Increase the CLTV delay required on payments and forwards
[rust-lightning] / lightning / src / ln / channelmanager.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! The top-level channel management and payment tracking stuff lives here.
11 //!
12 //! The ChannelManager is the main chunk of logic implementing the lightning protocol and is
13 //! responsible for tracking which channels are open, HTLCs are in flight and reestablishing those
14 //! upon reconnect to the relevant peer(s).
15 //!
16 //! It does not manage routing logic (see routing::router::get_route for that) nor does it manage constructing
17 //! on-chain transactions (it only monitors the chain to watch for any force-closes that might
18 //! imply it needs to fail HTLCs/payments/channels it manages).
19 //!
20
21 use bitcoin::blockdata::block::{Block, BlockHeader};
22 use bitcoin::blockdata::transaction::Transaction;
23 use bitcoin::blockdata::constants::genesis_block;
24 use bitcoin::network::constants::Network;
25
26 use bitcoin::hashes::{Hash, HashEngine};
27 use bitcoin::hashes::hmac::{Hmac, HmacEngine};
28 use bitcoin::hashes::sha256::Hash as Sha256;
29 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
30 use bitcoin::hashes::cmp::fixed_time_eq;
31 use bitcoin::hash_types::{BlockHash, Txid};
32
33 use bitcoin::secp256k1::key::{SecretKey,PublicKey};
34 use bitcoin::secp256k1::Secp256k1;
35 use bitcoin::secp256k1::ecdh::SharedSecret;
36 use bitcoin::secp256k1;
37
38 use chain;
39 use chain::Confirm;
40 use chain::Watch;
41 use chain::chaininterface::{BroadcasterInterface, FeeEstimator};
42 use chain::channelmonitor::{ChannelMonitor, ChannelMonitorUpdate, ChannelMonitorUpdateStep, ChannelMonitorUpdateErr, HTLC_FAIL_BACK_BUFFER, CLTV_CLAIM_BUFFER, LATENCY_GRACE_PERIOD_BLOCKS, ANTI_REORG_DELAY, MonitorEvent, CLOSED_CHANNEL_UPDATE_ID};
43 use chain::transaction::{OutPoint, TransactionData};
44 // Since this struct is returned in `list_channels` methods, expose it here in case users want to
45 // construct one themselves.
46 use ln::{PaymentHash, PaymentPreimage, PaymentSecret};
47 pub use ln::channel::CounterpartyForwardingInfo;
48 use ln::channel::{Channel, ChannelError};
49 use ln::features::{InitFeatures, NodeFeatures};
50 use routing::router::{Route, RouteHop};
51 use ln::msgs;
52 use ln::msgs::NetAddress;
53 use ln::onion_utils;
54 use ln::msgs::{ChannelMessageHandler, DecodeError, LightningError, OptionalField};
55 use chain::keysinterface::{Sign, KeysInterface, KeysManager, InMemorySigner};
56 use util::config::UserConfig;
57 use util::events::{Event, EventsProvider, MessageSendEvent, MessageSendEventsProvider};
58 use util::{byte_utils, events};
59 use util::ser::{Readable, ReadableArgs, MaybeReadable, Writeable, Writer};
60 use util::chacha20::{ChaCha20, ChaChaReader};
61 use util::logger::Logger;
62 use util::errors::APIError;
63
64 use std::{cmp, mem};
65 use std::collections::{HashMap, hash_map, HashSet};
66 use std::io::{Cursor, Read};
67 use std::sync::{Arc, Condvar, Mutex, MutexGuard, RwLock, RwLockReadGuard};
68 use std::sync::atomic::{AtomicUsize, Ordering};
69 use std::time::Duration;
70 #[cfg(any(test, feature = "allow_wallclock_use"))]
71 use std::time::Instant;
72 use std::ops::Deref;
73 use bitcoin::hashes::hex::ToHex;
74
75 // We hold various information about HTLC relay in the HTLC objects in Channel itself:
76 //
77 // Upon receipt of an HTLC from a peer, we'll give it a PendingHTLCStatus indicating if it should
78 // forward the HTLC with information it will give back to us when it does so, or if it should Fail
79 // the HTLC with the relevant message for the Channel to handle giving to the remote peer.
80 //
81 // Once said HTLC is committed in the Channel, if the PendingHTLCStatus indicated Forward, the
82 // Channel will return the PendingHTLCInfo back to us, and we will create an HTLCForwardInfo
83 // with it to track where it came from (in case of onwards-forward error), waiting a random delay
84 // before we forward it.
85 //
86 // We will then use HTLCForwardInfo's PendingHTLCInfo to construct an outbound HTLC, with a
87 // relevant HTLCSource::PreviousHopData filled in to indicate where it came from (which we can use
88 // to either fail-backwards or fulfill the HTLC backwards along the relevant path).
89 // Alternatively, we can fill an outbound HTLC with a HTLCSource::OutboundRoute indicating this is
90 // our payment, which we can use to decode errors or inform the user that the payment was sent.
91
92 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
93 enum PendingHTLCRouting {
94         Forward {
95                 onion_packet: msgs::OnionPacket,
96                 short_channel_id: u64, // This should be NonZero<u64> eventually when we bump MSRV
97         },
98         Receive {
99                 payment_data: msgs::FinalOnionHopData,
100                 incoming_cltv_expiry: u32, // Used to track when we should expire pending HTLCs that go unclaimed
101         },
102 }
103
104 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
105 pub(super) struct PendingHTLCInfo {
106         routing: PendingHTLCRouting,
107         incoming_shared_secret: [u8; 32],
108         payment_hash: PaymentHash,
109         pub(super) amt_to_forward: u64,
110         pub(super) outgoing_cltv_value: u32,
111 }
112
113 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
114 pub(super) enum HTLCFailureMsg {
115         Relay(msgs::UpdateFailHTLC),
116         Malformed(msgs::UpdateFailMalformedHTLC),
117 }
118
119 /// Stores whether we can't forward an HTLC or relevant forwarding info
120 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
121 pub(super) enum PendingHTLCStatus {
122         Forward(PendingHTLCInfo),
123         Fail(HTLCFailureMsg),
124 }
125
126 pub(super) enum HTLCForwardInfo {
127         AddHTLC {
128                 forward_info: PendingHTLCInfo,
129
130                 // These fields are produced in `forward_htlcs()` and consumed in
131                 // `process_pending_htlc_forwards()` for constructing the
132                 // `HTLCSource::PreviousHopData` for failed and forwarded
133                 // HTLCs.
134                 prev_short_channel_id: u64,
135                 prev_htlc_id: u64,
136                 prev_funding_outpoint: OutPoint,
137         },
138         FailHTLC {
139                 htlc_id: u64,
140                 err_packet: msgs::OnionErrorPacket,
141         },
142 }
143
144 /// Tracks the inbound corresponding to an outbound HTLC
145 #[derive(Clone, PartialEq)]
146 pub(crate) struct HTLCPreviousHopData {
147         short_channel_id: u64,
148         htlc_id: u64,
149         incoming_packet_shared_secret: [u8; 32],
150
151         // This field is consumed by `claim_funds_from_hop()` when updating a force-closed backwards
152         // channel with a preimage provided by the forward channel.
153         outpoint: OutPoint,
154 }
155
156 struct ClaimableHTLC {
157         prev_hop: HTLCPreviousHopData,
158         value: u64,
159         /// Contains a total_msat (which may differ from value if this is a Multi-Path Payment) and a
160         /// payment_secret which prevents path-probing attacks and can associate different HTLCs which
161         /// are part of the same payment.
162         payment_data: msgs::FinalOnionHopData,
163         cltv_expiry: u32,
164 }
165
166 /// Tracks the inbound corresponding to an outbound HTLC
167 #[derive(Clone, PartialEq)]
168 pub(crate) enum HTLCSource {
169         PreviousHopData(HTLCPreviousHopData),
170         OutboundRoute {
171                 path: Vec<RouteHop>,
172                 session_priv: SecretKey,
173                 /// Technically we can recalculate this from the route, but we cache it here to avoid
174                 /// doing a double-pass on route when we get a failure back
175                 first_hop_htlc_msat: u64,
176         },
177 }
178 #[cfg(test)]
179 impl HTLCSource {
180         pub fn dummy() -> Self {
181                 HTLCSource::OutboundRoute {
182                         path: Vec::new(),
183                         session_priv: SecretKey::from_slice(&[1; 32]).unwrap(),
184                         first_hop_htlc_msat: 0,
185                 }
186         }
187 }
188
189 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
190 pub(super) enum HTLCFailReason {
191         LightningError {
192                 err: msgs::OnionErrorPacket,
193         },
194         Reason {
195                 failure_code: u16,
196                 data: Vec<u8>,
197         }
198 }
199
200 type ShutdownResult = (Option<(OutPoint, ChannelMonitorUpdate)>, Vec<(HTLCSource, PaymentHash)>);
201
202 /// Error type returned across the channel_state mutex boundary. When an Err is generated for a
203 /// Channel, we generally end up with a ChannelError::Close for which we have to close the channel
204 /// immediately (ie with no further calls on it made). Thus, this step happens inside a
205 /// channel_state lock. We then return the set of things that need to be done outside the lock in
206 /// this struct and call handle_error!() on it.
207
208 struct MsgHandleErrInternal {
209         err: msgs::LightningError,
210         shutdown_finish: Option<(ShutdownResult, Option<msgs::ChannelUpdate>)>,
211 }
212 impl MsgHandleErrInternal {
213         #[inline]
214         fn send_err_msg_no_close(err: String, channel_id: [u8; 32]) -> Self {
215                 Self {
216                         err: LightningError {
217                                 err: err.clone(),
218                                 action: msgs::ErrorAction::SendErrorMessage {
219                                         msg: msgs::ErrorMessage {
220                                                 channel_id,
221                                                 data: err
222                                         },
223                                 },
224                         },
225                         shutdown_finish: None,
226                 }
227         }
228         #[inline]
229         fn ignore_no_close(err: String) -> Self {
230                 Self {
231                         err: LightningError {
232                                 err,
233                                 action: msgs::ErrorAction::IgnoreError,
234                         },
235                         shutdown_finish: None,
236                 }
237         }
238         #[inline]
239         fn from_no_close(err: msgs::LightningError) -> Self {
240                 Self { err, shutdown_finish: None }
241         }
242         #[inline]
243         fn from_finish_shutdown(err: String, channel_id: [u8; 32], shutdown_res: ShutdownResult, channel_update: Option<msgs::ChannelUpdate>) -> Self {
244                 Self {
245                         err: LightningError {
246                                 err: err.clone(),
247                                 action: msgs::ErrorAction::SendErrorMessage {
248                                         msg: msgs::ErrorMessage {
249                                                 channel_id,
250                                                 data: err
251                                         },
252                                 },
253                         },
254                         shutdown_finish: Some((shutdown_res, channel_update)),
255                 }
256         }
257         #[inline]
258         fn from_chan_no_close(err: ChannelError, channel_id: [u8; 32]) -> Self {
259                 Self {
260                         err: match err {
261                                 ChannelError::Ignore(msg) => LightningError {
262                                         err: msg,
263                                         action: msgs::ErrorAction::IgnoreError,
264                                 },
265                                 ChannelError::Close(msg) => LightningError {
266                                         err: msg.clone(),
267                                         action: msgs::ErrorAction::SendErrorMessage {
268                                                 msg: msgs::ErrorMessage {
269                                                         channel_id,
270                                                         data: msg
271                                                 },
272                                         },
273                                 },
274                                 ChannelError::CloseDelayBroadcast(msg) => LightningError {
275                                         err: msg.clone(),
276                                         action: msgs::ErrorAction::SendErrorMessage {
277                                                 msg: msgs::ErrorMessage {
278                                                         channel_id,
279                                                         data: msg
280                                                 },
281                                         },
282                                 },
283                         },
284                         shutdown_finish: None,
285                 }
286         }
287 }
288
289 /// We hold back HTLCs we intend to relay for a random interval greater than this (see
290 /// Event::PendingHTLCsForwardable for the API guidelines indicating how long should be waited).
291 /// This provides some limited amount of privacy. Ideally this would range from somewhere like one
292 /// second to 30 seconds, but people expect lightning to be, you know, kinda fast, sadly.
293 const MIN_HTLC_RELAY_HOLDING_CELL_MILLIS: u64 = 100;
294
295 /// For events which result in both a RevokeAndACK and a CommitmentUpdate, by default they should
296 /// be sent in the order they appear in the return value, however sometimes the order needs to be
297 /// variable at runtime (eg Channel::channel_reestablish needs to re-send messages in the order
298 /// they were originally sent). In those cases, this enum is also returned.
299 #[derive(Clone, PartialEq)]
300 pub(super) enum RAACommitmentOrder {
301         /// Send the CommitmentUpdate messages first
302         CommitmentFirst,
303         /// Send the RevokeAndACK message first
304         RevokeAndACKFirst,
305 }
306
307 // Note this is only exposed in cfg(test):
308 pub(super) struct ChannelHolder<Signer: Sign> {
309         pub(super) by_id: HashMap<[u8; 32], Channel<Signer>>,
310         pub(super) short_to_id: HashMap<u64, [u8; 32]>,
311         /// short channel id -> forward infos. Key of 0 means payments received
312         /// Note that while this is held in the same mutex as the channels themselves, no consistency
313         /// guarantees are made about the existence of a channel with the short id here, nor the short
314         /// ids in the PendingHTLCInfo!
315         pub(super) forward_htlcs: HashMap<u64, Vec<HTLCForwardInfo>>,
316         /// Map from payment hash to any HTLCs which are to us and can be failed/claimed by the user.
317         /// Note that while this is held in the same mutex as the channels themselves, no consistency
318         /// guarantees are made about the channels given here actually existing anymore by the time you
319         /// go to read them!
320         claimable_htlcs: HashMap<PaymentHash, Vec<ClaimableHTLC>>,
321         /// Messages to send to peers - pushed to in the same lock that they are generated in (except
322         /// for broadcast messages, where ordering isn't as strict).
323         pub(super) pending_msg_events: Vec<MessageSendEvent>,
324 }
325
326 /// Events which we process internally but cannot be procsesed immediately at the generation site
327 /// for some reason. They are handled in timer_tick_occurred, so may be processed with
328 /// quite some time lag.
329 enum BackgroundEvent {
330         /// Handle a ChannelMonitorUpdate that closes a channel, broadcasting its current latest holder
331         /// commitment transaction.
332         ClosingMonitorUpdate((OutPoint, ChannelMonitorUpdate)),
333 }
334
335 /// State we hold per-peer. In the future we should put channels in here, but for now we only hold
336 /// the latest Init features we heard from the peer.
337 struct PeerState {
338         latest_features: InitFeatures,
339 }
340
341 /// Stores a PaymentSecret and any other data we may need to validate an inbound payment is
342 /// actually ours and not some duplicate HTLC sent to us by a node along the route.
343 ///
344 /// For users who don't want to bother doing their own payment preimage storage, we also store that
345 /// here.
346 struct PendingInboundPayment {
347         /// The payment secret that the sender must use for us to accept this payment
348         payment_secret: PaymentSecret,
349         /// Time at which this HTLC expires - blocks with a header time above this value will result in
350         /// this payment being removed.
351         expiry_time: u64,
352         /// Arbitrary identifier the user specifies (or not)
353         user_payment_id: u64,
354         // Other required attributes of the payment, optionally enforced:
355         payment_preimage: Option<PaymentPreimage>,
356         min_value_msat: Option<u64>,
357 }
358
359 /// SimpleArcChannelManager is useful when you need a ChannelManager with a static lifetime, e.g.
360 /// when you're using lightning-net-tokio (since tokio::spawn requires parameters with static
361 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
362 /// SimpleRefChannelManager is the more appropriate type. Defining these type aliases prevents
363 /// issues such as overly long function definitions. Note that the ChannelManager can take any
364 /// type that implements KeysInterface for its keys manager, but this type alias chooses the
365 /// concrete type of the KeysManager.
366 pub type SimpleArcChannelManager<M, T, F, L> = ChannelManager<InMemorySigner, Arc<M>, Arc<T>, Arc<KeysManager>, Arc<F>, Arc<L>>;
367
368 /// SimpleRefChannelManager is a type alias for a ChannelManager reference, and is the reference
369 /// counterpart to the SimpleArcChannelManager type alias. Use this type by default when you don't
370 /// need a ChannelManager with a static lifetime. You'll need a static lifetime in cases such as
371 /// usage of lightning-net-tokio (since tokio::spawn requires parameters with static lifetimes).
372 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
373 /// helps with issues such as long function definitions. Note that the ChannelManager can take any
374 /// type that implements KeysInterface for its keys manager, but this type alias chooses the
375 /// concrete type of the KeysManager.
376 pub type SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, M, T, F, L> = ChannelManager<InMemorySigner, &'a M, &'b T, &'c KeysManager, &'d F, &'e L>;
377
378 /// Manager which keeps track of a number of channels and sends messages to the appropriate
379 /// channel, also tracking HTLC preimages and forwarding onion packets appropriately.
380 ///
381 /// Implements ChannelMessageHandler, handling the multi-channel parts and passing things through
382 /// to individual Channels.
383 ///
384 /// Implements Writeable to write out all channel state to disk. Implies peer_disconnected() for
385 /// all peers during write/read (though does not modify this instance, only the instance being
386 /// serialized). This will result in any channels which have not yet exchanged funding_created (ie
387 /// called funding_transaction_generated for outbound channels).
388 ///
389 /// Note that you can be a bit lazier about writing out ChannelManager than you can be with
390 /// ChannelMonitors. With ChannelMonitors you MUST write each monitor update out to disk before
391 /// returning from chain::Watch::watch_/update_channel, with ChannelManagers, writing updates
392 /// happens out-of-band (and will prevent any other ChannelManager operations from occurring during
393 /// the serialization process). If the deserialized version is out-of-date compared to the
394 /// ChannelMonitors passed by reference to read(), those channels will be force-closed based on the
395 /// ChannelMonitor state and no funds will be lost (mod on-chain transaction fees).
396 ///
397 /// Note that the deserializer is only implemented for (BlockHash, ChannelManager), which
398 /// tells you the last block hash which was block_connect()ed. You MUST rescan any blocks along
399 /// the "reorg path" (ie call block_disconnected() until you get to a common block and then call
400 /// block_connected() to step towards your best block) upon deserialization before using the
401 /// object!
402 ///
403 /// Note that ChannelManager is responsible for tracking liveness of its channels and generating
404 /// ChannelUpdate messages informing peers that the channel is temporarily disabled. To avoid
405 /// spam due to quick disconnection/reconnection, updates are not sent until the channel has been
406 /// offline for a full minute. In order to track this, you must call
407 /// timer_tick_occurred roughly once per minute, though it doesn't have to be perfect.
408 ///
409 /// Rather than using a plain ChannelManager, it is preferable to use either a SimpleArcChannelManager
410 /// a SimpleRefChannelManager, for conciseness. See their documentation for more details, but
411 /// essentially you should default to using a SimpleRefChannelManager, and use a
412 /// SimpleArcChannelManager when you require a ChannelManager with a static lifetime, such as when
413 /// you're using lightning-net-tokio.
414 pub struct ChannelManager<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
415         where M::Target: chain::Watch<Signer>,
416         T::Target: BroadcasterInterface,
417         K::Target: KeysInterface<Signer = Signer>,
418         F::Target: FeeEstimator,
419                                 L::Target: Logger,
420 {
421         default_configuration: UserConfig,
422         genesis_hash: BlockHash,
423         fee_estimator: F,
424         chain_monitor: M,
425         tx_broadcaster: T,
426
427         #[cfg(test)]
428         pub(super) best_block: RwLock<BestBlock>,
429         #[cfg(not(test))]
430         best_block: RwLock<BestBlock>,
431         secp_ctx: Secp256k1<secp256k1::All>,
432
433         #[cfg(any(test, feature = "_test_utils"))]
434         pub(super) channel_state: Mutex<ChannelHolder<Signer>>,
435         #[cfg(not(any(test, feature = "_test_utils")))]
436         channel_state: Mutex<ChannelHolder<Signer>>,
437
438         /// Storage for PaymentSecrets and any requirements on future inbound payments before we will
439         /// expose them to users via a PaymentReceived event. HTLCs which do not meet the requirements
440         /// here are failed when we process them as pending-forwardable-HTLCs, and entries are removed
441         /// after we generate a PaymentReceived upon receipt of all MPP parts or when they time out.
442         /// Locked *after* channel_state.
443         pending_inbound_payments: Mutex<HashMap<PaymentHash, PendingInboundPayment>>,
444
445         our_network_key: SecretKey,
446         our_network_pubkey: PublicKey,
447
448         /// Used to track the last value sent in a node_announcement "timestamp" field. We ensure this
449         /// value increases strictly since we don't assume access to a time source.
450         last_node_announcement_serial: AtomicUsize,
451
452         /// The highest block timestamp we've seen, which is usually a good guess at the current time.
453         /// Assuming most miners are generating blocks with reasonable timestamps, this shouldn't be
454         /// very far in the past, and can only ever be up to two hours in the future.
455         highest_seen_timestamp: AtomicUsize,
456
457         /// The bulk of our storage will eventually be here (channels and message queues and the like).
458         /// If we are connected to a peer we always at least have an entry here, even if no channels
459         /// are currently open with that peer.
460         /// Because adding or removing an entry is rare, we usually take an outer read lock and then
461         /// operate on the inner value freely. Sadly, this prevents parallel operation when opening a
462         /// new channel.
463         per_peer_state: RwLock<HashMap<PublicKey, Mutex<PeerState>>>,
464
465         pending_events: Mutex<Vec<events::Event>>,
466         pending_background_events: Mutex<Vec<BackgroundEvent>>,
467         /// Used when we have to take a BIG lock to make sure everything is self-consistent.
468         /// Essentially just when we're serializing ourselves out.
469         /// Taken first everywhere where we are making changes before any other locks.
470         /// When acquiring this lock in read mode, rather than acquiring it directly, call
471         /// `PersistenceNotifierGuard::new(..)` and pass the lock to it, to ensure the PersistenceNotifier
472         /// the lock contains sends out a notification when the lock is released.
473         total_consistency_lock: RwLock<()>,
474
475         persistence_notifier: PersistenceNotifier,
476
477         keys_manager: K,
478
479         logger: L,
480 }
481
482 /// Chain-related parameters used to construct a new `ChannelManager`.
483 ///
484 /// Typically, the block-specific parameters are derived from the best block hash for the network,
485 /// as a newly constructed `ChannelManager` will not have created any channels yet. These parameters
486 /// are not needed when deserializing a previously constructed `ChannelManager`.
487 pub struct ChainParameters {
488         /// The network for determining the `chain_hash` in Lightning messages.
489         pub network: Network,
490
491         /// The hash and height of the latest block successfully connected.
492         ///
493         /// Used to track on-chain channel funding outputs and send payments with reliable timelocks.
494         pub best_block: BestBlock,
495 }
496
497 /// The best known block as identified by its hash and height.
498 #[derive(Clone, Copy)]
499 pub struct BestBlock {
500         block_hash: BlockHash,
501         height: u32,
502 }
503
504 impl BestBlock {
505         /// Returns the best block from the genesis of the given network.
506         pub fn from_genesis(network: Network) -> Self {
507                 BestBlock {
508                         block_hash: genesis_block(network).header.block_hash(),
509                         height: 0,
510                 }
511         }
512
513         /// Returns the best block as identified by the given block hash and height.
514         pub fn new(block_hash: BlockHash, height: u32) -> Self {
515                 BestBlock { block_hash, height }
516         }
517
518         /// Returns the best block hash.
519         pub fn block_hash(&self) -> BlockHash { self.block_hash }
520
521         /// Returns the best block height.
522         pub fn height(&self) -> u32 { self.height }
523 }
524
525 /// Whenever we release the `ChannelManager`'s `total_consistency_lock`, from read mode, it is
526 /// desirable to notify any listeners on `await_persistable_update_timeout`/
527 /// `await_persistable_update` that new updates are available for persistence. Therefore, this
528 /// struct is responsible for locking the total consistency lock and, upon going out of scope,
529 /// sending the aforementioned notification (since the lock being released indicates that the
530 /// updates are ready for persistence).
531 struct PersistenceNotifierGuard<'a> {
532         persistence_notifier: &'a PersistenceNotifier,
533         // We hold onto this result so the lock doesn't get released immediately.
534         _read_guard: RwLockReadGuard<'a, ()>,
535 }
536
537 impl<'a> PersistenceNotifierGuard<'a> {
538         fn new(lock: &'a RwLock<()>, notifier: &'a PersistenceNotifier) -> Self {
539                 let read_guard = lock.read().unwrap();
540
541                 Self {
542                         persistence_notifier: notifier,
543                         _read_guard: read_guard,
544                 }
545         }
546 }
547
548 impl<'a> Drop for PersistenceNotifierGuard<'a> {
549         fn drop(&mut self) {
550                 self.persistence_notifier.notify();
551         }
552 }
553
554 /// The amount of time in blocks we require our counterparty wait to claim their money (ie time
555 /// between when we, or our watchtower, must check for them having broadcast a theft transaction).
556 ///
557 /// This can be increased (but not decreased) through [`ChannelHandshakeConfig::our_to_self_delay`]
558 ///
559 /// [`ChannelHandshakeConfig::our_to_self_delay`]: crate::util::config::ChannelHandshakeConfig::our_to_self_delay
560 pub const BREAKDOWN_TIMEOUT: u16 = 6 * 24;
561 /// The amount of time in blocks we're willing to wait to claim money back to us. This matches
562 /// the maximum required amount in lnd as of March 2021.
563 pub(crate) const MAX_LOCAL_BREAKDOWN_TIMEOUT: u16 = 2 * 6 * 24 * 7;
564
565 /// The minimum number of blocks between an inbound HTLC's CLTV and the corresponding outbound
566 /// HTLC's CLTV. The current default represents roughly seven hours of blocks at six blocks/hour.
567 ///
568 /// This can be increased (but not decreased) through [`ChannelConfig::cltv_expiry_delta`]
569 ///
570 /// [`ChannelConfig::cltv_expiry_delta`]: crate::util::config::ChannelConfig::cltv_expiry_delta
571 // This should always be a few blocks greater than channelmonitor::CLTV_CLAIM_BUFFER,
572 // i.e. the node we forwarded the payment on to should always have enough room to reliably time out
573 // the HTLC via a full update_fail_htlc/commitment_signed dance before we hit the
574 // CLTV_CLAIM_BUFFER point (we static assert that it's at least 3 blocks more).
575 pub const MIN_CLTV_EXPIRY_DELTA: u16 = 6*7;
576 pub(super) const CLTV_FAR_FAR_AWAY: u32 = 6 * 24 * 7; //TODO?
577
578 /// Minimum CLTV difference between the current block height and received inbound payments.
579 /// Invoices generated for payment to us must set their `min_final_cltv_expiry` field to at least
580 /// this value.
581 pub const MIN_FINAL_CLTV_EXPIRY: u32 = HTLC_FAIL_BACK_BUFFER;
582
583 // Check that our CLTV_EXPIRY is at least CLTV_CLAIM_BUFFER + ANTI_REORG_DELAY + LATENCY_GRACE_PERIOD_BLOCKS,
584 // ie that if the next-hop peer fails the HTLC within
585 // LATENCY_GRACE_PERIOD_BLOCKS then we'll still have CLTV_CLAIM_BUFFER left to timeout it onchain,
586 // then waiting ANTI_REORG_DELAY to be reorg-safe on the outbound HLTC and
587 // failing the corresponding htlc backward, and us now seeing the last block of ANTI_REORG_DELAY before
588 // LATENCY_GRACE_PERIOD_BLOCKS.
589 #[deny(const_err)]
590 #[allow(dead_code)]
591 const CHECK_CLTV_EXPIRY_SANITY: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - CLTV_CLAIM_BUFFER - ANTI_REORG_DELAY - LATENCY_GRACE_PERIOD_BLOCKS;
592
593 // Check for ability of an attacker to make us fail on-chain by delaying inbound claim. See
594 // ChannelMontior::would_broadcast_at_height for a description of why this is needed.
595 #[deny(const_err)]
596 #[allow(dead_code)]
597 const CHECK_CLTV_EXPIRY_SANITY_2: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - 2*CLTV_CLAIM_BUFFER;
598
599 /// Details of a channel, as returned by ChannelManager::list_channels and ChannelManager::list_usable_channels
600 #[derive(Clone)]
601 pub struct ChannelDetails {
602         /// The channel's ID (prior to funding transaction generation, this is a random 32 bytes,
603         /// thereafter this is the txid of the funding transaction xor the funding transaction output).
604         /// Note that this means this value is *not* persistent - it can change once during the
605         /// lifetime of the channel.
606         pub channel_id: [u8; 32],
607         /// The position of the funding transaction in the chain. None if the funding transaction has
608         /// not yet been confirmed and the channel fully opened.
609         pub short_channel_id: Option<u64>,
610         /// The node_id of our counterparty
611         pub remote_network_id: PublicKey,
612         /// The Features the channel counterparty provided upon last connection.
613         /// Useful for routing as it is the most up-to-date copy of the counterparty's features and
614         /// many routing-relevant features are present in the init context.
615         pub counterparty_features: InitFeatures,
616         /// The value, in satoshis, of this channel as appears in the funding output
617         pub channel_value_satoshis: u64,
618         /// The user_id passed in to create_channel, or 0 if the channel was inbound.
619         pub user_id: u64,
620         /// The available outbound capacity for sending HTLCs to the remote peer. This does not include
621         /// any pending HTLCs which are not yet fully resolved (and, thus, who's balance is not
622         /// available for inclusion in new outbound HTLCs). This further does not include any pending
623         /// outgoing HTLCs which are awaiting some other resolution to be sent.
624         pub outbound_capacity_msat: u64,
625         /// The available inbound capacity for the remote peer to send HTLCs to us. This does not
626         /// include any pending HTLCs which are not yet fully resolved (and, thus, who's balance is not
627         /// available for inclusion in new inbound HTLCs).
628         /// Note that there are some corner cases not fully handled here, so the actual available
629         /// inbound capacity may be slightly higher than this.
630         pub inbound_capacity_msat: u64,
631         /// True if the channel is (a) confirmed and funding_locked messages have been exchanged, (b)
632         /// the peer is connected, and (c) no monitor update failure is pending resolution.
633         pub is_live: bool,
634
635         /// Information on the fees and requirements that the counterparty requires when forwarding
636         /// payments to us through this channel.
637         pub counterparty_forwarding_info: Option<CounterpartyForwardingInfo>,
638 }
639
640 /// If a payment fails to send, it can be in one of several states. This enum is returned as the
641 /// Err() type describing which state the payment is in, see the description of individual enum
642 /// states for more.
643 #[derive(Clone, Debug)]
644 pub enum PaymentSendFailure {
645         /// A parameter which was passed to send_payment was invalid, preventing us from attempting to
646         /// send the payment at all. No channel state has been changed or messages sent to peers, and
647         /// once you've changed the parameter at error, you can freely retry the payment in full.
648         ParameterError(APIError),
649         /// A parameter in a single path which was passed to send_payment was invalid, preventing us
650         /// from attempting to send the payment at all. No channel state has been changed or messages
651         /// sent to peers, and once you've changed the parameter at error, you can freely retry the
652         /// payment in full.
653         ///
654         /// The results here are ordered the same as the paths in the route object which was passed to
655         /// send_payment.
656         PathParameterError(Vec<Result<(), APIError>>),
657         /// All paths which were attempted failed to send, with no channel state change taking place.
658         /// You can freely retry the payment in full (though you probably want to do so over different
659         /// paths than the ones selected).
660         AllFailedRetrySafe(Vec<APIError>),
661         /// Some paths which were attempted failed to send, though possibly not all. At least some
662         /// paths have irrevocably committed to the HTLC and retrying the payment in full would result
663         /// in over-/re-payment.
664         ///
665         /// The results here are ordered the same as the paths in the route object which was passed to
666         /// send_payment, and any Errs which are not APIError::MonitorUpdateFailed can be safely
667         /// retried (though there is currently no API with which to do so).
668         ///
669         /// Any entries which contain Err(APIError::MonitorUpdateFailed) or Ok(()) MUST NOT be retried
670         /// as they will result in over-/re-payment. These HTLCs all either successfully sent (in the
671         /// case of Ok(())) or will send once channel_monitor_updated is called on the next-hop channel
672         /// with the latest update_id.
673         PartialFailure(Vec<Result<(), APIError>>),
674 }
675
676 macro_rules! handle_error {
677         ($self: ident, $internal: expr, $counterparty_node_id: expr) => {
678                 match $internal {
679                         Ok(msg) => Ok(msg),
680                         Err(MsgHandleErrInternal { err, shutdown_finish }) => {
681                                 #[cfg(debug_assertions)]
682                                 {
683                                         // In testing, ensure there are no deadlocks where the lock is already held upon
684                                         // entering the macro.
685                                         assert!($self.channel_state.try_lock().is_ok());
686                                 }
687
688                                 let mut msg_events = Vec::with_capacity(2);
689
690                                 if let Some((shutdown_res, update_option)) = shutdown_finish {
691                                         $self.finish_force_close_channel(shutdown_res);
692                                         if let Some(update) = update_option {
693                                                 msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
694                                                         msg: update
695                                                 });
696                                         }
697                                 }
698
699                                 log_error!($self.logger, "{}", err.err);
700                                 if let msgs::ErrorAction::IgnoreError = err.action {
701                                 } else {
702                                         msg_events.push(events::MessageSendEvent::HandleError {
703                                                 node_id: $counterparty_node_id,
704                                                 action: err.action.clone()
705                                         });
706                                 }
707
708                                 if !msg_events.is_empty() {
709                                         $self.channel_state.lock().unwrap().pending_msg_events.append(&mut msg_events);
710                                 }
711
712                                 // Return error in case higher-API need one
713                                 Err(err)
714                         },
715                 }
716         }
717 }
718
719 macro_rules! break_chan_entry {
720         ($self: ident, $res: expr, $channel_state: expr, $entry: expr) => {
721                 match $res {
722                         Ok(res) => res,
723                         Err(ChannelError::Ignore(msg)) => {
724                                 break Err(MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore(msg), $entry.key().clone()))
725                         },
726                         Err(ChannelError::Close(msg)) => {
727                                 log_trace!($self.logger, "Closing channel {} due to Close-required error: {}", log_bytes!($entry.key()[..]), msg);
728                                 let (channel_id, mut chan) = $entry.remove_entry();
729                                 if let Some(short_id) = chan.get_short_channel_id() {
730                                         $channel_state.short_to_id.remove(&short_id);
731                                 }
732                                 break Err(MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, chan.force_shutdown(true), $self.get_channel_update(&chan).ok()))
733                         },
734                         Err(ChannelError::CloseDelayBroadcast(_)) => { panic!("Wait is only generated on receipt of channel_reestablish, which is handled by try_chan_entry, we don't bother to support it here"); }
735                 }
736         }
737 }
738
739 macro_rules! try_chan_entry {
740         ($self: ident, $res: expr, $channel_state: expr, $entry: expr) => {
741                 match $res {
742                         Ok(res) => res,
743                         Err(ChannelError::Ignore(msg)) => {
744                                 return Err(MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore(msg), $entry.key().clone()))
745                         },
746                         Err(ChannelError::Close(msg)) => {
747                                 log_trace!($self.logger, "Closing channel {} due to Close-required error: {}", log_bytes!($entry.key()[..]), msg);
748                                 let (channel_id, mut chan) = $entry.remove_entry();
749                                 if let Some(short_id) = chan.get_short_channel_id() {
750                                         $channel_state.short_to_id.remove(&short_id);
751                                 }
752                                 return Err(MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, chan.force_shutdown(true), $self.get_channel_update(&chan).ok()))
753                         },
754                         Err(ChannelError::CloseDelayBroadcast(msg)) => {
755                                 log_error!($self.logger, "Channel {} need to be shutdown but closing transactions not broadcast due to {}", log_bytes!($entry.key()[..]), msg);
756                                 let (channel_id, mut chan) = $entry.remove_entry();
757                                 if let Some(short_id) = chan.get_short_channel_id() {
758                                         $channel_state.short_to_id.remove(&short_id);
759                                 }
760                                 let shutdown_res = chan.force_shutdown(false);
761                                 return Err(MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, shutdown_res, $self.get_channel_update(&chan).ok()))
762                         }
763                 }
764         }
765 }
766
767 macro_rules! handle_monitor_err {
768         ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => {
769                 handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment, Vec::new(), Vec::new())
770         };
771         ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr, $failed_forwards: expr, $failed_fails: expr) => {
772                 match $err {
773                         ChannelMonitorUpdateErr::PermanentFailure => {
774                                 log_error!($self.logger, "Closing channel {} due to monitor update PermanentFailure", log_bytes!($entry.key()[..]));
775                                 let (channel_id, mut chan) = $entry.remove_entry();
776                                 if let Some(short_id) = chan.get_short_channel_id() {
777                                         $channel_state.short_to_id.remove(&short_id);
778                                 }
779                                 // TODO: $failed_fails is dropped here, which will cause other channels to hit the
780                                 // chain in a confused state! We need to move them into the ChannelMonitor which
781                                 // will be responsible for failing backwards once things confirm on-chain.
782                                 // It's ok that we drop $failed_forwards here - at this point we'd rather they
783                                 // broadcast HTLC-Timeout and pay the associated fees to get their funds back than
784                                 // us bother trying to claim it just to forward on to another peer. If we're
785                                 // splitting hairs we'd prefer to claim payments that were to us, but we haven't
786                                 // given up the preimage yet, so might as well just wait until the payment is
787                                 // retried, avoiding the on-chain fees.
788                                 let res: Result<(), _> = Err(MsgHandleErrInternal::from_finish_shutdown("ChannelMonitor storage failure".to_owned(), channel_id, chan.force_shutdown(true), $self.get_channel_update(&chan).ok()));
789                                 res
790                         },
791                         ChannelMonitorUpdateErr::TemporaryFailure => {
792                                 log_info!($self.logger, "Disabling channel {} due to monitor update TemporaryFailure. On restore will send {} and process {} forwards and {} fails",
793                                                 log_bytes!($entry.key()[..]),
794                                                 if $resend_commitment && $resend_raa {
795                                                                 match $action_type {
796                                                                         RAACommitmentOrder::CommitmentFirst => { "commitment then RAA" },
797                                                                         RAACommitmentOrder::RevokeAndACKFirst => { "RAA then commitment" },
798                                                                 }
799                                                         } else if $resend_commitment { "commitment" }
800                                                         else if $resend_raa { "RAA" }
801                                                         else { "nothing" },
802                                                 (&$failed_forwards as &Vec<(PendingHTLCInfo, u64)>).len(),
803                                                 (&$failed_fails as &Vec<(HTLCSource, PaymentHash, HTLCFailReason)>).len());
804                                 if !$resend_commitment {
805                                         debug_assert!($action_type == RAACommitmentOrder::RevokeAndACKFirst || !$resend_raa);
806                                 }
807                                 if !$resend_raa {
808                                         debug_assert!($action_type == RAACommitmentOrder::CommitmentFirst || !$resend_commitment);
809                                 }
810                                 $entry.get_mut().monitor_update_failed($resend_raa, $resend_commitment, $failed_forwards, $failed_fails);
811                                 Err(MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore("Failed to update ChannelMonitor".to_owned()), *$entry.key()))
812                         },
813                 }
814         }
815 }
816
817 macro_rules! return_monitor_err {
818         ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => {
819                 return handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment);
820         };
821         ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr, $failed_forwards: expr, $failed_fails: expr) => {
822                 return handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment, $failed_forwards, $failed_fails);
823         }
824 }
825
826 // Does not break in case of TemporaryFailure!
827 macro_rules! maybe_break_monitor_err {
828         ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => {
829                 match (handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment), $err) {
830                         (e, ChannelMonitorUpdateErr::PermanentFailure) => {
831                                 break e;
832                         },
833                         (_, ChannelMonitorUpdateErr::TemporaryFailure) => { },
834                 }
835         }
836 }
837
838 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> ChannelManager<Signer, M, T, K, F, L>
839         where M::Target: chain::Watch<Signer>,
840         T::Target: BroadcasterInterface,
841         K::Target: KeysInterface<Signer = Signer>,
842         F::Target: FeeEstimator,
843         L::Target: Logger,
844 {
845         /// Constructs a new ChannelManager to hold several channels and route between them.
846         ///
847         /// This is the main "logic hub" for all channel-related actions, and implements
848         /// ChannelMessageHandler.
849         ///
850         /// Non-proportional fees are fixed according to our risk using the provided fee estimator.
851         ///
852         /// panics if channel_value_satoshis is >= `MAX_FUNDING_SATOSHIS`!
853         ///
854         /// Users need to notify the new ChannelManager when a new block is connected or
855         /// disconnected using its `block_connected` and `block_disconnected` methods, starting
856         /// from after `params.latest_hash`.
857         pub fn new(fee_est: F, chain_monitor: M, tx_broadcaster: T, logger: L, keys_manager: K, config: UserConfig, params: ChainParameters) -> Self {
858                 let mut secp_ctx = Secp256k1::new();
859                 secp_ctx.seeded_randomize(&keys_manager.get_secure_random_bytes());
860
861                 ChannelManager {
862                         default_configuration: config.clone(),
863                         genesis_hash: genesis_block(params.network).header.block_hash(),
864                         fee_estimator: fee_est,
865                         chain_monitor,
866                         tx_broadcaster,
867
868                         best_block: RwLock::new(params.best_block),
869
870                         channel_state: Mutex::new(ChannelHolder{
871                                 by_id: HashMap::new(),
872                                 short_to_id: HashMap::new(),
873                                 forward_htlcs: HashMap::new(),
874                                 claimable_htlcs: HashMap::new(),
875                                 pending_msg_events: Vec::new(),
876                         }),
877                         pending_inbound_payments: Mutex::new(HashMap::new()),
878
879                         our_network_key: keys_manager.get_node_secret(),
880                         our_network_pubkey: PublicKey::from_secret_key(&secp_ctx, &keys_manager.get_node_secret()),
881                         secp_ctx,
882
883                         last_node_announcement_serial: AtomicUsize::new(0),
884                         highest_seen_timestamp: AtomicUsize::new(0),
885
886                         per_peer_state: RwLock::new(HashMap::new()),
887
888                         pending_events: Mutex::new(Vec::new()),
889                         pending_background_events: Mutex::new(Vec::new()),
890                         total_consistency_lock: RwLock::new(()),
891                         persistence_notifier: PersistenceNotifier::new(),
892
893                         keys_manager,
894
895                         logger,
896                 }
897         }
898
899         /// Gets the current configuration applied to all new channels,  as
900         pub fn get_current_default_configuration(&self) -> &UserConfig {
901                 &self.default_configuration
902         }
903
904         /// Creates a new outbound channel to the given remote node and with the given value.
905         ///
906         /// user_id will be provided back as user_channel_id in FundingGenerationReady events to allow
907         /// tracking of which events correspond with which create_channel call. Note that the
908         /// user_channel_id defaults to 0 for inbound channels, so you may wish to avoid using 0 for
909         /// user_id here. user_id has no meaning inside of LDK, it is simply copied to events and
910         /// otherwise ignored.
911         ///
912         /// If successful, will generate a SendOpenChannel message event, so you should probably poll
913         /// PeerManager::process_events afterwards.
914         ///
915         /// Raises APIError::APIMisuseError when channel_value_satoshis > 2**24 or push_msat is
916         /// greater than channel_value_satoshis * 1k or channel_value_satoshis is < 1000.
917         pub fn create_channel(&self, their_network_key: PublicKey, channel_value_satoshis: u64, push_msat: u64, user_id: u64, override_config: Option<UserConfig>) -> Result<(), APIError> {
918                 if channel_value_satoshis < 1000 {
919                         return Err(APIError::APIMisuseError { err: format!("Channel value must be at least 1000 satoshis. It was {}", channel_value_satoshis) });
920                 }
921
922                 let config = if override_config.is_some() { override_config.as_ref().unwrap() } else { &self.default_configuration };
923                 let channel = Channel::new_outbound(&self.fee_estimator, &self.keys_manager, their_network_key, channel_value_satoshis, push_msat, user_id, config)?;
924                 let res = channel.get_open_channel(self.genesis_hash.clone());
925
926                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
927                 // We want to make sure the lock is actually acquired by PersistenceNotifierGuard.
928                 debug_assert!(&self.total_consistency_lock.try_write().is_err());
929
930                 let mut channel_state = self.channel_state.lock().unwrap();
931                 match channel_state.by_id.entry(channel.channel_id()) {
932                         hash_map::Entry::Occupied(_) => {
933                                 if cfg!(feature = "fuzztarget") {
934                                         return Err(APIError::APIMisuseError { err: "Fuzzy bad RNG".to_owned() });
935                                 } else {
936                                         panic!("RNG is bad???");
937                                 }
938                         },
939                         hash_map::Entry::Vacant(entry) => { entry.insert(channel); }
940                 }
941                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
942                         node_id: their_network_key,
943                         msg: res,
944                 });
945                 Ok(())
946         }
947
948         fn list_channels_with_filter<Fn: FnMut(&(&[u8; 32], &Channel<Signer>)) -> bool>(&self, f: Fn) -> Vec<ChannelDetails> {
949                 let mut res = Vec::new();
950                 {
951                         let channel_state = self.channel_state.lock().unwrap();
952                         res.reserve(channel_state.by_id.len());
953                         for (channel_id, channel) in channel_state.by_id.iter().filter(f) {
954                                 let (inbound_capacity_msat, outbound_capacity_msat) = channel.get_inbound_outbound_available_balance_msat();
955                                 res.push(ChannelDetails {
956                                         channel_id: (*channel_id).clone(),
957                                         short_channel_id: channel.get_short_channel_id(),
958                                         remote_network_id: channel.get_counterparty_node_id(),
959                                         counterparty_features: InitFeatures::empty(),
960                                         channel_value_satoshis: channel.get_value_satoshis(),
961                                         inbound_capacity_msat,
962                                         outbound_capacity_msat,
963                                         user_id: channel.get_user_id(),
964                                         is_live: channel.is_live(),
965                                         counterparty_forwarding_info: channel.counterparty_forwarding_info(),
966                                 });
967                         }
968                 }
969                 let per_peer_state = self.per_peer_state.read().unwrap();
970                 for chan in res.iter_mut() {
971                         if let Some(peer_state) = per_peer_state.get(&chan.remote_network_id) {
972                                 chan.counterparty_features = peer_state.lock().unwrap().latest_features.clone();
973                         }
974                 }
975                 res
976         }
977
978         /// Gets the list of open channels, in random order. See ChannelDetail field documentation for
979         /// more information.
980         pub fn list_channels(&self) -> Vec<ChannelDetails> {
981                 self.list_channels_with_filter(|_| true)
982         }
983
984         /// Gets the list of usable channels, in random order. Useful as an argument to
985         /// get_route to ensure non-announced channels are used.
986         ///
987         /// These are guaranteed to have their is_live value set to true, see the documentation for
988         /// ChannelDetails::is_live for more info on exactly what the criteria are.
989         pub fn list_usable_channels(&self) -> Vec<ChannelDetails> {
990                 // Note we use is_live here instead of usable which leads to somewhat confused
991                 // internal/external nomenclature, but that's ok cause that's probably what the user
992                 // really wanted anyway.
993                 self.list_channels_with_filter(|&(_, ref channel)| channel.is_live())
994         }
995
996         /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
997         /// will be accepted on the given channel, and after additional timeout/the closing of all
998         /// pending HTLCs, the channel will be closed on chain.
999         ///
1000         /// May generate a SendShutdown message event on success, which should be relayed.
1001         pub fn close_channel(&self, channel_id: &[u8; 32]) -> Result<(), APIError> {
1002                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
1003
1004                 let (mut failed_htlcs, chan_option) = {
1005                         let mut channel_state_lock = self.channel_state.lock().unwrap();
1006                         let channel_state = &mut *channel_state_lock;
1007                         match channel_state.by_id.entry(channel_id.clone()) {
1008                                 hash_map::Entry::Occupied(mut chan_entry) => {
1009                                         let (shutdown_msg, failed_htlcs) = chan_entry.get_mut().get_shutdown()?;
1010                                         channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
1011                                                 node_id: chan_entry.get().get_counterparty_node_id(),
1012                                                 msg: shutdown_msg
1013                                         });
1014                                         if chan_entry.get().is_shutdown() {
1015                                                 if let Some(short_id) = chan_entry.get().get_short_channel_id() {
1016                                                         channel_state.short_to_id.remove(&short_id);
1017                                                 }
1018                                                 (failed_htlcs, Some(chan_entry.remove_entry().1))
1019                                         } else { (failed_htlcs, None) }
1020                                 },
1021                                 hash_map::Entry::Vacant(_) => return Err(APIError::ChannelUnavailable{err: "No such channel".to_owned()})
1022                         }
1023                 };
1024                 for htlc_source in failed_htlcs.drain(..) {
1025                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
1026                 }
1027                 let chan_update = if let Some(chan) = chan_option {
1028                         if let Ok(update) = self.get_channel_update(&chan) {
1029                                 Some(update)
1030                         } else { None }
1031                 } else { None };
1032
1033                 if let Some(update) = chan_update {
1034                         let mut channel_state = self.channel_state.lock().unwrap();
1035                         channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
1036                                 msg: update
1037                         });
1038                 }
1039
1040                 Ok(())
1041         }
1042
1043         #[inline]
1044         fn finish_force_close_channel(&self, shutdown_res: ShutdownResult) {
1045                 let (monitor_update_option, mut failed_htlcs) = shutdown_res;
1046                 log_trace!(self.logger, "Finishing force-closure of channel {} HTLCs to fail", failed_htlcs.len());
1047                 for htlc_source in failed_htlcs.drain(..) {
1048                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
1049                 }
1050                 if let Some((funding_txo, monitor_update)) = monitor_update_option {
1051                         // There isn't anything we can do if we get an update failure - we're already
1052                         // force-closing. The monitor update on the required in-memory copy should broadcast
1053                         // the latest local state, which is the best we can do anyway. Thus, it is safe to
1054                         // ignore the result here.
1055                         let _ = self.chain_monitor.update_channel(funding_txo, monitor_update);
1056                 }
1057         }
1058
1059         fn force_close_channel_with_peer(&self, channel_id: &[u8; 32], peer_node_id: Option<&PublicKey>) -> Result<PublicKey, APIError> {
1060                 let mut chan = {
1061                         let mut channel_state_lock = self.channel_state.lock().unwrap();
1062                         let channel_state = &mut *channel_state_lock;
1063                         if let hash_map::Entry::Occupied(chan) = channel_state.by_id.entry(channel_id.clone()) {
1064                                 if let Some(node_id) = peer_node_id {
1065                                         if chan.get().get_counterparty_node_id() != *node_id {
1066                                                 return Err(APIError::ChannelUnavailable{err: "No such channel".to_owned()});
1067                                         }
1068                                 }
1069                                 if let Some(short_id) = chan.get().get_short_channel_id() {
1070                                         channel_state.short_to_id.remove(&short_id);
1071                                 }
1072                                 chan.remove_entry().1
1073                         } else {
1074                                 return Err(APIError::ChannelUnavailable{err: "No such channel".to_owned()});
1075                         }
1076                 };
1077                 log_trace!(self.logger, "Force-closing channel {}", log_bytes!(channel_id[..]));
1078                 self.finish_force_close_channel(chan.force_shutdown(true));
1079                 if let Ok(update) = self.get_channel_update(&chan) {
1080                         let mut channel_state = self.channel_state.lock().unwrap();
1081                         channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
1082                                 msg: update
1083                         });
1084                 }
1085
1086                 Ok(chan.get_counterparty_node_id())
1087         }
1088
1089         /// Force closes a channel, immediately broadcasting the latest local commitment transaction to
1090         /// the chain and rejecting new HTLCs on the given channel. Fails if channel_id is unknown to the manager.
1091         pub fn force_close_channel(&self, channel_id: &[u8; 32]) -> Result<(), APIError> {
1092                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
1093                 match self.force_close_channel_with_peer(channel_id, None) {
1094                         Ok(counterparty_node_id) => {
1095                                 self.channel_state.lock().unwrap().pending_msg_events.push(
1096                                         events::MessageSendEvent::HandleError {
1097                                                 node_id: counterparty_node_id,
1098                                                 action: msgs::ErrorAction::SendErrorMessage {
1099                                                         msg: msgs::ErrorMessage { channel_id: *channel_id, data: "Channel force-closed".to_owned() }
1100                                                 },
1101                                         }
1102                                 );
1103                                 Ok(())
1104                         },
1105                         Err(e) => Err(e)
1106                 }
1107         }
1108
1109         /// Force close all channels, immediately broadcasting the latest local commitment transaction
1110         /// for each to the chain and rejecting new HTLCs on each.
1111         pub fn force_close_all_channels(&self) {
1112                 for chan in self.list_channels() {
1113                         let _ = self.force_close_channel(&chan.channel_id);
1114                 }
1115         }
1116
1117         fn decode_update_add_htlc_onion(&self, msg: &msgs::UpdateAddHTLC) -> (PendingHTLCStatus, MutexGuard<ChannelHolder<Signer>>) {
1118                 macro_rules! return_malformed_err {
1119                         ($msg: expr, $err_code: expr) => {
1120                                 {
1121                                         log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
1122                                         return (PendingHTLCStatus::Fail(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
1123                                                 channel_id: msg.channel_id,
1124                                                 htlc_id: msg.htlc_id,
1125                                                 sha256_of_onion: Sha256::hash(&msg.onion_routing_packet.hop_data).into_inner(),
1126                                                 failure_code: $err_code,
1127                                         })), self.channel_state.lock().unwrap());
1128                                 }
1129                         }
1130                 }
1131
1132                 if let Err(_) = msg.onion_routing_packet.public_key {
1133                         return_malformed_err!("invalid ephemeral pubkey", 0x8000 | 0x4000 | 6);
1134                 }
1135
1136                 let shared_secret = {
1137                         let mut arr = [0; 32];
1138                         arr.copy_from_slice(&SharedSecret::new(&msg.onion_routing_packet.public_key.unwrap(), &self.our_network_key)[..]);
1139                         arr
1140                 };
1141                 let (rho, mu) = onion_utils::gen_rho_mu_from_shared_secret(&shared_secret);
1142
1143                 if msg.onion_routing_packet.version != 0 {
1144                         //TODO: Spec doesn't indicate if we should only hash hop_data here (and in other
1145                         //sha256_of_onion error data packets), or the entire onion_routing_packet. Either way,
1146                         //the hash doesn't really serve any purpose - in the case of hashing all data, the
1147                         //receiving node would have to brute force to figure out which version was put in the
1148                         //packet by the node that send us the message, in the case of hashing the hop_data, the
1149                         //node knows the HMAC matched, so they already know what is there...
1150                         return_malformed_err!("Unknown onion packet version", 0x8000 | 0x4000 | 4);
1151                 }
1152
1153                 let mut hmac = HmacEngine::<Sha256>::new(&mu);
1154                 hmac.input(&msg.onion_routing_packet.hop_data);
1155                 hmac.input(&msg.payment_hash.0[..]);
1156                 if !fixed_time_eq(&Hmac::from_engine(hmac).into_inner(), &msg.onion_routing_packet.hmac) {
1157                         return_malformed_err!("HMAC Check failed", 0x8000 | 0x4000 | 5);
1158                 }
1159
1160                 let mut channel_state = None;
1161                 macro_rules! return_err {
1162                         ($msg: expr, $err_code: expr, $data: expr) => {
1163                                 {
1164                                         log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
1165                                         if channel_state.is_none() {
1166                                                 channel_state = Some(self.channel_state.lock().unwrap());
1167                                         }
1168                                         return (PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
1169                                                 channel_id: msg.channel_id,
1170                                                 htlc_id: msg.htlc_id,
1171                                                 reason: onion_utils::build_first_hop_failure_packet(&shared_secret, $err_code, $data),
1172                                         })), channel_state.unwrap());
1173                                 }
1174                         }
1175                 }
1176
1177                 let mut chacha = ChaCha20::new(&rho, &[0u8; 8]);
1178                 let mut chacha_stream = ChaChaReader { chacha: &mut chacha, read: Cursor::new(&msg.onion_routing_packet.hop_data[..]) };
1179                 let (next_hop_data, next_hop_hmac) = {
1180                         match msgs::OnionHopData::read(&mut chacha_stream) {
1181                                 Err(err) => {
1182                                         let error_code = match err {
1183                                                 msgs::DecodeError::UnknownVersion => 0x4000 | 1, // unknown realm byte
1184                                                 msgs::DecodeError::UnknownRequiredFeature|
1185                                                 msgs::DecodeError::InvalidValue|
1186                                                 msgs::DecodeError::ShortRead => 0x4000 | 22, // invalid_onion_payload
1187                                                 _ => 0x2000 | 2, // Should never happen
1188                                         };
1189                                         return_err!("Unable to decode our hop data", error_code, &[0;0]);
1190                                 },
1191                                 Ok(msg) => {
1192                                         let mut hmac = [0; 32];
1193                                         if let Err(_) = chacha_stream.read_exact(&mut hmac[..]) {
1194                                                 return_err!("Unable to decode hop data", 0x4000 | 22, &[0;0]);
1195                                         }
1196                                         (msg, hmac)
1197                                 },
1198                         }
1199                 };
1200
1201                 let pending_forward_info = if next_hop_hmac == [0; 32] {
1202                                 #[cfg(test)]
1203                                 {
1204                                         // In tests, make sure that the initial onion pcket data is, at least, non-0.
1205                                         // We could do some fancy randomness test here, but, ehh, whatever.
1206                                         // This checks for the issue where you can calculate the path length given the
1207                                         // onion data as all the path entries that the originator sent will be here
1208                                         // as-is (and were originally 0s).
1209                                         // Of course reverse path calculation is still pretty easy given naive routing
1210                                         // algorithms, but this fixes the most-obvious case.
1211                                         let mut next_bytes = [0; 32];
1212                                         chacha_stream.read_exact(&mut next_bytes).unwrap();
1213                                         assert_ne!(next_bytes[..], [0; 32][..]);
1214                                         chacha_stream.read_exact(&mut next_bytes).unwrap();
1215                                         assert_ne!(next_bytes[..], [0; 32][..]);
1216                                 }
1217
1218                                 // OUR PAYMENT!
1219                                 // final_expiry_too_soon
1220                                 // We have to have some headroom to broadcast on chain if we have the preimage, so make sure we have at least
1221                                 // HTLC_FAIL_BACK_BUFFER blocks to go.
1222                                 // Also, ensure that, in the case of an unknown payment hash, our payment logic has enough time to fail the HTLC backward
1223                                 // before our onchain logic triggers a channel closure (see HTLC_FAIL_BACK_BUFFER rational).
1224                                 if (msg.cltv_expiry as u64) <= self.best_block.read().unwrap().height() as u64 + HTLC_FAIL_BACK_BUFFER as u64 + 1 {
1225                                         return_err!("The final CLTV expiry is too soon to handle", 17, &[0;0]);
1226                                 }
1227                                 // final_incorrect_htlc_amount
1228                                 if next_hop_data.amt_to_forward > msg.amount_msat {
1229                                         return_err!("Upstream node sent less than we were supposed to receive in payment", 19, &byte_utils::be64_to_array(msg.amount_msat));
1230                                 }
1231                                 // final_incorrect_cltv_expiry
1232                                 if next_hop_data.outgoing_cltv_value != msg.cltv_expiry {
1233                                         return_err!("Upstream node set CLTV to the wrong value", 18, &byte_utils::be32_to_array(msg.cltv_expiry));
1234                                 }
1235
1236                                 let payment_data = match next_hop_data.format {
1237                                         msgs::OnionHopDataFormat::Legacy { .. } => None,
1238                                         msgs::OnionHopDataFormat::NonFinalNode { .. } => return_err!("Got non final data with an HMAC of 0", 0x4000 | 22, &[0;0]),
1239                                         msgs::OnionHopDataFormat::FinalNode { payment_data } => payment_data,
1240                                 };
1241
1242                                 if payment_data.is_none() {
1243                                         return_err!("We require payment_secrets", 0x4000|0x2000|3, &[0;0]);
1244                                 }
1245
1246                                 // Note that we could obviously respond immediately with an update_fulfill_htlc
1247                                 // message, however that would leak that we are the recipient of this payment, so
1248                                 // instead we stay symmetric with the forwarding case, only responding (after a
1249                                 // delay) once they've send us a commitment_signed!
1250
1251                                 PendingHTLCStatus::Forward(PendingHTLCInfo {
1252                                         routing: PendingHTLCRouting::Receive {
1253                                                 payment_data: payment_data.unwrap(),
1254                                                 incoming_cltv_expiry: msg.cltv_expiry,
1255                                         },
1256                                         payment_hash: msg.payment_hash.clone(),
1257                                         incoming_shared_secret: shared_secret,
1258                                         amt_to_forward: next_hop_data.amt_to_forward,
1259                                         outgoing_cltv_value: next_hop_data.outgoing_cltv_value,
1260                                 })
1261                         } else {
1262                                 let mut new_packet_data = [0; 20*65];
1263                                 let read_pos = chacha_stream.read(&mut new_packet_data).unwrap();
1264                                 #[cfg(debug_assertions)]
1265                                 {
1266                                         // Check two things:
1267                                         // a) that the behavior of our stream here will return Ok(0) even if the TLV
1268                                         //    read above emptied out our buffer and the unwrap() wont needlessly panic
1269                                         // b) that we didn't somehow magically end up with extra data.
1270                                         let mut t = [0; 1];
1271                                         debug_assert!(chacha_stream.read(&mut t).unwrap() == 0);
1272                                 }
1273                                 // Once we've emptied the set of bytes our peer gave us, encrypt 0 bytes until we
1274                                 // fill the onion hop data we'll forward to our next-hop peer.
1275                                 chacha_stream.chacha.process_in_place(&mut new_packet_data[read_pos..]);
1276
1277                                 let mut new_pubkey = msg.onion_routing_packet.public_key.unwrap();
1278
1279                                 let blinding_factor = {
1280                                         let mut sha = Sha256::engine();
1281                                         sha.input(&new_pubkey.serialize()[..]);
1282                                         sha.input(&shared_secret);
1283                                         Sha256::from_engine(sha).into_inner()
1284                                 };
1285
1286                                 let public_key = if let Err(e) = new_pubkey.mul_assign(&self.secp_ctx, &blinding_factor[..]) {
1287                                         Err(e)
1288                                 } else { Ok(new_pubkey) };
1289
1290                                 let outgoing_packet = msgs::OnionPacket {
1291                                         version: 0,
1292                                         public_key,
1293                                         hop_data: new_packet_data,
1294                                         hmac: next_hop_hmac.clone(),
1295                                 };
1296
1297                                 let short_channel_id = match next_hop_data.format {
1298                                         msgs::OnionHopDataFormat::Legacy { short_channel_id } => short_channel_id,
1299                                         msgs::OnionHopDataFormat::NonFinalNode { short_channel_id } => short_channel_id,
1300                                         msgs::OnionHopDataFormat::FinalNode { .. } => {
1301                                                 return_err!("Final Node OnionHopData provided for us as an intermediary node", 0x4000 | 22, &[0;0]);
1302                                         },
1303                                 };
1304
1305                                 PendingHTLCStatus::Forward(PendingHTLCInfo {
1306                                         routing: PendingHTLCRouting::Forward {
1307                                                 onion_packet: outgoing_packet,
1308                                                 short_channel_id,
1309                                         },
1310                                         payment_hash: msg.payment_hash.clone(),
1311                                         incoming_shared_secret: shared_secret,
1312                                         amt_to_forward: next_hop_data.amt_to_forward,
1313                                         outgoing_cltv_value: next_hop_data.outgoing_cltv_value,
1314                                 })
1315                         };
1316
1317                 channel_state = Some(self.channel_state.lock().unwrap());
1318                 if let &PendingHTLCStatus::Forward(PendingHTLCInfo { ref routing, ref amt_to_forward, ref outgoing_cltv_value, .. }) = &pending_forward_info {
1319                         // If short_channel_id is 0 here, we'll reject the HTLC as there cannot be a channel
1320                         // with a short_channel_id of 0. This is important as various things later assume
1321                         // short_channel_id is non-0 in any ::Forward.
1322                         if let &PendingHTLCRouting::Forward { ref short_channel_id, .. } = routing {
1323                                 let id_option = channel_state.as_ref().unwrap().short_to_id.get(&short_channel_id).cloned();
1324                                 let forwarding_id = match id_option {
1325                                         None => { // unknown_next_peer
1326                                                 return_err!("Don't have available channel for forwarding as requested.", 0x4000 | 10, &[0;0]);
1327                                         },
1328                                         Some(id) => id.clone(),
1329                                 };
1330                                 if let Some((err, code, chan_update)) = loop {
1331                                         let chan = channel_state.as_mut().unwrap().by_id.get_mut(&forwarding_id).unwrap();
1332
1333                                         // Note that we could technically not return an error yet here and just hope
1334                                         // that the connection is reestablished or monitor updated by the time we get
1335                                         // around to doing the actual forward, but better to fail early if we can and
1336                                         // hopefully an attacker trying to path-trace payments cannot make this occur
1337                                         // on a small/per-node/per-channel scale.
1338                                         if !chan.is_live() { // channel_disabled
1339                                                 break Some(("Forwarding channel is not in a ready state.", 0x1000 | 20, Some(self.get_channel_update(chan).unwrap())));
1340                                         }
1341                                         if *amt_to_forward < chan.get_counterparty_htlc_minimum_msat() { // amount_below_minimum
1342                                                 break Some(("HTLC amount was below the htlc_minimum_msat", 0x1000 | 11, Some(self.get_channel_update(chan).unwrap())));
1343                                         }
1344                                         let fee = amt_to_forward.checked_mul(chan.get_fee_proportional_millionths() as u64).and_then(|prop_fee| { (prop_fee / 1000000).checked_add(chan.get_holder_fee_base_msat(&self.fee_estimator) as u64) });
1345                                         if fee.is_none() || msg.amount_msat < fee.unwrap() || (msg.amount_msat - fee.unwrap()) < *amt_to_forward { // fee_insufficient
1346                                                 break Some(("Prior hop has deviated from specified fees parameters or origin node has obsolete ones", 0x1000 | 12, Some(self.get_channel_update(chan).unwrap())));
1347                                         }
1348                                         if (msg.cltv_expiry as u64) < (*outgoing_cltv_value) as u64 + chan.get_cltv_expiry_delta() as u64 { // incorrect_cltv_expiry
1349                                                 break Some(("Forwarding node has tampered with the intended HTLC values or origin node has an obsolete cltv_expiry_delta", 0x1000 | 13, Some(self.get_channel_update(chan).unwrap())));
1350                                         }
1351                                         let cur_height = self.best_block.read().unwrap().height() + 1;
1352                                         // Theoretically, channel counterparty shouldn't send us a HTLC expiring now, but we want to be robust wrt to counterparty
1353                                         // packet sanitization (see HTLC_FAIL_BACK_BUFFER rational)
1354                                         if msg.cltv_expiry <= cur_height + HTLC_FAIL_BACK_BUFFER as u32 { // expiry_too_soon
1355                                                 break Some(("CLTV expiry is too close", 0x1000 | 14, Some(self.get_channel_update(chan).unwrap())));
1356                                         }
1357                                         if msg.cltv_expiry > cur_height + CLTV_FAR_FAR_AWAY as u32 { // expiry_too_far
1358                                                 break Some(("CLTV expiry is too far in the future", 21, None));
1359                                         }
1360                                         // In theory, we would be safe against unitentional channel-closure, if we only required a margin of LATENCY_GRACE_PERIOD_BLOCKS.
1361                                         // But, to be safe against policy reception, we use a longuer delay.
1362                                         if (*outgoing_cltv_value) as u64 <= (cur_height + HTLC_FAIL_BACK_BUFFER) as u64 {
1363                                                 break Some(("Outgoing CLTV value is too soon", 0x1000 | 14, Some(self.get_channel_update(chan).unwrap())));
1364                                         }
1365
1366                                         break None;
1367                                 }
1368                                 {
1369                                         let mut res = Vec::with_capacity(8 + 128);
1370                                         if let Some(chan_update) = chan_update {
1371                                                 if code == 0x1000 | 11 || code == 0x1000 | 12 {
1372                                                         res.extend_from_slice(&byte_utils::be64_to_array(msg.amount_msat));
1373                                                 }
1374                                                 else if code == 0x1000 | 13 {
1375                                                         res.extend_from_slice(&byte_utils::be32_to_array(msg.cltv_expiry));
1376                                                 }
1377                                                 else if code == 0x1000 | 20 {
1378                                                         // TODO: underspecified, follow https://github.com/lightningnetwork/lightning-rfc/issues/791
1379                                                         res.extend_from_slice(&byte_utils::be16_to_array(0));
1380                                                 }
1381                                                 res.extend_from_slice(&chan_update.encode_with_len()[..]);
1382                                         }
1383                                         return_err!(err, code, &res[..]);
1384                                 }
1385                         }
1386                 }
1387
1388                 (pending_forward_info, channel_state.unwrap())
1389         }
1390
1391         /// only fails if the channel does not yet have an assigned short_id
1392         /// May be called with channel_state already locked!
1393         fn get_channel_update(&self, chan: &Channel<Signer>) -> Result<msgs::ChannelUpdate, LightningError> {
1394                 let short_channel_id = match chan.get_short_channel_id() {
1395                         None => return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError}),
1396                         Some(id) => id,
1397                 };
1398
1399                 let were_node_one = PublicKey::from_secret_key(&self.secp_ctx, &self.our_network_key).serialize()[..] < chan.get_counterparty_node_id().serialize()[..];
1400
1401                 let unsigned = msgs::UnsignedChannelUpdate {
1402                         chain_hash: self.genesis_hash,
1403                         short_channel_id,
1404                         timestamp: chan.get_update_time_counter(),
1405                         flags: (!were_node_one) as u8 | ((!chan.is_live() as u8) << 1),
1406                         cltv_expiry_delta: chan.get_cltv_expiry_delta(),
1407                         htlc_minimum_msat: chan.get_counterparty_htlc_minimum_msat(),
1408                         htlc_maximum_msat: OptionalField::Present(chan.get_announced_htlc_max_msat()),
1409                         fee_base_msat: chan.get_holder_fee_base_msat(&self.fee_estimator),
1410                         fee_proportional_millionths: chan.get_fee_proportional_millionths(),
1411                         excess_data: Vec::new(),
1412                 };
1413
1414                 let msg_hash = Sha256dHash::hash(&unsigned.encode()[..]);
1415                 let sig = self.secp_ctx.sign(&hash_to_message!(&msg_hash[..]), &self.our_network_key);
1416
1417                 Ok(msgs::ChannelUpdate {
1418                         signature: sig,
1419                         contents: unsigned
1420                 })
1421         }
1422
1423         // Only public for testing, this should otherwise never be called direcly
1424         pub(crate) fn send_payment_along_path(&self, path: &Vec<RouteHop>, payment_hash: &PaymentHash, payment_secret: &Option<PaymentSecret>, total_value: u64, cur_height: u32) -> Result<(), APIError> {
1425                 log_trace!(self.logger, "Attempting to send payment for path with next hop {}", path.first().unwrap().short_channel_id);
1426                 let prng_seed = self.keys_manager.get_secure_random_bytes();
1427                 let session_priv = SecretKey::from_slice(&self.keys_manager.get_secure_random_bytes()[..]).expect("RNG is busted");
1428
1429                 let onion_keys = onion_utils::construct_onion_keys(&self.secp_ctx, &path, &session_priv)
1430                         .map_err(|_| APIError::RouteError{err: "Pubkey along hop was maliciously selected"})?;
1431                 let (onion_payloads, htlc_msat, htlc_cltv) = onion_utils::build_onion_payloads(path, total_value, payment_secret, cur_height)?;
1432                 if onion_utils::route_size_insane(&onion_payloads) {
1433                         return Err(APIError::RouteError{err: "Route size too large considering onion data"});
1434                 }
1435                 let onion_packet = onion_utils::construct_onion_packet(onion_payloads, onion_keys, prng_seed, payment_hash);
1436
1437                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
1438
1439                 let err: Result<(), _> = loop {
1440                         let mut channel_lock = self.channel_state.lock().unwrap();
1441                         let id = match channel_lock.short_to_id.get(&path.first().unwrap().short_channel_id) {
1442                                 None => return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()}),
1443                                 Some(id) => id.clone(),
1444                         };
1445
1446                         let channel_state = &mut *channel_lock;
1447                         if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(id) {
1448                                 match {
1449                                         if chan.get().get_counterparty_node_id() != path.first().unwrap().pubkey {
1450                                                 return Err(APIError::RouteError{err: "Node ID mismatch on first hop!"});
1451                                         }
1452                                         if !chan.get().is_live() {
1453                                                 return Err(APIError::ChannelUnavailable{err: "Peer for first hop currently disconnected/pending monitor update!".to_owned()});
1454                                         }
1455                                         break_chan_entry!(self, chan.get_mut().send_htlc_and_commit(htlc_msat, payment_hash.clone(), htlc_cltv, HTLCSource::OutboundRoute {
1456                                                 path: path.clone(),
1457                                                 session_priv: session_priv.clone(),
1458                                                 first_hop_htlc_msat: htlc_msat,
1459                                         }, onion_packet, &self.logger), channel_state, chan)
1460                                 } {
1461                                         Some((update_add, commitment_signed, monitor_update)) => {
1462                                                 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
1463                                                         maybe_break_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, true);
1464                                                         // Note that MonitorUpdateFailed here indicates (per function docs)
1465                                                         // that we will resend the commitment update once monitor updating
1466                                                         // is restored. Therefore, we must return an error indicating that
1467                                                         // it is unsafe to retry the payment wholesale, which we do in the
1468                                                         // send_payment check for MonitorUpdateFailed, below.
1469                                                         return Err(APIError::MonitorUpdateFailed);
1470                                                 }
1471
1472                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
1473                                                         node_id: path.first().unwrap().pubkey,
1474                                                         updates: msgs::CommitmentUpdate {
1475                                                                 update_add_htlcs: vec![update_add],
1476                                                                 update_fulfill_htlcs: Vec::new(),
1477                                                                 update_fail_htlcs: Vec::new(),
1478                                                                 update_fail_malformed_htlcs: Vec::new(),
1479                                                                 update_fee: None,
1480                                                                 commitment_signed,
1481                                                         },
1482                                                 });
1483                                         },
1484                                         None => {},
1485                                 }
1486                         } else { unreachable!(); }
1487                         return Ok(());
1488                 };
1489
1490                 match handle_error!(self, err, path.first().unwrap().pubkey) {
1491                         Ok(_) => unreachable!(),
1492                         Err(e) => {
1493                                 Err(APIError::ChannelUnavailable { err: e.err })
1494                         },
1495                 }
1496         }
1497
1498         /// Sends a payment along a given route.
1499         ///
1500         /// Value parameters are provided via the last hop in route, see documentation for RouteHop
1501         /// fields for more info.
1502         ///
1503         /// Note that if the payment_hash already exists elsewhere (eg you're sending a duplicative
1504         /// payment), we don't do anything to stop you! We always try to ensure that if the provided
1505         /// next hop knows the preimage to payment_hash they can claim an additional amount as
1506         /// specified in the last hop in the route! Thus, you should probably do your own
1507         /// payment_preimage tracking (which you should already be doing as they represent "proof of
1508         /// payment") and prevent double-sends yourself.
1509         ///
1510         /// May generate SendHTLCs message(s) event on success, which should be relayed.
1511         ///
1512         /// Each path may have a different return value, and PaymentSendValue may return a Vec with
1513         /// each entry matching the corresponding-index entry in the route paths, see
1514         /// PaymentSendFailure for more info.
1515         ///
1516         /// In general, a path may raise:
1517         ///  * APIError::RouteError when an invalid route or forwarding parameter (cltv_delta, fee,
1518         ///    node public key) is specified.
1519         ///  * APIError::ChannelUnavailable if the next-hop channel is not available for updates
1520         ///    (including due to previous monitor update failure or new permanent monitor update
1521         ///    failure).
1522         ///  * APIError::MonitorUpdateFailed if a new monitor update failure prevented sending the
1523         ///    relevant updates.
1524         ///
1525         /// Note that depending on the type of the PaymentSendFailure the HTLC may have been
1526         /// irrevocably committed to on our end. In such a case, do NOT retry the payment with a
1527         /// different route unless you intend to pay twice!
1528         ///
1529         /// payment_secret is unrelated to payment_hash (or PaymentPreimage) and exists to authenticate
1530         /// the sender to the recipient and prevent payment-probing (deanonymization) attacks. For
1531         /// newer nodes, it will be provided to you in the invoice. If you do not have one, the Route
1532         /// must not contain multiple paths as multi-path payments require a recipient-provided
1533         /// payment_secret.
1534         /// If a payment_secret *is* provided, we assume that the invoice had the payment_secret feature
1535         /// bit set (either as required or as available). If multiple paths are present in the Route,
1536         /// we assume the invoice had the basic_mpp feature set.
1537         pub fn send_payment(&self, route: &Route, payment_hash: PaymentHash, payment_secret: &Option<PaymentSecret>) -> Result<(), PaymentSendFailure> {
1538                 if route.paths.len() < 1 {
1539                         return Err(PaymentSendFailure::ParameterError(APIError::RouteError{err: "There must be at least one path to send over"}));
1540                 }
1541                 if route.paths.len() > 10 {
1542                         // This limit is completely arbitrary - there aren't any real fundamental path-count
1543                         // limits. After we support retrying individual paths we should likely bump this, but
1544                         // for now more than 10 paths likely carries too much one-path failure.
1545                         return Err(PaymentSendFailure::ParameterError(APIError::RouteError{err: "Sending over more than 10 paths is not currently supported"}));
1546                 }
1547                 let mut total_value = 0;
1548                 let our_node_id = self.get_our_node_id();
1549                 let mut path_errs = Vec::with_capacity(route.paths.len());
1550                 'path_check: for path in route.paths.iter() {
1551                         if path.len() < 1 || path.len() > 20 {
1552                                 path_errs.push(Err(APIError::RouteError{err: "Path didn't go anywhere/had bogus size"}));
1553                                 continue 'path_check;
1554                         }
1555                         for (idx, hop) in path.iter().enumerate() {
1556                                 if idx != path.len() - 1 && hop.pubkey == our_node_id {
1557                                         path_errs.push(Err(APIError::RouteError{err: "Path went through us but wasn't a simple rebalance loop to us"}));
1558                                         continue 'path_check;
1559                                 }
1560                         }
1561                         total_value += path.last().unwrap().fee_msat;
1562                         path_errs.push(Ok(()));
1563                 }
1564                 if path_errs.iter().any(|e| e.is_err()) {
1565                         return Err(PaymentSendFailure::PathParameterError(path_errs));
1566                 }
1567
1568                 let cur_height = self.best_block.read().unwrap().height() + 1;
1569                 let mut results = Vec::new();
1570                 for path in route.paths.iter() {
1571                         results.push(self.send_payment_along_path(&path, &payment_hash, payment_secret, total_value, cur_height));
1572                 }
1573                 let mut has_ok = false;
1574                 let mut has_err = false;
1575                 for res in results.iter() {
1576                         if res.is_ok() { has_ok = true; }
1577                         if res.is_err() { has_err = true; }
1578                         if let &Err(APIError::MonitorUpdateFailed) = res {
1579                                 // MonitorUpdateFailed is inherently unsafe to retry, so we call it a
1580                                 // PartialFailure.
1581                                 has_err = true;
1582                                 has_ok = true;
1583                                 break;
1584                         }
1585                 }
1586                 if has_err && has_ok {
1587                         Err(PaymentSendFailure::PartialFailure(results))
1588                 } else if has_err {
1589                         Err(PaymentSendFailure::AllFailedRetrySafe(results.drain(..).map(|r| r.unwrap_err()).collect()))
1590                 } else {
1591                         Ok(())
1592                 }
1593         }
1594
1595         /// Handles the generation of a funding transaction, optionally (for tests) with a function
1596         /// which checks the correctness of the funding transaction given the associated channel.
1597         fn funding_transaction_generated_intern<FundingOutput: Fn(&Channel<Signer>, &Transaction) -> Result<OutPoint, APIError>>
1598                         (&self, temporary_channel_id: &[u8; 32], funding_transaction: Transaction, find_funding_output: FundingOutput) -> Result<(), APIError> {
1599                 let (chan, msg) = {
1600                         let (res, chan) = match self.channel_state.lock().unwrap().by_id.remove(temporary_channel_id) {
1601                                 Some(mut chan) => {
1602                                         let funding_txo = find_funding_output(&chan, &funding_transaction)?;
1603
1604                                         (chan.get_outbound_funding_created(funding_transaction, funding_txo, &self.logger)
1605                                                 .map_err(|e| if let ChannelError::Close(msg) = e {
1606                                                         MsgHandleErrInternal::from_finish_shutdown(msg, chan.channel_id(), chan.force_shutdown(true), None)
1607                                                 } else { unreachable!(); })
1608                                         , chan)
1609                                 },
1610                                 None => { return Err(APIError::ChannelUnavailable { err: "No such channel".to_owned() }) },
1611                         };
1612                         match handle_error!(self, res, chan.get_counterparty_node_id()) {
1613                                 Ok(funding_msg) => {
1614                                         (chan, funding_msg)
1615                                 },
1616                                 Err(_) => { return Err(APIError::ChannelUnavailable {
1617                                         err: "Error deriving keys or signing initial commitment transactions - either our RNG or our counterparty's RNG is broken or the Signer refused to sign".to_owned()
1618                                 }) },
1619                         }
1620                 };
1621
1622                 let mut channel_state = self.channel_state.lock().unwrap();
1623                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingCreated {
1624                         node_id: chan.get_counterparty_node_id(),
1625                         msg,
1626                 });
1627                 match channel_state.by_id.entry(chan.channel_id()) {
1628                         hash_map::Entry::Occupied(_) => {
1629                                 panic!("Generated duplicate funding txid?");
1630                         },
1631                         hash_map::Entry::Vacant(e) => {
1632                                 e.insert(chan);
1633                         }
1634                 }
1635                 Ok(())
1636         }
1637
1638         #[cfg(test)]
1639         pub(crate) fn funding_transaction_generated_unchecked(&self, temporary_channel_id: &[u8; 32], funding_transaction: Transaction, output_index: u16) -> Result<(), APIError> {
1640                 self.funding_transaction_generated_intern(temporary_channel_id, funding_transaction, |_, tx| {
1641                         Ok(OutPoint { txid: tx.txid(), index: output_index })
1642                 })
1643         }
1644
1645         /// Call this upon creation of a funding transaction for the given channel.
1646         ///
1647         /// Returns an [`APIError::APIMisuseError`] if the funding_transaction spent non-SegWit outputs
1648         /// or if no output was found which matches the parameters in [`Event::FundingGenerationReady`].
1649         ///
1650         /// Panics if a funding transaction has already been provided for this channel.
1651         ///
1652         /// May panic if the output found in the funding transaction is duplicative with some other
1653         /// channel (note that this should be trivially prevented by using unique funding transaction
1654         /// keys per-channel).
1655         ///
1656         /// Do NOT broadcast the funding transaction yourself. When we have safely received our
1657         /// counterparty's signature the funding transaction will automatically be broadcast via the
1658         /// [`BroadcasterInterface`] provided when this `ChannelManager` was constructed.
1659         ///
1660         /// Note that this includes RBF or similar transaction replacement strategies - lightning does
1661         /// not currently support replacing a funding transaction on an existing channel. Instead,
1662         /// create a new channel with a conflicting funding transaction.
1663         pub fn funding_transaction_generated(&self, temporary_channel_id: &[u8; 32], funding_transaction: Transaction) -> Result<(), APIError> {
1664                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
1665
1666                 for inp in funding_transaction.input.iter() {
1667                         if inp.witness.is_empty() {
1668                                 return Err(APIError::APIMisuseError {
1669                                         err: "Funding transaction must be fully signed and spend Segwit outputs".to_owned()
1670                                 });
1671                         }
1672                 }
1673                 self.funding_transaction_generated_intern(temporary_channel_id, funding_transaction, |chan, tx| {
1674                         let mut output_index = None;
1675                         let expected_spk = chan.get_funding_redeemscript().to_v0_p2wsh();
1676                         for (idx, outp) in tx.output.iter().enumerate() {
1677                                 if outp.script_pubkey == expected_spk && outp.value == chan.get_value_satoshis() {
1678                                         if output_index.is_some() {
1679                                                 return Err(APIError::APIMisuseError {
1680                                                         err: "Multiple outputs matched the expected script and value".to_owned()
1681                                                 });
1682                                         }
1683                                         if idx > u16::max_value() as usize {
1684                                                 return Err(APIError::APIMisuseError {
1685                                                         err: "Transaction had more than 2^16 outputs, which is not supported".to_owned()
1686                                                 });
1687                                         }
1688                                         output_index = Some(idx as u16);
1689                                 }
1690                         }
1691                         if output_index.is_none() {
1692                                 return Err(APIError::APIMisuseError {
1693                                         err: "No output matched the script_pubkey and value in the FundingGenerationReady event".to_owned()
1694                                 });
1695                         }
1696                         Ok(OutPoint { txid: tx.txid(), index: output_index.unwrap() })
1697                 })
1698         }
1699
1700         fn get_announcement_sigs(&self, chan: &Channel<Signer>) -> Option<msgs::AnnouncementSignatures> {
1701                 if !chan.should_announce() {
1702                         log_trace!(self.logger, "Can't send announcement_signatures for private channel {}", log_bytes!(chan.channel_id()));
1703                         return None
1704                 }
1705
1706                 let (announcement, our_bitcoin_sig) = match chan.get_channel_announcement(self.get_our_node_id(), self.genesis_hash.clone()) {
1707                         Ok(res) => res,
1708                         Err(_) => return None, // Only in case of state precondition violations eg channel is closing
1709                 };
1710                 let msghash = hash_to_message!(&Sha256dHash::hash(&announcement.encode()[..])[..]);
1711                 let our_node_sig = self.secp_ctx.sign(&msghash, &self.our_network_key);
1712
1713                 Some(msgs::AnnouncementSignatures {
1714                         channel_id: chan.channel_id(),
1715                         short_channel_id: chan.get_short_channel_id().unwrap(),
1716                         node_signature: our_node_sig,
1717                         bitcoin_signature: our_bitcoin_sig,
1718                 })
1719         }
1720
1721         #[allow(dead_code)]
1722         // Messages of up to 64KB should never end up more than half full with addresses, as that would
1723         // be absurd. We ensure this by checking that at least 500 (our stated public contract on when
1724         // broadcast_node_announcement panics) of the maximum-length addresses would fit in a 64KB
1725         // message...
1726         const HALF_MESSAGE_IS_ADDRS: u32 = ::std::u16::MAX as u32 / (NetAddress::MAX_LEN as u32 + 1) / 2;
1727         #[deny(const_err)]
1728         #[allow(dead_code)]
1729         // ...by failing to compile if the number of addresses that would be half of a message is
1730         // smaller than 500:
1731         const STATIC_ASSERT: u32 = Self::HALF_MESSAGE_IS_ADDRS - 500;
1732
1733         /// Generates a signed node_announcement from the given arguments and creates a
1734         /// BroadcastNodeAnnouncement event. Note that such messages will be ignored unless peers have
1735         /// seen a channel_announcement from us (ie unless we have public channels open).
1736         ///
1737         /// RGB is a node "color" and alias is a printable human-readable string to describe this node
1738         /// to humans. They carry no in-protocol meaning.
1739         ///
1740         /// addresses represent the set (possibly empty) of socket addresses on which this node accepts
1741         /// incoming connections. These will be broadcast to the network, publicly tying these
1742         /// addresses together. If you wish to preserve user privacy, addresses should likely contain
1743         /// only Tor Onion addresses.
1744         ///
1745         /// Panics if addresses is absurdly large (more than 500).
1746         pub fn broadcast_node_announcement(&self, rgb: [u8; 3], alias: [u8; 32], addresses: Vec<NetAddress>) {
1747                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
1748
1749                 if addresses.len() > 500 {
1750                         panic!("More than half the message size was taken up by public addresses!");
1751                 }
1752
1753                 let announcement = msgs::UnsignedNodeAnnouncement {
1754                         features: NodeFeatures::known(),
1755                         timestamp: self.last_node_announcement_serial.fetch_add(1, Ordering::AcqRel) as u32,
1756                         node_id: self.get_our_node_id(),
1757                         rgb, alias, addresses,
1758                         excess_address_data: Vec::new(),
1759                         excess_data: Vec::new(),
1760                 };
1761                 let msghash = hash_to_message!(&Sha256dHash::hash(&announcement.encode()[..])[..]);
1762
1763                 let mut channel_state = self.channel_state.lock().unwrap();
1764                 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastNodeAnnouncement {
1765                         msg: msgs::NodeAnnouncement {
1766                                 signature: self.secp_ctx.sign(&msghash, &self.our_network_key),
1767                                 contents: announcement
1768                         },
1769                 });
1770         }
1771
1772         /// Processes HTLCs which are pending waiting on random forward delay.
1773         ///
1774         /// Should only really ever be called in response to a PendingHTLCsForwardable event.
1775         /// Will likely generate further events.
1776         pub fn process_pending_htlc_forwards(&self) {
1777                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
1778
1779                 let mut new_events = Vec::new();
1780                 let mut failed_forwards = Vec::new();
1781                 let mut handle_errors = Vec::new();
1782                 {
1783                         let mut channel_state_lock = self.channel_state.lock().unwrap();
1784                         let channel_state = &mut *channel_state_lock;
1785
1786                         for (short_chan_id, mut pending_forwards) in channel_state.forward_htlcs.drain() {
1787                                 if short_chan_id != 0 {
1788                                         let forward_chan_id = match channel_state.short_to_id.get(&short_chan_id) {
1789                                                 Some(chan_id) => chan_id.clone(),
1790                                                 None => {
1791                                                         failed_forwards.reserve(pending_forwards.len());
1792                                                         for forward_info in pending_forwards.drain(..) {
1793                                                                 match forward_info {
1794                                                                         HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info,
1795                                                                                                    prev_funding_outpoint } => {
1796                                                                                 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
1797                                                                                         short_channel_id: prev_short_channel_id,
1798                                                                                         outpoint: prev_funding_outpoint,
1799                                                                                         htlc_id: prev_htlc_id,
1800                                                                                         incoming_packet_shared_secret: forward_info.incoming_shared_secret,
1801                                                                                 });
1802                                                                                 failed_forwards.push((htlc_source, forward_info.payment_hash,
1803                                                                                         HTLCFailReason::Reason { failure_code: 0x4000 | 10, data: Vec::new() }
1804                                                                                 ));
1805                                                                         },
1806                                                                         HTLCForwardInfo::FailHTLC { .. } => {
1807                                                                                 // Channel went away before we could fail it. This implies
1808                                                                                 // the channel is now on chain and our counterparty is
1809                                                                                 // trying to broadcast the HTLC-Timeout, but that's their
1810                                                                                 // problem, not ours.
1811                                                                         }
1812                                                                 }
1813                                                         }
1814                                                         continue;
1815                                                 }
1816                                         };
1817                                         if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(forward_chan_id) {
1818                                                 let mut add_htlc_msgs = Vec::new();
1819                                                 let mut fail_htlc_msgs = Vec::new();
1820                                                 for forward_info in pending_forwards.drain(..) {
1821                                                         match forward_info {
1822                                                                 HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info: PendingHTLCInfo {
1823                                                                                 routing: PendingHTLCRouting::Forward {
1824                                                                                         onion_packet, ..
1825                                                                                 }, incoming_shared_secret, payment_hash, amt_to_forward, outgoing_cltv_value },
1826                                                                                 prev_funding_outpoint } => {
1827                                                                         log_trace!(self.logger, "Adding HTLC from short id {} with payment_hash {} to channel with short id {} after delay", log_bytes!(payment_hash.0), prev_short_channel_id, short_chan_id);
1828                                                                         let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
1829                                                                                 short_channel_id: prev_short_channel_id,
1830                                                                                 outpoint: prev_funding_outpoint,
1831                                                                                 htlc_id: prev_htlc_id,
1832                                                                                 incoming_packet_shared_secret: incoming_shared_secret,
1833                                                                         });
1834                                                                         match chan.get_mut().send_htlc(amt_to_forward, payment_hash, outgoing_cltv_value, htlc_source.clone(), onion_packet) {
1835                                                                                 Err(e) => {
1836                                                                                         if let ChannelError::Ignore(msg) = e {
1837                                                                                                 log_trace!(self.logger, "Failed to forward HTLC with payment_hash {}: {}", log_bytes!(payment_hash.0), msg);
1838                                                                                         } else {
1839                                                                                                 panic!("Stated return value requirements in send_htlc() were not met");
1840                                                                                         }
1841                                                                                         let chan_update = self.get_channel_update(chan.get()).unwrap();
1842                                                                                         failed_forwards.push((htlc_source, payment_hash,
1843                                                                                                 HTLCFailReason::Reason { failure_code: 0x1000 | 7, data: chan_update.encode_with_len() }
1844                                                                                         ));
1845                                                                                         continue;
1846                                                                                 },
1847                                                                                 Ok(update_add) => {
1848                                                                                         match update_add {
1849                                                                                                 Some(msg) => { add_htlc_msgs.push(msg); },
1850                                                                                                 None => {
1851                                                                                                         // Nothing to do here...we're waiting on a remote
1852                                                                                                         // revoke_and_ack before we can add anymore HTLCs. The Channel
1853                                                                                                         // will automatically handle building the update_add_htlc and
1854                                                                                                         // commitment_signed messages when we can.
1855                                                                                                         // TODO: Do some kind of timer to set the channel as !is_live()
1856                                                                                                         // as we don't really want others relying on us relaying through
1857                                                                                                         // this channel currently :/.
1858                                                                                                 }
1859                                                                                         }
1860                                                                                 }
1861                                                                         }
1862                                                                 },
1863                                                                 HTLCForwardInfo::AddHTLC { .. } => {
1864                                                                         panic!("short_channel_id != 0 should imply any pending_forward entries are of type Forward");
1865                                                                 },
1866                                                                 HTLCForwardInfo::FailHTLC { htlc_id, err_packet } => {
1867                                                                         log_trace!(self.logger, "Failing HTLC back to channel with short id {} after delay", short_chan_id);
1868                                                                         match chan.get_mut().get_update_fail_htlc(htlc_id, err_packet) {
1869                                                                                 Err(e) => {
1870                                                                                         if let ChannelError::Ignore(msg) = e {
1871                                                                                                 log_trace!(self.logger, "Failed to fail backwards to short_id {}: {}", short_chan_id, msg);
1872                                                                                         } else {
1873                                                                                                 panic!("Stated return value requirements in get_update_fail_htlc() were not met");
1874                                                                                         }
1875                                                                                         // fail-backs are best-effort, we probably already have one
1876                                                                                         // pending, and if not that's OK, if not, the channel is on
1877                                                                                         // the chain and sending the HTLC-Timeout is their problem.
1878                                                                                         continue;
1879                                                                                 },
1880                                                                                 Ok(Some(msg)) => { fail_htlc_msgs.push(msg); },
1881                                                                                 Ok(None) => {
1882                                                                                         // Nothing to do here...we're waiting on a remote
1883                                                                                         // revoke_and_ack before we can update the commitment
1884                                                                                         // transaction. The Channel will automatically handle
1885                                                                                         // building the update_fail_htlc and commitment_signed
1886                                                                                         // messages when we can.
1887                                                                                         // We don't need any kind of timer here as they should fail
1888                                                                                         // the channel onto the chain if they can't get our
1889                                                                                         // update_fail_htlc in time, it's not our problem.
1890                                                                                 }
1891                                                                         }
1892                                                                 },
1893                                                         }
1894                                                 }
1895
1896                                                 if !add_htlc_msgs.is_empty() || !fail_htlc_msgs.is_empty() {
1897                                                         let (commitment_msg, monitor_update) = match chan.get_mut().send_commitment(&self.logger) {
1898                                                                 Ok(res) => res,
1899                                                                 Err(e) => {
1900                                                                         // We surely failed send_commitment due to bad keys, in that case
1901                                                                         // close channel and then send error message to peer.
1902                                                                         let counterparty_node_id = chan.get().get_counterparty_node_id();
1903                                                                         let err: Result<(), _>  = match e {
1904                                                                                 ChannelError::Ignore(_) => {
1905                                                                                         panic!("Stated return value requirements in send_commitment() were not met");
1906                                                                                 },
1907                                                                                 ChannelError::Close(msg) => {
1908                                                                                         log_trace!(self.logger, "Closing channel {} due to Close-required error: {}", log_bytes!(chan.key()[..]), msg);
1909                                                                                         let (channel_id, mut channel) = chan.remove_entry();
1910                                                                                         if let Some(short_id) = channel.get_short_channel_id() {
1911                                                                                                 channel_state.short_to_id.remove(&short_id);
1912                                                                                         }
1913                                                                                         Err(MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, channel.force_shutdown(true), self.get_channel_update(&channel).ok()))
1914                                                                                 },
1915                                                                                 ChannelError::CloseDelayBroadcast(_) => { panic!("Wait is only generated on receipt of channel_reestablish, which is handled by try_chan_entry, we don't bother to support it here"); }
1916                                                                         };
1917                                                                         handle_errors.push((counterparty_node_id, err));
1918                                                                         continue;
1919                                                                 }
1920                                                         };
1921                                                         if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
1922                                                                 handle_errors.push((chan.get().get_counterparty_node_id(), handle_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, true)));
1923                                                                 continue;
1924                                                         }
1925                                                         channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
1926                                                                 node_id: chan.get().get_counterparty_node_id(),
1927                                                                 updates: msgs::CommitmentUpdate {
1928                                                                         update_add_htlcs: add_htlc_msgs,
1929                                                                         update_fulfill_htlcs: Vec::new(),
1930                                                                         update_fail_htlcs: fail_htlc_msgs,
1931                                                                         update_fail_malformed_htlcs: Vec::new(),
1932                                                                         update_fee: None,
1933                                                                         commitment_signed: commitment_msg,
1934                                                                 },
1935                                                         });
1936                                                 }
1937                                         } else {
1938                                                 unreachable!();
1939                                         }
1940                                 } else {
1941                                         for forward_info in pending_forwards.drain(..) {
1942                                                 match forward_info {
1943                                                         HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info: PendingHTLCInfo {
1944                                                                         routing: PendingHTLCRouting::Receive { payment_data, incoming_cltv_expiry },
1945                                                                         incoming_shared_secret, payment_hash, amt_to_forward, .. },
1946                                                                         prev_funding_outpoint } => {
1947                                                                 let claimable_htlc = ClaimableHTLC {
1948                                                                         prev_hop: HTLCPreviousHopData {
1949                                                                                 short_channel_id: prev_short_channel_id,
1950                                                                                 outpoint: prev_funding_outpoint,
1951                                                                                 htlc_id: prev_htlc_id,
1952                                                                                 incoming_packet_shared_secret: incoming_shared_secret,
1953                                                                         },
1954                                                                         value: amt_to_forward,
1955                                                                         payment_data: payment_data.clone(),
1956                                                                         cltv_expiry: incoming_cltv_expiry,
1957                                                                 };
1958
1959                                                                 macro_rules! fail_htlc {
1960                                                                         ($htlc: expr) => {
1961                                                                                 let mut htlc_msat_height_data = byte_utils::be64_to_array($htlc.value).to_vec();
1962                                                                                 htlc_msat_height_data.extend_from_slice(
1963                                                                                         &byte_utils::be32_to_array(self.best_block.read().unwrap().height()),
1964                                                                                 );
1965                                                                                 failed_forwards.push((HTLCSource::PreviousHopData(HTLCPreviousHopData {
1966                                                                                                 short_channel_id: $htlc.prev_hop.short_channel_id,
1967                                                                                                 outpoint: prev_funding_outpoint,
1968                                                                                                 htlc_id: $htlc.prev_hop.htlc_id,
1969                                                                                                 incoming_packet_shared_secret: $htlc.prev_hop.incoming_packet_shared_secret,
1970                                                                                         }), payment_hash,
1971                                                                                         HTLCFailReason::Reason { failure_code: 0x4000 | 15, data: htlc_msat_height_data }
1972                                                                                 ));
1973                                                                         }
1974                                                                 }
1975
1976                                                                 // Check that the payment hash and secret are known. Note that we
1977                                                                 // MUST take care to handle the "unknown payment hash" and
1978                                                                 // "incorrect payment secret" cases here identically or we'd expose
1979                                                                 // that we are the ultimate recipient of the given payment hash.
1980                                                                 // Further, we must not expose whether we have any other HTLCs
1981                                                                 // associated with the same payment_hash pending or not.
1982                                                                 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
1983                                                                 match payment_secrets.entry(payment_hash) {
1984                                                                         hash_map::Entry::Vacant(_) => {
1985                                                                                 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as we didn't have a corresponding inbound payment.", log_bytes!(payment_hash.0));
1986                                                                                 fail_htlc!(claimable_htlc);
1987                                                                         },
1988                                                                         hash_map::Entry::Occupied(inbound_payment) => {
1989                                                                                 if inbound_payment.get().payment_secret != payment_data.payment_secret {
1990                                                                                         log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our expected payment secret.", log_bytes!(payment_hash.0));
1991                                                                                         fail_htlc!(claimable_htlc);
1992                                                                                 } else if inbound_payment.get().min_value_msat.is_some() && payment_data.total_msat < inbound_payment.get().min_value_msat.unwrap() {
1993                                                                                         log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our minimum value (had {}, needed {}).",
1994                                                                                                 log_bytes!(payment_hash.0), payment_data.total_msat, inbound_payment.get().min_value_msat.unwrap());
1995                                                                                         fail_htlc!(claimable_htlc);
1996                                                                                 } else {
1997                                                                                         let mut total_value = 0;
1998                                                                                         let htlcs = channel_state.claimable_htlcs.entry(payment_hash)
1999                                                                                                 .or_insert(Vec::new());
2000                                                                                         htlcs.push(claimable_htlc);
2001                                                                                         for htlc in htlcs.iter() {
2002                                                                                                 total_value += htlc.value;
2003                                                                                                 if htlc.payment_data.total_msat != payment_data.total_msat {
2004                                                                                                         log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the HTLCs had inconsistent total values (eg {} and {})",
2005                                                                                                                 log_bytes!(payment_hash.0), payment_data.total_msat, htlc.payment_data.total_msat);
2006                                                                                                         total_value = msgs::MAX_VALUE_MSAT;
2007                                                                                                 }
2008                                                                                                 if total_value >= msgs::MAX_VALUE_MSAT { break; }
2009                                                                                         }
2010                                                                                         if total_value >= msgs::MAX_VALUE_MSAT || total_value > payment_data.total_msat {
2011                                                                                                 log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the total value {} ran over expected value {} (or HTLCs were inconsistent)",
2012                                                                                                         log_bytes!(payment_hash.0), total_value, payment_data.total_msat);
2013                                                                                                 for htlc in htlcs.iter() {
2014                                                                                                         fail_htlc!(htlc);
2015                                                                                                 }
2016                                                                                         } else if total_value == payment_data.total_msat {
2017                                                                                                 new_events.push(events::Event::PaymentReceived {
2018                                                                                                         payment_hash,
2019                                                                                                         payment_preimage: inbound_payment.get().payment_preimage,
2020                                                                                                         payment_secret: payment_data.payment_secret,
2021                                                                                                         amt: total_value,
2022                                                                                                         user_payment_id: inbound_payment.get().user_payment_id,
2023                                                                                                 });
2024                                                                                                 // Only ever generate at most one PaymentReceived
2025                                                                                                 // per registered payment_hash, even if it isn't
2026                                                                                                 // claimed.
2027                                                                                                 inbound_payment.remove_entry();
2028                                                                                         } else {
2029                                                                                                 // Nothing to do - we haven't reached the total
2030                                                                                                 // payment value yet, wait until we receive more
2031                                                                                                 // MPP parts.
2032                                                                                         }
2033                                                                                 }
2034                                                                         },
2035                                                                 };
2036                                                         },
2037                                                         HTLCForwardInfo::AddHTLC { .. } => {
2038                                                                 panic!("short_channel_id == 0 should imply any pending_forward entries are of type Receive");
2039                                                         },
2040                                                         HTLCForwardInfo::FailHTLC { .. } => {
2041                                                                 panic!("Got pending fail of our own HTLC");
2042                                                         }
2043                                                 }
2044                                         }
2045                                 }
2046                         }
2047                 }
2048
2049                 for (htlc_source, payment_hash, failure_reason) in failed_forwards.drain(..) {
2050                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source, &payment_hash, failure_reason);
2051                 }
2052
2053                 for (counterparty_node_id, err) in handle_errors.drain(..) {
2054                         let _ = handle_error!(self, err, counterparty_node_id);
2055                 }
2056
2057                 if new_events.is_empty() { return }
2058                 let mut events = self.pending_events.lock().unwrap();
2059                 events.append(&mut new_events);
2060         }
2061
2062         /// Free the background events, generally called from timer_tick_occurred.
2063         ///
2064         /// Exposed for testing to allow us to process events quickly without generating accidental
2065         /// BroadcastChannelUpdate events in timer_tick_occurred.
2066         ///
2067         /// Expects the caller to have a total_consistency_lock read lock.
2068         fn process_background_events(&self) {
2069                 let mut background_events = Vec::new();
2070                 mem::swap(&mut *self.pending_background_events.lock().unwrap(), &mut background_events);
2071                 for event in background_events.drain(..) {
2072                         match event {
2073                                 BackgroundEvent::ClosingMonitorUpdate((funding_txo, update)) => {
2074                                         // The channel has already been closed, so no use bothering to care about the
2075                                         // monitor updating completing.
2076                                         let _ = self.chain_monitor.update_channel(funding_txo, update);
2077                                 },
2078                         }
2079                 }
2080         }
2081
2082         #[cfg(any(test, feature = "_test_utils"))]
2083         pub(crate) fn test_process_background_events(&self) {
2084                 self.process_background_events();
2085         }
2086
2087         /// If a peer is disconnected we mark any channels with that peer as 'disabled'.
2088         /// After some time, if channels are still disabled we need to broadcast a ChannelUpdate
2089         /// to inform the network about the uselessness of these channels.
2090         ///
2091         /// This method handles all the details, and must be called roughly once per minute.
2092         ///
2093         /// Note that in some rare cases this may generate a `chain::Watch::update_channel` call.
2094         pub fn timer_tick_occurred(&self) {
2095                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
2096                 self.process_background_events();
2097
2098                 let mut channel_state_lock = self.channel_state.lock().unwrap();
2099                 let channel_state = &mut *channel_state_lock;
2100                 for (_, chan) in channel_state.by_id.iter_mut() {
2101                         if chan.is_disabled_staged() && !chan.is_live() {
2102                                 if let Ok(update) = self.get_channel_update(&chan) {
2103                                         channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2104                                                 msg: update
2105                                         });
2106                                 }
2107                                 chan.to_fresh();
2108                         } else if chan.is_disabled_staged() && chan.is_live() {
2109                                 chan.to_fresh();
2110                         } else if chan.is_disabled_marked() {
2111                                 chan.to_disabled_staged();
2112                         }
2113                 }
2114         }
2115
2116         /// Indicates that the preimage for payment_hash is unknown or the received amount is incorrect
2117         /// after a PaymentReceived event, failing the HTLC back to its origin and freeing resources
2118         /// along the path (including in our own channel on which we received it).
2119         /// Returns false if no payment was found to fail backwards, true if the process of failing the
2120         /// HTLC backwards has been started.
2121         pub fn fail_htlc_backwards(&self, payment_hash: &PaymentHash) -> bool {
2122                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
2123
2124                 let mut channel_state = Some(self.channel_state.lock().unwrap());
2125                 let removed_source = channel_state.as_mut().unwrap().claimable_htlcs.remove(payment_hash);
2126                 if let Some(mut sources) = removed_source {
2127                         for htlc in sources.drain(..) {
2128                                 if channel_state.is_none() { channel_state = Some(self.channel_state.lock().unwrap()); }
2129                                 let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec();
2130                                 htlc_msat_height_data.extend_from_slice(&byte_utils::be32_to_array(
2131                                                 self.best_block.read().unwrap().height()));
2132                                 self.fail_htlc_backwards_internal(channel_state.take().unwrap(),
2133                                                 HTLCSource::PreviousHopData(htlc.prev_hop), payment_hash,
2134                                                 HTLCFailReason::Reason { failure_code: 0x4000 | 15, data: htlc_msat_height_data });
2135                         }
2136                         true
2137                 } else { false }
2138         }
2139
2140         // Fail a list of HTLCs that were just freed from the holding cell. The HTLCs need to be
2141         // failed backwards or, if they were one of our outgoing HTLCs, then their failure needs to
2142         // be surfaced to the user.
2143         fn fail_holding_cell_htlcs(&self, mut htlcs_to_fail: Vec<(HTLCSource, PaymentHash)>, channel_id: [u8; 32]) {
2144                 for (htlc_src, payment_hash) in htlcs_to_fail.drain(..) {
2145                         match htlc_src {
2146                                 HTLCSource::PreviousHopData(HTLCPreviousHopData { .. }) => {
2147                                         let (failure_code, onion_failure_data) =
2148                                                 match self.channel_state.lock().unwrap().by_id.entry(channel_id) {
2149                                                         hash_map::Entry::Occupied(chan_entry) => {
2150                                                                 if let Ok(upd) = self.get_channel_update(&chan_entry.get()) {
2151                                                                         (0x1000|7, upd.encode_with_len())
2152                                                                 } else {
2153                                                                         (0x4000|10, Vec::new())
2154                                                                 }
2155                                                         },
2156                                                         hash_map::Entry::Vacant(_) => (0x4000|10, Vec::new())
2157                                                 };
2158                                         let channel_state = self.channel_state.lock().unwrap();
2159                                         self.fail_htlc_backwards_internal(channel_state,
2160                                                 htlc_src, &payment_hash, HTLCFailReason::Reason { failure_code, data: onion_failure_data});
2161                                 },
2162                                 HTLCSource::OutboundRoute { .. } => {
2163                                         self.pending_events.lock().unwrap().push(
2164                                                 events::Event::PaymentFailed {
2165                                                         payment_hash,
2166                                                         rejected_by_dest: false,
2167 #[cfg(test)]
2168                                                         error_code: None,
2169 #[cfg(test)]
2170                                                         error_data: None,
2171                                                 }
2172                                         )
2173                                 },
2174                         };
2175                 }
2176         }
2177
2178         /// Fails an HTLC backwards to the sender of it to us.
2179         /// Note that while we take a channel_state lock as input, we do *not* assume consistency here.
2180         /// There are several callsites that do stupid things like loop over a list of payment_hashes
2181         /// to fail and take the channel_state lock for each iteration (as we take ownership and may
2182         /// drop it). In other words, no assumptions are made that entries in claimable_htlcs point to
2183         /// still-available channels.
2184         fn fail_htlc_backwards_internal(&self, mut channel_state_lock: MutexGuard<ChannelHolder<Signer>>, source: HTLCSource, payment_hash: &PaymentHash, onion_error: HTLCFailReason) {
2185                 //TODO: There is a timing attack here where if a node fails an HTLC back to us they can
2186                 //identify whether we sent it or not based on the (I presume) very different runtime
2187                 //between the branches here. We should make this async and move it into the forward HTLCs
2188                 //timer handling.
2189
2190                 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
2191                 // from block_connected which may run during initialization prior to the chain_monitor
2192                 // being fully configured. See the docs for `ChannelManagerReadArgs` for more.
2193                 match source {
2194                         HTLCSource::OutboundRoute { ref path, .. } => {
2195                                 log_trace!(self.logger, "Failing outbound payment HTLC with payment_hash {}", log_bytes!(payment_hash.0));
2196                                 mem::drop(channel_state_lock);
2197                                 match &onion_error {
2198                                         &HTLCFailReason::LightningError { ref err } => {
2199 #[cfg(test)]
2200                                                 let (channel_update, payment_retryable, onion_error_code, onion_error_data) = onion_utils::process_onion_failure(&self.secp_ctx, &self.logger, &source, err.data.clone());
2201 #[cfg(not(test))]
2202                                                 let (channel_update, payment_retryable, _, _) = onion_utils::process_onion_failure(&self.secp_ctx, &self.logger, &source, err.data.clone());
2203                                                 // TODO: If we decided to blame ourselves (or one of our channels) in
2204                                                 // process_onion_failure we should close that channel as it implies our
2205                                                 // next-hop is needlessly blaming us!
2206                                                 if let Some(update) = channel_update {
2207                                                         self.channel_state.lock().unwrap().pending_msg_events.push(
2208                                                                 events::MessageSendEvent::PaymentFailureNetworkUpdate {
2209                                                                         update,
2210                                                                 }
2211                                                         );
2212                                                 }
2213                                                 self.pending_events.lock().unwrap().push(
2214                                                         events::Event::PaymentFailed {
2215                                                                 payment_hash: payment_hash.clone(),
2216                                                                 rejected_by_dest: !payment_retryable,
2217 #[cfg(test)]
2218                                                                 error_code: onion_error_code,
2219 #[cfg(test)]
2220                                                                 error_data: onion_error_data
2221                                                         }
2222                                                 );
2223                                         },
2224                                         &HTLCFailReason::Reason {
2225 #[cfg(test)]
2226                                                         ref failure_code,
2227 #[cfg(test)]
2228                                                         ref data,
2229                                                         .. } => {
2230                                                 // we get a fail_malformed_htlc from the first hop
2231                                                 // TODO: We'd like to generate a PaymentFailureNetworkUpdate for temporary
2232                                                 // failures here, but that would be insufficient as get_route
2233                                                 // generally ignores its view of our own channels as we provide them via
2234                                                 // ChannelDetails.
2235                                                 // TODO: For non-temporary failures, we really should be closing the
2236                                                 // channel here as we apparently can't relay through them anyway.
2237                                                 self.pending_events.lock().unwrap().push(
2238                                                         events::Event::PaymentFailed {
2239                                                                 payment_hash: payment_hash.clone(),
2240                                                                 rejected_by_dest: path.len() == 1,
2241 #[cfg(test)]
2242                                                                 error_code: Some(*failure_code),
2243 #[cfg(test)]
2244                                                                 error_data: Some(data.clone()),
2245                                                         }
2246                                                 );
2247                                         }
2248                                 }
2249                         },
2250                         HTLCSource::PreviousHopData(HTLCPreviousHopData { short_channel_id, htlc_id, incoming_packet_shared_secret, .. }) => {
2251                                 let err_packet = match onion_error {
2252                                         HTLCFailReason::Reason { failure_code, data } => {
2253                                                 log_trace!(self.logger, "Failing HTLC with payment_hash {} backwards from us with code {}", log_bytes!(payment_hash.0), failure_code);
2254                                                 let packet = onion_utils::build_failure_packet(&incoming_packet_shared_secret, failure_code, &data[..]).encode();
2255                                                 onion_utils::encrypt_failure_packet(&incoming_packet_shared_secret, &packet)
2256                                         },
2257                                         HTLCFailReason::LightningError { err } => {
2258                                                 log_trace!(self.logger, "Failing HTLC with payment_hash {} backwards with pre-built LightningError", log_bytes!(payment_hash.0));
2259                                                 onion_utils::encrypt_failure_packet(&incoming_packet_shared_secret, &err.data)
2260                                         }
2261                                 };
2262
2263                                 let mut forward_event = None;
2264                                 if channel_state_lock.forward_htlcs.is_empty() {
2265                                         forward_event = Some(Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS));
2266                                 }
2267                                 match channel_state_lock.forward_htlcs.entry(short_channel_id) {
2268                                         hash_map::Entry::Occupied(mut entry) => {
2269                                                 entry.get_mut().push(HTLCForwardInfo::FailHTLC { htlc_id, err_packet });
2270                                         },
2271                                         hash_map::Entry::Vacant(entry) => {
2272                                                 entry.insert(vec!(HTLCForwardInfo::FailHTLC { htlc_id, err_packet }));
2273                                         }
2274                                 }
2275                                 mem::drop(channel_state_lock);
2276                                 if let Some(time) = forward_event {
2277                                         let mut pending_events = self.pending_events.lock().unwrap();
2278                                         pending_events.push(events::Event::PendingHTLCsForwardable {
2279                                                 time_forwardable: time
2280                                         });
2281                                 }
2282                         },
2283                 }
2284         }
2285
2286         /// Provides a payment preimage in response to a PaymentReceived event, returning true and
2287         /// generating message events for the net layer to claim the payment, if possible. Thus, you
2288         /// should probably kick the net layer to go send messages if this returns true!
2289         ///
2290         /// Note that if you did not set an `amount_msat` when calling [`create_inbound_payment`] or
2291         /// [`create_inbound_payment_for_hash`] you must check that the amount in the `PaymentReceived`
2292         /// event matches your expectation. If you fail to do so and call this method, you may provide
2293         /// the sender "proof-of-payment" when they did not fulfill the full expected payment.
2294         ///
2295         /// May panic if called except in response to a PaymentReceived event.
2296         ///
2297         /// [`create_inbound_payment`]: Self::create_inbound_payment
2298         /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
2299         pub fn claim_funds(&self, payment_preimage: PaymentPreimage) -> bool {
2300                 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
2301
2302                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
2303
2304                 let mut channel_state = Some(self.channel_state.lock().unwrap());
2305                 let removed_source = channel_state.as_mut().unwrap().claimable_htlcs.remove(&payment_hash);
2306                 if let Some(mut sources) = removed_source {
2307                         assert!(!sources.is_empty());
2308
2309                         // If we are claiming an MPP payment, we have to take special care to ensure that each
2310                         // channel exists before claiming all of the payments (inside one lock).
2311                         // Note that channel existance is sufficient as we should always get a monitor update
2312                         // which will take care of the real HTLC claim enforcement.
2313                         //
2314                         // If we find an HTLC which we would need to claim but for which we do not have a
2315                         // channel, we will fail all parts of the MPP payment. While we could wait and see if
2316                         // the sender retries the already-failed path(s), it should be a pretty rare case where
2317                         // we got all the HTLCs and then a channel closed while we were waiting for the user to
2318                         // provide the preimage, so worrying too much about the optimal handling isn't worth
2319                         // it.
2320                         let mut valid_mpp = true;
2321                         for htlc in sources.iter() {
2322                                 if let None = channel_state.as_ref().unwrap().short_to_id.get(&htlc.prev_hop.short_channel_id) {
2323                                         valid_mpp = false;
2324                                         break;
2325                                 }
2326                         }
2327
2328                         let mut errs = Vec::new();
2329                         let mut claimed_any_htlcs = false;
2330                         for htlc in sources.drain(..) {
2331                                 if !valid_mpp {
2332                                         if channel_state.is_none() { channel_state = Some(self.channel_state.lock().unwrap()); }
2333                                         let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec();
2334                                         htlc_msat_height_data.extend_from_slice(&byte_utils::be32_to_array(
2335                                                         self.best_block.read().unwrap().height()));
2336                                         self.fail_htlc_backwards_internal(channel_state.take().unwrap(),
2337                                                                          HTLCSource::PreviousHopData(htlc.prev_hop), &payment_hash,
2338                                                                          HTLCFailReason::Reason { failure_code: 0x4000|15, data: htlc_msat_height_data });
2339                                 } else {
2340                                         match self.claim_funds_from_hop(channel_state.as_mut().unwrap(), htlc.prev_hop, payment_preimage) {
2341                                                 Err(Some(e)) => {
2342                                                         if let msgs::ErrorAction::IgnoreError = e.1.err.action {
2343                                                                 // We got a temporary failure updating monitor, but will claim the
2344                                                                 // HTLC when the monitor updating is restored (or on chain).
2345                                                                 log_error!(self.logger, "Temporary failure claiming HTLC, treating as success: {}", e.1.err.err);
2346                                                                 claimed_any_htlcs = true;
2347                                                         } else { errs.push(e); }
2348                                                 },
2349                                                 Err(None) => unreachable!("We already checked for channel existence, we can't fail here!"),
2350                                                 Ok(()) => claimed_any_htlcs = true,
2351                                         }
2352                                 }
2353                         }
2354
2355                         // Now that we've done the entire above loop in one lock, we can handle any errors
2356                         // which were generated.
2357                         channel_state.take();
2358
2359                         for (counterparty_node_id, err) in errs.drain(..) {
2360                                 let res: Result<(), _> = Err(err);
2361                                 let _ = handle_error!(self, res, counterparty_node_id);
2362                         }
2363
2364                         claimed_any_htlcs
2365                 } else { false }
2366         }
2367
2368         fn claim_funds_from_hop(&self, channel_state_lock: &mut MutexGuard<ChannelHolder<Signer>>, prev_hop: HTLCPreviousHopData, payment_preimage: PaymentPreimage) -> Result<(), Option<(PublicKey, MsgHandleErrInternal)>> {
2369                 //TODO: Delay the claimed_funds relaying just like we do outbound relay!
2370                 let channel_state = &mut **channel_state_lock;
2371                 let chan_id = match channel_state.short_to_id.get(&prev_hop.short_channel_id) {
2372                         Some(chan_id) => chan_id.clone(),
2373                         None => {
2374                                 return Err(None)
2375                         }
2376                 };
2377
2378                 if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(chan_id) {
2379                         let was_frozen_for_monitor = chan.get().is_awaiting_monitor_update();
2380                         match chan.get_mut().get_update_fulfill_htlc_and_commit(prev_hop.htlc_id, payment_preimage, &self.logger) {
2381                                 Ok((msgs, monitor_option)) => {
2382                                         if let Some(monitor_update) = monitor_option {
2383                                                 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
2384                                                         if was_frozen_for_monitor {
2385                                                                 assert!(msgs.is_none());
2386                                                         } else {
2387                                                                 return Err(Some((chan.get().get_counterparty_node_id(), handle_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, msgs.is_some()).unwrap_err())));
2388                                                         }
2389                                                 }
2390                                         }
2391                                         if let Some((msg, commitment_signed)) = msgs {
2392                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
2393                                                         node_id: chan.get().get_counterparty_node_id(),
2394                                                         updates: msgs::CommitmentUpdate {
2395                                                                 update_add_htlcs: Vec::new(),
2396                                                                 update_fulfill_htlcs: vec![msg],
2397                                                                 update_fail_htlcs: Vec::new(),
2398                                                                 update_fail_malformed_htlcs: Vec::new(),
2399                                                                 update_fee: None,
2400                                                                 commitment_signed,
2401                                                         }
2402                                                 });
2403                                         }
2404                                         return Ok(())
2405                                 },
2406                                 Err(e) => {
2407                                         // TODO: Do something with e?
2408                                         // This should only occur if we are claiming an HTLC at the same time as the
2409                                         // HTLC is being failed (eg because a block is being connected and this caused
2410                                         // an HTLC to time out). This should, of course, only occur if the user is the
2411                                         // one doing the claiming (as it being a part of a peer claim would imply we're
2412                                         // about to lose funds) and only if the lock in claim_funds was dropped as a
2413                                         // previous HTLC was failed (thus not for an MPP payment).
2414                                         debug_assert!(false, "This shouldn't be reachable except in absurdly rare cases between monitor updates and HTLC timeouts: {:?}", e);
2415                                         return Err(None)
2416                                 },
2417                         }
2418                 } else { unreachable!(); }
2419         }
2420
2421         fn claim_funds_internal(&self, mut channel_state_lock: MutexGuard<ChannelHolder<Signer>>, source: HTLCSource, payment_preimage: PaymentPreimage) {
2422                 match source {
2423                         HTLCSource::OutboundRoute { .. } => {
2424                                 mem::drop(channel_state_lock);
2425                                 let mut pending_events = self.pending_events.lock().unwrap();
2426                                 pending_events.push(events::Event::PaymentSent {
2427                                         payment_preimage
2428                                 });
2429                         },
2430                         HTLCSource::PreviousHopData(hop_data) => {
2431                                 let prev_outpoint = hop_data.outpoint;
2432                                 if let Err((counterparty_node_id, err)) = match self.claim_funds_from_hop(&mut channel_state_lock, hop_data, payment_preimage) {
2433                                         Ok(()) => Ok(()),
2434                                         Err(None) => {
2435                                                 let preimage_update = ChannelMonitorUpdate {
2436                                                         update_id: CLOSED_CHANNEL_UPDATE_ID,
2437                                                         updates: vec![ChannelMonitorUpdateStep::PaymentPreimage {
2438                                                                 payment_preimage: payment_preimage.clone(),
2439                                                         }],
2440                                                 };
2441                                                 // We update the ChannelMonitor on the backward link, after
2442                                                 // receiving an offchain preimage event from the forward link (the
2443                                                 // event being update_fulfill_htlc).
2444                                                 if let Err(e) = self.chain_monitor.update_channel(prev_outpoint, preimage_update) {
2445                                                         log_error!(self.logger, "Critical error: failed to update channel monitor with preimage {:?}: {:?}",
2446                                                                    payment_preimage, e);
2447                                                 }
2448                                                 Ok(())
2449                                         },
2450                                         Err(Some(res)) => Err(res),
2451                                 } {
2452                                         mem::drop(channel_state_lock);
2453                                         let res: Result<(), _> = Err(err);
2454                                         let _ = handle_error!(self, res, counterparty_node_id);
2455                                 }
2456                         },
2457                 }
2458         }
2459
2460         /// Gets the node_id held by this ChannelManager
2461         pub fn get_our_node_id(&self) -> PublicKey {
2462                 self.our_network_pubkey.clone()
2463         }
2464
2465         /// Restores a single, given channel to normal operation after a
2466         /// ChannelMonitorUpdateErr::TemporaryFailure was returned from a channel monitor update
2467         /// operation.
2468         ///
2469         /// All ChannelMonitor updates up to and including highest_applied_update_id must have been
2470         /// fully committed in every copy of the given channels' ChannelMonitors.
2471         ///
2472         /// Note that there is no effect to calling with a highest_applied_update_id other than the
2473         /// current latest ChannelMonitorUpdate and one call to this function after multiple
2474         /// ChannelMonitorUpdateErr::TemporaryFailures is fine. The highest_applied_update_id field
2475         /// exists largely only to prevent races between this and concurrent update_monitor calls.
2476         ///
2477         /// Thus, the anticipated use is, at a high level:
2478         ///  1) You register a chain::Watch with this ChannelManager,
2479         ///  2) it stores each update to disk, and begins updating any remote (eg watchtower) copies of
2480         ///     said ChannelMonitors as it can, returning ChannelMonitorUpdateErr::TemporaryFailures
2481         ///     any time it cannot do so instantly,
2482         ///  3) update(s) are applied to each remote copy of a ChannelMonitor,
2483         ///  4) once all remote copies are updated, you call this function with the update_id that
2484         ///     completed, and once it is the latest the Channel will be re-enabled.
2485         pub fn channel_monitor_updated(&self, funding_txo: &OutPoint, highest_applied_update_id: u64) {
2486                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
2487
2488                 let mut close_results = Vec::new();
2489                 let mut htlc_forwards = Vec::new();
2490                 let mut htlc_failures = Vec::new();
2491                 let mut pending_events = Vec::new();
2492
2493                 {
2494                         let mut channel_lock = self.channel_state.lock().unwrap();
2495                         let channel_state = &mut *channel_lock;
2496                         let short_to_id = &mut channel_state.short_to_id;
2497                         let pending_msg_events = &mut channel_state.pending_msg_events;
2498                         let channel = match channel_state.by_id.get_mut(&funding_txo.to_channel_id()) {
2499                                 Some(chan) => chan,
2500                                 None => return,
2501                         };
2502                         if !channel.is_awaiting_monitor_update() || channel.get_latest_monitor_update_id() != highest_applied_update_id {
2503                                 return;
2504                         }
2505
2506                         let (raa, commitment_update, order, pending_forwards, mut pending_failures, funding_broadcastable, funding_locked) = channel.monitor_updating_restored(&self.logger);
2507                         if !pending_forwards.is_empty() {
2508                                 htlc_forwards.push((channel.get_short_channel_id().expect("We can't have pending forwards before funding confirmation"), funding_txo.clone(), pending_forwards));
2509                         }
2510                         htlc_failures.append(&mut pending_failures);
2511
2512                         macro_rules! handle_cs { () => {
2513                                 if let Some(update) = commitment_update {
2514                                         pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
2515                                                 node_id: channel.get_counterparty_node_id(),
2516                                                 updates: update,
2517                                         });
2518                                 }
2519                         } }
2520                         macro_rules! handle_raa { () => {
2521                                 if let Some(revoke_and_ack) = raa {
2522                                         pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
2523                                                 node_id: channel.get_counterparty_node_id(),
2524                                                 msg: revoke_and_ack,
2525                                         });
2526                                 }
2527                         } }
2528                         match order {
2529                                 RAACommitmentOrder::CommitmentFirst => {
2530                                         handle_cs!();
2531                                         handle_raa!();
2532                                 },
2533                                 RAACommitmentOrder::RevokeAndACKFirst => {
2534                                         handle_raa!();
2535                                         handle_cs!();
2536                                 },
2537                         }
2538                         if let Some(tx) = funding_broadcastable {
2539                                 self.tx_broadcaster.broadcast_transaction(&tx);
2540                         }
2541                         if let Some(msg) = funding_locked {
2542                                 pending_msg_events.push(events::MessageSendEvent::SendFundingLocked {
2543                                         node_id: channel.get_counterparty_node_id(),
2544                                         msg,
2545                                 });
2546                                 if let Some(announcement_sigs) = self.get_announcement_sigs(channel) {
2547                                         pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
2548                                                 node_id: channel.get_counterparty_node_id(),
2549                                                 msg: announcement_sigs,
2550                                         });
2551                                 }
2552                                 short_to_id.insert(channel.get_short_channel_id().unwrap(), channel.channel_id());
2553                         }
2554                 }
2555
2556                 self.pending_events.lock().unwrap().append(&mut pending_events);
2557
2558                 for failure in htlc_failures.drain(..) {
2559                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), failure.0, &failure.1, failure.2);
2560                 }
2561                 self.forward_htlcs(&mut htlc_forwards[..]);
2562
2563                 for res in close_results.drain(..) {
2564                         self.finish_force_close_channel(res);
2565                 }
2566         }
2567
2568         fn internal_open_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::OpenChannel) -> Result<(), MsgHandleErrInternal> {
2569                 if msg.chain_hash != self.genesis_hash {
2570                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Unknown genesis block hash".to_owned(), msg.temporary_channel_id.clone()));
2571                 }
2572
2573                 let channel = Channel::new_from_req(&self.fee_estimator, &self.keys_manager, counterparty_node_id.clone(), their_features, msg, 0, &self.default_configuration)
2574                         .map_err(|e| MsgHandleErrInternal::from_chan_no_close(e, msg.temporary_channel_id))?;
2575                 let mut channel_state_lock = self.channel_state.lock().unwrap();
2576                 let channel_state = &mut *channel_state_lock;
2577                 match channel_state.by_id.entry(channel.channel_id()) {
2578                         hash_map::Entry::Occupied(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("temporary_channel_id collision!".to_owned(), msg.temporary_channel_id.clone())),
2579                         hash_map::Entry::Vacant(entry) => {
2580                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
2581                                         node_id: counterparty_node_id.clone(),
2582                                         msg: channel.get_accept_channel(),
2583                                 });
2584                                 entry.insert(channel);
2585                         }
2586                 }
2587                 Ok(())
2588         }
2589
2590         fn internal_accept_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::AcceptChannel) -> Result<(), MsgHandleErrInternal> {
2591                 let (value, output_script, user_id) = {
2592                         let mut channel_lock = self.channel_state.lock().unwrap();
2593                         let channel_state = &mut *channel_lock;
2594                         match channel_state.by_id.entry(msg.temporary_channel_id) {
2595                                 hash_map::Entry::Occupied(mut chan) => {
2596                                         if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2597                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.temporary_channel_id));
2598                                         }
2599                                         try_chan_entry!(self, chan.get_mut().accept_channel(&msg, &self.default_configuration, their_features), channel_state, chan);
2600                                         (chan.get().get_value_satoshis(), chan.get().get_funding_redeemscript().to_v0_p2wsh(), chan.get().get_user_id())
2601                                 },
2602                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.temporary_channel_id))
2603                         }
2604                 };
2605                 let mut pending_events = self.pending_events.lock().unwrap();
2606                 pending_events.push(events::Event::FundingGenerationReady {
2607                         temporary_channel_id: msg.temporary_channel_id,
2608                         channel_value_satoshis: value,
2609                         output_script,
2610                         user_channel_id: user_id,
2611                 });
2612                 Ok(())
2613         }
2614
2615         fn internal_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) -> Result<(), MsgHandleErrInternal> {
2616                 let ((funding_msg, monitor), mut chan) = {
2617                         let best_block = *self.best_block.read().unwrap();
2618                         let mut channel_lock = self.channel_state.lock().unwrap();
2619                         let channel_state = &mut *channel_lock;
2620                         match channel_state.by_id.entry(msg.temporary_channel_id.clone()) {
2621                                 hash_map::Entry::Occupied(mut chan) => {
2622                                         if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2623                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.temporary_channel_id));
2624                                         }
2625                                         (try_chan_entry!(self, chan.get_mut().funding_created(msg, best_block, &self.logger), channel_state, chan), chan.remove())
2626                                 },
2627                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.temporary_channel_id))
2628                         }
2629                 };
2630                 // Because we have exclusive ownership of the channel here we can release the channel_state
2631                 // lock before watch_channel
2632                 if let Err(e) = self.chain_monitor.watch_channel(monitor.get_funding_txo().0, monitor) {
2633                         match e {
2634                                 ChannelMonitorUpdateErr::PermanentFailure => {
2635                                         // Note that we reply with the new channel_id in error messages if we gave up on the
2636                                         // channel, not the temporary_channel_id. This is compatible with ourselves, but the
2637                                         // spec is somewhat ambiguous here. Not a huge deal since we'll send error messages for
2638                                         // any messages referencing a previously-closed channel anyway.
2639                                         // We do not do a force-close here as that would generate a monitor update for
2640                                         // a monitor that we didn't manage to store (and that we don't care about - we
2641                                         // don't respond with the funding_signed so the channel can never go on chain).
2642                                         let (_monitor_update, failed_htlcs) = chan.force_shutdown(true);
2643                                         assert!(failed_htlcs.is_empty());
2644                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("ChannelMonitor storage failure".to_owned(), funding_msg.channel_id));
2645                                 },
2646                                 ChannelMonitorUpdateErr::TemporaryFailure => {
2647                                         // There's no problem signing a counterparty's funding transaction if our monitor
2648                                         // hasn't persisted to disk yet - we can't lose money on a transaction that we haven't
2649                                         // accepted payment from yet. We do, however, need to wait to send our funding_locked
2650                                         // until we have persisted our monitor.
2651                                         chan.monitor_update_failed(false, false, Vec::new(), Vec::new());
2652                                 },
2653                         }
2654                 }
2655                 let mut channel_state_lock = self.channel_state.lock().unwrap();
2656                 let channel_state = &mut *channel_state_lock;
2657                 match channel_state.by_id.entry(funding_msg.channel_id) {
2658                         hash_map::Entry::Occupied(_) => {
2659                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Already had channel with the new channel_id".to_owned(), funding_msg.channel_id))
2660                         },
2661                         hash_map::Entry::Vacant(e) => {
2662                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingSigned {
2663                                         node_id: counterparty_node_id.clone(),
2664                                         msg: funding_msg,
2665                                 });
2666                                 e.insert(chan);
2667                         }
2668                 }
2669                 Ok(())
2670         }
2671
2672         fn internal_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) -> Result<(), MsgHandleErrInternal> {
2673                 let funding_tx = {
2674                         let best_block = *self.best_block.read().unwrap();
2675                         let mut channel_lock = self.channel_state.lock().unwrap();
2676                         let channel_state = &mut *channel_lock;
2677                         match channel_state.by_id.entry(msg.channel_id) {
2678                                 hash_map::Entry::Occupied(mut chan) => {
2679                                         if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2680                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2681                                         }
2682                                         let (monitor, funding_tx) = match chan.get_mut().funding_signed(&msg, best_block, &self.logger) {
2683                                                 Ok(update) => update,
2684                                                 Err(e) => try_chan_entry!(self, Err(e), channel_state, chan),
2685                                         };
2686                                         if let Err(e) = self.chain_monitor.watch_channel(chan.get().get_funding_txo().unwrap(), monitor) {
2687                                                 return_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::RevokeAndACKFirst, false, false);
2688                                         }
2689                                         funding_tx
2690                                 },
2691                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2692                         }
2693                 };
2694                 self.tx_broadcaster.broadcast_transaction(&funding_tx);
2695                 Ok(())
2696         }
2697
2698         fn internal_funding_locked(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingLocked) -> Result<(), MsgHandleErrInternal> {
2699                 let mut channel_state_lock = self.channel_state.lock().unwrap();
2700                 let channel_state = &mut *channel_state_lock;
2701                 match channel_state.by_id.entry(msg.channel_id) {
2702                         hash_map::Entry::Occupied(mut chan) => {
2703                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2704                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2705                                 }
2706                                 try_chan_entry!(self, chan.get_mut().funding_locked(&msg), channel_state, chan);
2707                                 if let Some(announcement_sigs) = self.get_announcement_sigs(chan.get()) {
2708                                         log_trace!(self.logger, "Sending announcement_signatures for {} in response to funding_locked", log_bytes!(chan.get().channel_id()));
2709                                         // If we see locking block before receiving remote funding_locked, we broadcast our
2710                                         // announcement_sigs at remote funding_locked reception. If we receive remote
2711                                         // funding_locked before seeing locking block, we broadcast our announcement_sigs at locking
2712                                         // block connection. We should guanrantee to broadcast announcement_sigs to our peer whatever
2713                                         // the order of the events but our peer may not receive it due to disconnection. The specs
2714                                         // lacking an acknowledgement for announcement_sigs we may have to re-send them at peer
2715                                         // connection in the future if simultaneous misses by both peers due to network/hardware
2716                                         // failures is an issue. Note, to achieve its goal, only one of the announcement_sigs needs
2717                                         // to be received, from then sigs are going to be flood to the whole network.
2718                                         channel_state.pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
2719                                                 node_id: counterparty_node_id.clone(),
2720                                                 msg: announcement_sigs,
2721                                         });
2722                                 }
2723                                 Ok(())
2724                         },
2725                         hash_map::Entry::Vacant(_) => Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2726                 }
2727         }
2728
2729         fn internal_shutdown(&self, counterparty_node_id: &PublicKey, their_features: &InitFeatures, msg: &msgs::Shutdown) -> Result<(), MsgHandleErrInternal> {
2730                 let (mut dropped_htlcs, chan_option) = {
2731                         let mut channel_state_lock = self.channel_state.lock().unwrap();
2732                         let channel_state = &mut *channel_state_lock;
2733
2734                         match channel_state.by_id.entry(msg.channel_id.clone()) {
2735                                 hash_map::Entry::Occupied(mut chan_entry) => {
2736                                         if chan_entry.get().get_counterparty_node_id() != *counterparty_node_id {
2737                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2738                                         }
2739                                         let (shutdown, closing_signed, dropped_htlcs) = try_chan_entry!(self, chan_entry.get_mut().shutdown(&self.fee_estimator, &their_features, &msg), channel_state, chan_entry);
2740                                         if let Some(msg) = shutdown {
2741                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
2742                                                         node_id: counterparty_node_id.clone(),
2743                                                         msg,
2744                                                 });
2745                                         }
2746                                         if let Some(msg) = closing_signed {
2747                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
2748                                                         node_id: counterparty_node_id.clone(),
2749                                                         msg,
2750                                                 });
2751                                         }
2752                                         if chan_entry.get().is_shutdown() {
2753                                                 if let Some(short_id) = chan_entry.get().get_short_channel_id() {
2754                                                         channel_state.short_to_id.remove(&short_id);
2755                                                 }
2756                                                 (dropped_htlcs, Some(chan_entry.remove_entry().1))
2757                                         } else { (dropped_htlcs, None) }
2758                                 },
2759                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2760                         }
2761                 };
2762                 for htlc_source in dropped_htlcs.drain(..) {
2763                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
2764                 }
2765                 if let Some(chan) = chan_option {
2766                         if let Ok(update) = self.get_channel_update(&chan) {
2767                                 let mut channel_state = self.channel_state.lock().unwrap();
2768                                 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2769                                         msg: update
2770                                 });
2771                         }
2772                 }
2773                 Ok(())
2774         }
2775
2776         fn internal_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) -> Result<(), MsgHandleErrInternal> {
2777                 let (tx, chan_option) = {
2778                         let mut channel_state_lock = self.channel_state.lock().unwrap();
2779                         let channel_state = &mut *channel_state_lock;
2780                         match channel_state.by_id.entry(msg.channel_id.clone()) {
2781                                 hash_map::Entry::Occupied(mut chan_entry) => {
2782                                         if chan_entry.get().get_counterparty_node_id() != *counterparty_node_id {
2783                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2784                                         }
2785                                         let (closing_signed, tx) = try_chan_entry!(self, chan_entry.get_mut().closing_signed(&self.fee_estimator, &msg), channel_state, chan_entry);
2786                                         if let Some(msg) = closing_signed {
2787                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
2788                                                         node_id: counterparty_node_id.clone(),
2789                                                         msg,
2790                                                 });
2791                                         }
2792                                         if tx.is_some() {
2793                                                 // We're done with this channel, we've got a signed closing transaction and
2794                                                 // will send the closing_signed back to the remote peer upon return. This
2795                                                 // also implies there are no pending HTLCs left on the channel, so we can
2796                                                 // fully delete it from tracking (the channel monitor is still around to
2797                                                 // watch for old state broadcasts)!
2798                                                 if let Some(short_id) = chan_entry.get().get_short_channel_id() {
2799                                                         channel_state.short_to_id.remove(&short_id);
2800                                                 }
2801                                                 (tx, Some(chan_entry.remove_entry().1))
2802                                         } else { (tx, None) }
2803                                 },
2804                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2805                         }
2806                 };
2807                 if let Some(broadcast_tx) = tx {
2808                         log_trace!(self.logger, "Broadcast onchain {}", log_tx!(broadcast_tx));
2809                         self.tx_broadcaster.broadcast_transaction(&broadcast_tx);
2810                 }
2811                 if let Some(chan) = chan_option {
2812                         if let Ok(update) = self.get_channel_update(&chan) {
2813                                 let mut channel_state = self.channel_state.lock().unwrap();
2814                                 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2815                                         msg: update
2816                                 });
2817                         }
2818                 }
2819                 Ok(())
2820         }
2821
2822         fn internal_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) -> Result<(), MsgHandleErrInternal> {
2823                 //TODO: BOLT 4 points out a specific attack where a peer may re-send an onion packet and
2824                 //determine the state of the payment based on our response/if we forward anything/the time
2825                 //we take to respond. We should take care to avoid allowing such an attack.
2826                 //
2827                 //TODO: There exists a further attack where a node may garble the onion data, forward it to
2828                 //us repeatedly garbled in different ways, and compare our error messages, which are
2829                 //encrypted with the same key. It's not immediately obvious how to usefully exploit that,
2830                 //but we should prevent it anyway.
2831
2832                 let (pending_forward_info, mut channel_state_lock) = self.decode_update_add_htlc_onion(msg);
2833                 let channel_state = &mut *channel_state_lock;
2834
2835                 match channel_state.by_id.entry(msg.channel_id) {
2836                         hash_map::Entry::Occupied(mut chan) => {
2837                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2838                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2839                                 }
2840
2841                                 let create_pending_htlc_status = |chan: &Channel<Signer>, pending_forward_info: PendingHTLCStatus, error_code: u16| {
2842                                         // Ensure error_code has the UPDATE flag set, since by default we send a
2843                                         // channel update along as part of failing the HTLC.
2844                                         assert!((error_code & 0x1000) != 0);
2845                                         // If the update_add is completely bogus, the call will Err and we will close,
2846                                         // but if we've sent a shutdown and they haven't acknowledged it yet, we just
2847                                         // want to reject the new HTLC and fail it backwards instead of forwarding.
2848                                         match pending_forward_info {
2849                                                 PendingHTLCStatus::Forward(PendingHTLCInfo { ref incoming_shared_secret, .. }) => {
2850                                                         let reason = if let Ok(upd) = self.get_channel_update(chan) {
2851                                                                 onion_utils::build_first_hop_failure_packet(incoming_shared_secret, error_code, &{
2852                                                                         let mut res = Vec::with_capacity(8 + 128);
2853                                                                         // TODO: underspecified, follow https://github.com/lightningnetwork/lightning-rfc/issues/791
2854                                                                         res.extend_from_slice(&byte_utils::be16_to_array(0));
2855                                                                         res.extend_from_slice(&upd.encode_with_len()[..]);
2856                                                                         res
2857                                                                 }[..])
2858                                                         } else {
2859                                                                 // The only case where we'd be unable to
2860                                                                 // successfully get a channel update is if the
2861                                                                 // channel isn't in the fully-funded state yet,
2862                                                                 // implying our counterparty is trying to route
2863                                                                 // payments over the channel back to themselves
2864                                                                 // (cause no one else should know the short_id
2865                                                                 // is a lightning channel yet). We should have
2866                                                                 // no problem just calling this
2867                                                                 // unknown_next_peer (0x4000|10).
2868                                                                 onion_utils::build_first_hop_failure_packet(incoming_shared_secret, 0x4000|10, &[])
2869                                                         };
2870                                                         let msg = msgs::UpdateFailHTLC {
2871                                                                 channel_id: msg.channel_id,
2872                                                                 htlc_id: msg.htlc_id,
2873                                                                 reason
2874                                                         };
2875                                                         PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msg))
2876                                                 },
2877                                                 _ => pending_forward_info
2878                                         }
2879                                 };
2880                                 try_chan_entry!(self, chan.get_mut().update_add_htlc(&msg, pending_forward_info, create_pending_htlc_status, &self.logger), channel_state, chan);
2881                         },
2882                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2883                 }
2884                 Ok(())
2885         }
2886
2887         fn internal_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) -> Result<(), MsgHandleErrInternal> {
2888                 let mut channel_lock = self.channel_state.lock().unwrap();
2889                 let htlc_source = {
2890                         let channel_state = &mut *channel_lock;
2891                         match channel_state.by_id.entry(msg.channel_id) {
2892                                 hash_map::Entry::Occupied(mut chan) => {
2893                                         if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2894                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2895                                         }
2896                                         try_chan_entry!(self, chan.get_mut().update_fulfill_htlc(&msg), channel_state, chan)
2897                                 },
2898                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2899                         }
2900                 };
2901                 self.claim_funds_internal(channel_lock, htlc_source, msg.payment_preimage.clone());
2902                 Ok(())
2903         }
2904
2905         fn internal_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) -> Result<(), MsgHandleErrInternal> {
2906                 let mut channel_lock = self.channel_state.lock().unwrap();
2907                 let channel_state = &mut *channel_lock;
2908                 match channel_state.by_id.entry(msg.channel_id) {
2909                         hash_map::Entry::Occupied(mut chan) => {
2910                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2911                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2912                                 }
2913                                 try_chan_entry!(self, chan.get_mut().update_fail_htlc(&msg, HTLCFailReason::LightningError { err: msg.reason.clone() }), channel_state, chan);
2914                         },
2915                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2916                 }
2917                 Ok(())
2918         }
2919
2920         fn internal_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) -> Result<(), MsgHandleErrInternal> {
2921                 let mut channel_lock = self.channel_state.lock().unwrap();
2922                 let channel_state = &mut *channel_lock;
2923                 match channel_state.by_id.entry(msg.channel_id) {
2924                         hash_map::Entry::Occupied(mut chan) => {
2925                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2926                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2927                                 }
2928                                 if (msg.failure_code & 0x8000) == 0 {
2929                                         let chan_err: ChannelError = ChannelError::Close("Got update_fail_malformed_htlc with BADONION not set".to_owned());
2930                                         try_chan_entry!(self, Err(chan_err), channel_state, chan);
2931                                 }
2932                                 try_chan_entry!(self, chan.get_mut().update_fail_malformed_htlc(&msg, HTLCFailReason::Reason { failure_code: msg.failure_code, data: Vec::new() }), channel_state, chan);
2933                                 Ok(())
2934                         },
2935                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2936                 }
2937         }
2938
2939         fn internal_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) -> Result<(), MsgHandleErrInternal> {
2940                 let mut channel_state_lock = self.channel_state.lock().unwrap();
2941                 let channel_state = &mut *channel_state_lock;
2942                 match channel_state.by_id.entry(msg.channel_id) {
2943                         hash_map::Entry::Occupied(mut chan) => {
2944                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2945                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2946                                 }
2947                                 let (revoke_and_ack, commitment_signed, closing_signed, monitor_update) =
2948                                         match chan.get_mut().commitment_signed(&msg, &self.fee_estimator, &self.logger) {
2949                                                 Err((None, e)) => try_chan_entry!(self, Err(e), channel_state, chan),
2950                                                 Err((Some(update), e)) => {
2951                                                         assert!(chan.get().is_awaiting_monitor_update());
2952                                                         let _ = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), update);
2953                                                         try_chan_entry!(self, Err(e), channel_state, chan);
2954                                                         unreachable!();
2955                                                 },
2956                                                 Ok(res) => res
2957                                         };
2958                                 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
2959                                         return_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::RevokeAndACKFirst, true, commitment_signed.is_some());
2960                                         //TODO: Rebroadcast closing_signed if present on monitor update restoration
2961                                 }
2962                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
2963                                         node_id: counterparty_node_id.clone(),
2964                                         msg: revoke_and_ack,
2965                                 });
2966                                 if let Some(msg) = commitment_signed {
2967                                         channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
2968                                                 node_id: counterparty_node_id.clone(),
2969                                                 updates: msgs::CommitmentUpdate {
2970                                                         update_add_htlcs: Vec::new(),
2971                                                         update_fulfill_htlcs: Vec::new(),
2972                                                         update_fail_htlcs: Vec::new(),
2973                                                         update_fail_malformed_htlcs: Vec::new(),
2974                                                         update_fee: None,
2975                                                         commitment_signed: msg,
2976                                                 },
2977                                         });
2978                                 }
2979                                 if let Some(msg) = closing_signed {
2980                                         channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
2981                                                 node_id: counterparty_node_id.clone(),
2982                                                 msg,
2983                                         });
2984                                 }
2985                                 Ok(())
2986                         },
2987                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2988                 }
2989         }
2990
2991         #[inline]
2992         fn forward_htlcs(&self, per_source_pending_forwards: &mut [(u64, OutPoint, Vec<(PendingHTLCInfo, u64)>)]) {
2993                 for &mut (prev_short_channel_id, prev_funding_outpoint, ref mut pending_forwards) in per_source_pending_forwards {
2994                         let mut forward_event = None;
2995                         if !pending_forwards.is_empty() {
2996                                 let mut channel_state = self.channel_state.lock().unwrap();
2997                                 if channel_state.forward_htlcs.is_empty() {
2998                                         forward_event = Some(Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS))
2999                                 }
3000                                 for (forward_info, prev_htlc_id) in pending_forwards.drain(..) {
3001                                         match channel_state.forward_htlcs.entry(match forward_info.routing {
3002                                                         PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
3003                                                         PendingHTLCRouting::Receive { .. } => 0,
3004                                         }) {
3005                                                 hash_map::Entry::Occupied(mut entry) => {
3006                                                         entry.get_mut().push(HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_funding_outpoint,
3007                                                                                                         prev_htlc_id, forward_info });
3008                                                 },
3009                                                 hash_map::Entry::Vacant(entry) => {
3010                                                         entry.insert(vec!(HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_funding_outpoint,
3011                                                                                                      prev_htlc_id, forward_info }));
3012                                                 }
3013                                         }
3014                                 }
3015                         }
3016                         match forward_event {
3017                                 Some(time) => {
3018                                         let mut pending_events = self.pending_events.lock().unwrap();
3019                                         pending_events.push(events::Event::PendingHTLCsForwardable {
3020                                                 time_forwardable: time
3021                                         });
3022                                 }
3023                                 None => {},
3024                         }
3025                 }
3026         }
3027
3028         fn internal_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) -> Result<(), MsgHandleErrInternal> {
3029                 let mut htlcs_to_fail = Vec::new();
3030                 let res = loop {
3031                         let mut channel_state_lock = self.channel_state.lock().unwrap();
3032                         let channel_state = &mut *channel_state_lock;
3033                         match channel_state.by_id.entry(msg.channel_id) {
3034                                 hash_map::Entry::Occupied(mut chan) => {
3035                                         if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3036                                                 break Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3037                                         }
3038                                         let was_frozen_for_monitor = chan.get().is_awaiting_monitor_update();
3039                                         let (commitment_update, pending_forwards, pending_failures, closing_signed, monitor_update, htlcs_to_fail_in) =
3040                                                 break_chan_entry!(self, chan.get_mut().revoke_and_ack(&msg, &self.fee_estimator, &self.logger), channel_state, chan);
3041                                         htlcs_to_fail = htlcs_to_fail_in;
3042                                         if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
3043                                                 if was_frozen_for_monitor {
3044                                                         assert!(commitment_update.is_none() && closing_signed.is_none() && pending_forwards.is_empty() && pending_failures.is_empty());
3045                                                         break Err(MsgHandleErrInternal::ignore_no_close("Previous monitor update failure prevented responses to RAA".to_owned()));
3046                                                 } else {
3047                                                         if let Err(e) = handle_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, commitment_update.is_some(), pending_forwards, pending_failures) {
3048                                                                 break Err(e);
3049                                                         } else { unreachable!(); }
3050                                                 }
3051                                         }
3052                                         if let Some(updates) = commitment_update {
3053                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
3054                                                         node_id: counterparty_node_id.clone(),
3055                                                         updates,
3056                                                 });
3057                                         }
3058                                         if let Some(msg) = closing_signed {
3059                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
3060                                                         node_id: counterparty_node_id.clone(),
3061                                                         msg,
3062                                                 });
3063                                         }
3064                                         break Ok((pending_forwards, pending_failures, chan.get().get_short_channel_id().expect("RAA should only work on a short-id-available channel"), chan.get().get_funding_txo().unwrap()))
3065                                 },
3066                                 hash_map::Entry::Vacant(_) => break Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3067                         }
3068                 };
3069                 self.fail_holding_cell_htlcs(htlcs_to_fail, msg.channel_id);
3070                 match res {
3071                         Ok((pending_forwards, mut pending_failures, short_channel_id, channel_outpoint)) => {
3072                                 for failure in pending_failures.drain(..) {
3073                                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), failure.0, &failure.1, failure.2);
3074                                 }
3075                                 self.forward_htlcs(&mut [(short_channel_id, channel_outpoint, pending_forwards)]);
3076                                 Ok(())
3077                         },
3078                         Err(e) => Err(e)
3079                 }
3080         }
3081
3082         fn internal_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) -> Result<(), MsgHandleErrInternal> {
3083                 let mut channel_lock = self.channel_state.lock().unwrap();
3084                 let channel_state = &mut *channel_lock;
3085                 match channel_state.by_id.entry(msg.channel_id) {
3086                         hash_map::Entry::Occupied(mut chan) => {
3087                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3088                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3089                                 }
3090                                 try_chan_entry!(self, chan.get_mut().update_fee(&self.fee_estimator, &msg), channel_state, chan);
3091                         },
3092                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3093                 }
3094                 Ok(())
3095         }
3096
3097         fn internal_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) -> Result<(), MsgHandleErrInternal> {
3098                 let mut channel_state_lock = self.channel_state.lock().unwrap();
3099                 let channel_state = &mut *channel_state_lock;
3100
3101                 match channel_state.by_id.entry(msg.channel_id) {
3102                         hash_map::Entry::Occupied(mut chan) => {
3103                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3104                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3105                                 }
3106                                 if !chan.get().is_usable() {
3107                                         return Err(MsgHandleErrInternal::from_no_close(LightningError{err: "Got an announcement_signatures before we were ready for it".to_owned(), action: msgs::ErrorAction::IgnoreError}));
3108                                 }
3109
3110                                 let our_node_id = self.get_our_node_id();
3111                                 let (announcement, our_bitcoin_sig) =
3112                                         try_chan_entry!(self, chan.get_mut().get_channel_announcement(our_node_id.clone(), self.genesis_hash.clone()), channel_state, chan);
3113
3114                                 let were_node_one = announcement.node_id_1 == our_node_id;
3115                                 let msghash = hash_to_message!(&Sha256dHash::hash(&announcement.encode()[..])[..]);
3116                                 {
3117                                         let their_node_key = if were_node_one { &announcement.node_id_2 } else { &announcement.node_id_1 };
3118                                         let their_bitcoin_key = if were_node_one { &announcement.bitcoin_key_2 } else { &announcement.bitcoin_key_1 };
3119                                         match (self.secp_ctx.verify(&msghash, &msg.node_signature, their_node_key),
3120                                                    self.secp_ctx.verify(&msghash, &msg.bitcoin_signature, their_bitcoin_key)) {
3121                                                 (Err(e), _) => {
3122                                                         let chan_err: ChannelError = ChannelError::Close(format!("Bad announcement_signatures. Failed to verify node_signature: {:?}. Maybe using different node_secret for transport and routing msg? UnsignedChannelAnnouncement used for verification is {:?}. their_node_key is {:?}", e, &announcement, their_node_key));
3123                                                         try_chan_entry!(self, Err(chan_err), channel_state, chan);
3124                                                 },
3125                                                 (_, Err(e)) => {
3126                                                         let chan_err: ChannelError = ChannelError::Close(format!("Bad announcement_signatures. Failed to verify bitcoin_signature: {:?}. UnsignedChannelAnnouncement used for verification is {:?}. their_bitcoin_key is ({:?})", e, &announcement, their_bitcoin_key));
3127                                                         try_chan_entry!(self, Err(chan_err), channel_state, chan);
3128                                                 },
3129                                                 _ => {}
3130                                         }
3131                                 }
3132
3133                                 let our_node_sig = self.secp_ctx.sign(&msghash, &self.our_network_key);
3134
3135                                 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
3136                                         msg: msgs::ChannelAnnouncement {
3137                                                 node_signature_1: if were_node_one { our_node_sig } else { msg.node_signature },
3138                                                 node_signature_2: if were_node_one { msg.node_signature } else { our_node_sig },
3139                                                 bitcoin_signature_1: if were_node_one { our_bitcoin_sig } else { msg.bitcoin_signature },
3140                                                 bitcoin_signature_2: if were_node_one { msg.bitcoin_signature } else { our_bitcoin_sig },
3141                                                 contents: announcement,
3142                                         },
3143                                         update_msg: self.get_channel_update(chan.get()).unwrap(), // can only fail if we're not in a ready state
3144                                 });
3145                         },
3146                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3147                 }
3148                 Ok(())
3149         }
3150
3151         fn internal_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) -> Result<(), MsgHandleErrInternal> {
3152                 let mut channel_state_lock = self.channel_state.lock().unwrap();
3153                 let channel_state = &mut *channel_state_lock;
3154                 let chan_id = match channel_state.short_to_id.get(&msg.contents.short_channel_id) {
3155                         Some(chan_id) => chan_id.clone(),
3156                         None => {
3157                                 // It's not a local channel
3158                                 return Ok(())
3159                         }
3160                 };
3161                 match channel_state.by_id.entry(chan_id) {
3162                         hash_map::Entry::Occupied(mut chan) => {
3163                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3164                                         // TODO: see issue #153, need a consistent behavior on obnoxious behavior from random node
3165                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), chan_id));
3166                                 }
3167                                 try_chan_entry!(self, chan.get_mut().channel_update(&msg), channel_state, chan);
3168                         },
3169                         hash_map::Entry::Vacant(_) => unreachable!()
3170                 }
3171                 Ok(())
3172         }
3173
3174         fn internal_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) -> Result<(), MsgHandleErrInternal> {
3175                 let mut channel_state_lock = self.channel_state.lock().unwrap();
3176                 let channel_state = &mut *channel_state_lock;
3177
3178                 match channel_state.by_id.entry(msg.channel_id) {
3179                         hash_map::Entry::Occupied(mut chan) => {
3180                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3181                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3182                                 }
3183                                 // Currently, we expect all holding cell update_adds to be dropped on peer
3184                                 // disconnect, so Channel's reestablish will never hand us any holding cell
3185                                 // freed HTLCs to fail backwards. If in the future we no longer drop pending
3186                                 // add-HTLCs on disconnect, we may be handed HTLCs to fail backwards here.
3187                                 let (funding_locked, revoke_and_ack, commitment_update, monitor_update_opt, mut order, shutdown) =
3188                                         try_chan_entry!(self, chan.get_mut().channel_reestablish(msg, &self.logger), channel_state, chan);
3189                                 if let Some(monitor_update) = monitor_update_opt {
3190                                         if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
3191                                                 // channel_reestablish doesn't guarantee the order it returns is sensical
3192                                                 // for the messages it returns, but if we're setting what messages to
3193                                                 // re-transmit on monitor update success, we need to make sure it is sane.
3194                                                 if revoke_and_ack.is_none() {
3195                                                         order = RAACommitmentOrder::CommitmentFirst;
3196                                                 }
3197                                                 if commitment_update.is_none() {
3198                                                         order = RAACommitmentOrder::RevokeAndACKFirst;
3199                                                 }
3200                                                 return_monitor_err!(self, e, channel_state, chan, order, revoke_and_ack.is_some(), commitment_update.is_some());
3201                                                 //TODO: Resend the funding_locked if needed once we get the monitor running again
3202                                         }
3203                                 }
3204                                 if let Some(msg) = funding_locked {
3205                                         channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingLocked {
3206                                                 node_id: counterparty_node_id.clone(),
3207                                                 msg
3208                                         });
3209                                 }
3210                                 macro_rules! send_raa { () => {
3211                                         if let Some(msg) = revoke_and_ack {
3212                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
3213                                                         node_id: counterparty_node_id.clone(),
3214                                                         msg
3215                                                 });
3216                                         }
3217                                 } }
3218                                 macro_rules! send_cu { () => {
3219                                         if let Some(updates) = commitment_update {
3220                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
3221                                                         node_id: counterparty_node_id.clone(),
3222                                                         updates
3223                                                 });
3224                                         }
3225                                 } }
3226                                 match order {
3227                                         RAACommitmentOrder::RevokeAndACKFirst => {
3228                                                 send_raa!();
3229                                                 send_cu!();
3230                                         },
3231                                         RAACommitmentOrder::CommitmentFirst => {
3232                                                 send_cu!();
3233                                                 send_raa!();
3234                                         },
3235                                 }
3236                                 if let Some(msg) = shutdown {
3237                                         channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
3238                                                 node_id: counterparty_node_id.clone(),
3239                                                 msg,
3240                                         });
3241                                 }
3242                                 Ok(())
3243                         },
3244                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3245                 }
3246         }
3247
3248         /// Begin Update fee process. Allowed only on an outbound channel.
3249         /// If successful, will generate a UpdateHTLCs event, so you should probably poll
3250         /// PeerManager::process_events afterwards.
3251         /// Note: This API is likely to change!
3252         /// (C-not exported) Cause its doc(hidden) anyway
3253         #[doc(hidden)]
3254         pub fn update_fee(&self, channel_id: [u8;32], feerate_per_kw: u32) -> Result<(), APIError> {
3255                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3256                 let counterparty_node_id;
3257                 let err: Result<(), _> = loop {
3258                         let mut channel_state_lock = self.channel_state.lock().unwrap();
3259                         let channel_state = &mut *channel_state_lock;
3260
3261                         match channel_state.by_id.entry(channel_id) {
3262                                 hash_map::Entry::Vacant(_) => return Err(APIError::APIMisuseError{err: format!("Failed to find corresponding channel for id {}", channel_id.to_hex())}),
3263                                 hash_map::Entry::Occupied(mut chan) => {
3264                                         if !chan.get().is_outbound() {
3265                                                 return Err(APIError::APIMisuseError{err: "update_fee cannot be sent for an inbound channel".to_owned()});
3266                                         }
3267                                         if chan.get().is_awaiting_monitor_update() {
3268                                                 return Err(APIError::MonitorUpdateFailed);
3269                                         }
3270                                         if !chan.get().is_live() {
3271                                                 return Err(APIError::ChannelUnavailable{err: "Channel is either not yet fully established or peer is currently disconnected".to_owned()});
3272                                         }
3273                                         counterparty_node_id = chan.get().get_counterparty_node_id();
3274                                         if let Some((update_fee, commitment_signed, monitor_update)) =
3275                                                         break_chan_entry!(self, chan.get_mut().send_update_fee_and_commit(feerate_per_kw, &self.logger), channel_state, chan)
3276                                         {
3277                                                 if let Err(_e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
3278                                                         unimplemented!();
3279                                                 }
3280                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
3281                                                         node_id: chan.get().get_counterparty_node_id(),
3282                                                         updates: msgs::CommitmentUpdate {
3283                                                                 update_add_htlcs: Vec::new(),
3284                                                                 update_fulfill_htlcs: Vec::new(),
3285                                                                 update_fail_htlcs: Vec::new(),
3286                                                                 update_fail_malformed_htlcs: Vec::new(),
3287                                                                 update_fee: Some(update_fee),
3288                                                                 commitment_signed,
3289                                                         },
3290                                                 });
3291                                         }
3292                                 },
3293                         }
3294                         return Ok(())
3295                 };
3296
3297                 match handle_error!(self, err, counterparty_node_id) {
3298                         Ok(_) => unreachable!(),
3299                         Err(e) => { Err(APIError::APIMisuseError { err: e.err })}
3300                 }
3301         }
3302
3303         /// Process pending events from the `chain::Watch`.
3304         fn process_pending_monitor_events(&self) {
3305                 let mut failed_channels = Vec::new();
3306                 {
3307                         for monitor_event in self.chain_monitor.release_pending_monitor_events() {
3308                                 match monitor_event {
3309                                         MonitorEvent::HTLCEvent(htlc_update) => {
3310                                                 if let Some(preimage) = htlc_update.payment_preimage {
3311                                                         log_trace!(self.logger, "Claiming HTLC with preimage {} from our monitor", log_bytes!(preimage.0));
3312                                                         self.claim_funds_internal(self.channel_state.lock().unwrap(), htlc_update.source, preimage);
3313                                                 } else {
3314                                                         log_trace!(self.logger, "Failing HTLC with hash {} from our monitor", log_bytes!(htlc_update.payment_hash.0));
3315                                                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_update.source, &htlc_update.payment_hash, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
3316                                                 }
3317                                         },
3318                                         MonitorEvent::CommitmentTxBroadcasted(funding_outpoint) => {
3319                                                 let mut channel_lock = self.channel_state.lock().unwrap();
3320                                                 let channel_state = &mut *channel_lock;
3321                                                 let by_id = &mut channel_state.by_id;
3322                                                 let short_to_id = &mut channel_state.short_to_id;
3323                                                 let pending_msg_events = &mut channel_state.pending_msg_events;
3324                                                 if let Some(mut chan) = by_id.remove(&funding_outpoint.to_channel_id()) {
3325                                                         if let Some(short_id) = chan.get_short_channel_id() {
3326                                                                 short_to_id.remove(&short_id);
3327                                                         }
3328                                                         failed_channels.push(chan.force_shutdown(false));
3329                                                         if let Ok(update) = self.get_channel_update(&chan) {
3330                                                                 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
3331                                                                         msg: update
3332                                                                 });
3333                                                         }
3334                                                         pending_msg_events.push(events::MessageSendEvent::HandleError {
3335                                                                 node_id: chan.get_counterparty_node_id(),
3336                                                                 action: msgs::ErrorAction::SendErrorMessage {
3337                                                                         msg: msgs::ErrorMessage { channel_id: chan.channel_id(), data: "Channel force-closed".to_owned() }
3338                                                                 },
3339                                                         });
3340                                                 }
3341                                         },
3342                                 }
3343                         }
3344                 }
3345
3346                 for failure in failed_channels.drain(..) {
3347                         self.finish_force_close_channel(failure);
3348                 }
3349         }
3350
3351         /// Handle a list of channel failures during a block_connected or block_disconnected call,
3352         /// pushing the channel monitor update (if any) to the background events queue and removing the
3353         /// Channel object.
3354         fn handle_init_event_channel_failures(&self, mut failed_channels: Vec<ShutdownResult>) {
3355                 for mut failure in failed_channels.drain(..) {
3356                         // Either a commitment transactions has been confirmed on-chain or
3357                         // Channel::block_disconnected detected that the funding transaction has been
3358                         // reorganized out of the main chain.
3359                         // We cannot broadcast our latest local state via monitor update (as
3360                         // Channel::force_shutdown tries to make us do) as we may still be in initialization,
3361                         // so we track the update internally and handle it when the user next calls
3362                         // timer_tick_occurred, guaranteeing we're running normally.
3363                         if let Some((funding_txo, update)) = failure.0.take() {
3364                                 assert_eq!(update.updates.len(), 1);
3365                                 if let ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast } = update.updates[0] {
3366                                         assert!(should_broadcast);
3367                                 } else { unreachable!(); }
3368                                 self.pending_background_events.lock().unwrap().push(BackgroundEvent::ClosingMonitorUpdate((funding_txo, update)));
3369                         }
3370                         self.finish_force_close_channel(failure);
3371                 }
3372         }
3373
3374         fn set_payment_hash_secret_map(&self, payment_hash: PaymentHash, payment_preimage: Option<PaymentPreimage>, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32, user_payment_id: u64) -> Result<PaymentSecret, APIError> {
3375                 assert!(invoice_expiry_delta_secs <= 60*60*24*365); // Sadly bitcoin timestamps are u32s, so panic before 2106
3376
3377                 let payment_secret = PaymentSecret(self.keys_manager.get_secure_random_bytes());
3378
3379                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3380                 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
3381                 match payment_secrets.entry(payment_hash) {
3382                         hash_map::Entry::Vacant(e) => {
3383                                 e.insert(PendingInboundPayment {
3384                                         payment_secret, min_value_msat, user_payment_id, payment_preimage,
3385                                         // We assume that highest_seen_timestamp is pretty close to the current time -
3386                                         // its updated when we receive a new block with the maximum time we've seen in
3387                                         // a header. It should never be more than two hours in the future.
3388                                         // Thus, we add two hours here as a buffer to ensure we absolutely
3389                                         // never fail a payment too early.
3390                                         // Note that we assume that received blocks have reasonably up-to-date
3391                                         // timestamps.
3392                                         expiry_time: self.highest_seen_timestamp.load(Ordering::Acquire) as u64 + invoice_expiry_delta_secs as u64 + 7200,
3393                                 });
3394                         },
3395                         hash_map::Entry::Occupied(_) => return Err(APIError::APIMisuseError { err: "Duplicate payment hash".to_owned() }),
3396                 }
3397                 Ok(payment_secret)
3398         }
3399
3400         /// Gets a payment secret and payment hash for use in an invoice given to a third party wishing
3401         /// to pay us.
3402         ///
3403         /// This differs from [`create_inbound_payment_for_hash`] only in that it generates the
3404         /// [`PaymentHash`] and [`PaymentPreimage`] for you, returning the first and storing the second.
3405         ///
3406         /// The [`PaymentPreimage`] will ultimately be returned to you in the [`PaymentReceived`], which
3407         /// will have the [`PaymentReceived::payment_preimage`] field filled in. That should then be
3408         /// passed directly to [`claim_funds`].
3409         ///
3410         /// See [`create_inbound_payment_for_hash`] for detailed documentation on behavior and requirements.
3411         ///
3412         /// [`claim_funds`]: Self::claim_funds
3413         /// [`PaymentReceived`]: events::Event::PaymentReceived
3414         /// [`PaymentReceived::payment_preimage`]: events::Event::PaymentReceived::payment_preimage
3415         /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
3416         pub fn create_inbound_payment(&self, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32, user_payment_id: u64) -> (PaymentHash, PaymentSecret) {
3417                 let payment_preimage = PaymentPreimage(self.keys_manager.get_secure_random_bytes());
3418                 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
3419
3420                 (payment_hash,
3421                         self.set_payment_hash_secret_map(payment_hash, Some(payment_preimage), min_value_msat, invoice_expiry_delta_secs, user_payment_id)
3422                                 .expect("RNG Generated Duplicate PaymentHash"))
3423         }
3424
3425         /// Gets a [`PaymentSecret`] for a given [`PaymentHash`], for which the payment preimage is
3426         /// stored external to LDK.
3427         ///
3428         /// A [`PaymentReceived`] event will only be generated if the [`PaymentSecret`] matches a
3429         /// payment secret fetched via this method or [`create_inbound_payment`], and which is at least
3430         /// the `min_value_msat` provided here, if one is provided.
3431         ///
3432         /// The [`PaymentHash`] (and corresponding [`PaymentPreimage`]) must be globally unique. This
3433         /// method may return an Err if another payment with the same payment_hash is still pending.
3434         ///
3435         /// `user_payment_id` will be provided back in [`PaymentReceived::user_payment_id`] events to
3436         /// allow tracking of which events correspond with which calls to this and
3437         /// [`create_inbound_payment`]. `user_payment_id` has no meaning inside of LDK, it is simply
3438         /// copied to events and otherwise ignored. It may be used to correlate PaymentReceived events
3439         /// with invoice metadata stored elsewhere.
3440         ///
3441         /// `min_value_msat` should be set if the invoice being generated contains a value. Any payment
3442         /// received for the returned [`PaymentHash`] will be required to be at least `min_value_msat`
3443         /// before a [`PaymentReceived`] event will be generated, ensuring that we do not provide the
3444         /// sender "proof-of-payment" unless they have paid the required amount.
3445         ///
3446         /// `invoice_expiry_delta_secs` describes the number of seconds that the invoice is valid for
3447         /// in excess of the current time. This should roughly match the expiry time set in the invoice.
3448         /// After this many seconds, we will remove the inbound payment, resulting in any attempts to
3449         /// pay the invoice failing. The BOLT spec suggests 7,200 secs as a default validity time for
3450         /// invoices when no timeout is set.
3451         ///
3452         /// Note that we use block header time to time-out pending inbound payments (with some margin
3453         /// to compensate for the inaccuracy of block header timestamps). Thus, in practice we will
3454         /// accept a payment and generate a [`PaymentReceived`] event for some time after the expiry.
3455         /// If you need exact expiry semantics, you should enforce them upon receipt of
3456         /// [`PaymentReceived`].
3457         ///
3458         /// Pending inbound payments are stored in memory and in serialized versions of this
3459         /// [`ChannelManager`]. If potentially unbounded numbers of inbound payments may exist and
3460         /// space is limited, you may wish to rate-limit inbound payment creation.
3461         ///
3462         /// May panic if `invoice_expiry_delta_secs` is greater than one year.
3463         ///
3464         /// Note that invoices generated for inbound payments should have their `min_final_cltv_expiry`
3465         /// set to at least [`MIN_FINAL_CLTV_EXPIRY`].
3466         ///
3467         /// [`create_inbound_payment`]: Self::create_inbound_payment
3468         /// [`PaymentReceived`]: events::Event::PaymentReceived
3469         /// [`PaymentReceived::user_payment_id`]: events::Event::PaymentReceived::user_payment_id
3470         pub fn create_inbound_payment_for_hash(&self, payment_hash: PaymentHash, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32, user_payment_id: u64) -> Result<PaymentSecret, APIError> {
3471                 self.set_payment_hash_secret_map(payment_hash, None, min_value_msat, invoice_expiry_delta_secs, user_payment_id)
3472         }
3473 }
3474
3475 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> MessageSendEventsProvider for ChannelManager<Signer, M, T, K, F, L>
3476         where M::Target: chain::Watch<Signer>,
3477         T::Target: BroadcasterInterface,
3478         K::Target: KeysInterface<Signer = Signer>,
3479         F::Target: FeeEstimator,
3480                                 L::Target: Logger,
3481 {
3482         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
3483                 //TODO: This behavior should be documented. It's non-intuitive that we query
3484                 // ChannelMonitors when clearing other events.
3485                 self.process_pending_monitor_events();
3486
3487                 let mut ret = Vec::new();
3488                 let mut channel_state = self.channel_state.lock().unwrap();
3489                 mem::swap(&mut ret, &mut channel_state.pending_msg_events);
3490                 ret
3491         }
3492 }
3493
3494 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> EventsProvider for ChannelManager<Signer, M, T, K, F, L>
3495         where M::Target: chain::Watch<Signer>,
3496         T::Target: BroadcasterInterface,
3497         K::Target: KeysInterface<Signer = Signer>,
3498         F::Target: FeeEstimator,
3499                                 L::Target: Logger,
3500 {
3501         fn get_and_clear_pending_events(&self) -> Vec<Event> {
3502                 //TODO: This behavior should be documented. It's non-intuitive that we query
3503                 // ChannelMonitors when clearing other events.
3504                 self.process_pending_monitor_events();
3505
3506                 let mut ret = Vec::new();
3507                 let mut pending_events = self.pending_events.lock().unwrap();
3508                 mem::swap(&mut ret, &mut *pending_events);
3509                 ret
3510         }
3511 }
3512
3513 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> chain::Listen for ChannelManager<Signer, M, T, K, F, L>
3514 where
3515         M::Target: chain::Watch<Signer>,
3516         T::Target: BroadcasterInterface,
3517         K::Target: KeysInterface<Signer = Signer>,
3518         F::Target: FeeEstimator,
3519         L::Target: Logger,
3520 {
3521         fn block_connected(&self, block: &Block, height: u32) {
3522                 {
3523                         let best_block = self.best_block.read().unwrap();
3524                         assert_eq!(best_block.block_hash(), block.header.prev_blockhash,
3525                                 "Blocks must be connected in chain-order - the connected header must build on the last connected header");
3526                         assert_eq!(best_block.height(), height - 1,
3527                                 "Blocks must be connected in chain-order - the connected block height must be one greater than the previous height");
3528                 }
3529
3530                 let txdata: Vec<_> = block.txdata.iter().enumerate().collect();
3531                 self.transactions_confirmed(&block.header, &txdata, height);
3532                 self.best_block_updated(&block.header, height);
3533         }
3534
3535         fn block_disconnected(&self, header: &BlockHeader, height: u32) {
3536                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3537                 let new_height = height - 1;
3538                 {
3539                         let mut best_block = self.best_block.write().unwrap();
3540                         assert_eq!(best_block.block_hash(), header.block_hash(),
3541                                 "Blocks must be disconnected in chain-order - the disconnected header must be the last connected header");
3542                         assert_eq!(best_block.height(), height,
3543                                 "Blocks must be disconnected in chain-order - the disconnected block must have the correct height");
3544                         *best_block = BestBlock::new(header.prev_blockhash, new_height)
3545                 }
3546
3547                 self.do_chain_event(Some(new_height), |channel| channel.best_block_updated(new_height, header.time));
3548         }
3549 }
3550
3551 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> chain::Confirm for ChannelManager<Signer, M, T, K, F, L>
3552 where
3553         M::Target: chain::Watch<Signer>,
3554         T::Target: BroadcasterInterface,
3555         K::Target: KeysInterface<Signer = Signer>,
3556         F::Target: FeeEstimator,
3557         L::Target: Logger,
3558 {
3559         fn transactions_confirmed(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
3560                 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
3561                 // during initialization prior to the chain_monitor being fully configured in some cases.
3562                 // See the docs for `ChannelManagerReadArgs` for more.
3563
3564                 let block_hash = header.block_hash();
3565                 log_trace!(self.logger, "{} transactions included in block {} at height {} provided", txdata.len(), block_hash, height);
3566
3567                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3568                 self.do_chain_event(Some(height), |channel| channel.transactions_confirmed(&block_hash, height, txdata, &self.logger).map(|a| (a, Vec::new())));
3569         }
3570
3571         fn best_block_updated(&self, header: &BlockHeader, height: u32) {
3572                 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
3573                 // during initialization prior to the chain_monitor being fully configured in some cases.
3574                 // See the docs for `ChannelManagerReadArgs` for more.
3575
3576                 let block_hash = header.block_hash();
3577                 log_trace!(self.logger, "New best block: {} at height {}", block_hash, height);
3578
3579                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3580
3581                 *self.best_block.write().unwrap() = BestBlock::new(block_hash, height);
3582
3583                 self.do_chain_event(Some(height), |channel| channel.best_block_updated(height, header.time));
3584
3585                 macro_rules! max_time {
3586                         ($timestamp: expr) => {
3587                                 loop {
3588                                         // Update $timestamp to be the max of its current value and the block
3589                                         // timestamp. This should keep us close to the current time without relying on
3590                                         // having an explicit local time source.
3591                                         // Just in case we end up in a race, we loop until we either successfully
3592                                         // update $timestamp or decide we don't need to.
3593                                         let old_serial = $timestamp.load(Ordering::Acquire);
3594                                         if old_serial >= header.time as usize { break; }
3595                                         if $timestamp.compare_exchange(old_serial, header.time as usize, Ordering::AcqRel, Ordering::Relaxed).is_ok() {
3596                                                 break;
3597                                         }
3598                                 }
3599                         }
3600                 }
3601                 max_time!(self.last_node_announcement_serial);
3602                 max_time!(self.highest_seen_timestamp);
3603                 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
3604                 payment_secrets.retain(|_, inbound_payment| {
3605                         inbound_payment.expiry_time > header.time as u64
3606                 });
3607         }
3608
3609         fn get_relevant_txids(&self) -> Vec<Txid> {
3610                 let channel_state = self.channel_state.lock().unwrap();
3611                 let mut res = Vec::with_capacity(channel_state.short_to_id.len());
3612                 for chan in channel_state.by_id.values() {
3613                         if let Some(funding_txo) = chan.get_funding_txo() {
3614                                 res.push(funding_txo.txid);
3615                         }
3616                 }
3617                 res
3618         }
3619
3620         fn transaction_unconfirmed(&self, txid: &Txid) {
3621                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3622                 self.do_chain_event(None, |channel| {
3623                         if let Some(funding_txo) = channel.get_funding_txo() {
3624                                 if funding_txo.txid == *txid {
3625                                         channel.funding_transaction_unconfirmed().map(|_| (None, Vec::new()))
3626                                 } else { Ok((None, Vec::new())) }
3627                         } else { Ok((None, Vec::new())) }
3628                 });
3629         }
3630 }
3631
3632 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> ChannelManager<Signer, M, T, K, F, L>
3633 where
3634         M::Target: chain::Watch<Signer>,
3635         T::Target: BroadcasterInterface,
3636         K::Target: KeysInterface<Signer = Signer>,
3637         F::Target: FeeEstimator,
3638         L::Target: Logger,
3639 {
3640         /// Calls a function which handles an on-chain event (blocks dis/connected, transactions
3641         /// un/confirmed, etc) on each channel, handling any resulting errors or messages generated by
3642         /// the function.
3643         fn do_chain_event<FN: Fn(&mut Channel<Signer>) -> Result<(Option<msgs::FundingLocked>, Vec<(HTLCSource, PaymentHash)>), msgs::ErrorMessage>>
3644                         (&self, height_opt: Option<u32>, f: FN) {
3645                 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
3646                 // during initialization prior to the chain_monitor being fully configured in some cases.
3647                 // See the docs for `ChannelManagerReadArgs` for more.
3648
3649                 let mut failed_channels = Vec::new();
3650                 let mut timed_out_htlcs = Vec::new();
3651                 {
3652                         let mut channel_lock = self.channel_state.lock().unwrap();
3653                         let channel_state = &mut *channel_lock;
3654                         let short_to_id = &mut channel_state.short_to_id;
3655                         let pending_msg_events = &mut channel_state.pending_msg_events;
3656                         channel_state.by_id.retain(|_, channel| {
3657                                 let res = f(channel);
3658                                 if let Ok((chan_res, mut timed_out_pending_htlcs)) = res {
3659                                         for (source, payment_hash) in timed_out_pending_htlcs.drain(..) {
3660                                                 let chan_update = self.get_channel_update(&channel).map(|u| u.encode_with_len()).unwrap(); // Cannot add/recv HTLCs before we have a short_id so unwrap is safe
3661                                                 timed_out_htlcs.push((source, payment_hash,  HTLCFailReason::Reason {
3662                                                         failure_code: 0x1000 | 14, // expiry_too_soon, or at least it is now
3663                                                         data: chan_update,
3664                                                 }));
3665                                         }
3666                                         if let Some(funding_locked) = chan_res {
3667                                                 pending_msg_events.push(events::MessageSendEvent::SendFundingLocked {
3668                                                         node_id: channel.get_counterparty_node_id(),
3669                                                         msg: funding_locked,
3670                                                 });
3671                                                 if let Some(announcement_sigs) = self.get_announcement_sigs(channel) {
3672                                                         log_trace!(self.logger, "Sending funding_locked and announcement_signatures for {}", log_bytes!(channel.channel_id()));
3673                                                         pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
3674                                                                 node_id: channel.get_counterparty_node_id(),
3675                                                                 msg: announcement_sigs,
3676                                                         });
3677                                                 } else {
3678                                                         log_trace!(self.logger, "Sending funding_locked WITHOUT announcement_signatures for {}", log_bytes!(channel.channel_id()));
3679                                                 }
3680                                                 short_to_id.insert(channel.get_short_channel_id().unwrap(), channel.channel_id());
3681                                         }
3682                                 } else if let Err(e) = res {
3683                                         if let Some(short_id) = channel.get_short_channel_id() {
3684                                                 short_to_id.remove(&short_id);
3685                                         }
3686                                         // It looks like our counterparty went on-chain or funding transaction was
3687                                         // reorged out of the main chain. Close the channel.
3688                                         failed_channels.push(channel.force_shutdown(true));
3689                                         if let Ok(update) = self.get_channel_update(&channel) {
3690                                                 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
3691                                                         msg: update
3692                                                 });
3693                                         }
3694                                         pending_msg_events.push(events::MessageSendEvent::HandleError {
3695                                                 node_id: channel.get_counterparty_node_id(),
3696                                                 action: msgs::ErrorAction::SendErrorMessage { msg: e },
3697                                         });
3698                                         return false;
3699                                 }
3700                                 true
3701                         });
3702
3703                         if let Some(height) = height_opt {
3704                                 channel_state.claimable_htlcs.retain(|payment_hash, htlcs| {
3705                                         htlcs.retain(|htlc| {
3706                                                 // If height is approaching the number of blocks we think it takes us to get
3707                                                 // our commitment transaction confirmed before the HTLC expires, plus the
3708                                                 // number of blocks we generally consider it to take to do a commitment update,
3709                                                 // just give up on it and fail the HTLC.
3710                                                 if height >= htlc.cltv_expiry - HTLC_FAIL_BACK_BUFFER {
3711                                                         let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec();
3712                                                         htlc_msat_height_data.extend_from_slice(&byte_utils::be32_to_array(height));
3713                                                         timed_out_htlcs.push((HTLCSource::PreviousHopData(htlc.prev_hop.clone()), payment_hash.clone(), HTLCFailReason::Reason {
3714                                                                 failure_code: 0x4000 | 15,
3715                                                                 data: htlc_msat_height_data
3716                                                         }));
3717                                                         false
3718                                                 } else { true }
3719                                         });
3720                                         !htlcs.is_empty() // Only retain this entry if htlcs has at least one entry.
3721                                 });
3722                         }
3723                 }
3724
3725                 self.handle_init_event_channel_failures(failed_channels);
3726
3727                 for (source, payment_hash, reason) in timed_out_htlcs.drain(..) {
3728                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), source, &payment_hash, reason);
3729                 }
3730         }
3731
3732         /// Blocks until ChannelManager needs to be persisted or a timeout is reached. It returns a bool
3733         /// indicating whether persistence is necessary. Only one listener on
3734         /// `await_persistable_update` or `await_persistable_update_timeout` is guaranteed to be woken
3735         /// up.
3736         /// Note that the feature `allow_wallclock_use` must be enabled to use this function.
3737         #[cfg(any(test, feature = "allow_wallclock_use"))]
3738         pub fn await_persistable_update_timeout(&self, max_wait: Duration) -> bool {
3739                 self.persistence_notifier.wait_timeout(max_wait)
3740         }
3741
3742         /// Blocks until ChannelManager needs to be persisted. Only one listener on
3743         /// `await_persistable_update` or `await_persistable_update_timeout` is guaranteed to be woken
3744         /// up.
3745         pub fn await_persistable_update(&self) {
3746                 self.persistence_notifier.wait()
3747         }
3748
3749         #[cfg(any(test, feature = "_test_utils"))]
3750         pub fn get_persistence_condvar_value(&self) -> bool {
3751                 let mutcond = &self.persistence_notifier.persistence_lock;
3752                 let &(ref mtx, _) = mutcond;
3753                 let guard = mtx.lock().unwrap();
3754                 *guard
3755         }
3756 }
3757
3758 impl<Signer: Sign, M: Deref , T: Deref , K: Deref , F: Deref , L: Deref >
3759         ChannelMessageHandler for ChannelManager<Signer, M, T, K, F, L>
3760         where M::Target: chain::Watch<Signer>,
3761         T::Target: BroadcasterInterface,
3762         K::Target: KeysInterface<Signer = Signer>,
3763         F::Target: FeeEstimator,
3764         L::Target: Logger,
3765 {
3766         fn handle_open_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::OpenChannel) {
3767                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3768                 let _ = handle_error!(self, self.internal_open_channel(counterparty_node_id, their_features, msg), *counterparty_node_id);
3769         }
3770
3771         fn handle_accept_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::AcceptChannel) {
3772                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3773                 let _ = handle_error!(self, self.internal_accept_channel(counterparty_node_id, their_features, msg), *counterparty_node_id);
3774         }
3775
3776         fn handle_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) {
3777                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3778                 let _ = handle_error!(self, self.internal_funding_created(counterparty_node_id, msg), *counterparty_node_id);
3779         }
3780
3781         fn handle_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) {
3782                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3783                 let _ = handle_error!(self, self.internal_funding_signed(counterparty_node_id, msg), *counterparty_node_id);
3784         }
3785
3786         fn handle_funding_locked(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingLocked) {
3787                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3788                 let _ = handle_error!(self, self.internal_funding_locked(counterparty_node_id, msg), *counterparty_node_id);
3789         }
3790
3791         fn handle_shutdown(&self, counterparty_node_id: &PublicKey, their_features: &InitFeatures, msg: &msgs::Shutdown) {
3792                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3793                 let _ = handle_error!(self, self.internal_shutdown(counterparty_node_id, their_features, msg), *counterparty_node_id);
3794         }
3795
3796         fn handle_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
3797                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3798                 let _ = handle_error!(self, self.internal_closing_signed(counterparty_node_id, msg), *counterparty_node_id);
3799         }
3800
3801         fn handle_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
3802                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3803                 let _ = handle_error!(self, self.internal_update_add_htlc(counterparty_node_id, msg), *counterparty_node_id);
3804         }
3805
3806         fn handle_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
3807                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3808                 let _ = handle_error!(self, self.internal_update_fulfill_htlc(counterparty_node_id, msg), *counterparty_node_id);
3809         }
3810
3811         fn handle_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
3812                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3813                 let _ = handle_error!(self, self.internal_update_fail_htlc(counterparty_node_id, msg), *counterparty_node_id);
3814         }
3815
3816         fn handle_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
3817                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3818                 let _ = handle_error!(self, self.internal_update_fail_malformed_htlc(counterparty_node_id, msg), *counterparty_node_id);
3819         }
3820
3821         fn handle_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
3822                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3823                 let _ = handle_error!(self, self.internal_commitment_signed(counterparty_node_id, msg), *counterparty_node_id);
3824         }
3825
3826         fn handle_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
3827                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3828                 let _ = handle_error!(self, self.internal_revoke_and_ack(counterparty_node_id, msg), *counterparty_node_id);
3829         }
3830
3831         fn handle_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) {
3832                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3833                 let _ = handle_error!(self, self.internal_update_fee(counterparty_node_id, msg), *counterparty_node_id);
3834         }
3835
3836         fn handle_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
3837                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3838                 let _ = handle_error!(self, self.internal_announcement_signatures(counterparty_node_id, msg), *counterparty_node_id);
3839         }
3840
3841         fn handle_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) {
3842                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3843                 let _ = handle_error!(self, self.internal_channel_update(counterparty_node_id, msg), *counterparty_node_id);
3844         }
3845
3846         fn handle_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
3847                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3848                 let _ = handle_error!(self, self.internal_channel_reestablish(counterparty_node_id, msg), *counterparty_node_id);
3849         }
3850
3851         fn peer_disconnected(&self, counterparty_node_id: &PublicKey, no_connection_possible: bool) {
3852                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3853                 let mut failed_channels = Vec::new();
3854                 let mut failed_payments = Vec::new();
3855                 let mut no_channels_remain = true;
3856                 {
3857                         let mut channel_state_lock = self.channel_state.lock().unwrap();
3858                         let channel_state = &mut *channel_state_lock;
3859                         let short_to_id = &mut channel_state.short_to_id;
3860                         let pending_msg_events = &mut channel_state.pending_msg_events;
3861                         if no_connection_possible {
3862                                 log_debug!(self.logger, "Failing all channels with {} due to no_connection_possible", log_pubkey!(counterparty_node_id));
3863                                 channel_state.by_id.retain(|_, chan| {
3864                                         if chan.get_counterparty_node_id() == *counterparty_node_id {
3865                                                 if let Some(short_id) = chan.get_short_channel_id() {
3866                                                         short_to_id.remove(&short_id);
3867                                                 }
3868                                                 failed_channels.push(chan.force_shutdown(true));
3869                                                 if let Ok(update) = self.get_channel_update(&chan) {
3870                                                         pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
3871                                                                 msg: update
3872                                                         });
3873                                                 }
3874                                                 false
3875                                         } else {
3876                                                 true
3877                                         }
3878                                 });
3879                         } else {
3880                                 log_debug!(self.logger, "Marking channels with {} disconnected and generating channel_updates", log_pubkey!(counterparty_node_id));
3881                                 channel_state.by_id.retain(|_, chan| {
3882                                         if chan.get_counterparty_node_id() == *counterparty_node_id {
3883                                                 // Note that currently on channel reestablish we assert that there are no
3884                                                 // holding cell add-HTLCs, so if in the future we stop removing uncommitted HTLCs
3885                                                 // on peer disconnect here, there will need to be corresponding changes in
3886                                                 // reestablish logic.
3887                                                 let failed_adds = chan.remove_uncommitted_htlcs_and_mark_paused(&self.logger);
3888                                                 chan.to_disabled_marked();
3889                                                 if !failed_adds.is_empty() {
3890                                                         let chan_update = self.get_channel_update(&chan).map(|u| u.encode_with_len()).unwrap(); // Cannot add/recv HTLCs before we have a short_id so unwrap is safe
3891                                                         failed_payments.push((chan_update, failed_adds));
3892                                                 }
3893                                                 if chan.is_shutdown() {
3894                                                         if let Some(short_id) = chan.get_short_channel_id() {
3895                                                                 short_to_id.remove(&short_id);
3896                                                         }
3897                                                         return false;
3898                                                 } else {
3899                                                         no_channels_remain = false;
3900                                                 }
3901                                         }
3902                                         true
3903                                 })
3904                         }
3905                         pending_msg_events.retain(|msg| {
3906                                 match msg {
3907                                         &events::MessageSendEvent::SendAcceptChannel { ref node_id, .. } => node_id != counterparty_node_id,
3908                                         &events::MessageSendEvent::SendOpenChannel { ref node_id, .. } => node_id != counterparty_node_id,
3909                                         &events::MessageSendEvent::SendFundingCreated { ref node_id, .. } => node_id != counterparty_node_id,
3910                                         &events::MessageSendEvent::SendFundingSigned { ref node_id, .. } => node_id != counterparty_node_id,
3911                                         &events::MessageSendEvent::SendFundingLocked { ref node_id, .. } => node_id != counterparty_node_id,
3912                                         &events::MessageSendEvent::SendAnnouncementSignatures { ref node_id, .. } => node_id != counterparty_node_id,
3913                                         &events::MessageSendEvent::UpdateHTLCs { ref node_id, .. } => node_id != counterparty_node_id,
3914                                         &events::MessageSendEvent::SendRevokeAndACK { ref node_id, .. } => node_id != counterparty_node_id,
3915                                         &events::MessageSendEvent::SendClosingSigned { ref node_id, .. } => node_id != counterparty_node_id,
3916                                         &events::MessageSendEvent::SendShutdown { ref node_id, .. } => node_id != counterparty_node_id,
3917                                         &events::MessageSendEvent::SendChannelReestablish { ref node_id, .. } => node_id != counterparty_node_id,
3918                                         &events::MessageSendEvent::BroadcastChannelAnnouncement { .. } => true,
3919                                         &events::MessageSendEvent::BroadcastNodeAnnouncement { .. } => true,
3920                                         &events::MessageSendEvent::BroadcastChannelUpdate { .. } => true,
3921                                         &events::MessageSendEvent::HandleError { ref node_id, .. } => node_id != counterparty_node_id,
3922                                         &events::MessageSendEvent::PaymentFailureNetworkUpdate { .. } => true,
3923                                         &events::MessageSendEvent::SendChannelRangeQuery { .. } => false,
3924                                         &events::MessageSendEvent::SendShortIdsQuery { .. } => false,
3925                                         &events::MessageSendEvent::SendReplyChannelRange { .. } => false,
3926                                 }
3927                         });
3928                 }
3929                 if no_channels_remain {
3930                         self.per_peer_state.write().unwrap().remove(counterparty_node_id);
3931                 }
3932
3933                 for failure in failed_channels.drain(..) {
3934                         self.finish_force_close_channel(failure);
3935                 }
3936                 for (chan_update, mut htlc_sources) in failed_payments {
3937                         for (htlc_source, payment_hash) in htlc_sources.drain(..) {
3938                                 self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source, &payment_hash, HTLCFailReason::Reason { failure_code: 0x1000 | 7, data: chan_update.clone() });
3939                         }
3940                 }
3941         }
3942
3943         fn peer_connected(&self, counterparty_node_id: &PublicKey, init_msg: &msgs::Init) {
3944                 log_debug!(self.logger, "Generating channel_reestablish events for {}", log_pubkey!(counterparty_node_id));
3945
3946                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3947
3948                 {
3949                         let mut peer_state_lock = self.per_peer_state.write().unwrap();
3950                         match peer_state_lock.entry(counterparty_node_id.clone()) {
3951                                 hash_map::Entry::Vacant(e) => {
3952                                         e.insert(Mutex::new(PeerState {
3953                                                 latest_features: init_msg.features.clone(),
3954                                         }));
3955                                 },
3956                                 hash_map::Entry::Occupied(e) => {
3957                                         e.get().lock().unwrap().latest_features = init_msg.features.clone();
3958                                 },
3959                         }
3960                 }
3961
3962                 let mut channel_state_lock = self.channel_state.lock().unwrap();
3963                 let channel_state = &mut *channel_state_lock;
3964                 let pending_msg_events = &mut channel_state.pending_msg_events;
3965                 channel_state.by_id.retain(|_, chan| {
3966                         if chan.get_counterparty_node_id() == *counterparty_node_id {
3967                                 if !chan.have_received_message() {
3968                                         // If we created this (outbound) channel while we were disconnected from the
3969                                         // peer we probably failed to send the open_channel message, which is now
3970                                         // lost. We can't have had anything pending related to this channel, so we just
3971                                         // drop it.
3972                                         false
3973                                 } else {
3974                                         pending_msg_events.push(events::MessageSendEvent::SendChannelReestablish {
3975                                                 node_id: chan.get_counterparty_node_id(),
3976                                                 msg: chan.get_channel_reestablish(&self.logger),
3977                                         });
3978                                         true
3979                                 }
3980                         } else { true }
3981                 });
3982                 //TODO: Also re-broadcast announcement_signatures
3983         }
3984
3985         fn handle_error(&self, counterparty_node_id: &PublicKey, msg: &msgs::ErrorMessage) {
3986                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3987
3988                 if msg.channel_id == [0; 32] {
3989                         for chan in self.list_channels() {
3990                                 if chan.remote_network_id == *counterparty_node_id {
3991                                         // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
3992                                         let _ = self.force_close_channel_with_peer(&chan.channel_id, Some(counterparty_node_id));
3993                                 }
3994                         }
3995                 } else {
3996                         // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
3997                         let _ = self.force_close_channel_with_peer(&msg.channel_id, Some(counterparty_node_id));
3998                 }
3999         }
4000 }
4001
4002 /// Used to signal to the ChannelManager persister that the manager needs to be re-persisted to
4003 /// disk/backups, through `await_persistable_update_timeout` and `await_persistable_update`.
4004 struct PersistenceNotifier {
4005         /// Users won't access the persistence_lock directly, but rather wait on its bool using
4006         /// `wait_timeout` and `wait`.
4007         persistence_lock: (Mutex<bool>, Condvar),
4008 }
4009
4010 impl PersistenceNotifier {
4011         fn new() -> Self {
4012                 Self {
4013                         persistence_lock: (Mutex::new(false), Condvar::new()),
4014                 }
4015         }
4016
4017         fn wait(&self) {
4018                 loop {
4019                         let &(ref mtx, ref cvar) = &self.persistence_lock;
4020                         let mut guard = mtx.lock().unwrap();
4021                         guard = cvar.wait(guard).unwrap();
4022                         let result = *guard;
4023                         if result {
4024                                 *guard = false;
4025                                 return
4026                         }
4027                 }
4028         }
4029
4030         #[cfg(any(test, feature = "allow_wallclock_use"))]
4031         fn wait_timeout(&self, max_wait: Duration) -> bool {
4032                 let current_time = Instant::now();
4033                 loop {
4034                         let &(ref mtx, ref cvar) = &self.persistence_lock;
4035                         let mut guard = mtx.lock().unwrap();
4036                         guard = cvar.wait_timeout(guard, max_wait).unwrap().0;
4037                         // Due to spurious wakeups that can happen on `wait_timeout`, here we need to check if the
4038                         // desired wait time has actually passed, and if not then restart the loop with a reduced wait
4039                         // time. Note that this logic can be highly simplified through the use of
4040                         // `Condvar::wait_while` and `Condvar::wait_timeout_while`, if and when our MSRV is raised to
4041                         // 1.42.0.
4042                         let elapsed = current_time.elapsed();
4043                         let result = *guard;
4044                         if result || elapsed >= max_wait {
4045                                 *guard = false;
4046                                 return result;
4047                         }
4048                         match max_wait.checked_sub(elapsed) {
4049                                 None => return result,
4050                                 Some(_) => continue
4051                         }
4052                 }
4053         }
4054
4055         // Signal to the ChannelManager persister that there are updates necessitating persisting to disk.
4056         fn notify(&self) {
4057                 let &(ref persist_mtx, ref cnd) = &self.persistence_lock;
4058                 let mut persistence_lock = persist_mtx.lock().unwrap();
4059                 *persistence_lock = true;
4060                 mem::drop(persistence_lock);
4061                 cnd.notify_all();
4062         }
4063 }
4064
4065 const SERIALIZATION_VERSION: u8 = 1;
4066 const MIN_SERIALIZATION_VERSION: u8 = 1;
4067
4068 impl Writeable for PendingHTLCInfo {
4069         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
4070                 match &self.routing {
4071                         &PendingHTLCRouting::Forward { ref onion_packet, ref short_channel_id } => {
4072                                 0u8.write(writer)?;
4073                                 onion_packet.write(writer)?;
4074                                 short_channel_id.write(writer)?;
4075                         },
4076                         &PendingHTLCRouting::Receive { ref payment_data, ref incoming_cltv_expiry } => {
4077                                 1u8.write(writer)?;
4078                                 payment_data.payment_secret.write(writer)?;
4079                                 payment_data.total_msat.write(writer)?;
4080                                 incoming_cltv_expiry.write(writer)?;
4081                         },
4082                 }
4083                 self.incoming_shared_secret.write(writer)?;
4084                 self.payment_hash.write(writer)?;
4085                 self.amt_to_forward.write(writer)?;
4086                 self.outgoing_cltv_value.write(writer)?;
4087                 Ok(())
4088         }
4089 }
4090
4091 impl Readable for PendingHTLCInfo {
4092         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<PendingHTLCInfo, DecodeError> {
4093                 Ok(PendingHTLCInfo {
4094                         routing: match Readable::read(reader)? {
4095                                 0u8 => PendingHTLCRouting::Forward {
4096                                         onion_packet: Readable::read(reader)?,
4097                                         short_channel_id: Readable::read(reader)?,
4098                                 },
4099                                 1u8 => PendingHTLCRouting::Receive {
4100                                         payment_data: msgs::FinalOnionHopData {
4101                                                 payment_secret: Readable::read(reader)?,
4102                                                 total_msat: Readable::read(reader)?,
4103                                         },
4104                                         incoming_cltv_expiry: Readable::read(reader)?,
4105                                 },
4106                                 _ => return Err(DecodeError::InvalidValue),
4107                         },
4108                         incoming_shared_secret: Readable::read(reader)?,
4109                         payment_hash: Readable::read(reader)?,
4110                         amt_to_forward: Readable::read(reader)?,
4111                         outgoing_cltv_value: Readable::read(reader)?,
4112                 })
4113         }
4114 }
4115
4116 impl Writeable for HTLCFailureMsg {
4117         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
4118                 match self {
4119                         &HTLCFailureMsg::Relay(ref fail_msg) => {
4120                                 0u8.write(writer)?;
4121                                 fail_msg.write(writer)?;
4122                         },
4123                         &HTLCFailureMsg::Malformed(ref fail_msg) => {
4124                                 1u8.write(writer)?;
4125                                 fail_msg.write(writer)?;
4126                         }
4127                 }
4128                 Ok(())
4129         }
4130 }
4131
4132 impl Readable for HTLCFailureMsg {
4133         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<HTLCFailureMsg, DecodeError> {
4134                 match <u8 as Readable>::read(reader)? {
4135                         0 => Ok(HTLCFailureMsg::Relay(Readable::read(reader)?)),
4136                         1 => Ok(HTLCFailureMsg::Malformed(Readable::read(reader)?)),
4137                         _ => Err(DecodeError::InvalidValue),
4138                 }
4139         }
4140 }
4141
4142 impl Writeable for PendingHTLCStatus {
4143         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
4144                 match self {
4145                         &PendingHTLCStatus::Forward(ref forward_info) => {
4146                                 0u8.write(writer)?;
4147                                 forward_info.write(writer)?;
4148                         },
4149                         &PendingHTLCStatus::Fail(ref fail_msg) => {
4150                                 1u8.write(writer)?;
4151                                 fail_msg.write(writer)?;
4152                         }
4153                 }
4154                 Ok(())
4155         }
4156 }
4157
4158 impl Readable for PendingHTLCStatus {
4159         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<PendingHTLCStatus, DecodeError> {
4160                 match <u8 as Readable>::read(reader)? {
4161                         0 => Ok(PendingHTLCStatus::Forward(Readable::read(reader)?)),
4162                         1 => Ok(PendingHTLCStatus::Fail(Readable::read(reader)?)),
4163                         _ => Err(DecodeError::InvalidValue),
4164                 }
4165         }
4166 }
4167
4168 impl_writeable!(HTLCPreviousHopData, 0, {
4169         short_channel_id,
4170         outpoint,
4171         htlc_id,
4172         incoming_packet_shared_secret
4173 });
4174
4175 impl Writeable for ClaimableHTLC {
4176         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
4177                 self.prev_hop.write(writer)?;
4178                 self.value.write(writer)?;
4179                 self.payment_data.payment_secret.write(writer)?;
4180                 self.payment_data.total_msat.write(writer)?;
4181                 self.cltv_expiry.write(writer)
4182         }
4183 }
4184
4185 impl Readable for ClaimableHTLC {
4186         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
4187                 Ok(ClaimableHTLC {
4188                         prev_hop: Readable::read(reader)?,
4189                         value: Readable::read(reader)?,
4190                         payment_data: msgs::FinalOnionHopData {
4191                                 payment_secret: Readable::read(reader)?,
4192                                 total_msat: Readable::read(reader)?,
4193                         },
4194                         cltv_expiry: Readable::read(reader)?,
4195                 })
4196         }
4197 }
4198
4199 impl Writeable for HTLCSource {
4200         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
4201                 match self {
4202                         &HTLCSource::PreviousHopData(ref hop_data) => {
4203                                 0u8.write(writer)?;
4204                                 hop_data.write(writer)?;
4205                         },
4206                         &HTLCSource::OutboundRoute { ref path, ref session_priv, ref first_hop_htlc_msat } => {
4207                                 1u8.write(writer)?;
4208                                 path.write(writer)?;
4209                                 session_priv.write(writer)?;
4210                                 first_hop_htlc_msat.write(writer)?;
4211                         }
4212                 }
4213                 Ok(())
4214         }
4215 }
4216
4217 impl Readable for HTLCSource {
4218         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<HTLCSource, DecodeError> {
4219                 match <u8 as Readable>::read(reader)? {
4220                         0 => Ok(HTLCSource::PreviousHopData(Readable::read(reader)?)),
4221                         1 => Ok(HTLCSource::OutboundRoute {
4222                                 path: Readable::read(reader)?,
4223                                 session_priv: Readable::read(reader)?,
4224                                 first_hop_htlc_msat: Readable::read(reader)?,
4225                         }),
4226                         _ => Err(DecodeError::InvalidValue),
4227                 }
4228         }
4229 }
4230
4231 impl Writeable for HTLCFailReason {
4232         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
4233                 match self {
4234                         &HTLCFailReason::LightningError { ref err } => {
4235                                 0u8.write(writer)?;
4236                                 err.write(writer)?;
4237                         },
4238                         &HTLCFailReason::Reason { ref failure_code, ref data } => {
4239                                 1u8.write(writer)?;
4240                                 failure_code.write(writer)?;
4241                                 data.write(writer)?;
4242                         }
4243                 }
4244                 Ok(())
4245         }
4246 }
4247
4248 impl Readable for HTLCFailReason {
4249         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<HTLCFailReason, DecodeError> {
4250                 match <u8 as Readable>::read(reader)? {
4251                         0 => Ok(HTLCFailReason::LightningError { err: Readable::read(reader)? }),
4252                         1 => Ok(HTLCFailReason::Reason {
4253                                 failure_code: Readable::read(reader)?,
4254                                 data: Readable::read(reader)?,
4255                         }),
4256                         _ => Err(DecodeError::InvalidValue),
4257                 }
4258         }
4259 }
4260
4261 impl Writeable for HTLCForwardInfo {
4262         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
4263                 match self {
4264                         &HTLCForwardInfo::AddHTLC { ref prev_short_channel_id, ref prev_funding_outpoint, ref prev_htlc_id, ref forward_info } => {
4265                                 0u8.write(writer)?;
4266                                 prev_short_channel_id.write(writer)?;
4267                                 prev_funding_outpoint.write(writer)?;
4268                                 prev_htlc_id.write(writer)?;
4269                                 forward_info.write(writer)?;
4270                         },
4271                         &HTLCForwardInfo::FailHTLC { ref htlc_id, ref err_packet } => {
4272                                 1u8.write(writer)?;
4273                                 htlc_id.write(writer)?;
4274                                 err_packet.write(writer)?;
4275                         },
4276                 }
4277                 Ok(())
4278         }
4279 }
4280
4281 impl Readable for HTLCForwardInfo {
4282         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<HTLCForwardInfo, DecodeError> {
4283                 match <u8 as Readable>::read(reader)? {
4284                         0 => Ok(HTLCForwardInfo::AddHTLC {
4285                                 prev_short_channel_id: Readable::read(reader)?,
4286                                 prev_funding_outpoint: Readable::read(reader)?,
4287                                 prev_htlc_id: Readable::read(reader)?,
4288                                 forward_info: Readable::read(reader)?,
4289                         }),
4290                         1 => Ok(HTLCForwardInfo::FailHTLC {
4291                                 htlc_id: Readable::read(reader)?,
4292                                 err_packet: Readable::read(reader)?,
4293                         }),
4294                         _ => Err(DecodeError::InvalidValue),
4295                 }
4296         }
4297 }
4298
4299 impl_writeable!(PendingInboundPayment, 0, {
4300         payment_secret,
4301         expiry_time,
4302         user_payment_id,
4303         payment_preimage,
4304         min_value_msat
4305 });
4306
4307 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> Writeable for ChannelManager<Signer, M, T, K, F, L>
4308         where M::Target: chain::Watch<Signer>,
4309         T::Target: BroadcasterInterface,
4310         K::Target: KeysInterface<Signer = Signer>,
4311         F::Target: FeeEstimator,
4312         L::Target: Logger,
4313 {
4314         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
4315                 let _consistency_lock = self.total_consistency_lock.write().unwrap();
4316
4317                 writer.write_all(&[SERIALIZATION_VERSION; 1])?;
4318                 writer.write_all(&[MIN_SERIALIZATION_VERSION; 1])?;
4319
4320                 self.genesis_hash.write(writer)?;
4321                 {
4322                         let best_block = self.best_block.read().unwrap();
4323                         best_block.height().write(writer)?;
4324                         best_block.block_hash().write(writer)?;
4325                 }
4326
4327                 let channel_state = self.channel_state.lock().unwrap();
4328                 let mut unfunded_channels = 0;
4329                 for (_, channel) in channel_state.by_id.iter() {
4330                         if !channel.is_funding_initiated() {
4331                                 unfunded_channels += 1;
4332                         }
4333                 }
4334                 ((channel_state.by_id.len() - unfunded_channels) as u64).write(writer)?;
4335                 for (_, channel) in channel_state.by_id.iter() {
4336                         if channel.is_funding_initiated() {
4337                                 channel.write(writer)?;
4338                         }
4339                 }
4340
4341                 (channel_state.forward_htlcs.len() as u64).write(writer)?;
4342                 for (short_channel_id, pending_forwards) in channel_state.forward_htlcs.iter() {
4343                         short_channel_id.write(writer)?;
4344                         (pending_forwards.len() as u64).write(writer)?;
4345                         for forward in pending_forwards {
4346                                 forward.write(writer)?;
4347                         }
4348                 }
4349
4350                 (channel_state.claimable_htlcs.len() as u64).write(writer)?;
4351                 for (payment_hash, previous_hops) in channel_state.claimable_htlcs.iter() {
4352                         payment_hash.write(writer)?;
4353                         (previous_hops.len() as u64).write(writer)?;
4354                         for htlc in previous_hops.iter() {
4355                                 htlc.write(writer)?;
4356                         }
4357                 }
4358
4359                 let per_peer_state = self.per_peer_state.write().unwrap();
4360                 (per_peer_state.len() as u64).write(writer)?;
4361                 for (peer_pubkey, peer_state_mutex) in per_peer_state.iter() {
4362                         peer_pubkey.write(writer)?;
4363                         let peer_state = peer_state_mutex.lock().unwrap();
4364                         peer_state.latest_features.write(writer)?;
4365                 }
4366
4367                 let events = self.pending_events.lock().unwrap();
4368                 (events.len() as u64).write(writer)?;
4369                 for event in events.iter() {
4370                         event.write(writer)?;
4371                 }
4372
4373                 let background_events = self.pending_background_events.lock().unwrap();
4374                 (background_events.len() as u64).write(writer)?;
4375                 for event in background_events.iter() {
4376                         match event {
4377                                 BackgroundEvent::ClosingMonitorUpdate((funding_txo, monitor_update)) => {
4378                                         0u8.write(writer)?;
4379                                         funding_txo.write(writer)?;
4380                                         monitor_update.write(writer)?;
4381                                 },
4382                         }
4383                 }
4384
4385                 (self.last_node_announcement_serial.load(Ordering::Acquire) as u32).write(writer)?;
4386                 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
4387
4388                 let pending_inbound_payments = self.pending_inbound_payments.lock().unwrap();
4389                 (pending_inbound_payments.len() as u64).write(writer)?;
4390                 for (hash, pending_payment) in pending_inbound_payments.iter() {
4391                         hash.write(writer)?;
4392                         pending_payment.write(writer)?;
4393                 }
4394
4395                 Ok(())
4396         }
4397 }
4398
4399 /// Arguments for the creation of a ChannelManager that are not deserialized.
4400 ///
4401 /// At a high-level, the process for deserializing a ChannelManager and resuming normal operation
4402 /// is:
4403 /// 1) Deserialize all stored ChannelMonitors.
4404 /// 2) Deserialize the ChannelManager by filling in this struct and calling:
4405 ///    <(BlockHash, ChannelManager)>::read(reader, args)
4406 ///    This may result in closing some Channels if the ChannelMonitor is newer than the stored
4407 ///    ChannelManager state to ensure no loss of funds. Thus, transactions may be broadcasted.
4408 /// 3) If you are not fetching full blocks, register all relevant ChannelMonitor outpoints the same
4409 ///    way you would handle a `chain::Filter` call using ChannelMonitor::get_outputs_to_watch() and
4410 ///    ChannelMonitor::get_funding_txo().
4411 /// 4) Reconnect blocks on your ChannelMonitors.
4412 /// 5) Disconnect/connect blocks on the ChannelManager.
4413 /// 6) Move the ChannelMonitors into your local chain::Watch.
4414 ///
4415 /// Note that the ordering of #4-6 is not of importance, however all three must occur before you
4416 /// call any other methods on the newly-deserialized ChannelManager.
4417 ///
4418 /// Note that because some channels may be closed during deserialization, it is critical that you
4419 /// always deserialize only the latest version of a ChannelManager and ChannelMonitors available to
4420 /// you. If you deserialize an old ChannelManager (during which force-closure transactions may be
4421 /// broadcast), and then later deserialize a newer version of the same ChannelManager (which will
4422 /// not force-close the same channels but consider them live), you may end up revoking a state for
4423 /// which you've already broadcasted the transaction.
4424 pub struct ChannelManagerReadArgs<'a, Signer: 'a + Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
4425         where M::Target: chain::Watch<Signer>,
4426         T::Target: BroadcasterInterface,
4427         K::Target: KeysInterface<Signer = Signer>,
4428         F::Target: FeeEstimator,
4429         L::Target: Logger,
4430 {
4431         /// The keys provider which will give us relevant keys. Some keys will be loaded during
4432         /// deserialization and KeysInterface::read_chan_signer will be used to read per-Channel
4433         /// signing data.
4434         pub keys_manager: K,
4435
4436         /// The fee_estimator for use in the ChannelManager in the future.
4437         ///
4438         /// No calls to the FeeEstimator will be made during deserialization.
4439         pub fee_estimator: F,
4440         /// The chain::Watch for use in the ChannelManager in the future.
4441         ///
4442         /// No calls to the chain::Watch will be made during deserialization. It is assumed that
4443         /// you have deserialized ChannelMonitors separately and will add them to your
4444         /// chain::Watch after deserializing this ChannelManager.
4445         pub chain_monitor: M,
4446
4447         /// The BroadcasterInterface which will be used in the ChannelManager in the future and may be
4448         /// used to broadcast the latest local commitment transactions of channels which must be
4449         /// force-closed during deserialization.
4450         pub tx_broadcaster: T,
4451         /// The Logger for use in the ChannelManager and which may be used to log information during
4452         /// deserialization.
4453         pub logger: L,
4454         /// Default settings used for new channels. Any existing channels will continue to use the
4455         /// runtime settings which were stored when the ChannelManager was serialized.
4456         pub default_config: UserConfig,
4457
4458         /// A map from channel funding outpoints to ChannelMonitors for those channels (ie
4459         /// value.get_funding_txo() should be the key).
4460         ///
4461         /// If a monitor is inconsistent with the channel state during deserialization the channel will
4462         /// be force-closed using the data in the ChannelMonitor and the channel will be dropped. This
4463         /// is true for missing channels as well. If there is a monitor missing for which we find
4464         /// channel data Err(DecodeError::InvalidValue) will be returned.
4465         ///
4466         /// In such cases the latest local transactions will be sent to the tx_broadcaster included in
4467         /// this struct.
4468         ///
4469         /// (C-not exported) because we have no HashMap bindings
4470         pub channel_monitors: HashMap<OutPoint, &'a mut ChannelMonitor<Signer>>,
4471 }
4472
4473 impl<'a, Signer: 'a + Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
4474                 ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>
4475         where M::Target: chain::Watch<Signer>,
4476                 T::Target: BroadcasterInterface,
4477                 K::Target: KeysInterface<Signer = Signer>,
4478                 F::Target: FeeEstimator,
4479                 L::Target: Logger,
4480         {
4481         /// Simple utility function to create a ChannelManagerReadArgs which creates the monitor
4482         /// HashMap for you. This is primarily useful for C bindings where it is not practical to
4483         /// populate a HashMap directly from C.
4484         pub fn new(keys_manager: K, fee_estimator: F, chain_monitor: M, tx_broadcaster: T, logger: L, default_config: UserConfig,
4485                         mut channel_monitors: Vec<&'a mut ChannelMonitor<Signer>>) -> Self {
4486                 Self {
4487                         keys_manager, fee_estimator, chain_monitor, tx_broadcaster, logger, default_config,
4488                         channel_monitors: channel_monitors.drain(..).map(|monitor| { (monitor.get_funding_txo().0, monitor) }).collect()
4489                 }
4490         }
4491 }
4492
4493 // Implement ReadableArgs for an Arc'd ChannelManager to make it a bit easier to work with the
4494 // SipmleArcChannelManager type:
4495 impl<'a, Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
4496         ReadableArgs<ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>> for (BlockHash, Arc<ChannelManager<Signer, M, T, K, F, L>>)
4497         where M::Target: chain::Watch<Signer>,
4498         T::Target: BroadcasterInterface,
4499         K::Target: KeysInterface<Signer = Signer>,
4500         F::Target: FeeEstimator,
4501         L::Target: Logger,
4502 {
4503         fn read<R: ::std::io::Read>(reader: &mut R, args: ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>) -> Result<Self, DecodeError> {
4504                 let (blockhash, chan_manager) = <(BlockHash, ChannelManager<Signer, M, T, K, F, L>)>::read(reader, args)?;
4505                 Ok((blockhash, Arc::new(chan_manager)))
4506         }
4507 }
4508
4509 impl<'a, Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
4510         ReadableArgs<ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>> for (BlockHash, ChannelManager<Signer, M, T, K, F, L>)
4511         where M::Target: chain::Watch<Signer>,
4512         T::Target: BroadcasterInterface,
4513         K::Target: KeysInterface<Signer = Signer>,
4514         F::Target: FeeEstimator,
4515         L::Target: Logger,
4516 {
4517         fn read<R: ::std::io::Read>(reader: &mut R, mut args: ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>) -> Result<Self, DecodeError> {
4518                 let _ver: u8 = Readable::read(reader)?;
4519                 let min_ver: u8 = Readable::read(reader)?;
4520                 if min_ver > SERIALIZATION_VERSION {
4521                         return Err(DecodeError::UnknownVersion);
4522                 }
4523
4524                 let genesis_hash: BlockHash = Readable::read(reader)?;
4525                 let best_block_height: u32 = Readable::read(reader)?;
4526                 let best_block_hash: BlockHash = Readable::read(reader)?;
4527
4528                 let mut failed_htlcs = Vec::new();
4529
4530                 let channel_count: u64 = Readable::read(reader)?;
4531                 let mut funding_txo_set = HashSet::with_capacity(cmp::min(channel_count as usize, 128));
4532                 let mut by_id = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
4533                 let mut short_to_id = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
4534                 for _ in 0..channel_count {
4535                         let mut channel: Channel<Signer> = Channel::read(reader, &args.keys_manager)?;
4536                         let funding_txo = channel.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
4537                         funding_txo_set.insert(funding_txo.clone());
4538                         if let Some(ref mut monitor) = args.channel_monitors.get_mut(&funding_txo) {
4539                                 if channel.get_cur_holder_commitment_transaction_number() < monitor.get_cur_holder_commitment_number() ||
4540                                                 channel.get_revoked_counterparty_commitment_transaction_number() < monitor.get_min_seen_secret() ||
4541                                                 channel.get_cur_counterparty_commitment_transaction_number() < monitor.get_cur_counterparty_commitment_number() ||
4542                                                 channel.get_latest_monitor_update_id() > monitor.get_latest_update_id() {
4543                                         // If the channel is ahead of the monitor, return InvalidValue:
4544                                         return Err(DecodeError::InvalidValue);
4545                                 } else if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() ||
4546                                                 channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() ||
4547                                                 channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() ||
4548                                                 channel.get_latest_monitor_update_id() < monitor.get_latest_update_id() {
4549                                         // But if the channel is behind of the monitor, close the channel:
4550                                         let (_, mut new_failed_htlcs) = channel.force_shutdown(true);
4551                                         failed_htlcs.append(&mut new_failed_htlcs);
4552                                         monitor.broadcast_latest_holder_commitment_txn(&args.tx_broadcaster, &args.logger);
4553                                 } else {
4554                                         if let Some(short_channel_id) = channel.get_short_channel_id() {
4555                                                 short_to_id.insert(short_channel_id, channel.channel_id());
4556                                         }
4557                                         by_id.insert(channel.channel_id(), channel);
4558                                 }
4559                         } else {
4560                                 return Err(DecodeError::InvalidValue);
4561                         }
4562                 }
4563
4564                 for (ref funding_txo, ref mut monitor) in args.channel_monitors.iter_mut() {
4565                         if !funding_txo_set.contains(funding_txo) {
4566                                 monitor.broadcast_latest_holder_commitment_txn(&args.tx_broadcaster, &args.logger);
4567                         }
4568                 }
4569
4570                 const MAX_ALLOC_SIZE: usize = 1024 * 64;
4571                 let forward_htlcs_count: u64 = Readable::read(reader)?;
4572                 let mut forward_htlcs = HashMap::with_capacity(cmp::min(forward_htlcs_count as usize, 128));
4573                 for _ in 0..forward_htlcs_count {
4574                         let short_channel_id = Readable::read(reader)?;
4575                         let pending_forwards_count: u64 = Readable::read(reader)?;
4576                         let mut pending_forwards = Vec::with_capacity(cmp::min(pending_forwards_count as usize, MAX_ALLOC_SIZE/mem::size_of::<HTLCForwardInfo>()));
4577                         for _ in 0..pending_forwards_count {
4578                                 pending_forwards.push(Readable::read(reader)?);
4579                         }
4580                         forward_htlcs.insert(short_channel_id, pending_forwards);
4581                 }
4582
4583                 let claimable_htlcs_count: u64 = Readable::read(reader)?;
4584                 let mut claimable_htlcs = HashMap::with_capacity(cmp::min(claimable_htlcs_count as usize, 128));
4585                 for _ in 0..claimable_htlcs_count {
4586                         let payment_hash = Readable::read(reader)?;
4587                         let previous_hops_len: u64 = Readable::read(reader)?;
4588                         let mut previous_hops = Vec::with_capacity(cmp::min(previous_hops_len as usize, MAX_ALLOC_SIZE/mem::size_of::<ClaimableHTLC>()));
4589                         for _ in 0..previous_hops_len {
4590                                 previous_hops.push(Readable::read(reader)?);
4591                         }
4592                         claimable_htlcs.insert(payment_hash, previous_hops);
4593                 }
4594
4595                 let peer_count: u64 = Readable::read(reader)?;
4596                 let mut per_peer_state = HashMap::with_capacity(cmp::min(peer_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(PublicKey, Mutex<PeerState>)>()));
4597                 for _ in 0..peer_count {
4598                         let peer_pubkey = Readable::read(reader)?;
4599                         let peer_state = PeerState {
4600                                 latest_features: Readable::read(reader)?,
4601                         };
4602                         per_peer_state.insert(peer_pubkey, Mutex::new(peer_state));
4603                 }
4604
4605                 let event_count: u64 = Readable::read(reader)?;
4606                 let mut pending_events_read: Vec<events::Event> = Vec::with_capacity(cmp::min(event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<events::Event>()));
4607                 for _ in 0..event_count {
4608                         match MaybeReadable::read(reader)? {
4609                                 Some(event) => pending_events_read.push(event),
4610                                 None => continue,
4611                         }
4612                 }
4613
4614                 let background_event_count: u64 = Readable::read(reader)?;
4615                 let mut pending_background_events_read: Vec<BackgroundEvent> = Vec::with_capacity(cmp::min(background_event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<BackgroundEvent>()));
4616                 for _ in 0..background_event_count {
4617                         match <u8 as Readable>::read(reader)? {
4618                                 0 => pending_background_events_read.push(BackgroundEvent::ClosingMonitorUpdate((Readable::read(reader)?, Readable::read(reader)?))),
4619                                 _ => return Err(DecodeError::InvalidValue),
4620                         }
4621                 }
4622
4623                 let last_node_announcement_serial: u32 = Readable::read(reader)?;
4624                 let highest_seen_timestamp: u32 = Readable::read(reader)?;
4625
4626                 let pending_inbound_payment_count: u64 = Readable::read(reader)?;
4627                 let mut pending_inbound_payments: HashMap<PaymentHash, PendingInboundPayment> = HashMap::with_capacity(cmp::min(pending_inbound_payment_count as usize, MAX_ALLOC_SIZE/(3*32)));
4628                 for _ in 0..pending_inbound_payment_count {
4629                         if pending_inbound_payments.insert(Readable::read(reader)?, Readable::read(reader)?).is_some() {
4630                                 return Err(DecodeError::InvalidValue);
4631                         }
4632                 }
4633
4634                 let mut secp_ctx = Secp256k1::new();
4635                 secp_ctx.seeded_randomize(&args.keys_manager.get_secure_random_bytes());
4636
4637                 let channel_manager = ChannelManager {
4638                         genesis_hash,
4639                         fee_estimator: args.fee_estimator,
4640                         chain_monitor: args.chain_monitor,
4641                         tx_broadcaster: args.tx_broadcaster,
4642
4643                         best_block: RwLock::new(BestBlock::new(best_block_hash, best_block_height)),
4644
4645                         channel_state: Mutex::new(ChannelHolder {
4646                                 by_id,
4647                                 short_to_id,
4648                                 forward_htlcs,
4649                                 claimable_htlcs,
4650                                 pending_msg_events: Vec::new(),
4651                         }),
4652                         pending_inbound_payments: Mutex::new(pending_inbound_payments),
4653
4654                         our_network_key: args.keys_manager.get_node_secret(),
4655                         our_network_pubkey: PublicKey::from_secret_key(&secp_ctx, &args.keys_manager.get_node_secret()),
4656                         secp_ctx,
4657
4658                         last_node_announcement_serial: AtomicUsize::new(last_node_announcement_serial as usize),
4659                         highest_seen_timestamp: AtomicUsize::new(highest_seen_timestamp as usize),
4660
4661                         per_peer_state: RwLock::new(per_peer_state),
4662
4663                         pending_events: Mutex::new(pending_events_read),
4664                         pending_background_events: Mutex::new(pending_background_events_read),
4665                         total_consistency_lock: RwLock::new(()),
4666                         persistence_notifier: PersistenceNotifier::new(),
4667
4668                         keys_manager: args.keys_manager,
4669                         logger: args.logger,
4670                         default_configuration: args.default_config,
4671                 };
4672
4673                 for htlc_source in failed_htlcs.drain(..) {
4674                         channel_manager.fail_htlc_backwards_internal(channel_manager.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
4675                 }
4676
4677                 //TODO: Broadcast channel update for closed channels, but only after we've made a
4678                 //connection or two.
4679
4680                 Ok((best_block_hash.clone(), channel_manager))
4681         }
4682 }
4683
4684 #[cfg(test)]
4685 mod tests {
4686         use ln::channelmanager::PersistenceNotifier;
4687         use std::sync::Arc;
4688         use std::sync::atomic::{AtomicBool, Ordering};
4689         use std::thread;
4690         use std::time::Duration;
4691
4692         #[test]
4693         fn test_wait_timeout() {
4694                 let persistence_notifier = Arc::new(PersistenceNotifier::new());
4695                 let thread_notifier = Arc::clone(&persistence_notifier);
4696
4697                 let exit_thread = Arc::new(AtomicBool::new(false));
4698                 let exit_thread_clone = exit_thread.clone();
4699                 thread::spawn(move || {
4700                         loop {
4701                                 let &(ref persist_mtx, ref cnd) = &thread_notifier.persistence_lock;
4702                                 let mut persistence_lock = persist_mtx.lock().unwrap();
4703                                 *persistence_lock = true;
4704                                 cnd.notify_all();
4705
4706                                 if exit_thread_clone.load(Ordering::SeqCst) {
4707                                         break
4708                                 }
4709                         }
4710                 });
4711
4712                 // Check that we can block indefinitely until updates are available.
4713                 let _ = persistence_notifier.wait();
4714
4715                 // Check that the PersistenceNotifier will return after the given duration if updates are
4716                 // available.
4717                 loop {
4718                         if persistence_notifier.wait_timeout(Duration::from_millis(100)) {
4719                                 break
4720                         }
4721                 }
4722
4723                 exit_thread.store(true, Ordering::SeqCst);
4724
4725                 // Check that the PersistenceNotifier will return after the given duration even if no updates
4726                 // are available.
4727                 loop {
4728                         if !persistence_notifier.wait_timeout(Duration::from_millis(100)) {
4729                                 break
4730                         }
4731                 }
4732         }
4733 }
4734
4735 #[cfg(all(any(test, feature = "_test_utils"), feature = "unstable"))]
4736 pub mod bench {
4737         use chain::Listen;
4738         use chain::chainmonitor::ChainMonitor;
4739         use chain::channelmonitor::Persist;
4740         use chain::keysinterface::{KeysManager, InMemorySigner};
4741         use ln::channelmanager::{BestBlock, ChainParameters, ChannelManager, PaymentHash, PaymentPreimage};
4742         use ln::features::{InitFeatures, InvoiceFeatures};
4743         use ln::functional_test_utils::*;
4744         use ln::msgs::ChannelMessageHandler;
4745         use routing::network_graph::NetworkGraph;
4746         use routing::router::get_route;
4747         use util::test_utils;
4748         use util::config::UserConfig;
4749         use util::events::{Event, EventsProvider, MessageSendEvent, MessageSendEventsProvider};
4750
4751         use bitcoin::hashes::Hash;
4752         use bitcoin::hashes::sha256::Hash as Sha256;
4753         use bitcoin::{Block, BlockHeader, Transaction, TxOut};
4754
4755         use std::sync::Mutex;
4756
4757         use test::Bencher;
4758
4759         struct NodeHolder<'a, P: Persist<InMemorySigner>> {
4760                 node: &'a ChannelManager<InMemorySigner,
4761                         &'a ChainMonitor<InMemorySigner, &'a test_utils::TestChainSource,
4762                                 &'a test_utils::TestBroadcaster, &'a test_utils::TestFeeEstimator,
4763                                 &'a test_utils::TestLogger, &'a P>,
4764                         &'a test_utils::TestBroadcaster, &'a KeysManager,
4765                         &'a test_utils::TestFeeEstimator, &'a test_utils::TestLogger>
4766         }
4767
4768         #[cfg(test)]
4769         #[bench]
4770         fn bench_sends(bench: &mut Bencher) {
4771                 bench_two_sends(bench, test_utils::TestPersister::new(), test_utils::TestPersister::new());
4772         }
4773
4774         pub fn bench_two_sends<P: Persist<InMemorySigner>>(bench: &mut Bencher, persister_a: P, persister_b: P) {
4775                 // Do a simple benchmark of sending a payment back and forth between two nodes.
4776                 // Note that this is unrealistic as each payment send will require at least two fsync
4777                 // calls per node.
4778                 let network = bitcoin::Network::Testnet;
4779                 let genesis_hash = bitcoin::blockdata::constants::genesis_block(network).header.block_hash();
4780
4781                 let tx_broadcaster = test_utils::TestBroadcaster{txn_broadcasted: Mutex::new(Vec::new())};
4782                 let fee_estimator = test_utils::TestFeeEstimator { sat_per_kw: 253 };
4783
4784                 let mut config: UserConfig = Default::default();
4785                 config.own_channel_config.minimum_depth = 1;
4786
4787                 let logger_a = test_utils::TestLogger::with_id("node a".to_owned());
4788                 let chain_monitor_a = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_a);
4789                 let seed_a = [1u8; 32];
4790                 let keys_manager_a = KeysManager::new(&seed_a, 42, 42);
4791                 let node_a = ChannelManager::new(&fee_estimator, &chain_monitor_a, &tx_broadcaster, &logger_a, &keys_manager_a, config.clone(), ChainParameters {
4792                         network,
4793                         best_block: BestBlock::from_genesis(network),
4794                 });
4795                 let node_a_holder = NodeHolder { node: &node_a };
4796
4797                 let logger_b = test_utils::TestLogger::with_id("node a".to_owned());
4798                 let chain_monitor_b = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_b);
4799                 let seed_b = [2u8; 32];
4800                 let keys_manager_b = KeysManager::new(&seed_b, 42, 42);
4801                 let node_b = ChannelManager::new(&fee_estimator, &chain_monitor_b, &tx_broadcaster, &logger_b, &keys_manager_b, config.clone(), ChainParameters {
4802                         network,
4803                         best_block: BestBlock::from_genesis(network),
4804                 });
4805                 let node_b_holder = NodeHolder { node: &node_b };
4806
4807                 node_a.create_channel(node_b.get_our_node_id(), 8_000_000, 100_000_000, 42, None).unwrap();
4808                 node_b.handle_open_channel(&node_a.get_our_node_id(), InitFeatures::known(), &get_event_msg!(node_a_holder, MessageSendEvent::SendOpenChannel, node_b.get_our_node_id()));
4809                 node_a.handle_accept_channel(&node_b.get_our_node_id(), InitFeatures::known(), &get_event_msg!(node_b_holder, MessageSendEvent::SendAcceptChannel, node_a.get_our_node_id()));
4810
4811                 let tx;
4812                 if let Event::FundingGenerationReady { temporary_channel_id, output_script, .. } = get_event!(node_a_holder, Event::FundingGenerationReady) {
4813                         tx = Transaction { version: 2, lock_time: 0, input: Vec::new(), output: vec![TxOut {
4814                                 value: 8_000_000, script_pubkey: output_script,
4815                         }]};
4816                         node_a.funding_transaction_generated(&temporary_channel_id, tx.clone()).unwrap();
4817                 } else { panic!(); }
4818
4819                 node_b.handle_funding_created(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendFundingCreated, node_b.get_our_node_id()));
4820                 node_a.handle_funding_signed(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendFundingSigned, node_a.get_our_node_id()));
4821
4822                 assert_eq!(&tx_broadcaster.txn_broadcasted.lock().unwrap()[..], &[tx.clone()]);
4823
4824                 let block = Block {
4825                         header: BlockHeader { version: 0x20000000, prev_blockhash: genesis_hash, merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 },
4826                         txdata: vec![tx],
4827                 };
4828                 Listen::block_connected(&node_a, &block, 1);
4829                 Listen::block_connected(&node_b, &block, 1);
4830
4831                 node_a.handle_funding_locked(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendFundingLocked, node_a.get_our_node_id()));
4832                 node_b.handle_funding_locked(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendFundingLocked, node_b.get_our_node_id()));
4833
4834                 let dummy_graph = NetworkGraph::new(genesis_hash);
4835
4836                 let mut payment_count: u64 = 0;
4837                 macro_rules! send_payment {
4838                         ($node_a: expr, $node_b: expr) => {
4839                                 let usable_channels = $node_a.list_usable_channels();
4840                                 let route = get_route(&$node_a.get_our_node_id(), &dummy_graph, &$node_b.get_our_node_id(), Some(InvoiceFeatures::known()),
4841                                         Some(&usable_channels.iter().map(|r| r).collect::<Vec<_>>()), &[], 10_000, TEST_FINAL_CLTV, &logger_a).unwrap();
4842
4843                                 let mut payment_preimage = PaymentPreimage([0; 32]);
4844                                 payment_preimage.0[0..8].copy_from_slice(&payment_count.to_le_bytes());
4845                                 payment_count += 1;
4846                                 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0[..]).into_inner());
4847                                 let payment_secret = $node_b.create_inbound_payment_for_hash(payment_hash, None, 7200, 0).unwrap();
4848
4849                                 $node_a.send_payment(&route, payment_hash, &Some(payment_secret)).unwrap();
4850                                 let payment_event = SendEvent::from_event($node_a.get_and_clear_pending_msg_events().pop().unwrap());
4851                                 $node_b.handle_update_add_htlc(&$node_a.get_our_node_id(), &payment_event.msgs[0]);
4852                                 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &payment_event.commitment_msg);
4853                                 let (raa, cs) = get_revoke_commit_msgs!(NodeHolder { node: &$node_b }, $node_a.get_our_node_id());
4854                                 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &raa);
4855                                 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &cs);
4856                                 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &get_event_msg!(NodeHolder { node: &$node_a }, MessageSendEvent::SendRevokeAndACK, $node_b.get_our_node_id()));
4857
4858                                 expect_pending_htlcs_forwardable!(NodeHolder { node: &$node_b });
4859                                 expect_payment_received!(NodeHolder { node: &$node_b }, payment_hash, payment_secret, 10_000);
4860                                 assert!($node_b.claim_funds(payment_preimage));
4861
4862                                 match $node_b.get_and_clear_pending_msg_events().pop().unwrap() {
4863                                         MessageSendEvent::UpdateHTLCs { node_id, updates } => {
4864                                                 assert_eq!(node_id, $node_a.get_our_node_id());
4865                                                 $node_a.handle_update_fulfill_htlc(&$node_b.get_our_node_id(), &updates.update_fulfill_htlcs[0]);
4866                                                 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &updates.commitment_signed);
4867                                         },
4868                                         _ => panic!("Failed to generate claim event"),
4869                                 }
4870
4871                                 let (raa, cs) = get_revoke_commit_msgs!(NodeHolder { node: &$node_a }, $node_b.get_our_node_id());
4872                                 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &raa);
4873                                 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &cs);
4874                                 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &get_event_msg!(NodeHolder { node: &$node_b }, MessageSendEvent::SendRevokeAndACK, $node_a.get_our_node_id()));
4875
4876                                 expect_payment_sent!(NodeHolder { node: &$node_a }, payment_preimage);
4877                         }
4878                 }
4879
4880                 bench.iter(|| {
4881                         send_payment!(node_a, node_b);
4882                         send_payment!(node_b, node_a);
4883                 });
4884         }
4885 }