEvent::HandleError {
709                                                 node_id: $counterparty_node_id,
710                                                 action: err.action.clone()
711                                         });
712                                 }
713
714                                 if !msg_events.is_empty() {
715                                         $self.channel_state.lock().unwrap().pending_msg_events.append(&mut msg_events);
716                                 }
717
718                                 // Return error in case higher-API need one
719                                 Err(err)
720                         },
721                 }
722         }
723 }
724
725 macro_rules! break_chan_entry {
726         ($self: ident, $res: expr, $channel_state: expr, $entry: expr) => {
727                 match $res {
728                         Ok(res) => res,
729                         Err(ChannelError::Ignore(msg)) => {
730                                 break Err(MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore(msg), $entry.key().clone()))
731                         },
732                         Err(ChannelError::Close(msg)) => {
733                                 log_trace!($self.logger, "Closing channel {} due to Close-required error: {}", log_bytes!($entry.key()[..]), msg);
734                                 let (channel_id, mut chan) = $entry.remove_entry();
735                                 if let Some(short_id) = chan.get_short_channel_id() {
736                                         $channel_state.short_to_id.remove(&short_id);
737                                 }
738                                 break Err(MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, chan.force_shutdown(true), $self.get_channel_update(&chan).ok()))
739                         },
740                         Err(ChannelError::CloseDelayBroadcast(_)) => { panic!("Wait is only generated on receipt of channel_reestablish, which is handled by try_chan_entry, we don't bother to support it here"); }
741                 }
742         }
743 }
744
745 macro_rules! try_chan_entry {
746         ($self: ident, $res: expr, $channel_state: expr, $entry: expr) => {
747                 match $res {
748                         Ok(res) => res,
749                         Err(ChannelError::Ignore(msg)) => {
750                                 return Err(MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore(msg), $entry.key().clone()))
751                         },
752                         Err(ChannelError::Close(msg)) => {
753                                 log_trace!($self.logger, "Closing channel {} due to Close-required error: {}", log_bytes!($entry.key()[..]), msg);
754                                 let (channel_id, mut chan) = $entry.remove_entry();
755                                 if let Some(short_id) = chan.get_short_channel_id() {
756                                         $channel_state.short_to_id.remove(&short_id);
757                                 }
758                                 return Err(MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, chan.force_shutdown(true), $self.get_channel_update(&chan).ok()))
759                         },
760                         Err(ChannelError::CloseDelayBroadcast(msg)) => {
761                                 log_error!($self.logger, "Channel {} need to be shutdown but closing transactions not broadcast due to {}", log_bytes!($entry.key()[..]), msg);
762                                 let (channel_id, mut chan) = $entry.remove_entry();
763                                 if let Some(short_id) = chan.get_short_channel_id() {
764                                         $channel_state.short_to_id.remove(&short_id);
765                                 }
766                                 let shutdown_res = chan.force_shutdown(false);
767                                 return Err(MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, shutdown_res, $self.get_channel_update(&chan).ok()))
768                         }
769                 }
770         }
771 }
772
773 macro_rules! handle_monitor_err {
774         ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => {
775                 handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment, Vec::new(), Vec::new())
776         };
777         ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr, $failed_forwards: expr, $failed_fails: expr) => {
778                 match $err {
779                         ChannelMonitorUpdateErr::PermanentFailure => {
780                                 log_error!($self.logger, "Closing channel {} due to monitor update PermanentFailure", log_bytes!($entry.key()[..]));
781                                 let (channel_id, mut chan) = $entry.remove_entry();
782                                 if let Some(short_id) = chan.get_short_channel_id() {
783                                         $channel_state.short_to_id.remove(&short_id);
784                                 }
785                                 // TODO: $failed_fails is dropped here, which will cause other channels to hit the
786                                 // chain in a confused state! We need to move them into the ChannelMonitor which
787                                 // will be responsible for failing backwards once things confirm on-chain.
788                                 // It's ok that we drop $failed_forwards here - at this point we'd rather they
789                                 // broadcast HTLC-Timeout and pay the associated fees to get their funds back than
790                                 // us bother trying to claim it just to forward on to another peer. If we're
791                                 // splitting hairs we'd prefer to claim payments that were to us, but we haven't
792                                 // given up the preimage yet, so might as well just wait until the payment is
793                                 // retried, avoiding the on-chain fees.
794                                 let res: Result<(), _> = Err(MsgHandleErrInternal::from_finish_shutdown("ChannelMonitor storage failure".to_owned(), channel_id, chan.force_shutdown(true), $self.get_channel_update(&chan).ok()));
795                                 res
796                         },
797                         ChannelMonitorUpdateErr::TemporaryFailure => {
798                                 log_info!($self.logger, "Disabling channel {} due to monitor update TemporaryFailure. On restore will send {} and process {} forwards and {} fails",
799                                                 log_bytes!($entry.key()[..]),
800                                                 if $resend_commitment && $resend_raa {
801                                                                 match $action_type {
802                                                                         RAACommitmentOrder::CommitmentFirst => { "commitment then RAA" },
803                                                                         RAACommitmentOrder::RevokeAndACKFirst => { "RAA then commitment" },
804                                                                 }
805                                                         } else if $resend_commitment { "commitment" }
806                                                         else if $resend_raa { "RAA" }
807                                                         else { "nothing" },
808                                                 (&$failed_forwards as &Vec<(PendingHTLCInfo, u64)>).len(),
809                                                 (&$failed_fails as &Vec<(HTLCSource, PaymentHash, HTLCFailReason)>).len());
810                                 if !$resend_commitment {
811                                         debug_assert!($action_type == RAACommitmentOrder::RevokeAndACKFirst || !$resend_raa);
812                                 }
813                                 if !$resend_raa {
814                                         debug_assert!($action_type == RAACommitmentOrder::CommitmentFirst || !$resend_commitment);
815                                 }
816                                 $entry.get_mut().monitor_update_failed($resend_raa, $resend_commitment, $failed_forwards, $failed_fails);
817                                 Err(MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore("Failed to update ChannelMonitor".to_owned()), *$entry.key()))
818                         },
819                 }
820         }
821 }
822
823 macro_rules! return_monitor_err {
824         ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => {
825                 return handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment);
826         };
827         ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr, $failed_forwards: expr, $failed_fails: expr) => {
828                 return handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment, $failed_forwards, $failed_fails);
829         }
830 }
831
832 // Does not break in case of TemporaryFailure!
833 macro_rules! maybe_break_monitor_err {
834         ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => {
835                 match (handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment), $err) {
836                         (e, ChannelMonitorUpdateErr::PermanentFailure) => {
837                                 break e;
838                         },
839                         (_, ChannelMonitorUpdateErr::TemporaryFailure) => { },
840                 }
841         }
842 }
843
844 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> ChannelManager<Signer, M, T, K, F, L>
845         where M::Target: chain::Watch<Signer>,
846         T::Target: BroadcasterInterface,
847         K::Target: KeysInterface<Signer = Signer>,
848         F::Target: FeeEstimator,
849         L::Target: Logger,
850 {
851         /// Constructs a new ChannelManager to hold several channels and route between them.
852         ///
853         /// This is the main "logic hub" for all channel-related actions, and implements
854         /// ChannelMessageHandler.
855         ///
856         /// Non-proportional fees are fixed according to our risk using the provided fee estimator.
857         ///
858         /// panics if channel_value_satoshis is >= `MAX_FUNDING_SATOSHIS`!
859         ///
860         /// Users need to notify the new ChannelManager when a new block is connected or
861         /// disconnected using its `block_connected` and `block_disconnected` methods, starting
862         /// from after `params.latest_hash`.
863         pub fn new(fee_est: F, chain_monitor: M, tx_broadcaster: T, logger: L, keys_manager: K, config: UserConfig, params: ChainParameters) -> Self {
864                 let mut secp_ctx = Secp256k1::new();
865                 secp_ctx.seeded_randomize(&keys_manager.get_secure_random_bytes());
866
867                 ChannelManager {
868                         default_configuration: config.clone(),
869                         genesis_hash: genesis_block(params.network).header.block_hash(),
870                         fee_estimator: fee_est,
871                         chain_monitor,
872                         tx_broadcaster,
873
874                         best_block: RwLock::new(params.best_block),
875
876                         channel_state: Mutex::new(ChannelHolder{
877                                 by_id: HashMap::new(),
878                                 short_to_id: HashMap::new(),
879                                 forward_htlcs: HashMap::new(),
880                                 claimable_htlcs: HashMap::new(),
881                                 pending_msg_events: Vec::new(),
882                         }),
883                         pending_inbound_payments: Mutex::new(HashMap::new()),
884
885                         our_network_key: keys_manager.get_node_secret(),
886                         our_network_pubkey: PublicKey::from_secret_key(&secp_ctx, &keys_manager.get_node_secret()),
887                         secp_ctx,
888
889                         last_node_announcement_serial: AtomicUsize::new(0),
890                         highest_seen_timestamp: AtomicUsize::new(0),
891
892                         per_peer_state: RwLock::new(HashMap::new()),
893
894                         pending_events: Mutex::new(Vec::new()),
895                         pending_background_events: Mutex::new(Vec::new()),
896                         total_consistency_lock: RwLock::new(()),
897                         persistence_notifier: PersistenceNotifier::new(),
898
899                         keys_manager,
900
901                         logger,
902                 }
903         }
904
905         /// Gets the current configuration applied to all new channels,  as
906         pub fn get_current_default_configuration(&self) -> &UserConfig {
907                 &self.default_configuration
908         }
909
910         /// Creates a new outbound channel to the given remote node and with the given value.
911         ///
912         /// user_id will be provided back as user_channel_id in FundingGenerationReady events to allow
913         /// tracking of which events correspond with which create_channel call. Note that the
914         /// user_channel_id defaults to 0 for inbound channels, so you may wish to avoid using 0 for
915         /// user_id here. user_id has no meaning inside of LDK, it is simply copied to events and
916         /// otherwise ignored.
917         ///
918         /// If successful, will generate a SendOpenChannel message event, so you should probably poll
919         /// PeerManager::process_events afterwards.
920         ///
921         /// Raises APIError::APIMisuseError when channel_value_satoshis > 2**24 or push_msat is
922         /// greater than channel_value_satoshis * 1k or channel_value_satoshis is < 1000.
923         pub fn create_channel(&self, their_network_key: PublicKey, channel_value_satoshis: u64, push_msat: u64, user_id: u64, override_config: Option<UserConfig>) -> Result<(), APIError> {
924                 if channel_value_satoshis < 1000 {
925                         return Err(APIError::APIMisuseError { err: format!("Channel value must be at least 1000 satoshis. It was {}", channel_value_satoshis) });
926                 }
927
928                 let config = if override_config.is_some() { override_config.as_ref().unwrap() } else { &self.default_configuration };
929                 let channel = Channel::new_outbound(&self.fee_estimator, &self.keys_manager, their_network_key, channel_value_satoshis, push_msat, user_id, config)?;
930                 let res = channel.get_open_channel(self.genesis_hash.clone());
931
932                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
933                 // We want to make sure the lock is actually acquired by PersistenceNotifierGuard.
934                 debug_assert!(&self.total_consistency_lock.try_write().is_err());
935
936                 let mut channel_state = self.channel_state.lock().unwrap();
937                 match channel_state.by_id.entry(channel.channel_id()) {
938                         hash_map::Entry::Occupied(_) => {
939                                 if cfg!(feature = "fuzztarget") {
940                                         return Err(APIError::APIMisuseError { err: "Fuzzy bad RNG".to_owned() });
941                                 } else {
942                                         panic!("RNG is bad???");
943                                 }
944                         },
945                         hash_map::Entry::Vacant(entry) => { entry.insert(channel); }
946                 }
947                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
948                         node_id: their_network_key,
949                         msg: res,
950                 });
951                 Ok(())
952         }
953
954         fn list_channels_with_filter<Fn: FnMut(&(&[u8; 32], &Channel<Signer>)) -> bool>(&self, f: Fn) -> Vec<ChannelDetails> {
955                 let mut res = Vec::new();
956                 {
957                         let channel_state = self.channel_state.lock().unwrap();
958                         res.reserve(channel_state.by_id.len());
959                         for (channel_id, channel) in channel_state.by_id.iter().filter(f) {
960                                 let (inbound_capacity_msat, outbound_capacity_msat) = channel.get_inbound_outbound_available_balance_msat();
961                                 res.push(ChannelDetails {
962                                         channel_id: (*channel_id).clone(),
963                                         short_channel_id: channel.get_short_channel_id(),
964                                         remote_network_id: channel.get_counterparty_node_id(),
965                                         counterparty_features: InitFeatures::empty(),
966                                         channel_value_satoshis: channel.get_value_satoshis(),
967                                         inbound_capacity_msat,
968                                         outbound_capacity_msat,
969                                         user_id: channel.get_user_id(),
970                                         is_live: channel.is_live(),
971                                         counterparty_forwarding_info: channel.counterparty_forwarding_info(),
972                                 });
973                         }
974                 }
975                 let per_peer_state = self.per_peer_state.read().unwrap();
976                 for chan in res.iter_mut() {
977                         if let Some(peer_state) = per_peer_state.get(&chan.remote_network_id) {
978                                 chan.counterparty_features = peer_state.lock().unwrap().latest_features.clone();
979                         }
980                 }
981                 res
982         }
983
984         /// Gets the list of open channels, in random order. See ChannelDetail field documentation for
985         /// more information.
986         pub fn list_channels(&self) -> Vec<ChannelDetails> {
987                 self.list_channels_with_filter(|_| true)
988         }
989
990         /// Gets the list of usable channels, in random order. Useful as an argument to
991         /// get_route to ensure non-announced channels are used.
992         ///
993         /// These are guaranteed to have their is_live value set to true, see the documentation for
994         /// ChannelDetails::is_live for more info on exactly what the criteria are.
995         pub fn list_usable_channels(&self) -> Vec<ChannelDetails> {
996                 // Note we use is_live here instead of usable which leads to somewhat confused
997                 // internal/external nomenclature, but that's ok cause that's probably what the user
998                 // really wanted anyway.
999                 self.list_channels_with_filter(|&(_, ref channel)| channel.is_live())
1000         }
1001
1002         /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
1003         /// will be accepted on the given channel, and after additional timeout/the closing of all
1004         /// pending HTLCs, the channel will be closed on chain.
1005         ///
1006         /// May generate a SendShutdown message event on success, which should be relayed.
1007         pub fn close_channel(&self, channel_id: &[u8; 32]) -> Result<(), APIError> {
1008                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
1009
1010                 let (mut failed_htlcs, chan_option) = {
1011                         let mut channel_state_lock = self.channel_state.lock().unwrap();
1012                         let channel_state = &mut *channel_state_lock;
1013                         match channel_state.by_id.entry(channel_id.clone()) {
1014                                 hash_map::Entry::Occupied(mut chan_entry) => {
1015                                         let (shutdown_msg, failed_htlcs) = chan_entry.get_mut().get_shutdown()?;
1016                                         channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
1017                                                 node_id: chan_entry.get().get_counterparty_node_id(),
1018                                                 msg: shutdown_msg
1019                                         });
1020                                         if chan_entry.get().is_shutdown() {
1021                                                 if let Some(short_id) = chan_entry.get().get_short_channel_id() {
1022                                                         channel_state.short_to_id.remove(&short_id);
1023                                                 }
1024                                                 (failed_htlcs, Some(chan_entry.remove_entry().1))
1025                                         } else { (failed_htlcs, None) }
1026                                 },
1027                                 hash_map::Entry::Vacant(_) => return Err(APIError::ChannelUnavailable{err: "No such channel".to_owned()})
1028                         }
1029                 };
1030                 for htlc_source in failed_htlcs.drain(..) {
1031                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
1032                 }
1033                 let chan_update = if let Some(chan) = chan_option {
1034                         if let Ok(update) = self.get_channel_update(&chan) {
1035                                 Some(update)
1036                         } else { None }
1037                 } else { None };
1038
1039                 if let Some(update) = chan_update {
1040                         let mut channel_state = self.channel_state.lock().unwrap();
1041                         channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
1042                                 msg: update
1043                         });
1044                 }
1045
1046                 Ok(())
1047         }
1048
1049         #[inline]
1050         fn finish_force_close_channel(&self, shutdown_res: ShutdownResult) {
1051                 let (monitor_update_option, mut failed_htlcs) = shutdown_res;
1052                 log_trace!(self.logger, "Finishing force-closure of channel {} HTLCs to fail", failed_htlcs.len());
1053                 for htlc_source in failed_htlcs.drain(..) {
1054                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
1055                 }
1056                 if let Some((funding_txo, monitor_update)) = monitor_update_option {
1057                         // There isn't anything we can do if we get an update failure - we're already
1058                         // force-closing. The monitor update on the required in-memory copy should broadcast
1059                         // the latest local state, which is the best we can do anyway. Thus, it is safe to
1060                         // ignore the result here.
1061                         let _ = self.chain_monitor.update_channel(funding_txo, monitor_update);
1062                 }
1063         }
1064
1065         fn force_close_channel_with_peer(&self, channel_id: &[u8; 32], peer_node_id: Option<&PublicKey>) -> Result<PublicKey, APIError> {
1066                 let mut chan = {
1067                         let mut channel_state_lock = self.channel_state.lock().unwrap();
1068                         let channel_state = &mut *channel_state_lock;
1069                         if let hash_map::Entry::Occupied(chan) = channel_state.by_id.entry(channel_id.clone()) {
1070                                 if let Some(node_id) = peer_node_id {
1071                                         if chan.get().get_counterparty_node_id() != *node_id {
1072                                                 return Err(APIError::ChannelUnavailable{err: "No such channel".to_owned()});
1073                                         }
1074                                 }
1075                                 if let Some(short_id) = chan.get().get_short_channel_id() {
1076                                         channel_state.short_to_id.remove(&short_id);
1077                                 }
1078                                 chan.remove_entry().1
1079                         } else {
1080                                 return Err(APIError::ChannelUnavailable{err: "No such channel".to_owned()});
1081                         }
1082                 };
1083                 log_trace!(self.logger, "Force-closing channel {}", log_bytes!(channel_id[..]));
1084                 self.finish_force_close_channel(chan.force_shutdown(true));
1085                 if let Ok(update) = self.get_channel_update(&chan) {
1086                         let mut channel_state = self.channel_state.lock().unwrap();
1087                         channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
1088                                 msg: update
1089                         });
1090                 }
1091
1092                 Ok(chan.get_counterparty_node_id())
1093         }
1094
1095         /// Force closes a channel, immediately broadcasting the latest local commitment transaction to
1096         /// the chain and rejecting new HTLCs on the given channel. Fails if channel_id is unknown to the manager.
1097         pub fn force_close_channel(&self, channel_id: &[u8; 32]) -> Result<(), APIError> {
1098                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
1099                 match self.force_close_channel_with_peer(channel_id, None) {
1100                         Ok(counterparty_node_id) => {
1101                                 self.channel_state.lock().unwrap().pending_msg_events.push(
1102                                         events::MessageSendEvent::HandleError {
1103                                                 node_id: counterparty_node_id,
1104                                                 action: msgs::ErrorAction::SendErrorMessage {
1105                                                         msg: msgs::ErrorMessage { channel_id: *channel_id, data: "Channel force-closed".to_owned() }
1106                                                 },
1107                                         }
1108                                 );
1109                                 Ok(())
1110                         },
1111                         Err(e) => Err(e)
1112                 }
1113         }
1114
1115         /// Force close all channels, immediately broadcasting the latest local commitment transaction
1116         /// for each to the chain and rejecting new HTLCs on each.
1117         pub fn force_close_all_channels(&self) {
1118                 for chan in self.list_channels() {
1119                         let _ = self.force_close_channel(&chan.channel_id);
1120                 }
1121         }
1122
1123         fn decode_update_add_htlc_onion(&self, msg: &msgs::UpdateAddHTLC) -> (PendingHTLCStatus, MutexGuard<ChannelHolder<Signer>>) {
1124                 macro_rules! return_malformed_err {
1125                         ($msg: expr, $err_code: expr) => {
1126                                 {
1127                                         log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
1128                                         return (PendingHTLCStatus::Fail(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
1129                                                 channel_id: msg.channel_id,
1130                                                 htlc_id: msg.htlc_id,
1131                                                 sha256_of_onion: Sha256::hash(&msg.onion_routing_packet.hop_data).into_inner(),
1132                                                 failure_code: $err_code,
1133                                         })), self.channel_state.lock().unwrap());
1134                                 }
1135                         }
1136                 }
1137
1138                 if let Err(_) = msg.onion_routing_packet.public_key {
1139                         return_malformed_err!("invalid ephemeral pubkey", 0x8000 | 0x4000 | 6);
1140                 }
1141
1142                 let shared_secret = {
1143                         let mut arr = [0; 32];
1144                         arr.copy_from_slice(&SharedSecret::new(&msg.onion_routing_packet.public_key.unwrap(), &self.our_network_key)[..]);
1145                         arr
1146                 };
1147                 let (rho, mu) = onion_utils::gen_rho_mu_from_shared_secret(&shared_secret);
1148
1149                 if msg.onion_routing_packet.version != 0 {
1150                         //TODO: Spec doesn't indicate if we should only hash hop_data here (and in other
1151                         //sha256_of_onion error data packets), or the entire onion_routing_packet. Either way,
1152                         //the hash doesn't really serve any purpose - in the case of hashing all data, the
1153                         //receiving node would have to brute force to figure out which version was put in the
1154                         //packet by the node that send us the message, in the case of hashing the hop_data, the
1155                         //node knows the HMAC matched, so they already know what is there...
1156                         return_malformed_err!("Unknown onion packet version", 0x8000 | 0x4000 | 4);
1157                 }
1158
1159                 let mut hmac = HmacEngine::<Sha256>::new(&mu);
1160                 hmac.input(&msg.onion_routing_packet.hop_data);
1161                 hmac.input(&msg.payment_hash.0[..]);
1162                 if !fixed_time_eq(&Hmac::from_engine(hmac).into_inner(), &msg.onion_routing_packet.hmac) {
1163                         return_malformed_err!("HMAC Check failed", 0x8000 | 0x4000 | 5);
1164                 }
1165
1166                 let mut channel_state = None;
1167                 macro_rules! return_err {
1168                         ($msg: expr, $err_code: expr, $data: expr) => {
1169                                 {
1170                                         log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
1171                                         if channel_state.is_none() {
1172                                                 channel_state = Some(self.channel_state.lock().unwrap());
1173                                         }
1174                                         return (PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
1175                                                 channel_id: msg.channel_id,
1176                                                 htlc_id: msg.htlc_id,
1177                                                 reason: onion_utils::build_first_hop_failure_packet(&shared_secret, $err_code, $data),
1178                                         })), channel_state.unwrap());
1179                                 }
1180                         }
1181                 }
1182
1183                 let mut chacha = ChaCha20::new(&rho, &[0u8; 8]);
1184                 let mut chacha_stream = ChaChaReader { chacha: &mut chacha, read: Cursor::new(&msg.onion_routing_packet.hop_data[..]) };
1185                 let (next_hop_data, next_hop_hmac) = {
1186                         match msgs::OnionHopData::read(&mut chacha_stream) {
1187                                 Err(err) => {
1188                                         let error_code = match err {
1189                                                 msgs::DecodeError::UnknownVersion => 0x4000 | 1, // unknown realm byte
1190                                                 msgs::DecodeError::UnknownRequiredFeature|
1191                                                 msgs::DecodeError::InvalidValue|
1192                                                 msgs::DecodeError::ShortRead => 0x4000 | 22, // invalid_onion_payload
1193                                                 _ => 0x2000 | 2, // Should never happen
1194                                         };
1195                                         return_err!("Unable to decode our hop data", error_code, &[0;0]);
1196                                 },
1197                                 Ok(msg) => {
1198                                         let mut hmac = [0; 32];
1199                                         if let Err(_) = chacha_stream.read_exact(&mut hmac[..]) {
1200                                                 return_err!("Unable to decode hop data", 0x4000 | 22, &[0;0]);
1201                                         }
1202                                         (msg, hmac)
1203                                 },
1204                         }
1205                 };
1206
1207                 let pending_forward_info = if next_hop_hmac == [0; 32] {
1208                                 #[cfg(test)]
1209                                 {
1210                                         // In tests, make sure that the initial onion pcket data is, at least, non-0.
1211                                         // We could do some fancy randomness test here, but, ehh, whatever.
1212                                         // This checks for the issue where you can calculate the path length given the
1213                                         // onion data as all the path entries that the originator sent will be here
1214                                         // as-is (and were originally 0s).
1215                                         // Of course reverse path calculation is still pretty easy given naive routing
1216                                         // algorithms, but this fixes the most-obvious case.
1217                                         let mut next_bytes = [0; 32];
1218                                         chacha_stream.read_exact(&mut next_bytes).unwrap();
1219                                         assert_ne!(next_bytes[..], [0; 32][..]);
1220                                         chacha_stream.read_exact(&mut next_bytes).unwrap();
1221                                         assert_ne!(next_bytes[..], [0; 32][..]);
1222                                 }
1223
1224                                 // OUR PAYMENT!
1225                                 // final_expiry_too_soon
1226                                 // We have to have some headroom to broadcast on chain if we have the preimage, so make sure we have at least
1227                                 // HTLC_FAIL_BACK_BUFFER blocks to go.
1228                                 // Also, ensure that, in the case of an unknown payment hash, our payment logic has enough time to fail the HTLC backward
1229                                 // before our onchain logic triggers a channel closure (see HTLC_FAIL_BACK_BUFFER rational).
1230                                 if (msg.cltv_expiry as u64) <= self.best_block.read().unwrap().height() as u64 + HTLC_FAIL_BACK_BUFFER as u64 + 1 {
1231                                         return_err!("The final CLTV expiry is too soon to handle", 17, &[0;0]);
1232                                 }
1233                                 // final_incorrect_htlc_amount
1234                                 if next_hop_data.amt_to_forward > msg.amount_msat {
1235                                         return_err!("Upstream node sent less than we were supposed to receive in payment", 19, &byte_utils::be64_to_array(msg.amount_msat));
1236                                 }
1237                                 // final_incorrect_cltv_expiry
1238                                 if next_hop_data.outgoing_cltv_value != msg.cltv_expiry {
1239                                         return_err!("Upstream node set CLTV to the wrong value", 18, &byte_utils::be32_to_array(msg.cltv_expiry));
1240                                 }
1241
1242                                 let payment_data = match next_hop_data.format {
1243                                         msgs::OnionHopDataFormat::Legacy { .. } => None,
1244                                         msgs::OnionHopDataFormat::NonFinalNode { .. } => return_err!("Got non final data with an HMAC of 0", 0x4000 | 22, &[0;0]),
1245                                         msgs::OnionHopDataFormat::FinalNode { payment_data } => payment_data,
1246                                 };
1247
1248                                 if payment_data.is_none() {
1249                                         return_err!("We require payment_secrets", 0x4000|0x2000|3, &[0;0]);
1250                                 }
1251
1252                                 // Note that we could obviously respond immediately with an update_fulfill_htlc
1253                                 // message, however that would leak that we are the recipient of this payment, so
1254                                 // instead we stay symmetric with the forwarding case, only responding (after a
1255                                 // delay) once they've send us a commitment_signed!
1256
1257                                 PendingHTLCStatus::Forward(PendingHTLCInfo {
1258                                         routing: PendingHTLCRouting::Receive {
1259                                                 payment_data: payment_data.unwrap(),
1260                                                 incoming_cltv_expiry: msg.cltv_expiry,
1261                                         },
1262                                         payment_hash: msg.payment_hash.clone(),
1263                                         incoming_shared_secret: shared_secret,
1264                                         amt_to_forward: next_hop_data.amt_to_forward,
1265                                         outgoing_cltv_value: next_hop_data.outgoing_cltv_value,
1266                                 })
1267                         } else {
1268                                 let mut new_packet_data = [0; 20*65];
1269                                 let read_pos = chacha_stream.read(&mut new_packet_data).unwrap();
1270                                 #[cfg(debug_assertions)]
1271                                 {
1272                                         // Check two things:
1273                                         // a) that the behavior of our stream here will return Ok(0) even if the TLV
1274                                         //    read above emptied out our buffer and the unwrap() wont needlessly panic
1275                                         // b) that we didn't somehow magically end up with extra data.
1276                                         let mut t = [0; 1];
1277                                         debug_assert!(chacha_stream.read(&mut t).unwrap() == 0);
1278                                 }
1279                                 // Once we've emptied the set of bytes our peer gave us, encrypt 0 bytes until we
1280                                 // fill the onion hop data we'll forward to our next-hop peer.
1281                                 chacha_stream.chacha.process_in_place(&mut new_packet_data[read_pos..]);
1282
1283                                 let mut new_pubkey = msg.onion_routing_packet.public_key.unwrap();
1284
1285                                 let blinding_factor = {
1286                                         let mut sha = Sha256::engine();
1287                                         sha.input(&new_pubkey.serialize()[..]);
1288                                         sha.input(&shared_secret);
1289                                         Sha256::from_engine(sha).into_inner()
1290                                 };
1291
1292                                 let public_key = if let Err(e) = new_pubkey.mul_assign(&self.secp_ctx, &blinding_factor[..]) {
1293                                         Err(e)
1294                                 } else { Ok(new_pubkey) };
1295
1296                                 let outgoing_packet = msgs::OnionPacket {
1297                                         version: 0,
1298                                         public_key,
1299                                         hop_data: new_packet_data,
1300                                         hmac: next_hop_hmac.clone(),
1301                                 };
1302
1303                                 let short_channel_id = match next_hop_data.format {
1304                                         msgs::OnionHopDataFormat::Legacy { short_channel_id } => short_channel_id,
1305                                         msgs::OnionHopDataFormat::NonFinalNode { short_channel_id } => short_channel_id,
1306                                         msgs::OnionHopDataFormat::FinalNode { .. } => {
1307                                                 return_err!("Final Node OnionHopData provided for us as an intermediary node", 0x4000 | 22, &[0;0]);
1308                                         },
1309                                 };
1310
1311                                 PendingHTLCStatus::Forward(PendingHTLCInfo {
1312                                         routing: PendingHTLCRouting::Forward {
1313                                                 onion_packet: outgoing_packet,
1314                                                 short_channel_id,
1315                                         },
1316                                         payment_hash: msg.payment_hash.clone(),
1317                                         incoming_shared_secret: shared_secret,
1318                                         amt_to_forward: next_hop_data.amt_to_forward,
1319                                         outgoing_cltv_value: next_hop_data.outgoing_cltv_value,
1320                                 })
1321                         };
1322
1323                 channel_state = Some(self.channel_state.lock().unwrap());
1324                 if let &PendingHTLCStatus::Forward(PendingHTLCInfo { ref routing, ref amt_to_forward, ref outgoing_cltv_value, .. }) = &pending_forward_info {
1325                         // If short_channel_id is 0 here, we'll reject the HTLC as there cannot be a channel
1326                         // with a short_channel_id of 0. This is important as various things later assume
1327                         // short_channel_id is non-0 in any ::Forward.
1328                         if let &PendingHTLCRouting::Forward { ref short_channel_id, .. } = routing {
1329                                 let id_option = channel_state.as_ref().unwrap().short_to_id.get(&short_channel_id).cloned();
1330                                 let forwarding_id = match id_option {
1331                                         None => { // unknown_next_peer
1332                                                 return_err!("Don't have available channel for forwarding as requested.", 0x4000 | 10, &[0;0]);
1333                                         },
1334                                         Some(id) => id.clone(),
1335                                 };
1336                                 if let Some((err, code, chan_update)) = loop {
1337                                         let chan = channel_state.as_mut().unwrap().by_id.get_mut(&forwarding_id).unwrap();
1338
1339                                         // Note that we could technically not return an error yet here and just hope
1340                                         // that the connection is reestablished or monitor updated by the time we get
1341                                         // around to doing the actual forward, but better to fail early if we can and
1342                                         // hopefully an attacker trying to path-trace payments cannot make this occur
1343                                         // on a small/per-node/per-channel scale.
1344                                         if !chan.is_live() { // channel_disabled
1345                                                 break Some(("Forwarding channel is not in a ready state.", 0x1000 | 20, Some(self.get_channel_update(chan).unwrap())));
1346                                         }
1347                                         if *amt_to_forward < chan.get_counterparty_htlc_minimum_msat() { // amount_below_minimum
1348                                                 break Some(("HTLC amount was below the htlc_minimum_msat", 0x1000 | 11, Some(self.get_channel_update(chan).unwrap())));
1349                                         }
1350                                         let fee = amt_to_forward.checked_mul(chan.get_fee_proportional_millionths() as u64).and_then(|prop_fee| { (prop_fee / 1000000).checked_add(chan.get_holder_fee_base_msat(&self.fee_estimator) as u64) });
1351                                         if fee.is_none() || msg.amount_msat < fee.unwrap() || (msg.amount_msat - fee.unwrap()) < *amt_to_forward { // fee_insufficient
1352                                                 break Some(("Prior hop has deviated from specified fees parameters or origin node has obsolete ones", 0x1000 | 12, Some(self.get_channel_update(chan).unwrap())));
1353                                         }
1354                                         if (msg.cltv_expiry as u64) < (*outgoing_cltv_value) as u64 + chan.get_cltv_expiry_delta() as u64 { // incorrect_cltv_expiry
1355                                                 break Some(("Forwarding node has tampered with the intended HTLC values or origin node has an obsolete cltv_expiry_delta", 0x1000 | 13, Some(self.get_channel_update(chan).unwrap())));
1356                                         }
1357                                         let cur_height = self.best_block.read().unwrap().height() + 1;
1358                                         // Theoretically, channel counterparty shouldn't send us a HTLC expiring now, but we want to be robust wrt to counterparty
1359                                         // packet sanitization (see HTLC_FAIL_BACK_BUFFER rational)
1360                                         if msg.cltv_expiry <= cur_height + HTLC_FAIL_BACK_BUFFER as u32 { // expiry_too_soon
1361                                                 break Some(("CLTV expiry is too close", 0x1000 | 14, Some(self.get_channel_update(chan).unwrap())));
1362                                         }
1363                                         if msg.cltv_expiry > cur_height + CLTV_FAR_FAR_AWAY as u32 { // expiry_too_far
1364                                                 break Some(("CLTV expiry is too far in the future", 21, None));
1365                                         }
1366                                         // In theory, we would be safe against unitentional channel-closure, if we only required a margin of LATENCY_GRACE_PERIOD_BLOCKS.
1367                                         // But, to be safe against policy reception, we use a longuer delay.
1368                                         if (*outgoing_cltv_value) as u64 <= (cur_height + HTLC_FAIL_BACK_BUFFER) as u64 {
1369                                                 break Some(("Outgoing CLTV value is too soon", 0x1000 | 14, Some(self.get_channel_update(chan).unwrap())));
1370                                         }
1371
1372                                         break None;
1373                                 }
1374                                 {
1375                                         let mut res = Vec::with_capacity(8 + 128);
1376                                         if let Some(chan_update) = chan_update {
1377                                                 if code == 0x1000 | 11 || code == 0x1000 | 12 {
1378                                                         res.extend_from_slice(&byte_utils::be64_to_array(msg.amount_msat));
1379                                                 }
1380                                                 else if code == 0x1000 | 13 {
1381                                                         res.extend_from_slice(&byte_utils::be32_to_array(msg.cltv_expiry));
1382                                                 }
1383                                                 else if code == 0x1000 | 20 {
1384                                                         // TODO: underspecified, follow https://github.com/lightningnetwork/lightning-rfc/issues/791
1385                                                         res.extend_from_slice(&byte_utils::be16_to_array(0));
1386                                                 }
1387                                                 res.extend_from_slice(&chan_update.encode_with_len()[..]);
1388                                         }
1389                                         return_err!(err, code, &res[..]);
1390                                 }
1391                         }
1392                 }
1393
1394                 (pending_forward_info, channel_state.unwrap())
1395         }
1396
1397         /// only fails if the channel does not yet have an assigned short_id
1398         /// May be called with channel_state already locked!
1399         fn get_channel_update(&self, chan: &Channel<Signer>) -> Result<msgs::ChannelUpdate, LightningError> {
1400                 let short_channel_id = match chan.get_short_channel_id() {
1401                         None => return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError}),
1402                         Some(id) => id,
1403                 };
1404
1405                 let were_node_one = PublicKey::from_secret_key(&self.secp_ctx, &self.our_network_key).serialize()[..] < chan.get_counterparty_node_id().serialize()[..];
1406
1407                 let unsigned = msgs::UnsignedChannelUpdate {
1408                         chain_hash: self.genesis_hash,
1409                         short_channel_id,
1410                         timestamp: chan.get_update_time_counter(),
1411                         flags: (!were_node_one) as u8 | ((!chan.is_live() as u8) << 1),
1412                         cltv_expiry_delta: chan.get_cltv_expiry_delta(),
1413                         htlc_minimum_msat: chan.get_counterparty_htlc_minimum_msat(),
1414                         htlc_maximum_msat: OptionalField::Present(chan.get_announced_htlc_max_msat()),
1415                         fee_base_msat: chan.get_holder_fee_base_msat(&self.fee_estimator),
1416                         fee_proportional_millionths: chan.get_fee_proportional_millionths(),
1417                         excess_data: Vec::new(),
1418                 };
1419
1420                 let msg_hash = Sha256dHash::hash(&unsigned.encode()[..]);
1421                 let sig = self.secp_ctx.sign(&hash_to_message!(&msg_hash[..]), &self.our_network_key);
1422
1423                 Ok(msgs::ChannelUpdate {
1424                         signature: sig,
1425                         contents: unsigned
1426                 })
1427         }
1428
1429         // Only public for testing, this should otherwise never be called direcly
1430         pub(crate) fn send_payment_along_path(&self, path: &Vec<RouteHop>, payment_hash: &PaymentHash, payment_secret: &Option<PaymentSecret>, total_value: u64, cur_height: u32) -> Result<(), APIError> {
1431                 log_trace!(self.logger, "Attempting to send payment for path with next hop {}", path.first().unwrap().short_channel_id);
1432                 let prng_seed = self.keys_manager.get_secure_random_bytes();
1433                 let session_priv = SecretKey::from_slice(&self.keys_manager.get_secure_random_bytes()[..]).expect("RNG is busted");
1434
1435                 let onion_keys = onion_utils::construct_onion_keys(&self.secp_ctx, &path, &session_priv)
1436                         .map_err(|_| APIError::RouteError{err: "Pubkey along hop was maliciously selected"})?;
1437                 let (onion_payloads, htlc_msat, htlc_cltv) = onion_utils::build_onion_payloads(path, total_value, payment_secret, cur_height)?;
1438                 if onion_utils::route_size_insane(&onion_payloads) {
1439                         return Err(APIError::RouteError{err: "Route size too large considering onion data"});
1440                 }
1441                 let onion_packet = onion_utils::construct_onion_packet(onion_payloads, onion_keys, prng_seed, payment_hash);
1442
1443                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
1444
1445                 let err: Result<(), _> = loop {
1446                         let mut channel_lock = self.channel_state.lock().unwrap();
1447                         let id = match channel_lock.short_to_id.get(&path.first().unwrap().short_channel_id) {
1448                                 None => return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()}),
1449                                 Some(id) => id.clone(),
1450                         };
1451
1452                         let channel_state = &mut *channel_lock;
1453                         if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(id) {
1454                                 match {
1455                                         if chan.get().get_counterparty_node_id() != path.first().unwrap().pubkey {
1456                                                 return Err(APIError::RouteError{err: "Node ID mismatch on first hop!"});
1457                                         }
1458                                         if !chan.get().is_live() {
1459                                                 return Err(APIError::ChannelUnavailable{err: "Peer for first hop currently disconnected/pending monitor update!".to_owned()});
1460                                         }
1461                                         break_chan_entry!(self, chan.get_mut().send_htlc_and_commit(htlc_msat, payment_hash.clone(), htlc_cltv, HTLCSource::OutboundRoute {
1462                                                 path: path.clone(),
1463                                                 session_priv: session_priv.clone(),
1464                                                 first_hop_htlc_msat: htlc_msat,
1465                                         }, onion_packet, &self.logger), channel_state, chan)
1466                                 } {
1467                                         Some((update_add, commitment_signed, monitor_update)) => {
1468                                                 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
1469                                                         maybe_break_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, true);
1470                                                         // Note that MonitorUpdateFailed here indicates (per function docs)
1471                                                         // that we will resend the commitment update once monitor updating
1472                                                         // is restored. Therefore, we must return an error indicating that
1473                                                         // it is unsafe to retry the payment wholesale, which we do in the
1474                                                         // send_payment check for MonitorUpdateFailed, below.
1475                                                         return Err(APIError::MonitorUpdateFailed);
1476                                                 }
1477
1478                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
1479                                                         node_id: path.first().unwrap().pubkey,
1480                                                         updates: msgs::CommitmentUpdate {
1481                                                                 update_add_htlcs: vec![update_add],
1482                                                                 update_fulfill_htlcs: Vec::new(),
1483                                                                 update_fail_htlcs: Vec::new(),
1484                                                                 update_fail_malformed_htlcs: Vec::new(),
1485                                                                 update_fee: None,
1486                                                                 commitment_signed,
1487                                                         },
1488                                                 });
1489                                         },
1490                                         None => {},
1491                                 }
1492                         } else { unreachable!(); }
1493                         return Ok(());
1494                 };
1495
1496                 match handle_error!(self, err, path.first().unwrap().pubkey) {
1497                         Ok(_) => unreachable!(),
1498                         Err(e) => {
1499                                 Err(APIError::ChannelUnavailable { err: e.err })
1500                         },
1501                 }
1502         }
1503
1504         /// Sends a payment along a given route.
1505         ///
1506         /// Value parameters are provided via the last hop in route, see documentation for RouteHop
1507         /// fields for more info.
1508         ///
1509         /// Note that if the payment_hash already exists elsewhere (eg you're sending a duplicative
1510         /// payment), we don't do anything to stop you! We always try to ensure that if the provided
1511         /// next hop knows the preimage to payment_hash they can claim an additional amount as
1512         /// specified in the last hop in the route! Thus, you should probably do your own
1513         /// payment_preimage tracking (which you should already be doing as they represent "proof of
1514         /// payment") and prevent double-sends yourself.
1515         ///
1516         /// May generate SendHTLCs message(s) event on success, which should be relayed.
1517         ///
1518         /// Each path may have a different return value, and PaymentSendValue may return a Vec with
1519         /// each entry matching the corresponding-index entry in the route paths, see
1520         /// PaymentSendFailure for more info.
1521         ///
1522         /// In general, a path may raise:
1523         ///  * APIError::RouteError when an invalid route or forwarding parameter (cltv_delta, fee,
1524         ///    node public key) is specified.
1525         ///  * APIError::ChannelUnavailable if the next-hop channel is not available for updates
1526         ///    (including due to previous monitor update failure or new permanent monitor update
1527         ///    failure).
1528         ///  * APIError::MonitorUpdateFailed if a new monitor update failure prevented sending the
1529         ///    relevant updates.
1530         ///
1531         /// Note that depending on the type of the PaymentSendFailure the HTLC may have been
1532         /// irrevocably committed to on our end. In such a case, do NOT retry the payment with a
1533         /// different route unless you intend to pay twice!
1534         ///
1535         /// payment_secret is unrelated to payment_hash (or PaymentPreimage) and exists to authenticate
1536         /// the sender to the recipient and prevent payment-probing (deanonymization) attacks. For
1537         /// newer nodes, it will be provided to you in the invoice. If you do not have one, the Route
1538         /// must not contain multiple paths as multi-path payments require a recipient-provided
1539         /// payment_secret.
1540         /// If a payment_secret *is* provided, we assume that the invoice had the payment_secret feature
1541         /// bit set (either as required or as available). If multiple paths are present in the Route,
1542         /// we assume the invoice had the basic_mpp feature set.
1543         pub fn send_payment(&self, route: &Route, payment_hash: PaymentHash, payment_secret: &Option<PaymentSecret>) -> Result<(), PaymentSendFailure> {
1544                 if route.paths.len() < 1 {
1545                         return Err(PaymentSendFailure::ParameterError(APIError::RouteError{err: "There must be at least one path to send over"}));
1546                 }
1547                 if route.paths.len() > 10 {
1548                         // This limit is completely arbitrary - there aren't any real fundamental path-count
1549                         // limits. After we support retrying individual paths we should likely bump this, but
1550                         // for now more than 10 paths likely carries too much one-path failure.
1551                         return Err(PaymentSendFailure::ParameterError(APIError::RouteError{err: "Sending over more than 10 paths is not currently supported"}));
1552                 }
1553                 let mut total_value = 0;
1554                 let our_node_id = self.get_our_node_id();
1555                 let mut path_errs = Vec::with_capacity(route.paths.len());
1556                 'path_check: for path in route.paths.iter() {
1557                         if path.len() < 1 || path.len() > 20 {
1558                                 path_errs.push(Err(APIError::RouteError{err: "Path didn't go anywhere/had bogus size"}));
1559                                 continue 'path_check;
1560                         }
1561                         for (idx, hop) in path.iter().enumerate() {
1562                                 if idx != path.len() - 1 && hop.pubkey == our_node_id {
1563                                         path_errs.push(Err(APIError::RouteError{err: "Path went through us but wasn't a simple rebalance loop to us"}));
1564                                         continue 'path_check;
1565                                 }
1566                         }
1567                         total_value += path.last().unwrap().fee_msat;
1568                         path_errs.push(Ok(()));
1569                 }
1570                 if path_errs.iter().any(|e| e.is_err()) {
1571                         return Err(PaymentSendFailure::PathParameterError(path_errs));
1572                 }
1573
1574                 let cur_height = self.best_block.read().unwrap().height() + 1;
1575                 let mut results = Vec::new();
1576                 for path in route.paths.iter() {
1577                         results.push(self.send_payment_along_path(&path, &payment_hash, payment_secret, total_value, cur_height));
1578                 }
1579                 let mut has_ok = false;
1580                 let mut has_err = false;
1581                 for res in results.iter() {
1582                         if res.is_ok() { has_ok = true; }
1583                         if res.is_err() { has_err = true; }
1584                         if let &Err(APIError::MonitorUpdateFailed) = res {
1585                                 // MonitorUpdateFailed is inherently unsafe to retry, so we call it a
1586                                 // PartialFailure.
1587                                 has_err = true;
1588                                 has_ok = true;
1589                                 break;
1590                         }
1591                 }
1592                 if has_err && has_ok {
1593                         Err(PaymentSendFailure::PartialFailure(results))
1594                 } else if has_err {
1595                         Err(PaymentSendFailure::AllFailedRetrySafe(results.drain(..).map(|r| r.unwrap_err()).collect()))
1596                 } else {
1597                         Ok(())
1598                 }
1599         }
1600
1601         /// Handles the generation of a funding transaction, optionally (for tests) with a function
1602         /// which checks the correctness of the funding transaction given the associated channel.
1603         fn funding_transaction_generated_intern<FundingOutput: Fn(&Channel<Signer>, &Transaction) -> Result<OutPoint, APIError>>
1604                         (&self, temporary_channel_id: &[u8; 32], funding_transaction: Transaction, find_funding_output: FundingOutput) -> Result<(), APIError> {
1605                 let (chan, msg) = {
1606                         let (res, chan) = match self.channel_state.lock().unwrap().by_id.remove(temporary_channel_id) {
1607                                 Some(mut chan) => {
1608                                         let funding_txo = find_funding_output(&chan, &funding_transaction)?;
1609
1610                                         (chan.get_outbound_funding_created(funding_transaction, funding_txo, &self.logger)
1611                                                 .map_err(|e| if let ChannelError::Close(msg) = e {
1612                                                         MsgHandleErrInternal::from_finish_shutdown(msg, chan.channel_id(), chan.force_shutdown(true), None)
1613                                                 } else { unreachable!(); })
1614                                         , chan)
1615                                 },
1616                                 None => { return Err(APIError::ChannelUnavailable { err: "No such channel".to_owned() }) },
1617                         };
1618                         match handle_error!(self, res, chan.get_counterparty_node_id()) {
1619                                 Ok(funding_msg) => {
1620                                         (chan, funding_msg)
1621                                 },
1622                                 Err(_) => { return Err(APIError::ChannelUnavailable {
1623                                         err: "Error deriving keys or signing initial commitment transactions - either our RNG or our counterparty's RNG is broken or the Signer refused to sign".to_owned()
1624                                 }) },
1625                         }
1626                 };
1627
1628                 let mut channel_state = self.channel_state.lock().unwrap();
1629                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingCreated {
1630                         node_id: chan.get_counterparty_node_id(),
1631                         msg,
1632                 });
1633                 match channel_state.by_id.entry(chan.channel_id()) {
1634                         hash_map::Entry::Occupied(_) => {
1635                                 panic!("Generated duplicate funding txid?");
1636                         },
1637                         hash_map::Entry::Vacant(e) => {
1638                                 e.insert(chan);
1639                         }
1640                 }
1641                 Ok(())
1642         }
1643
1644         #[cfg(test)]
1645         pub(crate) fn funding_transaction_generated_unchecked(&self, temporary_channel_id: &[u8; 32], funding_transaction: Transaction, output_index: u16) -> Result<(), APIError> {
1646                 self.funding_transaction_generated_intern(temporary_channel_id, funding_transaction, |_, tx| {
1647                         Ok(OutPoint { txid: tx.txid(), index: output_index })
1648                 })
1649         }
1650
1651         /// Call this upon creation of a funding transaction for the given channel.
1652         ///
1653         /// Returns an [`APIError::APIMisuseError`] if the funding_transaction spent non-SegWit outputs
1654         /// or if no output was found which matches the parameters in [`Event::FundingGenerationReady`].
1655         ///
1656         /// Panics if a funding transaction has already been provided for this channel.
1657         ///
1658         /// May panic if the output found in the funding transaction is duplicative with some other
1659         /// channel (note that this should be trivially prevented by using unique funding transaction
1660         /// keys per-channel).
1661         ///
1662         /// Do NOT broadcast the funding transaction yourself. When we have safely received our
1663         /// counterparty's signature the funding transaction will automatically be broadcast via the
1664         /// [`BroadcasterInterface`] provided when this `ChannelManager` was constructed.
1665         ///
1666         /// Note that this includes RBF or similar transaction replacement strategies - lightning does
1667         /// not currently support replacing a funding transaction on an existing channel. Instead,
1668         /// create a new channel with a conflicting funding transaction.
1669         pub fn funding_transaction_generated(&self, temporary_channel_id: &[u8; 32], funding_transaction: Transaction) -> Result<(), APIError> {
1670                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
1671
1672                 for inp in funding_transaction.input.iter() {
1673                         if inp.witness.is_empty() {
1674                                 return Err(APIError::APIMisuseError {
1675                                         err: "Funding transaction must be fully signed and spend Segwit outputs".to_owned()
1676                                 });
1677                         }
1678                 }
1679                 self.funding_transaction_generated_intern(temporary_channel_id, funding_transaction, |chan, tx| {
1680                         let mut output_index = None;
1681                         let expected_spk = chan.get_funding_redeemscript().to_v0_p2wsh();
1682                         for (idx, outp) in tx.output.iter().enumerate() {
1683                                 if outp.script_pubkey == expected_spk && outp.value == chan.get_value_satoshis() {
1684                                         if output_index.is_some() {
1685                                                 return Err(APIError::APIMisuseError {
1686                                                         err: "Multiple outputs matched the expected script and value".to_owned()
1687                                                 });
1688                                         }
1689                                         if idx > u16::max_value() as usize {
1690                                                 return Err(APIError::APIMisuseError {
1691                                                         err: "Transaction had more than 2^16 outputs, which is not supported".to_owned()
1692                                                 });
1693                                         }
1694                                         output_index = Some(idx as u16);
1695                                 }
1696                         }
1697                         if output_index.is_none() {
1698                                 return Err(APIError::APIMisuseError {
1699                                         err: "No output matched the script_pubkey and value in the FundingGenerationReady event".to_owned()
1700                                 });
1701                         }
1702                         Ok(OutPoint { txid: tx.txid(), index: output_index.unwrap() })
1703                 })
1704         }
1705
1706         fn get_announcement_sigs(&self, chan: &Channel<Signer>) -> Option<msgs::AnnouncementSignatures> {
1707                 if !chan.should_announce() {
1708                         log_trace!(self.logger, "Can't send announcement_signatures for private channel {}", log_bytes!(chan.channel_id()));
1709                         return None
1710                 }
1711
1712                 let (announcement, our_bitcoin_sig) = match chan.get_channel_announcement(self.get_our_node_id(), self.genesis_hash.clone()) {
1713                         Ok(res) => res,
1714                         Err(_) => return None, // Only in case of state precondition violations eg channel is closing
1715                 };
1716                 let msghash = hash_to_message!(&Sha256dHash::hash(&announcement.encode()[..])[..]);
1717                 let our_node_sig = self.secp_ctx.sign(&msghash, &self.our_network_key);
1718
1719                 Some(msgs::AnnouncementSignatures {
1720                         channel_id: chan.channel_id(),
1721                         short_channel_id: chan.get_short_channel_id().unwrap(),
1722                         node_signature: our_node_sig,
1723                         bitcoin_signature: our_bitcoin_sig,
1724                 })
1725         }
1726
1727         #[allow(dead_code)]
1728         // Messages of up to 64KB should never end up more than half full with addresses, as that would
1729         // be absurd. We ensure this by checking that at least 500 (our stated public contract on when
1730         // broadcast_node_announcement panics) of the maximum-length addresses would fit in a 64KB
1731         // message...
1732         const HALF_MESSAGE_IS_ADDRS: u32 = ::std::u16::MAX as u32 / (NetAddress::MAX_LEN as u32 + 1) / 2;
1733         #[deny(const_err)]
1734         #[allow(dead_code)]
1735         // ...by failing to compile if the number of addresses that would be half of a message is
1736         // smaller than 500:
1737         const STATIC_ASSERT: u32 = Self::HALF_MESSAGE_IS_ADDRS - 500;
1738
1739         /// Generates a signed node_announcement from the given arguments and creates a
1740         /// BroadcastNodeAnnouncement event. Note that such messages will be ignored unless peers have
1741         /// seen a channel_announcement from us (ie unless we have public channels open).
1742         ///
1743         /// RGB is a node "color" and alias is a printable human-readable string to describe this node
1744         /// to humans. They carry no in-protocol meaning.
1745         ///
1746         /// addresses represent the set (possibly empty) of socket addresses on which this node accepts
1747         /// incoming connections. These will be broadcast to the network, publicly tying these
1748         /// addresses together. If you wish to preserve user privacy, addresses should likely contain
1749         /// only Tor Onion addresses.
1750         ///
1751         /// Panics if addresses is absurdly large (more than 500).
1752         pub fn broadcast_node_announcement(&self, rgb: [u8; 3], alias: [u8; 32], addresses: Vec<NetAddress>) {
1753                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
1754
1755                 if addresses.len() > 500 {
1756                         panic!("More than half the message size was taken up by public addresses!");
1757                 }
1758
1759                 let announcement = msgs::UnsignedNodeAnnouncement {
1760                         features: NodeFeatures::known(),
1761                         timestamp: self.last_node_announcement_serial.fetch_add(1, Ordering::AcqRel) as u32,
1762                         node_id: self.get_our_node_id(),
1763                         rgb, alias, addresses,
1764                         excess_address_data: Vec::new(),
1765                         excess_data: Vec::new(),
1766                 };
1767                 let msghash = hash_to_message!(&Sha256dHash::hash(&announcement.encode()[..])[..]);
1768
1769                 let mut channel_state = self.channel_state.lock().unwrap();
1770                 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastNodeAnnouncement {
1771                         msg: msgs::NodeAnnouncement {
1772                                 signature: self.secp_ctx.sign(&msghash, &self.our_network_key),
1773                                 contents: announcement
1774                         },
1775                 });
1776         }
1777
1778         /// Processes HTLCs which are pending waiting on random forward delay.
1779         ///
1780         /// Should only really ever be called in response to a PendingHTLCsForwardable event.
1781         /// Will likely generate further events.
1782         pub fn process_pending_htlc_forwards(&self) {
1783                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
1784
1785                 let mut new_events = Vec::new();
1786                 let mut failed_forwards = Vec::new();
1787                 let mut handle_errors = Vec::new();
1788                 {
1789                         let mut channel_state_lock = self.channel_state.lock().unwrap();
1790                         let channel_state = &mut *channel_state_lock;
1791
1792                         for (short_chan_id, mut pending_forwards) in channel_state.forward_htlcs.drain() {
1793                                 if short_chan_id != 0 {
1794                                         let forward_chan_id = match channel_state.short_to_id.get(&short_chan_id) {
1795                                                 Some(chan_id) => chan_id.clone(),
1796                                                 None => {
1797                                                         failed_forwards.reserve(pending_forwards.len());
1798                                                         for forward_info in pending_forwards.drain(..) {
1799                                                                 match forward_info {
1800                                                                         HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info,
1801                                                                                                    prev_funding_outpoint } => {
1802                                                                                 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
1803                                                                                         short_channel_id: prev_short_channel_id,
1804                                                                                         outpoint: prev_funding_outpoint,
1805                                                                                         htlc_id: prev_htlc_id,
1806                                                                                         incoming_packet_shared_secret: forward_info.incoming_shared_secret,
1807                                                                                 });
1808                                                                                 failed_forwards.push((htlc_source, forward_info.payment_hash,
1809                                                                                         HTLCFailReason::Reason { failure_code: 0x4000 | 10, data: Vec::new() }
1810                                                                                 ));
1811                                                                         },
1812                                                                         HTLCForwardInfo::FailHTLC { .. } => {
1813                                                                                 // Channel went away before we could fail it. This implies
1814                                                                                 // the channel is now on chain and our counterparty is
1815                                                                                 // trying to broadcast the HTLC-Timeout, but that's their
1816                                                                                 // problem, not ours.
1817                                                                         }
1818                                                                 }
1819                                                         }
1820                                                         continue;
1821                                                 }
1822                                         };
1823                                         if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(forward_chan_id) {
1824                                                 let mut add_htlc_msgs = Vec::new();
1825                                                 let mut fail_htlc_msgs = Vec::new();
1826                                                 for forward_info in pending_forwards.drain(..) {
1827                                                         match forward_info {
1828                                                                 HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info: PendingHTLCInfo {
1829                                                                                 routing: PendingHTLCRouting::Forward {
1830                                                                                         onion_packet, ..
1831                                                                                 }, incoming_shared_secret, payment_hash, amt_to_forward, outgoing_cltv_value },
1832                                                                                 prev_funding_outpoint } => {
1833                                                                         log_trace!(self.logger, "Adding HTLC from short id {} with payment_hash {} to channel with short id {} after delay", log_bytes!(payment_hash.0), prev_short_channel_id, short_chan_id);
1834                                                                         let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
1835                                                                                 short_channel_id: prev_short_channel_id,
1836                                                                                 outpoint: prev_funding_outpoint,
1837                                                                                 htlc_id: prev_htlc_id,
1838                                                                                 incoming_packet_shared_secret: incoming_shared_secret,
1839                                                                         });
1840                                                                         match chan.get_mut().send_htlc(amt_to_forward, payment_hash, outgoing_cltv_value, htlc_source.clone(), onion_packet) {
1841                                                                                 Err(e) => {
1842                                                                                         if let ChannelError::Ignore(msg) = e {
1843                                                                                                 log_trace!(self.logger, "Failed to forward HTLC with payment_hash {}: {}", log_bytes!(payment_hash.0), msg);
1844                                                                                         } else {
1845                                                                                                 panic!("Stated return value requirements in send_htlc() were not met");
1846                                                                                         }
1847                                                                                         let chan_update = self.get_channel_update(chan.get()).unwrap();
1848                                                                                         failed_forwards.push((htlc_source, payment_hash,
1849                                                                                                 HTLCFailReason::Reason { failure_code: 0x1000 | 7, data: chan_update.encode_with_len() }
1850                                                                                         ));
1851                                                                                         continue;
1852                                                                                 },
1853                                                                                 Ok(update_add) => {
1854                                                                                         match update_add {
1855                                                                                                 Some(msg) => { add_htlc_msgs.push(msg); },
1856                                                                                                 None => {
1857                                                                                                         // Nothing to do here...we're waiting on a remote
1858                                                                                                         // revoke_and_ack before we can add anymore HTLCs. The Channel
1859                                                                                                         // will automatically handle building the update_add_htlc and
1860                                                                                                         // commitment_signed messages when we can.
1861                                                                                                         // TODO: Do some kind of timer to set the channel as !is_live()
1862                                                                                                         // as we don't really want others relying on us relaying through
1863                                                                                                         // this channel currently :/.
1864                                                                                                 }
1865                                                                                         }
1866                                                                                 }
1867                                                                         }
1868                                                                 },
1869                                                                 HTLCForwardInfo::AddHTLC { .. } => {
1870                                                                         panic!("short_channel_id != 0 should imply any pending_forward entries are of type Forward");
1871                                                                 },
1872                                                                 HTLCForwardInfo::FailHTLC { htlc_id, err_packet } => {
1873                                                                         log_trace!(self.logger, "Failing HTLC back to channel with short id {} after delay", short_chan_id);
1874                                                                         match chan.get_mut().get_update_fail_htlc(htlc_id, err_packet) {
1875                                                                                 Err(e) => {
1876                                                                                         if let ChannelError::Ignore(msg) = e {
1877                                                                                                 log_trace!(self.logger, "Failed to fail backwards to short_id {}: {}", short_chan_id, msg);
1878                                                                                         } else {
1879                                                                                                 panic!("Stated return value requirements in get_update_fail_htlc() were not met");
1880                                                                                         }
1881                                                                                         // fail-backs are best-effort, we probably already have one
1882                                                                                         // pending, and if not that's OK, if not, the channel is on
1883                                                                                         // the chain and sending the HTLC-Timeout is their problem.
1884                                                                                         continue;
1885                                                                                 },
1886                                                                                 Ok(Some(msg)) => { fail_htlc_msgs.push(msg); },
1887                                                                                 Ok(None) => {
1888                                                                                         // Nothing to do here...we're waiting on a remote
1889                                                                                         // revoke_and_ack before we can update the commitment
1890                                                                                         // transaction. The Channel will automatically handle
1891                                                                                         // building the update_fail_htlc and commitment_signed
1892                                                                                         // messages when we can.
1893                                                                                         // We don't need any kind of timer here as they should fail
1894                                                                                         // the channel onto the chain if they can't get our
1895                                                                                         // update_fail_htlc in time, it's not our problem.
1896                                                                                 }
1897                                                                         }
1898                                                                 },
1899                                                         }
1900                                                 }
1901
1902                                                 if !add_htlc_msgs.is_empty() || !fail_htlc_msgs.is_empty() {
1903                                                         let (commitment_msg, monitor_update) = match chan.get_mut().send_commitment(&self.logger) {
1904                                                                 Ok(res) => res,
1905                                                                 Err(e) => {
1906                                                                         // We surely failed send_commitment due to bad keys, in that case
1907                                                                         // close channel and then send error message to peer.
1908                                                                         let counterparty_node_id = chan.get().get_counterparty_node_id();
1909                                                                         let err: Result<(), _>  = match e {
1910                                                                                 ChannelError::Ignore(_) => {
1911                                                                                         panic!("Stated return value requirements in send_commitment() were not met");
1912                                                                                 },
1913                                                                                 ChannelError::Close(msg) => {
1914                                                                                         log_trace!(self.logger, "Closing channel {} due to Close-required error: {}", log_bytes!(chan.key()[..]), msg);
1915                                                                                         let (channel_id, mut channel) = chan.remove_entry();
1916                                                                                         if let Some(short_id) = channel.get_short_channel_id() {
1917                                                                                                 channel_state.short_to_id.remove(&short_id);
1918                                                                                         }
1919                                                                                         Err(MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, channel.force_shutdown(true), self.get_channel_update(&channel).ok()))
1920                                                                                 },
1921                                                                                 ChannelError::CloseDelayBroadcast(_) => { panic!("Wait is only generated on receipt of channel_reestablish, which is handled by try_chan_entry, we don't bother to support it here"); }
1922                                                                         };
1923                                                                         handle_errors.push((counterparty_node_id, err));
1924                                                                         continue;
1925                                                                 }
1926                                                         };
1927                                                         if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
1928                                                                 handle_errors.push((chan.get().get_counterparty_node_id(), handle_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, true)));
1929                                                                 continue;
1930                                                         }
1931                                                         channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
1932                                                                 node_id: chan.get().get_counterparty_node_id(),
1933                                                                 updates: msgs::CommitmentUpdate {
1934                                                                         update_add_htlcs: add_htlc_msgs,
1935                                                                         update_fulfill_htlcs: Vec::new(),
1936                                                                         update_fail_htlcs: fail_htlc_msgs,
1937                                                                         update_fail_malformed_htlcs: Vec::new(),
1938                                                                         update_fee: None,
1939                                                                         commitment_signed: commitment_msg,
1940                                                                 },
1941                                                         });
1942                                                 }
1943                                         } else {
1944                                                 unreachable!();
1945                                         }
1946                                 } else {
1947                                         for forward_info in pending_forwards.drain(..) {
1948                                                 match forward_info {
1949                                                         HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info: PendingHTLCInfo {
1950                                                                         routing: PendingHTLCRouting::Receive { payment_data, incoming_cltv_expiry },
1951                                                                         incoming_shared_secret, payment_hash, amt_to_forward, .. },
1952                                                                         prev_funding_outpoint } => {
1953                                                                 let claimable_htlc = ClaimableHTLC {
1954                                                                         prev_hop: HTLCPreviousHopData {
1955                                                                                 short_channel_id: prev_short_channel_id,
1956                                                                                 outpoint: prev_funding_outpoint,
1957                                                                                 htlc_id: prev_htlc_id,
1958                                                                                 incoming_packet_shared_secret: incoming_shared_secret,
1959                                                                         },
1960                                                                         value: amt_to_forward,
1961                                                                         payment_data: payment_data.clone(),
1962                                                                         cltv_expiry: incoming_cltv_expiry,
1963                                                                 };
1964
1965                                                                 macro_rules! fail_htlc {
1966                                                                         ($htlc: expr) => {
1967                                                                                 let mut htlc_msat_height_data = byte_utils::be64_to_array($htlc.value).to_vec();
1968                                                                                 htlc_msat_height_data.extend_from_slice(
1969                                                                                         &byte_utils::be32_to_array(self.best_block.read().unwrap().height()),
1970                                                                                 );
1971                                                                                 failed_forwards.push((HTLCSource::PreviousHopData(HTLCPreviousHopData {
1972                                                                                                 short_channel_id: $htlc.prev_hop.short_channel_id,
1973                                                                                                 outpoint: prev_funding_outpoint,
1974                                                                                                 htlc_id: $htlc.prev_hop.htlc_id,
1975                                                                                                 incoming_packet_shared_secret: $htlc.prev_hop.incoming_packet_shared_secret,
1976                                                                                         }), payment_hash,
1977                                                                                         HTLCFailReason::Reason { failure_code: 0x4000 | 15, data: htlc_msat_height_data }
1978                                                                                 ));
1979                                                                         }
1980                                                                 }
1981
1982                                                                 // Check that the payment hash and secret are known. Note that we
1983                                                                 // MUST take care to handle the "unknown payment hash" and
1984                                                                 // "incorrect payment secret" cases here identically or we'd expose
1985                                                                 // that we are the ultimate recipient of the given payment hash.
1986                                                                 // Further, we must not expose whether we have any other HTLCs
1987                                                                 // associated with the same payment_hash pending or not.
1988                                                                 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
1989                                                                 match payment_secrets.entry(payment_hash) {
1990                                                                         hash_map::Entry::Vacant(_) => {
1991                                                                                 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as we didn't have a corresponding inbound payment.", log_bytes!(payment_hash.0));
1992                                                                                 fail_htlc!(claimable_htlc);
1993                                                                         },
1994                                                                         hash_map::Entry::Occupied(inbound_payment) => {
1995                                                                                 if inbound_payment.get().payment_secret != payment_data.payment_secret {
1996                                                                                         log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our expected payment secret.", log_bytes!(payment_hash.0));
1997                                                                                         fail_htlc!(claimable_htlc);
1998                                                                                 } else if inbound_payment.get().min_value_msat.is_some() && payment_data.total_msat < inbound_payment.get().min_value_msat.unwrap() {
1999                                                                                         log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our minimum value (had {}, needed {}).",
2000                                                                                                 log_bytes!(payment_hash.0), payment_data.total_msat, inbound_payment.get().min_value_msat.unwrap());
2001                                                                                         fail_htlc!(claimable_htlc);
2002                                                                                 } else {
2003                                                                                         let mut total_value = 0;
2004                                                                                         let htlcs = channel_state.claimable_htlcs.entry(payment_hash)
2005                                                                                                 .or_insert(Vec::new());
2006                                                                                         htlcs.push(claimable_htlc);
2007                                                                                         for htlc in htlcs.iter() {
2008                                                                                                 total_value += htlc.value;
2009                                                                                                 if htlc.payment_data.total_msat != payment_data.total_msat {
2010                                                                                                         log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the HTLCs had inconsistent total values (eg {} and {})",
2011                                                                                                                 log_bytes!(payment_hash.0), payment_data.total_msat, htlc.payment_data.total_msat);
2012                                                                                                         total_value = msgs::MAX_VALUE_MSAT;
2013                                                                                                 }
2014                                                                                                 if total_value >= msgs::MAX_VALUE_MSAT { break; }
2015                                                                                         }
2016                                                                                         if total_value >= msgs::MAX_VALUE_MSAT || total_value > payment_data.total_msat {
2017                                                                                                 log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the total value {} ran over expected value {} (or HTLCs were inconsistent)",
2018                                                                                                         log_bytes!(payment_hash.0), total_value, payment_data.total_msat);
2019                                                                                                 for htlc in htlcs.iter() {
2020                                                                                                         fail_htlc!(htlc);
2021                                                                                                 }
2022                                                                                         } else if total_value == payment_data.total_msat {
2023                                                                                                 new_events.push(events::Event::PaymentReceived {
2024                                                                                                         payment_hash,
2025                                                                                                         payment_secret: Some(payment_data.payment_secret),
2026                                                                                                         amt: total_value,
2027                                                                                                 });
2028                                                                                                 // Only ever generate at most one PaymentReceived
2029                                                                                                 // per registered payment_hash, even if it isn't
2030                                                                                                 // claimed.
2031                                                                                                 inbound_payment.remove_entry();
2032                                                                                         } else {
2033                                                                                                 // Nothing to do - we haven't reached the total
2034                                                                                                 // payment value yet, wait until we receive more
2035                                                                                                 // MPP parts.
2036                                                                                         }
2037                                                                                 }
2038                                                                         },
2039                                                                 };
2040                                                         },
2041                                                         HTLCForwardInfo::AddHTLC { .. } => {
2042                                                                 panic!("short_channel_id == 0 should imply any pending_forward entries are of type Receive");
2043                                                         },
2044                                                         HTLCForwardInfo::FailHTLC { .. } => {
2045                                                                 panic!("Got pending fail of our own HTLC");
2046                                                         }
2047                                                 }
2048                                         }
2049                                 }
2050                         }
2051                 }
2052
2053                 for (htlc_source, payment_hash, failure_reason) in failed_forwards.drain(..) {
2054                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source, &payment_hash, failure_reason);
2055                 }
2056
2057                 for (counterparty_node_id, err) in handle_errors.drain(..) {
2058                         let _ = handle_error!(self, err, counterparty_node_id);
2059                 }
2060
2061                 if new_events.is_empty() { return }
2062                 let mut events = self.pending_events.lock().unwrap();
2063                 events.append(&mut new_events);
2064         }
2065
2066         /// Free the background events, generally called from timer_tick_occurred.
2067         ///
2068         /// Exposed for testing to allow us to process events quickly without generating accidental
2069         /// BroadcastChannelUpdate events in timer_tick_occurred.
2070         ///
2071         /// Expects the caller to have a total_consistency_lock read lock.
2072         fn process_background_events(&self) {
2073                 let mut background_events = Vec::new();
2074                 mem::swap(&mut *self.pending_background_events.lock().unwrap(), &mut background_events);
2075                 for event in background_events.drain(..) {
2076                         match event {
2077                                 BackgroundEvent::ClosingMonitorUpdate((funding_txo, update)) => {
2078                                         // The channel has already been closed, so no use bothering to care about the
2079                                         // monitor updating completing.
2080                                         let _ = self.chain_monitor.update_channel(funding_txo, update);
2081                                 },
2082                         }
2083                 }
2084         }
2085
2086         #[cfg(any(test, feature = "_test_utils"))]
2087         pub(crate) fn test_process_background_events(&self) {
2088                 self.process_background_events();
2089         }
2090
2091         /// If a peer is disconnected we mark any channels with that peer as 'disabled'.
2092         /// After some time, if channels are still disabled we need to broadcast a ChannelUpdate
2093         /// to inform the network about the uselessness of these channels.
2094         ///
2095         /// This method handles all the details, and must be called roughly once per minute.
2096         ///
2097         /// Note that in some rare cases this may generate a `chain::Watch::update_channel` call.
2098         pub fn timer_tick_occurred(&self) {
2099                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
2100                 self.process_background_events();
2101
2102                 let mut channel_state_lock = self.channel_state.lock().unwrap();
2103                 let channel_state = &mut *channel_state_lock;
2104                 for (_, chan) in channel_state.by_id.iter_mut() {
2105                         if chan.is_disabled_staged() && !chan.is_live() {
2106                                 if let Ok(update) = self.get_channel_update(&chan) {
2107                                         channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2108                                                 msg: update
2109                                         });
2110                                 }
2111                                 chan.to_fresh();
2112                         } else if chan.is_disabled_staged() && chan.is_live() {
2113                                 chan.to_fresh();
2114                         } else if chan.is_disabled_marked() {
2115                                 chan.to_disabled_staged();
2116                         }
2117                 }
2118         }
2119
2120         /// Indicates that the preimage for payment_hash is unknown or the received amount is incorrect
2121         /// after a PaymentReceived event, failing the HTLC back to its origin and freeing resources
2122         /// along the path (including in our own channel on which we received it).
2123         /// Returns false if no payment was found to fail backwards, true if the process of failing the
2124         /// HTLC backwards has been started.
2125         pub fn fail_htlc_backwards(&self, payment_hash: &PaymentHash, _payment_secret: &Option<PaymentSecret>) -> bool {
2126                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
2127
2128                 let mut channel_state = Some(self.channel_state.lock().unwrap());
2129                 let removed_source = channel_state.as_mut().unwrap().claimable_htlcs.remove(payment_hash);
2130                 if let Some(mut sources) = removed_source {
2131                         for htlc in sources.drain(..) {
2132                                 if channel_state.is_none() { channel_state = Some(self.channel_state.lock().unwrap()); }
2133                                 let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec();
2134                                 htlc_msat_height_data.extend_from_slice(&byte_utils::be32_to_array(
2135                                                 self.best_block.read().unwrap().height()));
2136                                 self.fail_htlc_backwards_internal(channel_state.take().unwrap(),
2137                                                 HTLCSource::PreviousHopData(htlc.prev_hop), payment_hash,
2138                                                 HTLCFailReason::Reason { failure_code: 0x4000 | 15, data: htlc_msat_height_data });
2139                         }
2140                         true
2141                 } else { false }
2142         }
2143
2144         // Fail a list of HTLCs that were just freed from the holding cell. The HTLCs need to be
2145         // failed backwards or, if they were one of our outgoing HTLCs, then their failure needs to
2146         // be surfaced to the user.
2147         fn fail_holding_cell_htlcs(&self, mut htlcs_to_fail: Vec<(HTLCSource, PaymentHash)>, channel_id: [u8; 32]) {
2148                 for (htlc_src, payment_hash) in htlcs_to_fail.drain(..) {
2149                         match htlc_src {
2150                                 HTLCSource::PreviousHopData(HTLCPreviousHopData { .. }) => {
2151                                         let (failure_code, onion_failure_data) =
2152                                                 match self.channel_state.lock().unwrap().by_id.entry(channel_id) {
2153                                                         hash_map::Entry::Occupied(chan_entry) => {
2154                                                                 if let Ok(upd) = self.get_channel_update(&chan_entry.get()) {
2155                                                                         (0x1000|7, upd.encode_with_len())
2156                                                                 } else {
2157                                                                         (0x4000|10, Vec::new())
2158                                                                 }
2159                                                         },
2160                                                         hash_map::Entry::Vacant(_) => (0x4000|10, Vec::new())
2161                                                 };
2162                                         let channel_state = self.channel_state.lock().unwrap();
2163                                         self.fail_htlc_backwards_internal(channel_state,
2164                                                 htlc_src, &payment_hash, HTLCFailReason::Reason { failure_code, data: onion_failure_data});
2165                                 },
2166                                 HTLCSource::OutboundRoute { .. } => {
2167                                         self.pending_events.lock().unwrap().push(
2168                                                 events::Event::PaymentFailed {
2169                                                         payment_hash,
2170                                                         rejected_by_dest: false,
2171 #[cfg(test)]
2172                                                         error_code: None,
2173 #[cfg(test)]
2174                                                         error_data: None,
2175                                                 }
2176                                         )
2177                                 },
2178                         };
2179                 }
2180         }
2181
2182         /// Fails an HTLC backwards to the sender of it to us.
2183         /// Note that while we take a channel_state lock as input, we do *not* assume consistency here.
2184         /// There are several callsites that do stupid things like loop over a list of payment_hashes
2185         /// to fail and take the channel_state lock for each iteration (as we take ownership and may
2186         /// drop it). In other words, no assumptions are made that entries in claimable_htlcs point to
2187         /// still-available channels.
2188         fn fail_htlc_backwards_internal(&self, mut channel_state_lock: MutexGuard<ChannelHolder<Signer>>, source: HTLCSource, payment_hash: &PaymentHash, onion_error: HTLCFailReason) {
2189                 //TODO: There is a timing attack here where if a node fails an HTLC back to us they can
2190                 //identify whether we sent it or not based on the (I presume) very different runtime
2191                 //between the branches here. We should make this async and move it into the forward HTLCs
2192                 //timer handling.
2193
2194                 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
2195                 // from block_connected which may run during initialization prior to the chain_monitor
2196                 // being fully configured. See the docs for `ChannelManagerReadArgs` for more.
2197                 match source {
2198                         HTLCSource::OutboundRoute { ref path, .. } => {
2199                                 log_trace!(self.logger, "Failing outbound payment HTLC with payment_hash {}", log_bytes!(payment_hash.0));
2200                                 mem::drop(channel_state_lock);
2201                                 match &onion_error {
2202                                         &HTLCFailReason::LightningError { ref err } => {
2203 #[cfg(test)]
2204                                                 let (channel_update, payment_retryable, onion_error_code, onion_error_data) = onion_utils::process_onion_failure(&self.secp_ctx, &self.logger, &source, err.data.clone());
2205 #[cfg(not(test))]
2206                                                 let (channel_update, payment_retryable, _, _) = onion_utils::process_onion_failure(&self.secp_ctx, &self.logger, &source, err.data.clone());
2207                                                 // TODO: If we decided to blame ourselves (or one of our channels) in
2208                                                 // process_onion_failure we should close that channel as it implies our
2209                                                 // next-hop is needlessly blaming us!
2210                                                 if let Some(update) = channel_update {
2211                                                         self.channel_state.lock().unwrap().pending_msg_events.push(
2212                                                                 events::MessageSendEvent::PaymentFailureNetworkUpdate {
2213                                                                         update,
2214                                                                 }
2215                                                         );
2216                                                 }
2217                                                 self.pending_events.lock().unwrap().push(
2218                                                         events::Event::PaymentFailed {
2219                                                                 payment_hash: payment_hash.clone(),
2220                                                                 rejected_by_dest: !payment_retryable,
2221 #[cfg(test)]
2222                                                                 error_code: onion_error_code,
2223 #[cfg(test)]
2224                                                                 error_data: onion_error_data
2225                                                         }
2226                                                 );
2227                                         },
2228                                         &HTLCFailReason::Reason {
2229 #[cfg(test)]
2230                                                         ref failure_code,
2231 #[cfg(test)]
2232                                                         ref data,
2233                                                         .. } => {
2234                                                 // we get a fail_malformed_htlc from the first hop
2235                                                 // TODO: We'd like to generate a PaymentFailureNetworkUpdate for temporary
2236                                                 // failures here, but that would be insufficient as get_route
2237                                                 // generally ignores its view of our own channels as we provide them via
2238                                                 // ChannelDetails.
2239                                                 // TODO: For non-temporary failures, we really should be closing the
2240                                                 // channel here as we apparently can't relay through them anyway.
2241                                                 self.pending_events.lock().unwrap().push(
2242                                                         events::Event::PaymentFailed {
2243                                                                 payment_hash: payment_hash.clone(),
2244                                                                 rejected_by_dest: path.len() == 1,
2245 #[cfg(test)]
2246                                                                 error_code: Some(*failure_code),
2247 #[cfg(test)]
2248                                                                 error_data: Some(data.clone()),
2249                                                         }
2250                                                 );
2251                                         }
2252                                 }
2253                         },
2254                         HTLCSource::PreviousHopData(HTLCPreviousHopData { short_channel_id, htlc_id, incoming_packet_shared_secret, .. }) => {
2255                                 let err_packet = match onion_error {
2256                                         HTLCFailReason::Reason { failure_code, data } => {
2257                                                 log_trace!(self.logger, "Failing HTLC with payment_hash {} backwards from us with code {}", log_bytes!(payment_hash.0), failure_code);
2258                                                 let packet = onion_utils::build_failure_packet(&incoming_packet_shared_secret, failure_code, &data[..]).encode();
2259                                                 onion_utils::encrypt_failure_packet(&incoming_packet_shared_secret, &packet)
2260                                         },
2261                                         HTLCFailReason::LightningError { err } => {
2262                                                 log_trace!(self.logger, "Failing HTLC with payment_hash {} backwards with pre-built LightningError", log_bytes!(payment_hash.0));
2263                                                 onion_utils::encrypt_failure_packet(&incoming_packet_shared_secret, &err.data)
2264                                         }
2265                                 };
2266
2267                                 let mut forward_event = None;
2268                                 if channel_state_lock.forward_htlcs.is_empty() {
2269                                         forward_event = Some(Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS));
2270                                 }
2271                                 match channel_state_lock.forward_htlcs.entry(short_channel_id) {
2272                                         hash_map::Entry::Occupied(mut entry) => {
2273                                                 entry.get_mut().push(HTLCForwardInfo::FailHTLC { htlc_id, err_packet });
2274                                         },
2275                                         hash_map::Entry::Vacant(entry) => {
2276                                                 entry.insert(vec!(HTLCForwardInfo::FailHTLC { htlc_id, err_packet }));
2277                                         }
2278                                 }
2279                                 mem::drop(channel_state_lock);
2280                                 if let Some(time) = forward_event {
2281                                         let mut pending_events = self.pending_events.lock().unwrap();
2282                                         pending_events.push(events::Event::PendingHTLCsForwardable {
2283                                                 time_forwardable: time
2284                                         });
2285                                 }
2286                         },
2287                 }
2288         }
2289
2290         /// Provides a payment preimage in response to a PaymentReceived event, returning true and
2291         /// generating message events for the net layer to claim the payment, if possible. Thus, you
2292         /// should probably kick the net layer to go send messages if this returns true!
2293         ///
2294         /// You must specify the expected amounts for this HTLC, and we will only claim HTLCs
2295         /// available within a few percent of the expected amount. This is critical for several
2296         /// reasons : a) it avoids providing senders with `proof-of-payment` (in the form of the
2297         /// payment_preimage without having provided the full value and b) it avoids certain
2298         /// privacy-breaking recipient-probing attacks which may reveal payment activity to
2299         /// motivated attackers.
2300         ///
2301         /// Note that the privacy concerns in (b) are not relevant in payments with a payment_secret
2302         /// set. Thus, for such payments we will claim any payments which do not under-pay.
2303         ///
2304         /// May panic if called except in response to a PaymentReceived event.
2305         pub fn claim_funds(&self, payment_preimage: PaymentPreimage, _payment_secret: &Option<PaymentSecret>, expected_amount: u64) -> bool {
2306                 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
2307
2308                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
2309
2310                 let mut channel_state = Some(self.channel_state.lock().unwrap());
2311                 let removed_source = channel_state.as_mut().unwrap().claimable_htlcs.remove(&payment_hash);
2312                 if let Some(mut sources) = removed_source {
2313                         assert!(!sources.is_empty());
2314
2315                         // If we are claiming an MPP payment, we have to take special care to ensure that each
2316                         // channel exists before claiming all of the payments (inside one lock).
2317                         // Note that channel existance is sufficient as we should always get a monitor update
2318                         // which will take care of the real HTLC claim enforcement.
2319                         //
2320                         // If we find an HTLC which we would need to claim but for which we do not have a
2321                         // channel, we will fail all parts of the MPP payment. While we could wait and see if
2322                         // the sender retries the already-failed path(s), it should be a pretty rare case where
2323                         // we got all the HTLCs and then a channel closed while we were waiting for the user to
2324                         // provide the preimage, so worrying too much about the optimal handling isn't worth
2325                         // it.
2326
2327                         let is_mpp = true;
2328                         let mut valid_mpp = sources[0].payment_data.total_msat >= expected_amount;
2329
2330                         for htlc in sources.iter() {
2331                                 if !is_mpp || !valid_mpp { break; }
2332                                 if let None = channel_state.as_ref().unwrap().short_to_id.get(&htlc.prev_hop.short_channel_id) {
2333                                         valid_mpp = false;
2334                                 }
2335                         }
2336
2337                         let mut errs = Vec::new();
2338                         let mut claimed_any_htlcs = false;
2339                         for htlc in sources.drain(..) {
2340                                 if channel_state.is_none() { channel_state = Some(self.channel_state.lock().unwrap()); }
2341                                 if (is_mpp && !valid_mpp) || (!is_mpp && (htlc.value < expected_amount || htlc.value > expected_amount * 2)) {
2342                                         let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec();
2343                                         htlc_msat_height_data.extend_from_slice(&byte_utils::be32_to_array(
2344                                                         self.best_block.read().unwrap().height()));
2345                                         self.fail_htlc_backwards_internal(channel_state.take().unwrap(),
2346                                                                          HTLCSource::PreviousHopData(htlc.prev_hop), &payment_hash,
2347                                                                          HTLCFailReason::Reason { failure_code: 0x4000|15, data: htlc_msat_height_data });
2348                                 } else {
2349                                         match self.claim_funds_from_hop(channel_state.as_mut().unwrap(), htlc.prev_hop, payment_preimage) {
2350                                                 Err(Some(e)) => {
2351                                                         if let msgs::ErrorAction::IgnoreError = e.1.err.action {
2352                                                                 // We got a temporary failure updating monitor, but will claim the
2353                                                                 // HTLC when the monitor updating is restored (or on chain).
2354                                                                 log_error!(self.logger, "Temporary failure claiming HTLC, treating as success: {}", e.1.err.err);
2355                                                                 claimed_any_htlcs = true;
2356                                                         } else { errs.push(e); }
2357                                                 },
2358                                                 Err(None) if is_mpp => unreachable!("We already checked for channel existence, we can't fail here!"),
2359                                                 Err(None) => {
2360                                                         log_warn!(self.logger, "Channel we expected to claim an HTLC from was closed.");
2361                                                 },
2362                                                 Ok(()) => claimed_any_htlcs = true,
2363                                         }
2364                                 }
2365                         }
2366
2367                         // Now that we've done the entire above loop in one lock, we can handle any errors
2368                         // which were generated.
2369                         channel_state.take();
2370
2371                         for (counterparty_node_id, err) in errs.drain(..) {
2372                                 let res: Result<(), _> = Err(err);
2373                                 let _ = handle_error!(self, res, counterparty_node_id);
2374                         }
2375
2376                         claimed_any_htlcs
2377                 } else { false }
2378         }
2379
2380         fn claim_funds_from_hop(&self, channel_state_lock: &mut MutexGuard<ChannelHolder<Signer>>, prev_hop: HTLCPreviousHopData, payment_preimage: PaymentPreimage) -> Result<(), Option<(PublicKey, MsgHandleErrInternal)>> {
2381                 //TODO: Delay the claimed_funds relaying just like we do outbound relay!
2382                 let channel_state = &mut **channel_state_lock;
2383                 let chan_id = match channel_state.short_to_id.get(&prev_hop.short_channel_id) {
2384                         Some(chan_id) => chan_id.clone(),
2385                         None => {
2386                                 return Err(None)
2387                         }
2388                 };
2389
2390                 if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(chan_id) {
2391                         let was_frozen_for_monitor = chan.get().is_awaiting_monitor_update();
2392                         match chan.get_mut().get_update_fulfill_htlc_and_commit(prev_hop.htlc_id, payment_preimage, &self.logger) {
2393                                 Ok((msgs, monitor_option)) => {
2394                                         if let Some(monitor_update) = monitor_option {
2395                                                 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
2396                                                         if was_frozen_for_monitor {
2397                                                                 assert!(msgs.is_none());
2398                                                         } else {
2399                                                                 return Err(Some((chan.get().get_counterparty_node_id(), handle_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, msgs.is_some()).unwrap_err())));
2400                                                         }
2401                                                 }
2402                                         }
2403                                         if let Some((msg, commitment_signed)) = msgs {
2404                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
2405                                                         node_id: chan.get().get_counterparty_node_id(),
2406                                                         updates: msgs::CommitmentUpdate {
2407                                                                 update_add_htlcs: Vec::new(),
2408                                                                 update_fulfill_htlcs: vec![msg],
2409                                                                 update_fail_htlcs: Vec::new(),
2410                                                                 update_fail_malformed_htlcs: Vec::new(),
2411                                                                 update_fee: None,
2412                                                                 commitment_signed,
2413                                                         }
2414                                                 });
2415                                         }
2416                                         return Ok(())
2417                                 },
2418                                 Err(e) => {
2419                                         // TODO: Do something with e?
2420                                         // This should only occur if we are claiming an HTLC at the same time as the
2421                                         // HTLC is being failed (eg because a block is being connected and this caused
2422                                         // an HTLC to time out). This should, of course, only occur if the user is the
2423                                         // one doing the claiming (as it being a part of a peer claim would imply we're
2424                                         // about to lose funds) and only if the lock in claim_funds was dropped as a
2425                                         // previous HTLC was failed (thus not for an MPP payment).
2426                                         debug_assert!(false, "This shouldn't be reachable except in absurdly rare cases between monitor updates and HTLC timeouts: {:?}", e);
2427                                         return Err(None)
2428                                 },
2429                         }
2430                 } else { unreachable!(); }
2431         }
2432
2433         fn claim_funds_internal(&self, mut channel_state_lock: MutexGuard<ChannelHolder<Signer>>, source: HTLCSource, payment_preimage: PaymentPreimage) {
2434                 match source {
2435                         HTLCSource::OutboundRoute { .. } => {
2436                                 mem::drop(channel_state_lock);
2437                                 let mut pending_events = self.pending_events.lock().unwrap();
2438                                 pending_events.push(events::Event::PaymentSent {
2439                                         payment_preimage
2440                                 });
2441                         },
2442                         HTLCSource::PreviousHopData(hop_data) => {
2443                                 let prev_outpoint = hop_data.outpoint;
2444                                 if let Err((counterparty_node_id, err)) = match self.claim_funds_from_hop(&mut channel_state_lock, hop_data, payment_preimage) {
2445                                         Ok(()) => Ok(()),
2446                                         Err(None) => {
2447                                                 let preimage_update = ChannelMonitorUpdate {
2448                                                         update_id: CLOSED_CHANNEL_UPDATE_ID,
2449                                                         updates: vec![ChannelMonitorUpdateStep::PaymentPreimage {
2450                                                                 payment_preimage: payment_preimage.clone(),
2451                                                         }],
2452                                                 };
2453                                                 // We update the ChannelMonitor on the backward link, after
2454                                                 // receiving an offchain preimage event from the forward link (the
2455                                                 // event being update_fulfill_htlc).
2456                                                 if let Err(e) = self.chain_monitor.update_channel(prev_outpoint, preimage_update) {
2457                                                         log_error!(self.logger, "Critical error: failed to update channel monitor with preimage {:?}: {:?}",
2458                                                                    payment_preimage, e);
2459                                                 }
2460                                                 Ok(())
2461                                         },
2462                                         Err(Some(res)) => Err(res),
2463                                 } {
2464                                         mem::drop(channel_state_lock);
2465                                         let res: Result<(), _> = Err(err);
2466                                         let _ = handle_error!(self, res, counterparty_node_id);
2467                                 }
2468                         },
2469                 }
2470         }
2471
2472         /// Gets the node_id held by this ChannelManager
2473         pub fn get_our_node_id(&self) -> PublicKey {
2474                 self.our_network_pubkey.clone()
2475         }
2476
2477         /// Restores a single, given channel to normal operation after a
2478         /// ChannelMonitorUpdateErr::TemporaryFailure was returned from a channel monitor update
2479         /// operation.
2480         ///
2481         /// All ChannelMonitor updates up to and including highest_applied_update_id must have been
2482         /// fully committed in every copy of the given channels' ChannelMonitors.
2483         ///
2484         /// Note that there is no effect to calling with a highest_applied_update_id other than the
2485         /// current latest ChannelMonitorUpdate and one call to this function after multiple
2486         /// ChannelMonitorUpdateErr::TemporaryFailures is fine. The highest_applied_update_id field
2487         /// exists largely only to prevent races between this and concurrent update_monitor calls.
2488         ///
2489         /// Thus, the anticipated use is, at a high level:
2490         ///  1) You register a chain::Watch with this ChannelManager,
2491         ///  2) it stores each update to disk, and begins updating any remote (eg watchtower) copies of
2492         ///     said ChannelMonitors as it can, returning ChannelMonitorUpdateErr::TemporaryFailures
2493         ///     any time it cannot do so instantly,
2494         ///  3) update(s) are applied to each remote copy of a ChannelMonitor,
2495         ///  4) once all remote copies are updated, you call this function with the update_id that
2496         ///     completed, and once it is the latest the Channel will be re-enabled.
2497         pub fn channel_monitor_updated(&self, funding_txo: &OutPoint, highest_applied_update_id: u64) {
2498                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
2499
2500                 let mut close_results = Vec::new();
2501                 let mut htlc_forwards = Vec::new();
2502                 let mut htlc_failures = Vec::new();
2503                 let mut pending_events = Vec::new();
2504
2505                 {
2506                         let mut channel_lock = self.channel_state.lock().unwrap();
2507                         let channel_state = &mut *channel_lock;
2508                         let short_to_id = &mut channel_state.short_to_id;
2509                         let pending_msg_events = &mut channel_state.pending_msg_events;
2510                         let channel = match channel_state.by_id.get_mut(&funding_txo.to_channel_id()) {
2511                                 Some(chan) => chan,
2512                                 None => return,
2513                         };
2514                         if !channel.is_awaiting_monitor_update() || channel.get_latest_monitor_update_id() != highest_applied_update_id {
2515                                 return;
2516                         }
2517
2518                         let (raa, commitment_update, order, pending_forwards, mut pending_failures, funding_broadcastable, funding_locked) = channel.monitor_updating_restored(&self.logger);
2519                         if !pending_forwards.is_empty() {
2520                                 htlc_forwards.push((channel.get_short_channel_id().expect("We can't have pending forwards before funding confirmation"), funding_txo.clone(), pending_forwards));
2521                         }
2522                         htlc_failures.append(&mut pending_failures);
2523
2524                         macro_rules! handle_cs { () => {
2525                                 if let Some(update) = commitment_update {
2526                                         pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
2527                                                 node_id: channel.get_counterparty_node_id(),
2528                                                 updates: update,
2529                                         });
2530                                 }
2531                         } }
2532                         macro_rules! handle_raa { () => {
2533                                 if let Some(revoke_and_ack) = raa {
2534                                         pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
2535                                                 node_id: channel.get_counterparty_node_id(),
2536                                                 msg: revoke_and_ack,
2537                                         });
2538                                 }
2539                         } }
2540                         match order {
2541                                 RAACommitmentOrder::CommitmentFirst => {
2542                                         handle_cs!();
2543                                         handle_raa!();
2544                                 },
2545                                 RAACommitmentOrder::RevokeAndACKFirst => {
2546                                         handle_raa!();
2547                                         handle_cs!();
2548                                 },
2549                         }
2550                         if let Some(tx) = funding_broadcastable {
2551                                 self.tx_broadcaster.broadcast_transaction(&tx);
2552                         }
2553                         if let Some(msg) = funding_locked {
2554                                 pending_msg_events.push(events::MessageSendEvent::SendFundingLocked {
2555                                         node_id: channel.get_counterparty_node_id(),
2556                                         msg,
2557                                 });
2558                                 if let Some(announcement_sigs) = self.get_announcement_sigs(channel) {
2559                                         pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
2560                                                 node_id: channel.get_counterparty_node_id(),
2561                                                 msg: announcement_sigs,
2562                                         });
2563                                 }
2564                                 short_to_id.insert(channel.get_short_channel_id().unwrap(), channel.channel_id());
2565                         }
2566                 }
2567
2568                 self.pending_events.lock().unwrap().append(&mut pending_events);
2569
2570                 for failure in htlc_failures.drain(..) {
2571                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), failure.0, &failure.1, failure.2);
2572                 }
2573                 self.forward_htlcs(&mut htlc_forwards[..]);
2574
2575                 for res in close_results.drain(..) {
2576                         self.finish_force_close_channel(res);
2577                 }
2578         }
2579
2580         fn internal_open_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::OpenChannel) -> Result<(), MsgHandleErrInternal> {
2581                 if msg.chain_hash != self.genesis_hash {
2582                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Unknown genesis block hash".to_owned(), msg.temporary_channel_id.clone()));
2583                 }
2584
2585                 let channel = Channel::new_from_req(&self.fee_estimator, &self.keys_manager, counterparty_node_id.clone(), their_features, msg, 0, &self.default_configuration)
2586                         .map_err(|e| MsgHandleErrInternal::from_chan_no_close(e, msg.temporary_channel_id))?;
2587                 let mut channel_state_lock = self.channel_state.lock().unwrap();
2588                 let channel_state = &mut *channel_state_lock;
2589                 match channel_state.by_id.entry(channel.channel_id()) {
2590                         hash_map::Entry::Occupied(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("temporary_channel_id collision!".to_owned(), msg.temporary_channel_id.clone())),
2591                         hash_map::Entry::Vacant(entry) => {
2592                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
2593                                         node_id: counterparty_node_id.clone(),
2594                                         msg: channel.get_accept_channel(),
2595                                 });
2596                                 entry.insert(channel);
2597                         }
2598                 }
2599                 Ok(())
2600         }
2601
2602         fn internal_accept_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::AcceptChannel) -> Result<(), MsgHandleErrInternal> {
2603                 let (value, output_script, user_id) = {
2604                         let mut channel_lock = self.channel_state.lock().unwrap();
2605                         let channel_state = &mut *channel_lock;
2606                         match channel_state.by_id.entry(msg.temporary_channel_id) {
2607                                 hash_map::Entry::Occupied(mut chan) => {
2608                                         if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2609                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.temporary_channel_id));
2610                                         }
2611                                         try_chan_entry!(self, chan.get_mut().accept_channel(&msg, &self.default_configuration, their_features), channel_state, chan);
2612                                         (chan.get().get_value_satoshis(), chan.get().get_funding_redeemscript().to_v0_p2wsh(), chan.get().get_user_id())
2613                                 },
2614                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.temporary_channel_id))
2615                         }
2616                 };
2617                 let mut pending_events = self.pending_events.lock().unwrap();
2618                 pending_events.push(events::Event::FundingGenerationReady {
2619                         temporary_channel_id: msg.temporary_channel_id,
2620                         channel_value_satoshis: value,
2621                         output_script,
2622                         user_channel_id: user_id,
2623                 });
2624                 Ok(())
2625         }
2626
2627         fn internal_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) -> Result<(), MsgHandleErrInternal> {
2628                 let ((funding_msg, monitor), mut chan) = {
2629                         let best_block = *self.best_block.read().unwrap();
2630                         let mut channel_lock = self.channel_state.lock().unwrap();
2631                         let channel_state = &mut *channel_lock;
2632                         match channel_state.by_id.entry(msg.temporary_channel_id.clone()) {
2633                                 hash_map::Entry::Occupied(mut chan) => {
2634                                         if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2635                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.temporary_channel_id));
2636                                         }
2637                                         (try_chan_entry!(self, chan.get_mut().funding_created(msg, best_block, &self.logger), channel_state, chan), chan.remove())
2638                                 },
2639                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.temporary_channel_id))
2640                         }
2641                 };
2642                 // Because we have exclusive ownership of the channel here we can release the channel_state
2643                 // lock before watch_channel
2644                 if let Err(e) = self.chain_monitor.watch_channel(monitor.get_funding_txo().0, monitor) {
2645                         match e {
2646                                 ChannelMonitorUpdateErr::PermanentFailure => {
2647                                         // Note that we reply with the new channel_id in error messages if we gave up on the
2648                                         // channel, not the temporary_channel_id. This is compatible with ourselves, but the
2649                                         // spec is somewhat ambiguous here. Not a huge deal since we'll send error messages for
2650                                         // any messages referencing a previously-closed channel anyway.
2651                                         // We do not do a force-close here as that would generate a monitor update for
2652                                         // a monitor that we didn't manage to store (and that we don't care about - we
2653                                         // don't respond with the funding_signed so the channel can never go on chain).
2654                                         let (_monitor_update, failed_htlcs) = chan.force_shutdown(true);
2655                                         assert!(failed_htlcs.is_empty());
2656                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("ChannelMonitor storage failure".to_owned(), funding_msg.channel_id));
2657                                 },
2658                                 ChannelMonitorUpdateErr::TemporaryFailure => {
2659                                         // There's no problem signing a counterparty's funding transaction if our monitor
2660                                         // hasn't persisted to disk yet - we can't lose money on a transaction that we haven't
2661                                         // accepted payment from yet. We do, however, need to wait to send our funding_locked
2662                                         // until we have persisted our monitor.
2663                                         chan.monitor_update_failed(false, false, Vec::new(), Vec::new());
2664                                 },
2665                         }
2666                 }
2667                 let mut channel_state_lock = self.channel_state.lock().unwrap();
2668                 let channel_state = &mut *channel_state_lock;
2669                 match channel_state.by_id.entry(funding_msg.channel_id) {
2670                         hash_map::Entry::Occupied(_) => {
2671                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Already had channel with the new channel_id".to_owned(), funding_msg.channel_id))
2672                         },
2673                         hash_map::Entry::Vacant(e) => {
2674                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingSigned {
2675                                         node_id: counterparty_node_id.clone(),
2676                                         msg: funding_msg,
2677                                 });
2678                                 e.insert(chan);
2679                         }
2680                 }
2681                 Ok(())
2682         }
2683
2684         fn internal_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) -> Result<(), MsgHandleErrInternal> {
2685                 let funding_tx = {
2686                         let best_block = *self.best_block.read().unwrap();
2687                         let mut channel_lock = self.channel_state.lock().unwrap();
2688                         let channel_state = &mut *channel_lock;
2689                         match channel_state.by_id.entry(msg.channel_id) {
2690                                 hash_map::Entry::Occupied(mut chan) => {
2691                                         if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2692                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2693                                         }
2694                                         let (monitor, funding_tx) = match chan.get_mut().funding_signed(&msg, best_block, &self.logger) {
2695                                                 Ok(update) => update,
2696                                                 Err(e) => try_chan_entry!(self, Err(e), channel_state, chan),
2697                                         };
2698                                         if let Err(e) = self.chain_monitor.watch_channel(chan.get().get_funding_txo().unwrap(), monitor) {
2699                                                 return_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::RevokeAndACKFirst, false, false);
2700                                         }
2701                                         funding_tx
2702                                 },
2703                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2704                         }
2705                 };
2706                 self.tx_broadcaster.broadcast_transaction(&funding_tx);
2707                 Ok(())
2708         }
2709
2710         fn internal_funding_locked(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingLocked) -> Result<(), MsgHandleErrInternal> {
2711                 let mut channel_state_lock = self.channel_state.lock().unwrap();
2712                 let channel_state = &mut *channel_state_lock;
2713                 match channel_state.by_id.entry(msg.channel_id) {
2714                         hash_map::Entry::Occupied(mut chan) => {
2715                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2716                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2717                                 }
2718                                 try_chan_entry!(self, chan.get_mut().funding_locked(&msg), channel_state, chan);
2719                                 if let Some(announcement_sigs) = self.get_announcement_sigs(chan.get()) {
2720                                         log_trace!(self.logger, "Sending announcement_signatures for {} in response to funding_locked", log_bytes!(chan.get().channel_id()));
2721                                         // If we see locking block before receiving remote funding_locked, we broadcast our
2722                                         // announcement_sigs at remote funding_locked reception. If we receive remote
2723                                         // funding_locked before seeing locking block, we broadcast our announcement_sigs at locking
2724                                         // block connection. We should guanrantee to broadcast announcement_sigs to our peer whatever
2725                                         // the order of the events but our peer may not receive it due to disconnection. The specs
2726                                         // lacking an acknowledgement for announcement_sigs we may have to re-send them at peer
2727                                         // connection in the future if simultaneous misses by both peers due to network/hardware
2728                                         // failures is an issue. Note, to achieve its goal, only one of the announcement_sigs needs
2729                                         // to be received, from then sigs are going to be flood to the whole network.
2730                                         channel_state.pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
2731                                                 node_id: counterparty_node_id.clone(),
2732                                                 msg: announcement_sigs,
2733                                         });
2734                                 }
2735                                 Ok(())
2736                         },
2737                         hash_map::Entry::Vacant(_) => Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2738                 }
2739         }
2740
2741         fn internal_shutdown(&self, counterparty_node_id: &PublicKey, their_features: &InitFeatures, msg: &msgs::Shutdown) -> Result<(), MsgHandleErrInternal> {
2742                 let (mut dropped_htlcs, chan_option) = {
2743                         let mut channel_state_lock = self.channel_state.lock().unwrap();
2744                         let channel_state = &mut *channel_state_lock;
2745
2746                         match channel_state.by_id.entry(msg.channel_id.clone()) {
2747                                 hash_map::Entry::Occupied(mut chan_entry) => {
2748                                         if chan_entry.get().get_counterparty_node_id() != *counterparty_node_id {
2749                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2750                                         }
2751                                         let (shutdown, closing_signed, dropped_htlcs) = try_chan_entry!(self, chan_entry.get_mut().shutdown(&self.fee_estimator, &their_features, &msg), channel_state, chan_entry);
2752                                         if let Some(msg) = shutdown {
2753                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
2754                                                         node_id: counterparty_node_id.clone(),
2755                                                         msg,
2756                                                 });
2757                                         }
2758                                         if let Some(msg) = closing_signed {
2759                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
2760                                                         node_id: counterparty_node_id.clone(),
2761                                                         msg,
2762                                                 });
2763                                         }
2764                                         if chan_entry.get().is_shutdown() {
2765                                                 if let Some(short_id) = chan_entry.get().get_short_channel_id() {
2766                                                         channel_state.short_to_id.remove(&short_id);
2767                                                 }
2768                                                 (dropped_htlcs, Some(chan_entry.remove_entry().1))
2769                                         } else { (dropped_htlcs, None) }
2770                                 },
2771                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2772                         }
2773                 };
2774                 for htlc_source in dropped_htlcs.drain(..) {
2775                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
2776                 }
2777                 if let Some(chan) = chan_option {
2778                         if let Ok(update) = self.get_channel_update(&chan) {
2779                                 let mut channel_state = self.channel_state.lock().unwrap();
2780                                 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2781                                         msg: update
2782                                 });
2783                         }
2784                 }
2785                 Ok(())
2786         }
2787
2788         fn internal_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) -> Result<(), MsgHandleErrInternal> {
2789                 let (tx, chan_option) = {
2790                         let mut channel_state_lock = self.channel_state.lock().unwrap();
2791                         let channel_state = &mut *channel_state_lock;
2792                         match channel_state.by_id.entry(msg.channel_id.clone()) {
2793                                 hash_map::Entry::Occupied(mut chan_entry) => {
2794                                         if chan_entry.get().get_counterparty_node_id() != *counterparty_node_id {
2795                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2796                                         }
2797                                         let (closing_signed, tx) = try_chan_entry!(self, chan_entry.get_mut().closing_signed(&self.fee_estimator, &msg), channel_state, chan_entry);
2798                                         if let Some(msg) = closing_signed {
2799                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
2800                                                         node_id: counterparty_node_id.clone(),
2801                                                         msg,
2802                                                 });
2803                                         }
2804                                         if tx.is_some() {
2805                                                 // We're done with this channel, we've got a signed closing transaction and
2806                                                 // will send the closing_signed back to the remote peer upon return. This
2807                                                 // also implies there are no pending HTLCs left on the channel, so we can
2808                                                 // fully delete it from tracking (the channel monitor is still around to
2809                                                 // watch for old state broadcasts)!
2810                                                 if let Some(short_id) = chan_entry.get().get_short_channel_id() {
2811                                                         channel_state.short_to_id.remove(&short_id);
2812                                                 }
2813                                                 (tx, Some(chan_entry.remove_entry().1))
2814                                         } else { (tx, None) }
2815                                 },
2816                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2817                         }
2818                 };
2819                 if let Some(broadcast_tx) = tx {
2820                         log_trace!(self.logger, "Broadcast onchain {}", log_tx!(broadcast_tx));
2821                         self.tx_broadcaster.broadcast_transaction(&broadcast_tx);
2822                 }
2823                 if let Some(chan) = chan_option {
2824                         if let Ok(update) = self.get_channel_update(&chan) {
2825                                 let mut channel_state = self.channel_state.lock().unwrap();
2826                                 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2827                                         msg: update
2828                                 });
2829                         }
2830                 }
2831                 Ok(())
2832         }
2833
2834         fn internal_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) -> Result<(), MsgHandleErrInternal> {
2835                 //TODO: BOLT 4 points out a specific attack where a peer may re-send an onion packet and
2836                 //determine the state of the payment based on our response/if we forward anything/the time
2837                 //we take to respond. We should take care to avoid allowing such an attack.
2838                 //
2839                 //TODO: There exists a further attack where a node may garble the onion data, forward it to
2840                 //us repeatedly garbled in different ways, and compare our error messages, which are
2841                 //encrypted with the same key. It's not immediately obvious how to usefully exploit that,
2842                 //but we should prevent it anyway.
2843
2844                 let (pending_forward_info, mut channel_state_lock) = self.decode_update_add_htlc_onion(msg);
2845                 let channel_state = &mut *channel_state_lock;
2846
2847                 match channel_state.by_id.entry(msg.channel_id) {
2848                         hash_map::Entry::Occupied(mut chan) => {
2849                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2850                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2851                                 }
2852
2853                                 let create_pending_htlc_status = |chan: &Channel<Signer>, pending_forward_info: PendingHTLCStatus, error_code: u16| {
2854                                         // Ensure error_code has the UPDATE flag set, since by default we send a
2855                                         // channel update along as part of failing the HTLC.
2856                                         assert!((error_code & 0x1000) != 0);
2857                                         // If the update_add is completely bogus, the call will Err and we will close,
2858                                         // but if we've sent a shutdown and they haven't acknowledged it yet, we just
2859                                         // want to reject the new HTLC and fail it backwards instead of forwarding.
2860                                         match pending_forward_info {
2861                                                 PendingHTLCStatus::Forward(PendingHTLCInfo { ref incoming_shared_secret, .. }) => {
2862                                                         let reason = if let Ok(upd) = self.get_channel_update(chan) {
2863                                                                 onion_utils::build_first_hop_failure_packet(incoming_shared_secret, error_code, &{
2864                                                                         let mut res = Vec::with_capacity(8 + 128);
2865                                                                         // TODO: underspecified, follow https://github.com/lightningnetwork/lightning-rfc/issues/791
2866                                                                         res.extend_from_slice(&byte_utils::be16_to_array(0));
2867                                                                         res.extend_from_slice(&upd.encode_with_len()[..]);
2868                                                                         res
2869                                                                 }[..])
2870                                                         } else {
2871                                                                 // The only case where we'd be unable to
2872                                                                 // successfully get a channel update is if the
2873                                                                 // channel isn't in the fully-funded state yet,
2874                                                                 // implying our counterparty is trying to route
2875                                                                 // payments over the channel back to themselves
2876                                                                 // (cause no one else should know the short_id
2877                                                                 // is a lightning channel yet). We should have
2878                                                                 // no problem just calling this
2879                                                                 // unknown_next_peer (0x4000|10).
2880                                                                 onion_utils::build_first_hop_failure_packet(incoming_shared_secret, 0x4000|10, &[])
2881                                                         };
2882                                                         let msg = msgs::UpdateFailHTLC {
2883                                                                 channel_id: msg.channel_id,
2884                                                                 htlc_id: msg.htlc_id,
2885                                                                 reason
2886                                                         };
2887                                                         PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msg))
2888                                                 },
2889                                                 _ => pending_forward_info
2890                                         }
2891                                 };
2892                                 try_chan_entry!(self, chan.get_mut().update_add_htlc(&msg, pending_forward_info, create_pending_htlc_status, &self.logger), channel_state, chan);
2893                         },
2894                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2895                 }
2896                 Ok(())
2897         }
2898
2899         fn internal_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) -> Result<(), MsgHandleErrInternal> {
2900                 let mut channel_lock = self.channel_state.lock().unwrap();
2901                 let htlc_source = {
2902                         let channel_state = &mut *channel_lock;
2903                         match channel_state.by_id.entry(msg.channel_id) {
2904                                 hash_map::Entry::Occupied(mut chan) => {
2905                                         if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2906                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2907                                         }
2908                                         try_chan_entry!(self, chan.get_mut().update_fulfill_htlc(&msg), channel_state, chan)
2909                                 },
2910                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2911                         }
2912                 };
2913                 self.claim_funds_internal(channel_lock, htlc_source, msg.payment_preimage.clone());
2914                 Ok(())
2915         }
2916
2917         fn internal_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) -> Result<(), MsgHandleErrInternal> {
2918                 let mut channel_lock = self.channel_state.lock().unwrap();
2919                 let channel_state = &mut *channel_lock;
2920                 match channel_state.by_id.entry(msg.channel_id) {
2921                         hash_map::Entry::Occupied(mut chan) => {
2922                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2923                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2924                                 }
2925                                 try_chan_entry!(self, chan.get_mut().update_fail_htlc(&msg, HTLCFailReason::LightningError { err: msg.reason.clone() }), channel_state, chan);
2926                         },
2927                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2928                 }
2929                 Ok(())
2930         }
2931
2932         fn internal_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) -> Result<(), MsgHandleErrInternal> {
2933                 let mut channel_lock = self.channel_state.lock().unwrap();
2934                 let channel_state = &mut *channel_lock;
2935                 match channel_state.by_id.entry(msg.channel_id) {
2936                         hash_map::Entry::Occupied(mut chan) => {
2937                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2938                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2939                                 }
2940                                 if (msg.failure_code & 0x8000) == 0 {
2941                                         let chan_err: ChannelError = ChannelError::Close("Got update_fail_malformed_htlc with BADONION not set".to_owned());
2942                                         try_chan_entry!(self, Err(chan_err), channel_state, chan);
2943                                 }
2944                                 try_chan_entry!(self, chan.get_mut().update_fail_malformed_htlc(&msg, HTLCFailReason::Reason { failure_code: msg.failure_code, data: Vec::new() }), channel_state, chan);
2945                                 Ok(())
2946                         },
2947                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2948                 }
2949         }
2950
2951         fn internal_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) -> Result<(), MsgHandleErrInternal> {
2952                 let mut channel_state_lock = self.channel_state.lock().unwrap();
2953                 let channel_state = &mut *channel_state_lock;
2954                 match channel_state.by_id.entry(msg.channel_id) {
2955                         hash_map::Entry::Occupied(mut chan) => {
2956                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2957                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2958                                 }
2959                                 let (revoke_and_ack, commitment_signed, closing_signed, monitor_update) =
2960                                         match chan.get_mut().commitment_signed(&msg, &self.fee_estimator, &self.logger) {
2961                                                 Err((None, e)) => try_chan_entry!(self, Err(e), channel_state, chan),
2962                                                 Err((Some(update), e)) => {
2963                                                         assert!(chan.get().is_awaiting_monitor_update());
2964                                                         let _ = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), update);
2965                                                         try_chan_entry!(self, Err(e), channel_state, chan);
2966                                                         unreachable!();
2967                                                 },
2968                                                 Ok(res) => res
2969                                         };
2970                                 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
2971                                         return_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::RevokeAndACKFirst, true, commitment_signed.is_some());
2972                                         //TODO: Rebroadcast closing_signed if present on monitor update restoration
2973                                 }
2974                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
2975                                         node_id: counterparty_node_id.clone(),
2976                                         msg: revoke_and_ack,
2977                                 });
2978                                 if let Some(msg) = commitment_signed {
2979                                         channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
2980                                                 node_id: counterparty_node_id.clone(),
2981                                                 updates: msgs::CommitmentUpdate {
2982                                                         update_add_htlcs: Vec::new(),
2983                                                         update_fulfill_htlcs: Vec::new(),
2984                                                         update_fail_htlcs: Vec::new(),
2985                                                         update_fail_malformed_htlcs: Vec::new(),
2986                                                         update_fee: None,
2987                                                         commitment_signed: msg,
2988                                                 },
2989                                         });
2990                                 }
2991                                 if let Some(msg) = closing_signed {
2992                                         channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
2993                                                 node_id: counterparty_node_id.clone(),
2994                                                 msg,
2995                                         });
2996                                 }
2997                                 Ok(())
2998                         },
2999                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3000                 }
3001         }
3002
3003         #[inline]
3004         fn forward_htlcs(&self, per_source_pending_forwards: &mut [(u64, OutPoint, Vec<(PendingHTLCInfo, u64)>)]) {
3005                 for &mut (prev_short_channel_id, prev_funding_outpoint, ref mut pending_forwards) in per_source_pending_forwards {
3006                         let mut forward_event = None;
3007                         if !pending_forwards.is_empty() {
3008                                 let mut channel_state = self.channel_state.lock().unwrap();
3009                                 if channel_state.forward_htlcs.is_empty() {
3010                                         forward_event = Some(Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS))
3011                                 }
3012                                 for (forward_info, prev_htlc_id) in pending_forwards.drain(..) {
3013                                         match channel_state.forward_htlcs.entry(match forward_info.routing {
3014                                                         PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
3015                                                         PendingHTLCRouting::Receive { .. } => 0,
3016                                         }) {
3017                                                 hash_map::Entry::Occupied(mut entry) => {
3018                                                         entry.get_mut().push(HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_funding_outpoint,
3019                                                                                                         prev_htlc_id, forward_info });
3020                                                 },
3021                                                 hash_map::Entry::Vacant(entry) => {
3022                                                         entry.insert(vec!(HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_funding_outpoint,
3023                                                                                                      prev_htlc_id, forward_info }));
3024                                                 }
3025                                         }
3026                                 }
3027                         }
3028                         match forward_event {
3029                                 Some(time) => {
3030                                         let mut pending_events = self.pending_events.lock().unwrap();
3031                                         pending_events.push(events::Event::PendingHTLCsForwardable {
3032                                                 time_forwardable: time
3033                                         });
3034                                 }
3035                                 None => {},
3036                         }
3037                 }
3038         }
3039
3040         fn internal_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) -> Result<(), MsgHandleErrInternal> {
3041                 let mut htlcs_to_fail = Vec::new();
3042                 let res = loop {
3043                         let mut channel_state_lock = self.channel_state.lock().unwrap();
3044                         let channel_state = &mut *channel_state_lock;
3045                         match channel_state.by_id.entry(msg.channel_id) {
3046                                 hash_map::Entry::Occupied(mut chan) => {
3047                                         if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3048                                                 break Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3049                                         }
3050                                         let was_frozen_for_monitor = chan.get().is_awaiting_monitor_update();
3051                                         let (commitment_update, pending_forwards, pending_failures, closing_signed, monitor_update, htlcs_to_fail_in) =
3052                                                 break_chan_entry!(self, chan.get_mut().revoke_and_ack(&msg, &self.fee_estimator, &self.logger), channel_state, chan);
3053                                         htlcs_to_fail = htlcs_to_fail_in;
3054                                         if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
3055                                                 if was_frozen_for_monitor {
3056                                                         assert!(commitment_update.is_none() && closing_signed.is_none() && pending_forwards.is_empty() && pending_failures.is_empty());
3057                                                         break Err(MsgHandleErrInternal::ignore_no_close("Previous monitor update failure prevented responses to RAA".to_owned()));
3058                                                 } else {
3059                                                         if let Err(e) = handle_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, commitment_update.is_some(), pending_forwards, pending_failures) {
3060                                                                 break Err(e);
3061                                                         } else { unreachable!(); }
3062                                                 }
3063                                         }
3064                                         if let Some(updates) = commitment_update {
3065                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
3066                                                         node_id: counterparty_node_id.clone(),
3067                                                         updates,
3068                                                 });
3069                                         }
3070                                         if let Some(msg) = closing_signed {
3071                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
3072                                                         node_id: counterparty_node_id.clone(),
3073                                                         msg,
3074                                                 });
3075                                         }
3076                                         break Ok((pending_forwards, pending_failures, chan.get().get_short_channel_id().expect("RAA should only work on a short-id-available channel"), chan.get().get_funding_txo().unwrap()))
3077                                 },
3078                                 hash_map::Entry::Vacant(_) => break Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3079                         }
3080                 };
3081                 self.fail_holding_cell_htlcs(htlcs_to_fail, msg.channel_id);
3082                 match res {
3083                         Ok((pending_forwards, mut pending_failures, short_channel_id, channel_outpoint)) => {
3084                                 for failure in pending_failures.drain(..) {
3085                                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), failure.0, &failure.1, failure.2);
3086                                 }
3087                                 self.forward_htlcs(&mut [(short_channel_id, channel_outpoint, pending_forwards)]);
3088                                 Ok(())
3089                         },
3090                         Err(e) => Err(e)
3091                 }
3092         }
3093
3094         fn internal_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) -> Result<(), MsgHandleErrInternal> {
3095                 let mut channel_lock = self.channel_state.lock().unwrap();
3096                 let channel_state = &mut *channel_lock;
3097                 match channel_state.by_id.entry(msg.channel_id) {
3098                         hash_map::Entry::Occupied(mut chan) => {
3099                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3100                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3101                                 }
3102                                 try_chan_entry!(self, chan.get_mut().update_fee(&self.fee_estimator, &msg), channel_state, chan);
3103                         },
3104                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3105                 }
3106                 Ok(())
3107         }
3108
3109         fn internal_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) -> Result<(), MsgHandleErrInternal> {
3110                 let mut channel_state_lock = self.channel_state.lock().unwrap();
3111                 let channel_state = &mut *channel_state_lock;
3112
3113                 match channel_state.by_id.entry(msg.channel_id) {
3114                         hash_map::Entry::Occupied(mut chan) => {
3115                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3116                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3117                                 }
3118                                 if !chan.get().is_usable() {
3119                                         return Err(MsgHandleErrInternal::from_no_close(LightningError{err: "Got an announcement_signatures before we were ready for it".to_owned(), action: msgs::ErrorAction::IgnoreError}));
3120                                 }
3121
3122                                 let our_node_id = self.get_our_node_id();
3123                                 let (announcement, our_bitcoin_sig) =
3124                                         try_chan_entry!(self, chan.get_mut().get_channel_announcement(our_node_id.clone(), self.genesis_hash.clone()), channel_state, chan);
3125
3126                                 let were_node_one = announcement.node_id_1 == our_node_id;
3127                                 let msghash = hash_to_message!(&Sha256dHash::hash(&announcement.encode()[..])[..]);
3128                                 {
3129                                         let their_node_key = if were_node_one { &announcement.node_id_2 } else { &announcement.node_id_1 };
3130                                         let their_bitcoin_key = if were_node_one { &announcement.bitcoin_key_2 } else { &announcement.bitcoin_key_1 };
3131                                         match (self.secp_ctx.verify(&msghash, &msg.node_signature, their_node_key),
3132                                                    self.secp_ctx.verify(&msghash, &msg.bitcoin_signature, their_bitcoin_key)) {
3133                                                 (Err(e), _) => {
3134                                                         let chan_err: ChannelError = ChannelError::Close(format!("Bad announcement_signatures. Failed to verify node_signature: {:?}. Maybe using different node_secret for transport and routing msg? UnsignedChannelAnnouncement used for verification is {:?}. their_node_key is {:?}", e, &announcement, their_node_key));
3135                                                         try_chan_entry!(self, Err(chan_err), channel_state, chan);
3136                                                 },
3137                                                 (_, Err(e)) => {
3138                                                         let chan_err: ChannelError = ChannelError::Close(format!("Bad announcement_signatures. Failed to verify bitcoin_signature: {:?}. UnsignedChannelAnnouncement used for verification is {:?}. their_bitcoin_key is ({:?})", e, &announcement, their_bitcoin_key));
3139                                                         try_chan_entry!(self, Err(chan_err), channel_state, chan);
3140                                                 },
3141                                                 _ => {}
3142                                         }
3143                                 }
3144
3145                                 let our_node_sig = self.secp_ctx.sign(&msghash, &self.our_network_key);
3146
3147                                 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
3148                                         msg: msgs::ChannelAnnouncement {
3149                                                 node_signature_1: if were_node_one { our_node_sig } else { msg.node_signature },
3150                                                 node_signature_2: if were_node_one { msg.node_signature } else { our_node_sig },
3151                                                 bitcoin_signature_1: if were_node_one { our_bitcoin_sig } else { msg.bitcoin_signature },
3152                                                 bitcoin_signature_2: if were_node_one { msg.bitcoin_signature } else { our_bitcoin_sig },
3153                                                 contents: announcement,
3154                                         },
3155                                         update_msg: self.get_channel_update(chan.get()).unwrap(), // can only fail if we're not in a ready state
3156                                 });
3157                         },
3158                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3159                 }
3160                 Ok(())
3161         }
3162
3163         fn internal_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) -> Result<(), MsgHandleErrInternal> {
3164                 let mut channel_state_lock = self.channel_state.lock().unwrap();
3165                 let channel_state = &mut *channel_state_lock;
3166                 let chan_id = match channel_state.short_to_id.get(&msg.contents.short_channel_id) {
3167                         Some(chan_id) => chan_id.clone(),
3168                         None => {
3169                                 // It's not a local channel
3170                                 return Ok(())
3171                         }
3172                 };
3173                 match channel_state.by_id.entry(chan_id) {
3174                         hash_map::Entry::Occupied(mut chan) => {
3175                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3176                                         // TODO: see issue #153, need a consistent behavior on obnoxious behavior from random node
3177                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), chan_id));
3178                                 }
3179                                 try_chan_entry!(self, chan.get_mut().channel_update(&msg), channel_state, chan);
3180                         },
3181                         hash_map::Entry::Vacant(_) => unreachable!()
3182                 }
3183                 Ok(())
3184         }
3185
3186         fn internal_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) -> Result<(), MsgHandleErrInternal> {
3187                 let mut channel_state_lock = self.channel_state.lock().unwrap();
3188                 let channel_state = &mut *channel_state_lock;
3189
3190                 match channel_state.by_id.entry(msg.channel_id) {
3191                         hash_map::Entry::Occupied(mut chan) => {
3192                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3193                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3194                                 }
3195                                 // Currently, we expect all holding cell update_adds to be dropped on peer
3196                                 // disconnect, so Channel's reestablish will never hand us any holding cell
3197                                 // freed HTLCs to fail backwards. If in the future we no longer drop pending
3198                                 // add-HTLCs on disconnect, we may be handed HTLCs to fail backwards here.
3199                                 let (funding_locked, revoke_and_ack, commitment_update, monitor_update_opt, mut order, shutdown) =
3200                                         try_chan_entry!(self, chan.get_mut().channel_reestablish(msg, &self.logger), channel_state, chan);
3201                                 if let Some(monitor_update) = monitor_update_opt {
3202                                         if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
3203                                                 // channel_reestablish doesn't guarantee the order it returns is sensical
3204                                                 // for the messages it returns, but if we're setting what messages to
3205                                                 // re-transmit on monitor update success, we need to make sure it is sane.
3206                                                 if revoke_and_ack.is_none() {
3207                                                         order = RAACommitmentOrder::CommitmentFirst;
3208                                                 }
3209                                                 if commitment_update.is_none() {
3210                                                         order = RAACommitmentOrder::RevokeAndACKFirst;
3211                                                 }
3212                                                 return_monitor_err!(self, e, channel_state, chan, order, revoke_and_ack.is_some(), commitment_update.is_some());
3213                                                 //TODO: Resend the funding_locked if needed once we get the monitor running again
3214                                         }
3215                                 }
3216                                 if let Some(msg) = funding_locked {
3217                                         channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingLocked {
3218                                                 node_id: counterparty_node_id.clone(),
3219                                                 msg
3220                                         });
3221                                 }
3222                                 macro_rules! send_raa { () => {
3223                                         if let Some(msg) = revoke_and_ack {
3224                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
3225                                                         node_id: counterparty_node_id.clone(),
3226                                                         msg
3227                                                 });
3228                                         }
3229                                 } }
3230                                 macro_rules! send_cu { () => {
3231                                         if let Some(updates) = commitment_update {
3232                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
3233                                                         node_id: counterparty_node_id.clone(),
3234                                                         updates
3235                                                 });
3236                                         }
3237                                 } }
3238                                 match order {
3239                                         RAACommitmentOrder::RevokeAndACKFirst => {
3240                                                 send_raa!();
3241                                                 send_cu!();
3242                                         },
3243                                         RAACommitmentOrder::CommitmentFirst => {
3244                                                 send_cu!();
3245                                                 send_raa!();
3246                                         },
3247                                 }
3248                                 if let Some(msg) = shutdown {
3249                                         channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
3250                                                 node_id: counterparty_node_id.clone(),
3251                                                 msg,
3252                                         });
3253                                 }
3254                                 Ok(())
3255                         },
3256                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3257                 }
3258         }
3259
3260         /// Begin Update fee process. Allowed only on an outbound channel.
3261         /// If successful, will generate a UpdateHTLCs event, so you should probably poll
3262         /// PeerManager::process_events afterwards.
3263         /// Note: This API is likely to change!
3264         /// (C-not exported) Cause its doc(hidden) anyway
3265         #[doc(hidden)]
3266         pub fn update_fee(&self, channel_id: [u8;32], feerate_per_kw: u32) -> Result<(), APIError> {
3267                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3268                 let counterparty_node_id;
3269                 let err: Result<(), _> = loop {
3270                         let mut channel_state_lock = self.channel_state.lock().unwrap();
3271                         let channel_state = &mut *channel_state_lock;
3272
3273                         match channel_state.by_id.entry(channel_id) {
3274                                 hash_map::Entry::Vacant(_) => return Err(APIError::APIMisuseError{err: format!("Failed to find corresponding channel for id {}", channel_id.to_hex())}),
3275                                 hash_map::Entry::Occupied(mut chan) => {
3276                                         if !chan.get().is_outbound() {
3277                                                 return Err(APIError::APIMisuseError{err: "update_fee cannot be sent for an inbound channel".to_owned()});
3278                                         }
3279                                         if chan.get().is_awaiting_monitor_update() {
3280                                                 return Err(APIError::MonitorUpdateFailed);
3281                                         }
3282                                         if !chan.get().is_live() {
3283                                                 return Err(APIError::ChannelUnavailable{err: "Channel is either not yet fully established or peer is currently disconnected".to_owned()});
3284                                         }
3285                                         counterparty_node_id = chan.get().get_counterparty_node_id();
3286                                         if let Some((update_fee, commitment_signed, monitor_update)) =
3287                                                         break_chan_entry!(self, chan.get_mut().send_update_fee_and_commit(feerate_per_kw, &self.logger), channel_state, chan)
3288                                         {
3289                                                 if let Err(_e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
3290                                                         unimplemented!();
3291                                                 }
3292                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
3293                                                         node_id: chan.get().get_counterparty_node_id(),
3294                                                         updates: msgs::CommitmentUpdate {
3295                                                                 update_add_htlcs: Vec::new(),
3296                                                                 update_fulfill_htlcs: Vec::new(),
3297                                                                 update_fail_htlcs: Vec::new(),
3298                                                                 update_fail_malformed_htlcs: Vec::new(),
3299                                                                 update_fee: Some(update_fee),
3300                                                                 commitment_signed,
3301                                                         },
3302                                                 });
3303                                         }
3304                                 },
3305                         }
3306                         return Ok(())
3307                 };
3308
3309                 match handle_error!(self, err, counterparty_node_id) {
3310                         Ok(_) => unreachable!(),
3311                         Err(e) => { Err(APIError::APIMisuseError { err: e.err })}
3312                 }
3313         }
3314
3315         /// Process pending events from the `chain::Watch`.
3316         fn process_pending_monitor_events(&self) {
3317                 let mut failed_channels = Vec::new();
3318                 {
3319                         for monitor_event in self.chain_monitor.release_pending_monitor_events() {
3320                                 match monitor_event {
3321                                         MonitorEvent::HTLCEvent(htlc_update) => {
3322                                                 if let Some(preimage) = htlc_update.payment_preimage {
3323                                                         log_trace!(self.logger, "Claiming HTLC with preimage {} from our monitor", log_bytes!(preimage.0));
3324                                                         self.claim_funds_internal(self.channel_state.lock().unwrap(), htlc_update.source, preimage);
3325                                                 } else {
3326                                                         log_trace!(self.logger, "Failing HTLC with hash {} from our monitor", log_bytes!(htlc_update.payment_hash.0));
3327                                                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_update.source, &htlc_update.payment_hash, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
3328                                                 }
3329                                         },
3330                                         MonitorEvent::CommitmentTxBroadcasted(funding_outpoint) => {
3331                                                 let mut channel_lock = self.channel_state.lock().unwrap();
3332                                                 let channel_state = &mut *channel_lock;
3333                                                 let by_id = &mut channel_state.by_id;
3334                                                 let short_to_id = &mut channel_state.short_to_id;
3335                                                 let pending_msg_events = &mut channel_state.pending_msg_events;
3336                                                 if let Some(mut chan) = by_id.remove(&funding_outpoint.to_channel_id()) {
3337                                                         if let Some(short_id) = chan.get_short_channel_id() {
3338                                                                 short_to_id.remove(&short_id);
3339                                                         }
3340                                                         failed_channels.push(chan.force_shutdown(false));
3341                                                         if let Ok(update) = self.get_channel_update(&chan) {
3342                                                                 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
3343                                                                         msg: update
3344                                                                 });
3345                                                         }
3346                                                         pending_msg_events.push(events::MessageSendEvent::HandleError {
3347                                                                 node_id: chan.get_counterparty_node_id(),
3348                                                                 action: msgs::ErrorAction::SendErrorMessage {
3349                                                                         msg: msgs::ErrorMessage { channel_id: chan.channel_id(), data: "Channel force-closed".to_owned() }
3350                                                                 },
3351                                                         });
3352                                                 }
3353                                         },
3354                                 }
3355                         }
3356                 }
3357
3358                 for failure in failed_channels.drain(..) {
3359                         self.finish_force_close_channel(failure);
3360                 }
3361         }
3362
3363         /// Handle a list of channel failures during a block_connected or block_disconnected call,
3364         /// pushing the channel monitor update (if any) to the background events queue and removing the
3365         /// Channel object.
3366         fn handle_init_event_channel_failures(&self, mut failed_channels: Vec<ShutdownResult>) {
3367                 for mut failure in failed_channels.drain(..) {
3368                         // Either a commitment transactions has been confirmed on-chain or
3369                         // Channel::block_disconnected detected that the funding transaction has been
3370                         // reorganized out of the main chain.
3371                         // We cannot broadcast our latest local state via monitor update (as
3372                         // Channel::force_shutdown tries to make us do) as we may still be in initialization,
3373                         // so we track the update internally and handle it when the user next calls
3374                         // timer_tick_occurred, guaranteeing we're running normally.
3375                         if let Some((funding_txo, update)) = failure.0.take() {
3376                                 assert_eq!(update.updates.len(), 1);
3377                                 if let ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast } = update.updates[0] {
3378                                         assert!(should_broadcast);
3379                                 } else { unreachable!(); }
3380                                 self.pending_background_events.lock().unwrap().push(BackgroundEvent::ClosingMonitorUpdate((funding_txo, update)));
3381                         }
3382                         self.finish_force_close_channel(failure);
3383                 }
3384         }
3385
3386         fn set_payment_hash_secret_map(&self, payment_hash: PaymentHash, payment_preimage: Option<PaymentPreimage>, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32) -> Result<PaymentSecret, APIError> {
3387                 assert!(invoice_expiry_delta_secs <= 60*60*24*365); // Sadly bitcoin timestamps are u32s, so panic before 2106
3388
3389                 let payment_secret = PaymentSecret(self.keys_manager.get_secure_random_bytes());
3390
3391                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3392                 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
3393                 match payment_secrets.entry(payment_hash) {
3394                         hash_map::Entry::Vacant(e) => {
3395                                 e.insert(PendingInboundPayment {
3396                                         payment_secret, min_value_msat, payment_preimage,
3397                                         // We assume that highest_seen_timestamp is pretty close to the current time -
3398                                         // its updated when we receive a new block with the maximum time we've seen in
3399                                         // a header. It should never be more than two hours in the future.
3400                                         // Thus, we add two hours here as a buffer to ensure we absolutely
3401                                         // never fail a payment too early.
3402                                         // Note that we assume that received blocks have reasonably up-to-date
3403                                         // timestamps.
3404                                         expiry_time: self.highest_seen_timestamp.load(Ordering::Acquire) as u64 + invoice_expiry_delta_secs as u64 + 7200,
3405                                 });
3406                         },
3407                         hash_map::Entry::Occupied(_) => return Err(APIError::APIMisuseError { err: "Duplicate payment hash".to_owned() }),
3408                 }
3409                 Ok(payment_secret)
3410         }
3411
3412         /// Gets a payment secret and payment hash for use in an invoice given to a third party wishing
3413         /// to pay us.
3414         ///
3415         /// This differs from [`create_inbound_payment_for_hash`] only in that it generates the
3416         /// [`PaymentHash`] and [`PaymentPreimage`] for you, returning the first and storing the second.
3417         ///
3418         /// See [`create_inbound_payment_for_hash`] for detailed documentation on behavior and requirements.
3419         ///
3420         /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
3421         pub fn create_inbound_payment(&self, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32) -> (PaymentHash, PaymentSecret) {
3422                 let payment_preimage = PaymentPreimage(self.keys_manager.get_secure_random_bytes());
3423                 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
3424
3425                 (payment_hash,
3426                         self.set_payment_hash_secret_map(payment_hash, Some(payment_preimage), min_value_msat, invoice_expiry_delta_secs)
3427                                 .expect("RNG Generated Duplicate PaymentHash"))
3428         }
3429
3430         /// Gets a [`PaymentSecret`] for a given [`PaymentHash`], for which the payment preimage is
3431         /// stored external to LDK.
3432         ///
3433         /// A [`PaymentReceived`] event will only be generated if the [`PaymentSecret`] matches a
3434         /// payment secret fetched via this method or [`create_inbound_payment`], and which is at least
3435         /// the `min_value_msat` provided here, if one is provided.
3436         ///
3437         /// The [`PaymentHash`] (and corresponding [`PaymentPreimage`]) must be globally unique. This
3438         /// method may return an Err if another payment with the same payment_hash is still pending.
3439         ///
3440         /// `min_value_msat` should be set if the invoice being generated contains a value. Any payment
3441         /// received for the returned [`PaymentHash`] will be required to be at least `min_value_msat`
3442         /// before a [`PaymentReceived`] event will be generated, ensuring that we do not provide the
3443         /// sender "proof-of-payment" unless they have paid the required amount.
3444         ///
3445         /// `invoice_expiry_delta_secs` describes the number of seconds that the invoice is valid for
3446         /// in excess of the current time. This should roughly match the expiry time set in the invoice.
3447         /// After this many seconds, we will remove the inbound payment, resulting in any attempts to
3448         /// pay the invoice failing. The BOLT spec suggests 7,200 secs as a default validity time for
3449         /// invoices when no timeout is set.
3450         ///
3451         /// Note that we use block header time to time-out pending inbound payments (with some margin
3452         /// to compensate for the inaccuracy of block header timestamps). Thus, in practice we will
3453         /// accept a payment and generate a [`PaymentReceived`] event for some time after the expiry.
3454         /// If you need exact expiry semantics, you should enforce them upon receipt of
3455         /// [`PaymentReceived`].
3456         ///
3457         /// May panic if `invoice_expiry_delta_secs` is greater than one year.
3458         ///
3459         /// [`create_inbound_payment`]: Self::create_inbound_payment
3460         /// [`PaymentReceived`]: events::Event::PaymentReceived
3461         pub fn create_inbound_payment_for_hash(&self, payment_hash: PaymentHash, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32) -> Result<PaymentSecret, APIError> {
3462                 self.set_payment_hash_secret_map(payment_hash, None, min_value_msat, invoice_expiry_delta_secs)
3463         }
3464 }
3465
3466 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> MessageSendEventsProvider for ChannelManager<Signer, M, T, K, F, L>
3467         where M::Target: chain::Watch<Signer>,
3468         T::Target: BroadcasterInterface,
3469         K::Target: KeysInterface<Signer = Signer>,
3470         F::Target: FeeEstimator,
3471                                 L::Target: Logger,
3472 {
3473         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
3474                 //TODO: This behavior should be documented. It's non-intuitive that we query
3475                 // ChannelMonitors when clearing other events.
3476                 self.process_pending_monitor_events();
3477
3478                 let mut ret = Vec::new();
3479                 let mut channel_state = self.channel_state.lock().unwrap();
3480                 mem::swap(&mut ret, &mut channel_state.pending_msg_events);
3481                 ret
3482         }
3483 }
3484
3485 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> EventsProvider for ChannelManager<Signer, M, T, K, F, L>
3486         where M::Target: chain::Watch<Signer>,
3487         T::Target: BroadcasterInterface,
3488         K::Target: KeysInterface<Signer = Signer>,
3489         F::Target: FeeEstimator,
3490                                 L::Target: Logger,
3491 {
3492         fn get_and_clear_pending_events(&self) -> Vec<Event> {
3493                 //TODO: This behavior should be documented. It's non-intuitive that we query
3494                 // ChannelMonitors when clearing other events.
3495                 self.process_pending_monitor_events();
3496
3497                 let mut ret = Vec::new();
3498                 let mut pending_events = self.pending_events.lock().unwrap();
3499                 mem::swap(&mut ret, &mut *pending_events);
3500                 ret
3501         }
3502 }
3503
3504 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> chain::Listen for ChannelManager<Signer, M, T, K, F, L>
3505 where
3506         M::Target: chain::Watch<Signer>,
3507         T::Target: BroadcasterInterface,
3508         K::Target: KeysInterface<Signer = Signer>,
3509         F::Target: FeeEstimator,
3510         L::Target: Logger,
3511 {
3512         fn block_connected(&self, block: &Block, height: u32) {
3513                 {
3514                         let best_block = self.best_block.read().unwrap();
3515                         assert_eq!(best_block.block_hash(), block.header.prev_blockhash,
3516                                 "Blocks must be connected in chain-order - the connected header must build on the last connected header");
3517                         assert_eq!(best_block.height(), height - 1,
3518                                 "Blocks must be connected in chain-order - the connected block height must be one greater than the previous height");
3519                 }
3520
3521                 let txdata: Vec<_> = block.txdata.iter().enumerate().collect();
3522                 self.transactions_confirmed(&block.header, &txdata, height);
3523                 self.best_block_updated(&block.header, height);
3524         }
3525
3526         fn block_disconnected(&self, header: &BlockHeader, height: u32) {
3527                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3528                 let new_height = height - 1;
3529                 {
3530                         let mut best_block = self.best_block.write().unwrap();
3531                         assert_eq!(best_block.block_hash(), header.block_hash(),
3532                                 "Blocks must be disconnected in chain-order - the disconnected header must be the last connected header");
3533                         assert_eq!(best_block.height(), height,
3534                                 "Blocks must be disconnected in chain-order - the disconnected block must have the correct height");
3535                         *best_block = BestBlock::new(header.prev_blockhash, new_height)
3536                 }
3537
3538                 self.do_chain_event(Some(new_height), |channel| channel.best_block_updated(new_height, header.time));
3539         }
3540 }
3541
3542 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> chain::Confirm for ChannelManager<Signer, M, T, K, F, L>
3543 where
3544         M::Target: chain::Watch<Signer>,
3545         T::Target: BroadcasterInterface,
3546         K::Target: KeysInterface<Signer = Signer>,
3547         F::Target: FeeEstimator,
3548         L::Target: Logger,
3549 {
3550         fn transactions_confirmed(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
3551                 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
3552                 // during initialization prior to the chain_monitor being fully configured in some cases.
3553                 // See the docs for `ChannelManagerReadArgs` for more.
3554
3555                 let block_hash = header.block_hash();
3556                 log_trace!(self.logger, "{} transactions included in block {} at height {} provided", txdata.len(), block_hash, height);
3557
3558                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3559                 self.do_chain_event(Some(height), |channel| channel.transactions_confirmed(&block_hash, height, txdata, &self.logger).map(|a| (a, Vec::new())));
3560         }
3561
3562         fn best_block_updated(&self, header: &BlockHeader, height: u32) {
3563                 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
3564                 // during initialization prior to the chain_monitor being fully configured in some cases.
3565                 // See the docs for `ChannelManagerReadArgs` for more.
3566
3567                 let block_hash = header.block_hash();
3568                 log_trace!(self.logger, "New best block: {} at height {}", block_hash, height);
3569
3570                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3571
3572                 *self.best_block.write().unwrap() = BestBlock::new(block_hash, height);
3573
3574                 self.do_chain_event(Some(height), |channel| channel.best_block_updated(height, header.time));
3575
3576                 macro_rules! max_time {
3577                         ($timestamp: expr) => {
3578                                 loop {
3579                                         // Update $timestamp to be the max of its current value and the block
3580                                         // timestamp. This should keep us close to the current time without relying on
3581                                         // having an explicit local time source.
3582                                         // Just in case we end up in a race, we loop until we either successfully
3583                                         // update $timestamp or decide we don't need to.
3584                                         let old_serial = $timestamp.load(Ordering::Acquire);
3585                                         if old_serial >= header.time as usize { break; }
3586                                         if $timestamp.compare_exchange(old_serial, header.time as usize, Ordering::AcqRel, Ordering::Relaxed).is_ok() {
3587                                                 break;
3588                                         }
3589                                 }
3590                         }
3591                 }
3592                 max_time!(self.last_node_announcement_serial);
3593                 max_time!(self.highest_seen_timestamp);
3594         }
3595
3596         fn get_relevant_txids(&self) -> Vec<Txid> {
3597                 let channel_state = self.channel_state.lock().unwrap();
3598                 let mut res = Vec::with_capacity(channel_state.short_to_id.len());
3599                 for chan in channel_state.by_id.values() {
3600                         if let Some(funding_txo) = chan.get_funding_txo() {
3601                                 res.push(funding_txo.txid);
3602                         }
3603                 }
3604                 res
3605         }
3606
3607         fn transaction_unconfirmed(&self, txid: &Txid) {
3608                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3609                 self.do_chain_event(None, |channel| {
3610                         if let Some(funding_txo) = channel.get_funding_txo() {
3611                                 if funding_txo.txid == *txid {
3612                                         channel.funding_transaction_unconfirmed().map(|_| (None, Vec::new()))
3613                                 } else { Ok((None, Vec::new())) }
3614                         } else { Ok((None, Vec::new())) }
3615                 });
3616         }
3617 }
3618
3619 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> ChannelManager<Signer, M, T, K, F, L>
3620 where
3621         M::Target: chain::Watch<Signer>,
3622         T::Target: BroadcasterInterface,
3623         K::Target: KeysInterface<Signer = Signer>,
3624         F::Target: FeeEstimator,
3625         L::Target: Logger,
3626 {
3627         /// Calls a function which handles an on-chain event (blocks dis/connected, transactions
3628         /// un/confirmed, etc) on each channel, handling any resulting errors or messages generated by
3629         /// the function.
3630         fn do_chain_event<FN: Fn(&mut Channel<Signer>) -> Result<(Option<msgs::FundingLocked>, Vec<(HTLCSource, PaymentHash)>), msgs::ErrorMessage>>
3631                         (&self, height_opt: Option<u32>, f: FN) {
3632                 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
3633                 // during initialization prior to the chain_monitor being fully configured in some cases.
3634                 // See the docs for `ChannelManagerReadArgs` for more.
3635
3636                 let mut failed_channels = Vec::new();
3637                 let mut timed_out_htlcs = Vec::new();
3638                 {
3639                         let mut channel_lock = self.channel_state.lock().unwrap();
3640                         let channel_state = &mut *channel_lock;
3641                         let short_to_id = &mut channel_state.short_to_id;
3642                         let pending_msg_events = &mut channel_state.pending_msg_events;
3643                         channel_state.by_id.retain(|_, channel| {
3644                                 let res = f(channel);
3645                                 if let Ok((chan_res, mut timed_out_pending_htlcs)) = res {
3646                                         for (source, payment_hash) in timed_out_pending_htlcs.drain(..) {
3647                                                 let chan_update = self.get_channel_update(&channel).map(|u| u.encode_with_len()).unwrap(); // Cannot add/recv HTLCs before we have a short_id so unwrap is safe
3648                                                 timed_out_htlcs.push((source, payment_hash,  HTLCFailReason::Reason {
3649                                                         failure_code: 0x1000 | 14, // expiry_too_soon, or at least it is now
3650                                                         data: chan_update,
3651                                                 }));
3652                                         }
3653                                         if let Some(funding_locked) = chan_res {
3654                                                 pending_msg_events.push(events::MessageSendEvent::SendFundingLocked {
3655                                                         node_id: channel.get_counterparty_node_id(),
3656                                                         msg: funding_locked,
3657                                                 });
3658                                                 if let Some(announcement_sigs) = self.get_announcement_sigs(channel) {
3659                                                         log_trace!(self.logger, "Sending funding_locked and announcement_signatures for {}", log_bytes!(channel.channel_id()));
3660                                                         pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
3661                                                                 node_id: channel.get_counterparty_node_id(),
3662                                                                 msg: announcement_sigs,
3663                                                         });
3664                                                 } else {
3665                                                         log_trace!(self.logger, "Sending funding_locked WITHOUT announcement_signatures for {}", log_bytes!(channel.channel_id()));
3666                                                 }
3667                                                 short_to_id.insert(channel.get_short_channel_id().unwrap(), channel.channel_id());
3668                                         }
3669                                 } else if let Err(e) = res {
3670                                         if let Some(short_id) = channel.get_short_channel_id() {
3671                                                 short_to_id.remove(&short_id);
3672                                         }
3673                                         // It looks like our counterparty went on-chain or funding transaction was
3674                                         // reorged out of the main chain. Close the channel.
3675                                         failed_channels.push(channel.force_shutdown(true));
3676                                         if let Ok(update) = self.get_channel_update(&channel) {
3677                                                 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
3678                                                         msg: update
3679                                                 });
3680                                         }
3681                                         pending_msg_events.push(events::MessageSendEvent::HandleError {
3682                                                 node_id: channel.get_counterparty_node_id(),
3683                                                 action: msgs::ErrorAction::SendErrorMessage { msg: e },
3684                                         });
3685                                         return false;
3686                                 }
3687                                 true
3688                         });
3689
3690                         if let Some(height) = height_opt {
3691                                 channel_state.claimable_htlcs.retain(|payment_hash, htlcs| {
3692                                         htlcs.retain(|htlc| {
3693                                                 // If height is approaching the number of blocks we think it takes us to get
3694                                                 // our commitment transaction confirmed before the HTLC expires, plus the
3695                                                 // number of blocks we generally consider it to take to do a commitment update,
3696                                                 // just give up on it and fail the HTLC.
3697                                                 if height >= htlc.cltv_expiry - HTLC_FAIL_BACK_BUFFER {
3698                                                         let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec();
3699                                                         htlc_msat_height_data.extend_from_slice(&byte_utils::be32_to_array(height));
3700                                                         timed_out_htlcs.push((HTLCSource::PreviousHopData(htlc.prev_hop.clone()), payment_hash.clone(), HTLCFailReason::Reason {
3701                                                                 failure_code: 0x4000 | 15,
3702                                                                 data: htlc_msat_height_data
3703                                                         }));
3704                                                         false
3705                                                 } else { true }
3706                                         });
3707                                         !htlcs.is_empty() // Only retain this entry if htlcs has at least one entry.
3708                                 });
3709                         }
3710                 }
3711
3712                 self.handle_init_event_channel_failures(failed_channels);
3713
3714                 for (source, payment_hash, reason) in timed_out_htlcs.drain(..) {
3715                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), source, &payment_hash, reason);
3716                 }
3717         }
3718
3719         /// Blocks until ChannelManager needs to be persisted or a timeout is reached. It returns a bool
3720         /// indicating whether persistence is necessary. Only one listener on
3721         /// `await_persistable_update` or `await_persistable_update_timeout` is guaranteed to be woken
3722         /// up.
3723         /// Note that the feature `allow_wallclock_use` must be enabled to use this function.
3724         #[cfg(any(test, feature = "allow_wallclock_use"))]
3725         pub fn await_persistable_update_timeout(&self, max_wait: Duration) -> bool {
3726                 self.persistence_notifier.wait_timeout(max_wait)
3727         }
3728
3729         /// Blocks until ChannelManager needs to be persisted. Only one listener on
3730         /// `await_persistable_update` or `await_persistable_update_timeout` is guaranteed to be woken
3731         /// up.
3732         pub fn await_persistable_update(&self) {
3733                 self.persistence_notifier.wait()
3734         }
3735
3736         #[cfg(any(test, feature = "_test_utils"))]
3737         pub fn get_persistence_condvar_value(&self) -> bool {
3738                 let mutcond = &self.persistence_notifier.persistence_lock;
3739                 let &(ref mtx, _) = mutcond;
3740                 let guard = mtx.lock().unwrap();
3741                 *guard
3742         }
3743 }
3744
3745 impl<Signer: Sign, M: Deref + Sync + Send, T: Deref + Sync + Send, K: Deref + Sync + Send, F: Deref + Sync + Send, L: Deref + Sync + Send>
3746         ChannelMessageHandler for ChannelManager<Signer, M, T, K, F, L>
3747         where M::Target: chain::Watch<Signer>,
3748         T::Target: BroadcasterInterface,
3749         K::Target: KeysInterface<Signer = Signer>,
3750         F::Target: FeeEstimator,
3751         L::Target: Logger,
3752 {
3753         fn handle_open_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::OpenChannel) {
3754                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3755                 let _ = handle_error!(self, self.internal_open_channel(counterparty_node_id, their_features, msg), *counterparty_node_id);
3756         }
3757
3758         fn handle_accept_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::AcceptChannel) {
3759                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3760                 let _ = handle_error!(self, self.internal_accept_channel(counterparty_node_id, their_features, msg), *counterparty_node_id);
3761         }
3762
3763         fn handle_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) {
3764                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3765                 let _ = handle_error!(self, self.internal_funding_created(counterparty_node_id, msg), *counterparty_node_id);
3766         }
3767
3768         fn handle_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) {
3769                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3770                 let _ = handle_error!(self, self.internal_funding_signed(counterparty_node_id, msg), *counterparty_node_id);
3771         }
3772
3773         fn handle_funding_locked(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingLocked) {
3774                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3775                 let _ = handle_error!(self, self.internal_funding_locked(counterparty_node_id, msg), *counterparty_node_id);
3776         }
3777
3778         fn handle_shutdown(&self, counterparty_node_id: &PublicKey, their_features: &InitFeatures, msg: &msgs::Shutdown) {
3779                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3780                 let _ = handle_error!(self, self.internal_shutdown(counterparty_node_id, their_features, msg), *counterparty_node_id);
3781         }
3782
3783         fn handle_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
3784                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3785                 let _ = handle_error!(self, self.internal_closing_signed(counterparty_node_id, msg), *counterparty_node_id);
3786         }
3787
3788         fn handle_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
3789                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3790                 let _ = handle_error!(self, self.internal_update_add_htlc(counterparty_node_id, msg), *counterparty_node_id);
3791         }
3792
3793         fn handle_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
3794                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3795                 let _ = handle_error!(self, self.internal_update_fulfill_htlc(counterparty_node_id, msg), *counterparty_node_id);
3796         }
3797
3798         fn handle_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
3799                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3800                 let _ = handle_error!(self, self.internal_update_fail_htlc(counterparty_node_id, msg), *counterparty_node_id);
3801         }
3802
3803         fn handle_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
3804                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3805                 let _ = handle_error!(self, self.internal_update_fail_malformed_htlc(counterparty_node_id, msg), *counterparty_node_id);
3806         }
3807
3808         fn handle_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
3809                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3810                 let _ = handle_error!(self, self.internal_commitment_signed(counterparty_node_id, msg), *counterparty_node_id);
3811         }
3812
3813         fn handle_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
3814                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3815                 let _ = handle_error!(self, self.internal_revoke_and_ack(counterparty_node_id, msg), *counterparty_node_id);
3816         }
3817
3818         fn handle_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) {
3819                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3820                 let _ = handle_error!(self, self.internal_update_fee(counterparty_node_id, msg), *counterparty_node_id);
3821         }
3822
3823         fn handle_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
3824                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3825                 let _ = handle_error!(self, self.internal_announcement_signatures(counterparty_node_id, msg), *counterparty_node_id);
3826         }
3827
3828         fn handle_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) {
3829                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3830                 let _ = handle_error!(self, self.internal_channel_update(counterparty_node_id, msg), *counterparty_node_id);
3831         }
3832
3833         fn handle_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
3834                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3835                 let _ = handle_error!(self, self.internal_channel_reestablish(counterparty_node_id, msg), *counterparty_node_id);
3836         }
3837
3838         fn peer_disconnected(&self, counterparty_node_id: &PublicKey, no_connection_possible: bool) {
3839                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3840                 let mut failed_channels = Vec::new();
3841                 let mut failed_payments = Vec::new();
3842                 let mut no_channels_remain = true;
3843                 {
3844                         let mut channel_state_lock = self.channel_state.lock().unwrap();
3845                         let channel_state = &mut *channel_state_lock;
3846                         let short_to_id = &mut channel_state.short_to_id;
3847                         let pending_msg_events = &mut channel_state.pending_msg_events;
3848                         if no_connection_possible {
3849                                 log_debug!(self.logger, "Failing all channels with {} due to no_connection_possible", log_pubkey!(counterparty_node_id));
3850                                 channel_state.by_id.retain(|_, chan| {
3851                                         if chan.get_counterparty_node_id() == *counterparty_node_id {
3852                                                 if let Some(short_id) = chan.get_short_channel_id() {
3853                                                         short_to_id.remove(&short_id);
3854                                                 }
3855                                                 failed_channels.push(chan.force_shutdown(true));
3856                                                 if let Ok(update) = self.get_channel_update(&chan) {
3857                                                         pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
3858                                                                 msg: update
3859                                                         });
3860                                                 }
3861                                                 false
3862                                         } else {
3863                                                 true
3864                                         }
3865                                 });
3866                         } else {
3867                                 log_debug!(self.logger, "Marking channels with {} disconnected and generating channel_updates", log_pubkey!(counterparty_node_id));
3868                                 channel_state.by_id.retain(|_, chan| {
3869                                         if chan.get_counterparty_node_id() == *counterparty_node_id {
3870                                                 // Note that currently on channel reestablish we assert that there are no
3871                                                 // holding cell add-HTLCs, so if in the future we stop removing uncommitted HTLCs
3872                                                 // on peer disconnect here, there will need to be corresponding changes in
3873                                                 // reestablish logic.
3874                                                 let failed_adds = chan.remove_uncommitted_htlcs_and_mark_paused(&self.logger);
3875                                                 chan.to_disabled_marked();
3876                                                 if !failed_adds.is_empty() {
3877                                                         let chan_update = self.get_channel_update(&chan).map(|u| u.encode_with_len()).unwrap(); // Cannot add/recv HTLCs before we have a short_id so unwrap is safe
3878                                                         failed_payments.push((chan_update, failed_adds));
3879                                                 }
3880                                                 if chan.is_shutdown() {
3881                                                         if let Some(short_id) = chan.get_short_channel_id() {
3882                                                                 short_to_id.remove(&short_id);
3883                                                         }
3884                                                         return false;
3885                                                 } else {
3886                                                         no_channels_remain = false;
3887                                                 }
3888                                         }
3889                                         true
3890                                 })
3891                         }
3892                         pending_msg_events.retain(|msg| {
3893                                 match msg {
3894                                         &events::MessageSendEvent::SendAcceptChannel { ref node_id, .. } => node_id != counterparty_node_id,
3895                                         &events::MessageSendEvent::SendOpenChannel { ref node_id, .. } => node_id != counterparty_node_id,
3896                                         &events::MessageSendEvent::SendFundingCreated { ref node_id, .. } => node_id != counterparty_node_id,
3897                                         &events::MessageSendEvent::SendFundingSigned { ref node_id, .. } => node_id != counterparty_node_id,
3898                                         &events::MessageSendEvent::SendFundingLocked { ref node_id, .. } => node_id != counterparty_node_id,
3899                                         &events::MessageSendEvent::SendAnnouncementSignatures { ref node_id, .. } => node_id != counterparty_node_id,
3900                                         &events::MessageSendEvent::UpdateHTLCs { ref node_id, .. } => node_id != counterparty_node_id,
3901                                         &events::MessageSendEvent::SendRevokeAndACK { ref node_id, .. } => node_id != counterparty_node_id,
3902                                         &events::MessageSendEvent::SendClosingSigned { ref node_id, .. } => node_id != counterparty_node_id,
3903                                         &events::MessageSendEvent::SendShutdown { ref node_id, .. } => node_id != counterparty_node_id,
3904                                         &events::MessageSendEvent::SendChannelReestablish { ref node_id, .. } => node_id != counterparty_node_id,
3905                                         &events::MessageSendEvent::BroadcastChannelAnnouncement { .. } => true,
3906                                         &events::MessageSendEvent::BroadcastNodeAnnouncement { .. } => true,
3907                                         &events::MessageSendEvent::BroadcastChannelUpdate { .. } => true,
3908                                         &events::MessageSendEvent::HandleError { ref node_id, .. } => node_id != counterparty_node_id,
3909                                         &events::MessageSendEvent::PaymentFailureNetworkUpdate { .. } => true,
3910                                         &events::MessageSendEvent::SendChannelRangeQuery { .. } => false,
3911                                         &events::MessageSendEvent::SendShortIdsQuery { .. } => false,
3912                                         &events::MessageSendEvent::SendReplyChannelRange { .. } => false,
3913                                 }
3914                         });
3915                 }
3916                 if no_channels_remain {
3917                         self.per_peer_state.write().unwrap().remove(counterparty_node_id);
3918                 }
3919
3920                 for failure in failed_channels.drain(..) {
3921                         self.finish_force_close_channel(failure);
3922                 }
3923                 for (chan_update, mut htlc_sources) in failed_payments {
3924                         for (htlc_source, payment_hash) in htlc_sources.drain(..) {
3925                                 self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source, &payment_hash, HTLCFailReason::Reason { failure_code: 0x1000 | 7, data: chan_update.clone() });
3926                         }
3927                 }
3928         }
3929
3930         fn peer_connected(&self, counterparty_node_id: &PublicKey, init_msg: &msgs::Init) {
3931                 log_debug!(self.logger, "Generating channel_reestablish events for {}", log_pubkey!(counterparty_node_id));
3932
3933                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3934
3935                 {
3936                         let mut peer_state_lock = self.per_peer_state.write().unwrap();
3937                         match peer_state_lock.entry(counterparty_node_id.clone()) {
3938                                 hash_map::Entry::Vacant(e) => {
3939                                         e.insert(Mutex::new(PeerState {
3940                                                 latest_features: init_msg.features.clone(),
3941                                         }));
3942                                 },
3943                                 hash_map::Entry::Occupied(e) => {
3944                                         e.get().lock().unwrap().latest_features = init_msg.features.clone();
3945                                 },
3946                         }
3947                 }
3948
3949                 let mut channel_state_lock = self.channel_state.lock().unwrap();
3950                 let channel_state = &mut *channel_state_lock;
3951                 let pending_msg_events = &mut channel_state.pending_msg_events;
3952                 channel_state.by_id.retain(|_, chan| {
3953                         if chan.get_counterparty_node_id() == *counterparty_node_id {
3954                                 if !chan.have_received_message() {
3955                                         // If we created this (outbound) channel while we were disconnected from the
3956                                         // peer we probably failed to send the open_channel message, which is now
3957                                         // lost. We can't have had anything pending related to this channel, so we just
3958                                         // drop it.
3959                                         false
3960                                 } else {
3961                                         pending_msg_events.push(events::MessageSendEvent::SendChannelReestablish {
3962                                                 node_id: chan.get_counterparty_node_id(),
3963                                                 msg: chan.get_channel_reestablish(&self.logger),
3964                                         });
3965                                         true
3966                                 }
3967                         } else { true }
3968                 });
3969                 //TODO: Also re-broadcast announcement_signatures
3970         }
3971
3972         fn handle_error(&self, counterparty_node_id: &PublicKey, msg: &msgs::ErrorMessage) {
3973                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3974
3975                 if msg.channel_id == [0; 32] {
3976                         for chan in self.list_channels() {
3977                                 if chan.remote_network_id == *counterparty_node_id {
3978                                         // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
3979                                         let _ = self.force_close_channel_with_peer(&chan.channel_id, Some(counterparty_node_id));
3980                                 }
3981                         }
3982                 } else {
3983                         // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
3984                         let _ = self.force_close_channel_with_peer(&msg.channel_id, Some(counterparty_node_id));
3985                 }
3986         }
3987 }
3988
3989 /// Used to signal to the ChannelManager persister that the manager needs to be re-persisted to
3990 /// disk/backups, through `await_persistable_update_timeout` and `await_persistable_update`.
3991 struct PersistenceNotifier {
3992         /// Users won't access the persistence_lock directly, but rather wait on its bool using
3993         /// `wait_timeout` and `wait`.
3994         persistence_lock: (Mutex<bool>, Condvar),
3995 }
3996
3997 impl PersistenceNotifier {
3998         fn new() -> Self {
3999                 Self {
4000                         persistence_lock: (Mutex::new(false), Condvar::new()),
4001                 }
4002         }
4003
4004         fn wait(&self) {
4005                 loop {
4006                         let &(ref mtx, ref cvar) = &self.persistence_lock;
4007                         let mut guard = mtx.lock().unwrap();
4008                         guard = cvar.wait(guard).unwrap();
4009                         let result = *guard;
4010                         if result {
4011                                 *guard = false;
4012                                 return
4013                         }
4014                 }
4015         }
4016
4017         #[cfg(any(test, feature = "allow_wallclock_use"))]
4018         fn wait_timeout(&self, max_wait: Duration) -> bool {
4019                 let current_time = Instant::now();
4020                 loop {
4021                         let &(ref mtx, ref cvar) = &self.persistence_lock;
4022                         let mut guard = mtx.lock().unwrap();
4023                         guard = cvar.wait_timeout(guard, max_wait).unwrap().0;
4024                         // Due to spurious wakeups that can happen on `wait_timeout`, here we need to check if the
4025                         // desired wait time has actually passed, and if not then restart the loop with a reduced wait
4026                         // time. Note that this logic can be highly simplified through the use of
4027                         // `Condvar::wait_while` and `Condvar::wait_timeout_while`, if and when our MSRV is raised to
4028                         // 1.42.0.
4029                         let elapsed = current_time.elapsed();
4030                         let result = *guard;
4031                         if result || elapsed >= max_wait {
4032                                 *guard = false;
4033                                 return result;
4034                         }
4035                         match max_wait.checked_sub(elapsed) {
4036                                 None => return result,
4037                                 Some(_) => continue
4038                         }
4039                 }
4040         }
4041
4042         // Signal to the ChannelManager persister that there are updates necessitating persisting to disk.
4043         fn notify(&self) {
4044                 let &(ref persist_mtx, ref cnd) = &self.persistence_lock;
4045                 let mut persistence_lock = persist_mtx.lock().unwrap();
4046                 *persistence_lock = true;
4047                 mem::drop(persistence_lock);
4048                 cnd.notify_all();
4049         }
4050 }
4051
4052 const SERIALIZATION_VERSION: u8 = 1;
4053 const MIN_SERIALIZATION_VERSION: u8 = 1;
4054
4055 impl Writeable for PendingHTLCInfo {
4056         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
4057                 match &self.routing {
4058                         &PendingHTLCRouting::Forward { ref onion_packet, ref short_channel_id } => {
4059                                 0u8.write(writer)?;
4060                                 onion_packet.write(writer)?;
4061                                 short_channel_id.write(writer)?;
4062                         },
4063                         &PendingHTLCRouting::Receive { ref payment_data, ref incoming_cltv_expiry } => {
4064                                 1u8.write(writer)?;
4065                                 payment_data.payment_secret.write(writer)?;
4066                                 payment_data.total_msat.write(writer)?;
4067                                 incoming_cltv_expiry.write(writer)?;
4068                         },
4069                 }
4070                 self.incoming_shared_secret.write(writer)?;
4071                 self.payment_hash.write(writer)?;
4072                 self.amt_to_forward.write(writer)?;
4073                 self.outgoing_cltv_value.write(writer)?;
4074                 Ok(())
4075         }
4076 }
4077
4078 impl Readable for PendingHTLCInfo {
4079         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<PendingHTLCInfo, DecodeError> {
4080                 Ok(PendingHTLCInfo {
4081                         routing: match Readable::read(reader)? {
4082                                 0u8 => PendingHTLCRouting::Forward {
4083                                         onion_packet: Readable::read(reader)?,
4084                                         short_channel_id: Readable::read(reader)?,
4085                                 },
4086                                 1u8 => PendingHTLCRouting::Receive {
4087                                         payment_data: msgs::FinalOnionHopData {
4088                                                 payment_secret: Readable::read(reader)?,
4089                                                 total_msat: Readable::read(reader)?,
4090                                         },
4091                                         incoming_cltv_expiry: Readable::read(reader)?,
4092                                 },
4093                                 _ => return Err(DecodeError::InvalidValue),
4094                         },
4095                         incoming_shared_secret: Readable::read(reader)?,
4096                         payment_hash: Readable::read(reader)?,
4097                         amt_to_forward: Readable::read(reader)?,
4098                         outgoing_cltv_value: Readable::read(reader)?,
4099                 })
4100         }
4101 }
4102
4103 impl Writeable for HTLCFailureMsg {
4104         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
4105                 match self {
4106                         &HTLCFailureMsg::Relay(ref fail_msg) => {
4107                                 0u8.write(writer)?;
4108                                 fail_msg.write(writer)?;
4109                         },
4110                         &HTLCFailureMsg::Malformed(ref fail_msg) => {
4111                                 1u8.write(writer)?;
4112                                 fail_msg.write(writer)?;
4113                         }
4114                 }
4115                 Ok(())
4116         }
4117 }
4118
4119 impl Readable for HTLCFailureMsg {
4120         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<HTLCFailureMsg, DecodeError> {
4121                 match <u8 as Readable>::read(reader)? {
4122                         0 => Ok(HTLCFailureMsg::Relay(Readable::read(reader)?)),
4123                         1 => Ok(HTLCFailureMsg::Malformed(Readable::read(reader)?)),
4124                         _ => Err(DecodeError::InvalidValue),
4125                 }
4126         }
4127 }
4128
4129 impl Writeable for PendingHTLCStatus {
4130         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
4131                 match self {
4132                         &PendingHTLCStatus::Forward(ref forward_info) => {
4133                                 0u8.write(writer)?;
4134                                 forward_info.write(writer)?;
4135                         },
4136                         &PendingHTLCStatus::Fail(ref fail_msg) => {
4137                                 1u8.write(writer)?;
4138                                 fail_msg.write(writer)?;
4139                         }
4140                 }
4141                 Ok(())
4142         }
4143 }
4144
4145 impl Readable for PendingHTLCStatus {
4146         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<PendingHTLCStatus, DecodeError> {
4147                 match <u8 as Readable>::read(reader)? {
4148                         0 => Ok(PendingHTLCStatus::Forward(Readable::read(reader)?)),
4149                         1 => Ok(PendingHTLCStatus::Fail(Readable::read(reader)?)),
4150                         _ => Err(DecodeError::InvalidValue),
4151                 }
4152         }
4153 }
4154
4155 impl_writeable!(HTLCPreviousHopData, 0, {
4156         short_channel_id,
4157         outpoint,
4158         htlc_id,
4159         incoming_packet_shared_secret
4160 });
4161
4162 impl Writeable for ClaimableHTLC {
4163         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
4164                 self.prev_hop.write(writer)?;
4165                 self.value.write(writer)?;
4166                 self.payment_data.payment_secret.write(writer)?;
4167                 self.payment_data.total_msat.write(writer)?;
4168                 self.cltv_expiry.write(writer)
4169         }
4170 }
4171
4172 impl Readable for ClaimableHTLC {
4173         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
4174                 Ok(ClaimableHTLC {
4175                         prev_hop: Readable::read(reader)?,
4176                         value: Readable::read(reader)?,
4177                         payment_data: msgs::FinalOnionHopData {
4178                                 payment_secret: Readable::read(reader)?,
4179                                 total_msat: Readable::read(reader)?,
4180                         },
4181                         cltv_expiry: Readable::read(reader)?,
4182                 })
4183         }
4184 }
4185
4186 impl Writeable for HTLCSource {
4187         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
4188                 match self {
4189                         &HTLCSource::PreviousHopData(ref hop_data) => {
4190                                 0u8.write(writer)?;
4191                                 hop_data.write(writer)?;
4192                         },
4193                         &HTLCSource::OutboundRoute { ref path, ref session_priv, ref first_hop_htlc_msat } => {
4194                                 1u8.write(writer)?;
4195                                 path.write(writer)?;
4196                                 session_priv.write(writer)?;
4197                                 first_hop_htlc_msat.write(writer)?;
4198                         }
4199                 }
4200                 Ok(())
4201         }
4202 }
4203
4204 impl Readable for HTLCSource {
4205         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<HTLCSource, DecodeError> {
4206                 match <u8 as Readable>::read(reader)? {
4207                         0 => Ok(HTLCSource::PreviousHopData(Readable::read(reader)?)),
4208                         1 => Ok(HTLCSource::OutboundRoute {
4209                                 path: Readable::read(reader)?,
4210                                 session_priv: Readable::read(reader)?,
4211                                 first_hop_htlc_msat: Readable::read(reader)?,
4212                         }),
4213                         _ => Err(DecodeError::InvalidValue),
4214                 }
4215         }
4216 }
4217
4218 impl Writeable for HTLCFailReason {
4219         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
4220                 match self {
4221                         &HTLCFailReason::LightningError { ref err } => {
4222                                 0u8.write(writer)?;
4223                                 err.write(writer)?;
4224                         },
4225                         &HTLCFailReason::Reason { ref failure_code, ref data } => {
4226                                 1u8.write(writer)?;
4227                                 failure_code.write(writer)?;
4228                                 data.write(writer)?;
4229                         }
4230                 }
4231                 Ok(())
4232         }
4233 }
4234
4235 impl Readable for HTLCFailReason {
4236         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<HTLCFailReason, DecodeError> {
4237                 match <u8 as Readable>::read(reader)? {
4238                         0 => Ok(HTLCFailReason::LightningError { err: Readable::read(reader)? }),
4239                         1 => Ok(HTLCFailReason::Reason {
4240                                 failure_code: Readable::read(reader)?,
4241                                 data: Readable::read(reader)?,
4242                         }),
4243                         _ => Err(DecodeError::InvalidValue),
4244                 }
4245         }
4246 }
4247
4248 impl Writeable for HTLCForwardInfo {
4249         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
4250                 match self {
4251                         &HTLCForwardInfo::AddHTLC { ref prev_short_channel_id, ref prev_funding_outpoint, ref prev_htlc_id, ref forward_info } => {
4252                                 0u8.write(writer)?;
4253                                 prev_short_channel_id.write(writer)?;
4254                                 prev_funding_outpoint.write(writer)?;
4255                                 prev_htlc_id.write(writer)?;
4256                                 forward_info.write(writer)?;
4257                         },
4258                         &HTLCForwardInfo::FailHTLC { ref htlc_id, ref err_packet } => {
4259                                 1u8.write(writer)?;
4260                                 htlc_id.write(writer)?;
4261                                 err_packet.write(writer)?;
4262                         },
4263                 }
4264                 Ok(())
4265         }
4266 }
4267
4268 impl Readable for HTLCForwardInfo {
4269         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<HTLCForwardInfo, DecodeError> {
4270                 match <u8 as Readable>::read(reader)? {
4271                         0 => Ok(HTLCForwardInfo::AddHTLC {
4272                                 prev_short_channel_id: Readable::read(reader)?,
4273                                 prev_funding_outpoint: Readable::read(reader)?,
4274                                 prev_htlc_id: Readable::read(reader)?,
4275                                 forward_info: Readable::read(reader)?,
4276                         }),
4277                         1 => Ok(HTLCForwardInfo::FailHTLC {
4278                                 htlc_id: Readable::read(reader)?,
4279                                 err_packet: Readable::read(reader)?,
4280                         }),
4281                         _ => Err(DecodeError::InvalidValue),
4282                 }
4283         }
4284 }
4285
4286 impl_writeable!(PendingInboundPayment, 0, {
4287         payment_secret,
4288         expiry_time,
4289         payment_preimage,
4290         min_value_msat
4291 });
4292
4293 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> Writeable for ChannelManager<Signer, M, T, K, F, L>
4294         where M::Target: chain::Watch<Signer>,
4295         T::Target: BroadcasterInterface,
4296         K::Target: KeysInterface<Signer = Signer>,
4297         F::Target: FeeEstimator,
4298         L::Target: Logger,
4299 {
4300         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
4301                 let _consistency_lock = self.total_consistency_lock.write().unwrap();
4302
4303                 writer.write_all(&[SERIALIZATION_VERSION; 1])?;
4304                 writer.write_all(&[MIN_SERIALIZATION_VERSION; 1])?;
4305
4306                 self.genesis_hash.write(writer)?;
4307                 {
4308                         let best_block = self.best_block.read().unwrap();
4309                         best_block.height().write(writer)?;
4310                         best_block.block_hash().write(writer)?;
4311                 }
4312
4313                 let channel_state = self.channel_state.lock().unwrap();
4314                 let mut unfunded_channels = 0;
4315                 for (_, channel) in channel_state.by_id.iter() {
4316                         if !channel.is_funding_initiated() {
4317                                 unfunded_channels += 1;
4318                         }
4319                 }
4320                 ((channel_state.by_id.len() - unfunded_channels) as u64).write(writer)?;
4321                 for (_, channel) in channel_state.by_id.iter() {
4322                         if channel.is_funding_initiated() {
4323                                 channel.write(writer)?;
4324                         }
4325                 }
4326
4327                 (channel_state.forward_htlcs.len() as u64).write(writer)?;
4328                 for (short_channel_id, pending_forwards) in channel_state.forward_htlcs.iter() {
4329                         short_channel_id.write(writer)?;
4330                         (pending_forwards.len() as u64).write(writer)?;
4331                         for forward in pending_forwards {
4332                                 forward.write(writer)?;
4333                         }
4334                 }
4335
4336                 (channel_state.claimable_htlcs.len() as u64).write(writer)?;
4337                 for (payment_hash, previous_hops) in channel_state.claimable_htlcs.iter() {
4338                         payment_hash.write(writer)?;
4339                         (previous_hops.len() as u64).write(writer)?;
4340                         for htlc in previous_hops.iter() {
4341                                 htlc.write(writer)?;
4342                         }
4343                 }
4344
4345                 let per_peer_state = self.per_peer_state.write().unwrap();
4346                 (per_peer_state.len() as u64).write(writer)?;
4347                 for (peer_pubkey, peer_state_mutex) in per_peer_state.iter() {
4348                         peer_pubkey.write(writer)?;
4349                         let peer_state = peer_state_mutex.lock().unwrap();
4350                         peer_state.latest_features.write(writer)?;
4351                 }
4352
4353                 let events = self.pending_events.lock().unwrap();
4354                 (events.len() as u64).write(writer)?;
4355                 for event in events.iter() {
4356                         event.write(writer)?;
4357                 }
4358
4359                 let background_events = self.pending_background_events.lock().unwrap();
4360                 (background_events.len() as u64).write(writer)?;
4361                 for event in background_events.iter() {
4362                         match event {
4363                                 BackgroundEvent::ClosingMonitorUpdate((funding_txo, monitor_update)) => {
4364                                         0u8.write(writer)?;
4365                                         funding_txo.write(writer)?;
4366                                         monitor_update.write(writer)?;
4367                                 },
4368                         }
4369                 }
4370
4371                 (self.last_node_announcement_serial.load(Ordering::Acquire) as u32).write(writer)?;
4372                 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
4373
4374                 let pending_inbound_payments = self.pending_inbound_payments.lock().unwrap();
4375                 (pending_inbound_payments.len() as u64).write(writer)?;
4376                 for (hash, pending_payment) in pending_inbound_payments.iter() {
4377                         hash.write(writer)?;
4378                         pending_payment.write(writer)?;
4379                 }
4380
4381                 Ok(())
4382         }
4383 }
4384
4385 /// Arguments for the creation of a ChannelManager that are not deserialized.
4386 ///
4387 /// At a high-level, the process for deserializing a ChannelManager and resuming normal operation
4388 /// is:
4389 /// 1) Deserialize all stored ChannelMonitors.
4390 /// 2) Deserialize the ChannelManager by filling in this struct and calling:
4391 ///    <(BlockHash, ChannelManager)>::read(reader, args)
4392 ///    This may result in closing some Channels if the ChannelMonitor is newer than the stored
4393 ///    ChannelManager state to ensure no loss of funds. Thus, transactions may be broadcasted.
4394 /// 3) If you are not fetching full blocks, register all relevant ChannelMonitor outpoints the same
4395 ///    way you would handle a `chain::Filter` call using ChannelMonitor::get_outputs_to_watch() and
4396 ///    ChannelMonitor::get_funding_txo().
4397 /// 4) Reconnect blocks on your ChannelMonitors.
4398 /// 5) Disconnect/connect blocks on the ChannelManager.
4399 /// 6) Move the ChannelMonitors into your local chain::Watch.
4400 ///
4401 /// Note that the ordering of #4-6 is not of importance, however all three must occur before you
4402 /// call any other methods on the newly-deserialized ChannelManager.
4403 ///
4404 /// Note that because some channels may be closed during deserialization, it is critical that you
4405 /// always deserialize only the latest version of a ChannelManager and ChannelMonitors available to
4406 /// you. If you deserialize an old ChannelManager (during which force-closure transactions may be
4407 /// broadcast), and then later deserialize a newer version of the same ChannelManager (which will
4408 /// not force-close the same channels but consider them live), you may end up revoking a state for
4409 /// which you've already broadcasted the transaction.
4410 pub struct ChannelManagerReadArgs<'a, Signer: 'a + Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
4411         where M::Target: chain::Watch<Signer>,
4412         T::Target: BroadcasterInterface,
4413         K::Target: KeysInterface<Signer = Signer>,
4414         F::Target: FeeEstimator,
4415         L::Target: Logger,
4416 {
4417         /// The keys provider which will give us relevant keys. Some keys will be loaded during
4418         /// deserialization and KeysInterface::read_chan_signer will be used to read per-Channel
4419         /// signing data.
4420         pub keys_manager: K,
4421
4422         /// The fee_estimator for use in the ChannelManager in the future.
4423         ///
4424         /// No calls to the FeeEstimator will be made during deserialization.
4425         pub fee_estimator: F,
4426         /// The chain::Watch for use in the ChannelManager in the future.
4427         ///
4428         /// No calls to the chain::Watch will be made during deserialization. It is assumed that
4429         /// you have deserialized ChannelMonitors separately and will add them to your
4430         /// chain::Watch after deserializing this ChannelManager.
4431         pub chain_monitor: M,
4432
4433         /// The BroadcasterInterface which will be used in the ChannelManager in the future and may be
4434         /// used to broadcast the latest local commitment transactions of channels which must be
4435         /// force-closed during deserialization.
4436         pub tx_broadcaster: T,
4437         /// The Logger for use in the ChannelManager and which may be used to log information during
4438         /// deserialization.
4439         pub logger: L,
4440         /// Default settings used for new channels. Any existing channels will continue to use the
4441         /// runtime settings which were stored when the ChannelManager was serialized.
4442         pub default_config: UserConfig,
4443
4444         /// A map from channel funding outpoints to ChannelMonitors for those channels (ie
4445         /// value.get_funding_txo() should be the key).
4446         ///
4447         /// If a monitor is inconsistent with the channel state during deserialization the channel will
4448         /// be force-closed using the data in the ChannelMonitor and the channel will be dropped. This
4449         /// is true for missing channels as well. If there is a monitor missing for which we find
4450         /// channel data Err(DecodeError::InvalidValue) will be returned.
4451         ///
4452         /// In such cases the latest local transactions will be sent to the tx_broadcaster included in
4453         /// this struct.
4454         ///
4455         /// (C-not exported) because we have no HashMap bindings
4456         pub channel_monitors: HashMap<OutPoint, &'a mut ChannelMonitor<Signer>>,
4457 }
4458
4459 impl<'a, Signer: 'a + Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
4460                 ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>
4461         where M::Target: chain::Watch<Signer>,
4462                 T::Target: BroadcasterInterface,
4463                 K::Target: KeysInterface<Signer = Signer>,
4464                 F::Target: FeeEstimator,
4465                 L::Target: Logger,
4466         {
4467         /// Simple utility function to create a ChannelManagerReadArgs which creates the monitor
4468         /// HashMap for you. This is primarily useful for C bindings where it is not practical to
4469         /// populate a HashMap directly from C.
4470         pub fn new(keys_manager: K, fee_estimator: F, chain_monitor: M, tx_broadcaster: T, logger: L, default_config: UserConfig,
4471                         mut channel_monitors: Vec<&'a mut ChannelMonitor<Signer>>) -> Self {
4472                 Self {
4473                         keys_manager, fee_estimator, chain_monitor, tx_broadcaster, logger, default_config,
4474                         channel_monitors: channel_monitors.drain(..).map(|monitor| { (monitor.get_funding_txo().0, monitor) }).collect()
4475                 }
4476         }
4477 }
4478
4479 // Implement ReadableArgs for an Arc'd ChannelManager to make it a bit easier to work with the
4480 // SipmleArcChannelManager type:
4481 impl<'a, Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
4482         ReadableArgs<ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>> for (BlockHash, Arc<ChannelManager<Signer, M, T, K, F, L>>)
4483         where M::Target: chain::Watch<Signer>,
4484         T::Target: BroadcasterInterface,
4485         K::Target: KeysInterface<Signer = Signer>,
4486         F::Target: FeeEstimator,
4487         L::Target: Logger,
4488 {
4489         fn read<R: ::std::io::Read>(reader: &mut R, args: ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>) -> Result<Self, DecodeError> {
4490                 let (blockhash, chan_manager) = <(BlockHash, ChannelManager<Signer, M, T, K, F, L>)>::read(reader, args)?;
4491                 Ok((blockhash, Arc::new(chan_manager)))
4492         }
4493 }
4494
4495 impl<'a, Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
4496         ReadableArgs<ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>> for (BlockHash, ChannelManager<Signer, M, T, K, F, L>)
4497         where M::Target: chain::Watch<Signer>,
4498         T::Target: BroadcasterInterface,
4499         K::Target: KeysInterface<Signer = Signer>,
4500         F::Target: FeeEstimator,
4501         L::Target: Logger,
4502 {
4503         fn read<R: ::std::io::Read>(reader: &mut R, mut args: ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>) -> Result<Self, DecodeError> {
4504                 let _ver: u8 = Readable::read(reader)?;
4505                 let min_ver: u8 = Readable::read(reader)?;
4506                 if min_ver > SERIALIZATION_VERSION {
4507                         return Err(DecodeError::UnknownVersion);
4508                 }
4509
4510                 let genesis_hash: BlockHash = Readable::read(reader)?;
4511                 let best_block_height: u32 = Readable::read(reader)?;
4512                 let best_block_hash: BlockHash = Readable::read(reader)?;
4513
4514                 let mut failed_htlcs = Vec::new();
4515
4516                 let channel_count: u64 = Readable::read(reader)?;
4517                 let mut funding_txo_set = HashSet::with_capacity(cmp::min(channel_count as usize, 128));
4518                 let mut by_id = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
4519                 let mut short_to_id = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
4520                 for _ in 0..channel_count {
4521                         let mut channel: Channel<Signer> = Channel::read(reader, &args.keys_manager)?;
4522                         let funding_txo = channel.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
4523                         funding_txo_set.insert(funding_txo.clone());
4524                         if let Some(ref mut monitor) = args.channel_monitors.get_mut(&funding_txo) {
4525                                 if channel.get_cur_holder_commitment_transaction_number() < monitor.get_cur_holder_commitment_number() ||
4526                                                 channel.get_revoked_counterparty_commitment_transaction_number() < monitor.get_min_seen_secret() ||
4527                                                 channel.get_cur_counterparty_commitment_transaction_number() < monitor.get_cur_counterparty_commitment_number() ||
4528                                                 channel.get_latest_monitor_update_id() > monitor.get_latest_update_id() {
4529                                         // If the channel is ahead of the monitor, return InvalidValue:
4530                                         return Err(DecodeError::InvalidValue);
4531                                 } else if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() ||
4532                                                 channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() ||
4533                                                 channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() ||
4534                                                 channel.get_latest_monitor_update_id() < monitor.get_latest_update_id() {
4535                                         // But if the channel is behind of the monitor, close the channel:
4536                                         let (_, mut new_failed_htlcs) = channel.force_shutdown(true);
4537                                         failed_htlcs.append(&mut new_failed_htlcs);
4538                                         monitor.broadcast_latest_holder_commitment_txn(&args.tx_broadcaster, &args.logger);
4539                                 } else {
4540                                         if let Some(short_channel_id) = channel.get_short_channel_id() {
4541                                                 short_to_id.insert(short_channel_id, channel.channel_id());
4542                                         }
4543                                         by_id.insert(channel.channel_id(), channel);
4544                                 }
4545                         } else {
4546                                 return Err(DecodeError::InvalidValue);
4547                         }
4548                 }
4549
4550                 for (ref funding_txo, ref mut monitor) in args.channel_monitors.iter_mut() {
4551                         if !funding_txo_set.contains(funding_txo) {
4552                                 monitor.broadcast_latest_holder_commitment_txn(&args.tx_broadcaster, &args.logger);
4553                         }
4554                 }
4555
4556                 const MAX_ALLOC_SIZE: usize = 1024 * 64;
4557                 let forward_htlcs_count: u64 = Readable::read(reader)?;
4558                 let mut forward_htlcs = HashMap::with_capacity(cmp::min(forward_htlcs_count as usize, 128));
4559                 for _ in 0..forward_htlcs_count {
4560                         let short_channel_id = Readable::read(reader)?;
4561                         let pending_forwards_count: u64 = Readable::read(reader)?;
4562                         let mut pending_forwards = Vec::with_capacity(cmp::min(pending_forwards_count as usize, MAX_ALLOC_SIZE/mem::size_of::<HTLCForwardInfo>()));
4563                         for _ in 0..pending_forwards_count {
4564                                 pending_forwards.push(Readable::read(reader)?);
4565                         }
4566                         forward_htlcs.insert(short_channel_id, pending_forwards);
4567                 }
4568
4569                 let claimable_htlcs_count: u64 = Readable::read(reader)?;
4570                 let mut claimable_htlcs = HashMap::with_capacity(cmp::min(claimable_htlcs_count as usize, 128));
4571                 for _ in 0..claimable_htlcs_count {
4572                         let payment_hash = Readable::read(reader)?;
4573                         let previous_hops_len: u64 = Readable::read(reader)?;
4574                         let mut previous_hops = Vec::with_capacity(cmp::min(previous_hops_len as usize, MAX_ALLOC_SIZE/mem::size_of::<ClaimableHTLC>()));
4575                         for _ in 0..previous_hops_len {
4576                                 previous_hops.push(Readable::read(reader)?);
4577                         }
4578                         claimable_htlcs.insert(payment_hash, previous_hops);
4579                 }
4580
4581                 let peer_count: u64 = Readable::read(reader)?;
4582                 let mut per_peer_state = HashMap::with_capacity(cmp::min(peer_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(PublicKey, Mutex<PeerState>)>()));
4583                 for _ in 0..peer_count {
4584                         let peer_pubkey = Readable::read(reader)?;
4585                         let peer_state = PeerState {
4586                                 latest_features: Readable::read(reader)?,
4587                         };
4588                         per_peer_state.insert(peer_pubkey, Mutex::new(peer_state));
4589                 }
4590
4591                 let event_count: u64 = Readable::read(reader)?;
4592                 let mut pending_events_read: Vec<events::Event> = Vec::with_capacity(cmp::min(event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<events::Event>()));
4593                 for _ in 0..event_count {
4594                         match MaybeReadable::read(reader)? {
4595                                 Some(event) => pending_events_read.push(event),
4596                                 None => continue,
4597                         }
4598                 }
4599
4600                 let background_event_count: u64 = Readable::read(reader)?;
4601                 let mut pending_background_events_read: Vec<BackgroundEvent> = Vec::with_capacity(cmp::min(background_event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<BackgroundEvent>()));
4602                 for _ in 0..background_event_count {
4603                         match <u8 as Readable>::read(reader)? {
4604                                 0 => pending_background_events_read.push(BackgroundEvent::ClosingMonitorUpdate((Readable::read(reader)?, Readable::read(reader)?))),
4605                                 _ => return Err(DecodeError::InvalidValue),
4606                         }
4607                 }
4608
4609                 let last_node_announcement_serial: u32 = Readable::read(reader)?;
4610                 let highest_seen_timestamp: u32 = Readable::read(reader)?;
4611
4612                 let pending_inbound_payment_count: u64 = Readable::read(reader)?;
4613                 let mut pending_inbound_payments: HashMap<PaymentHash, PendingInboundPayment> = HashMap::with_capacity(cmp::min(pending_inbound_payment_count as usize, MAX_ALLOC_SIZE/(3*32)));
4614                 for _ in 0..pending_inbound_payment_count {
4615                         if pending_inbound_payments.insert(Readable::read(reader)?, Readable::read(reader)?).is_some() {
4616                                 return Err(DecodeError::InvalidValue);
4617                         }
4618                 }
4619
4620                 let mut secp_ctx = Secp256k1::new();
4621                 secp_ctx.seeded_randomize(&args.keys_manager.get_secure_random_bytes());
4622
4623                 let channel_manager = ChannelManager {
4624                         genesis_hash,
4625                         fee_estimator: args.fee_estimator,
4626                         chain_monitor: args.chain_monitor,
4627                         tx_broadcaster: args.tx_broadcaster,
4628
4629                         best_block: RwLock::new(BestBlock::new(best_block_hash, best_block_height)),
4630
4631                         channel_state: Mutex::new(ChannelHolder {
4632                                 by_id,
4633                                 short_to_id,
4634                                 forward_htlcs,
4635                                 claimable_htlcs,
4636                                 pending_msg_events: Vec::new(),
4637                         }),
4638                         pending_inbound_payments: Mutex::new(pending_inbound_payments),
4639
4640                         our_network_key: args.keys_manager.get_node_secret(),
4641                         our_network_pubkey: PublicKey::from_secret_key(&secp_ctx, &args.keys_manager.get_node_secret()),
4642                         secp_ctx,
4643
4644                         last_node_announcement_serial: AtomicUsize::new(last_node_announcement_serial as usize),
4645                         highest_seen_timestamp: AtomicUsize::new(highest_seen_timestamp as usize),
4646
4647                         per_peer_state: RwLock::new(per_peer_state),
4648
4649                         pending_events: Mutex::new(pending_events_read),
4650                         pending_background_events: Mutex::new(pending_background_events_read),
4651                         total_consistency_lock: RwLock::new(()),
4652                         persistence_notifier: PersistenceNotifier::new(),
4653
4654                         keys_manager: args.keys_manager,
4655                         logger: args.logger,
4656                         default_configuration: args.default_config,
4657                 };
4658
4659                 for htlc_source in failed_htlcs.drain(..) {
4660                         channel_manager.fail_htlc_backwards_internal(channel_manager.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
4661                 }
4662
4663                 //TODO: Broadcast channel update for closed channels, but only after we've made a
4664                 //connection or two.
4665
4666                 Ok((best_block_hash.clone(), channel_manager))
4667         }
4668 }
4669
4670 #[cfg(test)]
4671 mod tests {
4672         use ln::channelmanager::PersistenceNotifier;
4673         use std::sync::Arc;
4674         use std::sync::atomic::{AtomicBool, Ordering};
4675         use std::thread;
4676         use std::time::Duration;
4677
4678         #[test]
4679         fn test_wait_timeout() {
4680                 let persistence_notifier = Arc::new(PersistenceNotifier::new());
4681                 let thread_notifier = Arc::clone(&persistence_notifier);
4682
4683                 let exit_thread = Arc::new(AtomicBool::new(false));
4684                 let exit_thread_clone = exit_thread.clone();
4685                 thread::spawn(move || {
4686                         loop {
4687                                 let &(ref persist_mtx, ref cnd) = &thread_notifier.persistence_lock;
4688                                 let mut persistence_lock = persist_mtx.lock().unwrap();
4689                                 *persistence_lock = true;
4690                                 cnd.notify_all();
4691
4692                                 if exit_thread_clone.load(Ordering::SeqCst) {
4693                                         break
4694                                 }
4695                         }
4696                 });
4697
4698                 // Check that we can block indefinitely until updates are available.
4699                 let _ = persistence_notifier.wait();
4700
4701                 // Check that the PersistenceNotifier will return after the given duration if updates are
4702                 // available.
4703                 loop {
4704                         if persistence_notifier.wait_timeout(Duration::from_millis(100)) {
4705                                 break
4706                         }
4707                 }
4708
4709                 exit_thread.store(true, Ordering::SeqCst);
4710
4711                 // Check that the PersistenceNotifier will return after the given duration even if no updates
4712                 // are available.
4713                 loop {
4714                         if !persistence_notifier.wait_timeout(Duration::from_millis(100)) {
4715                                 break
4716                         }
4717                 }
4718         }
4719 }
4720
4721 #[cfg(all(any(test, feature = "_test_utils"), feature = "unstable"))]
4722 pub mod bench {
4723         use chain::Listen;
4724         use chain::chainmonitor::ChainMonitor;
4725         use chain::channelmonitor::Persist;
4726         use chain::keysinterface::{KeysManager, InMemorySigner};
4727         use ln::channelmanager::{BestBlock, ChainParameters, ChannelManager, PaymentHash, PaymentPreimage};
4728         use ln::features::{InitFeatures, InvoiceFeatures};
4729         use ln::functional_test_utils::*;
4730         use ln::msgs::ChannelMessageHandler;
4731         use routing::network_graph::NetworkGraph;
4732         use routing::router::get_route;
4733         use util::test_utils;
4734         use util::config::UserConfig;
4735         use util::events::{Event, EventsProvider, MessageSendEvent, MessageSendEventsProvider};
4736
4737         use bitcoin::hashes::Hash;
4738         use bitcoin::hashes::sha256::Hash as Sha256;
4739         use bitcoin::{Block, BlockHeader, Transaction, TxOut};
4740
4741         use std::sync::Mutex;
4742
4743         use test::Bencher;
4744
4745         struct NodeHolder<'a, P: Persist<InMemorySigner>> {
4746                 node: &'a ChannelManager<InMemorySigner,
4747                         &'a ChainMonitor<InMemorySigner, &'a test_utils::TestChainSource,
4748                                 &'a test_utils::TestBroadcaster, &'a test_utils::TestFeeEstimator,
4749                                 &'a test_utils::TestLogger, &'a P>,
4750                         &'a test_utils::TestBroadcaster, &'a KeysManager,
4751                         &'a test_utils::TestFeeEstimator, &'a test_utils::TestLogger>
4752         }
4753
4754         #[cfg(test)]
4755         #[bench]
4756         fn bench_sends(bench: &mut Bencher) {
4757                 bench_two_sends(bench, test_utils::TestPersister::new(), test_utils::TestPersister::new());
4758         }
4759
4760         pub fn bench_two_sends<P: Persist<InMemorySigner>>(bench: &mut Bencher, persister_a: P, persister_b: P) {
4761                 // Do a simple benchmark of sending a payment back and forth between two nodes.
4762                 // Note that this is unrealistic as each payment send will require at least two fsync
4763                 // calls per node.
4764                 let network = bitcoin::Network::Testnet;
4765                 let genesis_hash = bitcoin::blockdata::constants::genesis_block(network).header.block_hash();
4766
4767                 let tx_broadcaster = test_utils::TestBroadcaster{txn_broadcasted: Mutex::new(Vec::new())};
4768                 let fee_estimator = test_utils::TestFeeEstimator { sat_per_kw: 253 };
4769
4770                 let mut config: UserConfig = Default::default();
4771                 config.own_channel_config.minimum_depth = 1;
4772
4773                 let logger_a = test_utils::TestLogger::with_id("node a".to_owned());
4774                 let chain_monitor_a = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_a);
4775                 let seed_a = [1u8; 32];
4776                 let keys_manager_a = KeysManager::new(&seed_a, 42, 42);
4777                 let node_a = ChannelManager::new(&fee_estimator, &chain_monitor_a, &tx_broadcaster, &logger_a, &keys_manager_a, config.clone(), ChainParameters {
4778                         network,
4779                         best_block: BestBlock::from_genesis(network),
4780                 });
4781                 let node_a_holder = NodeHolder { node: &node_a };
4782
4783                 let logger_b = test_utils::TestLogger::with_id("node a".to_owned());
4784                 let chain_monitor_b = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_b);
4785                 let seed_b = [2u8; 32];
4786                 let keys_manager_b = KeysManager::new(&seed_b, 42, 42);
4787                 let node_b = ChannelManager::new(&fee_estimator, &chain_monitor_b, &tx_broadcaster, &logger_b, &keys_manager_b, config.clone(), ChainParameters {
4788                         network,
4789                         best_block: BestBlock::from_genesis(network),
4790                 });
4791                 let node_b_holder = NodeHolder { node: &node_b };
4792
4793                 node_a.create_channel(node_b.get_our_node_id(), 8_000_000, 100_000_000, 42, None).unwrap();
4794                 node_b.handle_open_channel(&node_a.get_our_node_id(), InitFeatures::known(), &get_event_msg!(node_a_holder, MessageSendEvent::SendOpenChannel, node_b.get_our_node_id()));
4795                 node_a.handle_accept_channel(&node_b.get_our_node_id(), InitFeatures::known(), &get_event_msg!(node_b_holder, MessageSendEvent::SendAcceptChannel, node_a.get_our_node_id()));
4796
4797                 let tx;
4798                 if let Event::FundingGenerationReady { temporary_channel_id, output_script, .. } = get_event!(node_a_holder, Event::FundingGenerationReady) {
4799                         tx = Transaction { version: 2, lock_time: 0, input: Vec::new(), output: vec![TxOut {
4800                                 value: 8_000_000, script_pubkey: output_script,
4801                         }]};
4802                         node_a.funding_transaction_generated(&temporary_channel_id, tx.clone()).unwrap();
4803                 } else { panic!(); }
4804
4805                 node_b.handle_funding_created(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendFundingCreated, node_b.get_our_node_id()));
4806                 node_a.handle_funding_signed(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendFundingSigned, node_a.get_our_node_id()));
4807
4808                 assert_eq!(&tx_broadcaster.txn_broadcasted.lock().unwrap()[..], &[tx.clone()]);
4809
4810                 let block = Block {
4811                         header: BlockHeader { version: 0x20000000, prev_blockhash: genesis_hash, merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 },
4812                         txdata: vec![tx],
4813                 };
4814                 Listen::block_connected(&node_a, &block, 1);
4815                 Listen::block_connected(&node_b, &block, 1);
4816
4817                 node_a.handle_funding_locked(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendFundingLocked, node_a.get_our_node_id()));
4818                 node_b.handle_funding_locked(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendFundingLocked, node_b.get_our_node_id()));
4819
4820                 let dummy_graph = NetworkGraph::new(genesis_hash);
4821
4822                 let mut payment_count: u64 = 0;
4823                 macro_rules! send_payment {
4824                         ($node_a: expr, $node_b: expr) => {
4825                                 let usable_channels = $node_a.list_usable_channels();
4826                                 let route = get_route(&$node_a.get_our_node_id(), &dummy_graph, &$node_b.get_our_node_id(), Some(InvoiceFeatures::known()),
4827                                         Some(&usable_channels.iter().map(|r| r).collect::<Vec<_>>()), &[], 10_000, TEST_FINAL_CLTV, &logger_a).unwrap();
4828
4829                                 let mut payment_preimage = PaymentPreimage([0; 32]);
4830                                 payment_preimage.0[0..8].copy_from_slice(&payment_count.to_le_bytes());
4831                                 payment_count += 1;
4832                                 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0[..]).into_inner());
4833                                 let payment_secret = $node_b.create_inbound_payment_for_hash(payment_hash, None, 7200).unwrap();
4834
4835                                 $node_a.send_payment(&route, payment_hash, &Some(payment_secret)).unwrap();
4836                                 let payment_event = SendEvent::from_event($node_a.get_and_clear_pending_msg_events().pop().unwrap());
4837                                 $node_b.handle_update_add_htlc(&$node_a.get_our_node_id(), &payment_event.msgs[0]);
4838                                 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &payment_event.commitment_msg);
4839                                 let (raa, cs) = get_revoke_commit_msgs!(NodeHolder { node: &$node_b }, $node_a.get_our_node_id());
4840                                 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &raa);
4841                                 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &cs);
4842                                 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &get_event_msg!(NodeHolder { node: &$node_a }, MessageSendEvent::SendRevokeAndACK, $node_b.get_our_node_id()));
4843
4844                                 expect_pending_htlcs_forwardable!(NodeHolder { node: &$node_b });
4845                                 expect_payment_received!(NodeHolder { node: &$node_b }, payment_hash, payment_secret, 10_000);
4846                                 assert!($node_b.claim_funds(payment_preimage, &Some(payment_secret), 10_000));
4847
4848                                 match $node_b.get_and_clear_pending_msg_events().pop().unwrap() {
4849                                         MessageSendEvent::UpdateHTLCs { node_id, updates } => {
4850                                                 assert_eq!(node_id, $node_a.get_our_node_id());
4851                                                 $node_a.handle_update_fulfill_htlc(&$node_b.get_our_node_id(), &updates.update_fulfill_htlcs[0]);
4852                                                 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &updates.commitment_signed);
4853                                         },
4854                                         _ => panic!("Failed to generate claim event"),
4855                                 }
4856
4857                                 let (raa, cs) = get_revoke_commit_msgs!(NodeHolder { node: &$node_a }, $node_b.get_our_node_id());
4858                                 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &raa);
4859                                 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &cs);
4860                                 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &get_event_msg!(NodeHolder { node: &$node_b }, MessageSendEvent::SendRevokeAndACK, $node_a.get_our_node_id()));
4861
4862                                 expect_payment_sent!(NodeHolder { node: &$node_a }, payment_preimage);
4863                         }
4864                 }
4865
4866                 bench.iter(|| {
4867                         send_payment!(node_a, node_b);
4868                         send_payment!(node_b, node_a);
4869                 });
4870         }
4871 }