07300fdf62ef122fd9e8826e5ce24604ba506df0
[rust-lightning] / lightning / src / ln / peer_handler.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! Top level peer message handling and socket handling logic lives here.
11 //!
12 //! Instead of actually servicing sockets ourselves we require that you implement the
13 //! SocketDescriptor interface and use that to receive actions which you should perform on the
14 //! socket, and call into PeerManager with bytes read from the socket. The PeerManager will then
15 //! call into the provided message handlers (probably a ChannelManager and NetGraphmsgHandler) with messages
16 //! they should handle, and encoding/sending response messages.
17
18 use bitcoin::secp256k1::key::{SecretKey,PublicKey};
19
20 use ln::features::InitFeatures;
21 use ln::msgs;
22 use ln::msgs::{ChannelMessageHandler, LightningError, NetAddress, RoutingMessageHandler};
23 use ln::channelmanager::{SimpleArcChannelManager, SimpleRefChannelManager};
24 use util::ser::{VecWriter, Writeable, Writer};
25 use ln::peer_channel_encryptor::{PeerChannelEncryptor,NextNoiseStep};
26 use ln::wire;
27 use ln::wire::Encode;
28 use util::atomic_counter::AtomicCounter;
29 use util::events::{MessageSendEvent, MessageSendEventsProvider};
30 use util::logger::Logger;
31 use routing::network_graph::{NetworkGraph, NetGraphMsgHandler};
32
33 use prelude::*;
34 use io;
35 use alloc::collections::LinkedList;
36 use sync::{Arc, Mutex};
37 use core::{cmp, hash, fmt, mem};
38 use core::ops::Deref;
39 use core::convert::Infallible;
40 #[cfg(feature = "std")] use std::error;
41
42 use bitcoin::hashes::sha256::Hash as Sha256;
43 use bitcoin::hashes::sha256::HashEngine as Sha256Engine;
44 use bitcoin::hashes::{HashEngine, Hash};
45
46 /// Handler for BOLT1-compliant messages.
47 pub trait CustomMessageHandler: wire::CustomMessageReader {
48         /// Called with the message type that was received and the buffer to be read.
49         /// Can return a `MessageHandlingError` if the message could not be handled.
50         fn handle_custom_message(&self, msg: Self::CustomMessage, sender_node_id: &PublicKey) -> Result<(), LightningError>;
51
52         /// Gets the list of pending messages which were generated by the custom message
53         /// handler, clearing the list in the process. The first tuple element must
54         /// correspond to the intended recipients node ids. If no connection to one of the
55         /// specified node does not exist, the message is simply not sent to it.
56         fn get_and_clear_pending_msg(&self) -> Vec<(PublicKey, Self::CustomMessage)>;
57 }
58
59 /// A dummy struct which implements `RoutingMessageHandler` without storing any routing information
60 /// or doing any processing. You can provide one of these as the route_handler in a MessageHandler.
61 pub struct IgnoringMessageHandler{}
62 impl MessageSendEventsProvider for IgnoringMessageHandler {
63         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> { Vec::new() }
64 }
65 impl RoutingMessageHandler for IgnoringMessageHandler {
66         fn handle_node_announcement(&self, _msg: &msgs::NodeAnnouncement) -> Result<bool, LightningError> { Ok(false) }
67         fn handle_channel_announcement(&self, _msg: &msgs::ChannelAnnouncement) -> Result<bool, LightningError> { Ok(false) }
68         fn handle_channel_update(&self, _msg: &msgs::ChannelUpdate) -> Result<bool, LightningError> { Ok(false) }
69         fn get_next_channel_announcements(&self, _starting_point: u64, _batch_amount: u8) ->
70                 Vec<(msgs::ChannelAnnouncement, Option<msgs::ChannelUpdate>, Option<msgs::ChannelUpdate>)> { Vec::new() }
71         fn get_next_node_announcements(&self, _starting_point: Option<&PublicKey>, _batch_amount: u8) -> Vec<msgs::NodeAnnouncement> { Vec::new() }
72         fn peer_connected(&self, _their_node_id: &PublicKey, _init: &msgs::Init) {}
73         fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: msgs::ReplyChannelRange) -> Result<(), LightningError> { Ok(()) }
74         fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: msgs::ReplyShortChannelIdsEnd) -> Result<(), LightningError> { Ok(()) }
75         fn handle_query_channel_range(&self, _their_node_id: &PublicKey, _msg: msgs::QueryChannelRange) -> Result<(), LightningError> { Ok(()) }
76         fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: msgs::QueryShortChannelIds) -> Result<(), LightningError> { Ok(()) }
77 }
78 impl Deref for IgnoringMessageHandler {
79         type Target = IgnoringMessageHandler;
80         fn deref(&self) -> &Self { self }
81 }
82
83 // Implement Type for Infallible, note that it cannot be constructed, and thus you can never call a
84 // method that takes self for it.
85 impl wire::Type for Infallible {
86         fn type_id(&self) -> u16 {
87                 unreachable!();
88         }
89 }
90 impl Writeable for Infallible {
91         fn write<W: Writer>(&self, _: &mut W) -> Result<(), io::Error> {
92                 unreachable!();
93         }
94 }
95
96 impl wire::CustomMessageReader for IgnoringMessageHandler {
97         type CustomMessage = Infallible;
98         fn read<R: io::Read>(&self, _message_type: u16, _buffer: &mut R) -> Result<Option<Self::CustomMessage>, msgs::DecodeError> {
99                 Ok(None)
100         }
101 }
102
103 impl CustomMessageHandler for IgnoringMessageHandler {
104         fn handle_custom_message(&self, _msg: Infallible, _sender_node_id: &PublicKey) -> Result<(), LightningError> {
105                 // Since we always return `None` in the read the handle method should never be called.
106                 unreachable!();
107         }
108
109         fn get_and_clear_pending_msg(&self) -> Vec<(PublicKey, Self::CustomMessage)> { Vec::new() }
110 }
111
112 /// A dummy struct which implements `ChannelMessageHandler` without having any channels.
113 /// You can provide one of these as the route_handler in a MessageHandler.
114 pub struct ErroringMessageHandler {
115         message_queue: Mutex<Vec<MessageSendEvent>>
116 }
117 impl ErroringMessageHandler {
118         /// Constructs a new ErroringMessageHandler
119         pub fn new() -> Self {
120                 Self { message_queue: Mutex::new(Vec::new()) }
121         }
122         fn push_error(&self, node_id: &PublicKey, channel_id: [u8; 32]) {
123                 self.message_queue.lock().unwrap().push(MessageSendEvent::HandleError {
124                         action: msgs::ErrorAction::SendErrorMessage {
125                                 msg: msgs::ErrorMessage { channel_id, data: "We do not support channel messages, sorry.".to_owned() },
126                         },
127                         node_id: node_id.clone(),
128                 });
129         }
130 }
131 impl MessageSendEventsProvider for ErroringMessageHandler {
132         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
133                 let mut res = Vec::new();
134                 mem::swap(&mut res, &mut self.message_queue.lock().unwrap());
135                 res
136         }
137 }
138 impl ChannelMessageHandler for ErroringMessageHandler {
139         // Any messages which are related to a specific channel generate an error message to let the
140         // peer know we don't care about channels.
141         fn handle_open_channel(&self, their_node_id: &PublicKey, _their_features: InitFeatures, msg: &msgs::OpenChannel) {
142                 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
143         }
144         fn handle_accept_channel(&self, their_node_id: &PublicKey, _their_features: InitFeatures, msg: &msgs::AcceptChannel) {
145                 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
146         }
147         fn handle_funding_created(&self, their_node_id: &PublicKey, msg: &msgs::FundingCreated) {
148                 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
149         }
150         fn handle_funding_signed(&self, their_node_id: &PublicKey, msg: &msgs::FundingSigned) {
151                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
152         }
153         fn handle_funding_locked(&self, their_node_id: &PublicKey, msg: &msgs::FundingLocked) {
154                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
155         }
156         fn handle_shutdown(&self, their_node_id: &PublicKey, _their_features: &InitFeatures, msg: &msgs::Shutdown) {
157                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
158         }
159         fn handle_closing_signed(&self, their_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
160                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
161         }
162         fn handle_update_add_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
163                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
164         }
165         fn handle_update_fulfill_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
166                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
167         }
168         fn handle_update_fail_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
169                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
170         }
171         fn handle_update_fail_malformed_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
172                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
173         }
174         fn handle_commitment_signed(&self, their_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
175                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
176         }
177         fn handle_revoke_and_ack(&self, their_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
178                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
179         }
180         fn handle_update_fee(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFee) {
181                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
182         }
183         fn handle_announcement_signatures(&self, their_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
184                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
185         }
186         fn handle_channel_reestablish(&self, their_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
187                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
188         }
189         // msgs::ChannelUpdate does not contain the channel_id field, so we just drop them.
190         fn handle_channel_update(&self, _their_node_id: &PublicKey, _msg: &msgs::ChannelUpdate) {}
191         fn peer_disconnected(&self, _their_node_id: &PublicKey, _no_connection_possible: bool) {}
192         fn peer_connected(&self, _their_node_id: &PublicKey, _msg: &msgs::Init) {}
193         fn handle_error(&self, _their_node_id: &PublicKey, _msg: &msgs::ErrorMessage) {}
194 }
195 impl Deref for ErroringMessageHandler {
196         type Target = ErroringMessageHandler;
197         fn deref(&self) -> &Self { self }
198 }
199
200 /// Provides references to trait impls which handle different types of messages.
201 pub struct MessageHandler<CM: Deref, RM: Deref> where
202                 CM::Target: ChannelMessageHandler,
203                 RM::Target: RoutingMessageHandler {
204         /// A message handler which handles messages specific to channels. Usually this is just a
205         /// [`ChannelManager`] object or an [`ErroringMessageHandler`].
206         ///
207         /// [`ChannelManager`]: crate::ln::channelmanager::ChannelManager
208         pub chan_handler: CM,
209         /// A message handler which handles messages updating our knowledge of the network channel
210         /// graph. Usually this is just a [`NetGraphMsgHandler`] object or an
211         /// [`IgnoringMessageHandler`].
212         ///
213         /// [`NetGraphMsgHandler`]: crate::routing::network_graph::NetGraphMsgHandler
214         pub route_handler: RM,
215 }
216
217 /// Provides an object which can be used to send data to and which uniquely identifies a connection
218 /// to a remote host. You will need to be able to generate multiple of these which meet Eq and
219 /// implement Hash to meet the PeerManager API.
220 ///
221 /// For efficiency, Clone should be relatively cheap for this type.
222 ///
223 /// Two descriptors may compare equal (by [`cmp::Eq`] and [`hash::Hash`]) as long as the original
224 /// has been disconnected, the [`PeerManager`] has been informed of the disconnection (either by it
225 /// having triggered the disconnection or a call to [`PeerManager::socket_disconnected`]), and no
226 /// further calls to the [`PeerManager`] related to the original socket occur. This allows you to
227 /// use a file descriptor for your SocketDescriptor directly, however for simplicity you may wish
228 /// to simply use another value which is guaranteed to be globally unique instead.
229 pub trait SocketDescriptor : cmp::Eq + hash::Hash + Clone {
230         /// Attempts to send some data from the given slice to the peer.
231         ///
232         /// Returns the amount of data which was sent, possibly 0 if the socket has since disconnected.
233         /// Note that in the disconnected case, [`PeerManager::socket_disconnected`] must still be
234         /// called and further write attempts may occur until that time.
235         ///
236         /// If the returned size is smaller than `data.len()`, a
237         /// [`PeerManager::write_buffer_space_avail`] call must be made the next time more data can be
238         /// written. Additionally, until a `send_data` event completes fully, no further
239         /// [`PeerManager::read_event`] calls should be made for the same peer! Because this is to
240         /// prevent denial-of-service issues, you should not read or buffer any data from the socket
241         /// until then.
242         ///
243         /// If a [`PeerManager::read_event`] call on this descriptor had previously returned true
244         /// (indicating that read events should be paused to prevent DoS in the send buffer),
245         /// `resume_read` may be set indicating that read events on this descriptor should resume. A
246         /// `resume_read` of false carries no meaning, and should not cause any action.
247         fn send_data(&mut self, data: &[u8], resume_read: bool) -> usize;
248         /// Disconnect the socket pointed to by this SocketDescriptor.
249         ///
250         /// You do *not* need to call [`PeerManager::socket_disconnected`] with this socket after this
251         /// call (doing so is a noop).
252         fn disconnect_socket(&mut self);
253 }
254
255 /// Error for PeerManager errors. If you get one of these, you must disconnect the socket and
256 /// generate no further read_event/write_buffer_space_avail/socket_disconnected calls for the
257 /// descriptor.
258 #[derive(Clone)]
259 pub struct PeerHandleError {
260         /// Used to indicate that we probably can't make any future connections to this peer, implying
261         /// we should go ahead and force-close any channels we have with it.
262         pub no_connection_possible: bool,
263 }
264 impl fmt::Debug for PeerHandleError {
265         fn fmt(&self, formatter: &mut fmt::Formatter) -> Result<(), fmt::Error> {
266                 formatter.write_str("Peer Sent Invalid Data")
267         }
268 }
269 impl fmt::Display for PeerHandleError {
270         fn fmt(&self, formatter: &mut fmt::Formatter) -> Result<(), fmt::Error> {
271                 formatter.write_str("Peer Sent Invalid Data")
272         }
273 }
274
275 #[cfg(feature = "std")]
276 impl error::Error for PeerHandleError {
277         fn description(&self) -> &str {
278                 "Peer Sent Invalid Data"
279         }
280 }
281
282 enum InitSyncTracker{
283         NoSyncRequested,
284         ChannelsSyncing(u64),
285         NodesSyncing(PublicKey),
286 }
287
288 /// The ratio between buffer sizes at which we stop sending initial sync messages vs when we stop
289 /// forwarding gossip messages to peers altogether.
290 const FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO: usize = 2;
291
292 /// When the outbound buffer has this many messages, we'll stop reading bytes from the peer until
293 /// we have fewer than this many messages in the outbound buffer again.
294 /// We also use this as the target number of outbound gossip messages to keep in the write buffer,
295 /// refilled as we send bytes.
296 const OUTBOUND_BUFFER_LIMIT_READ_PAUSE: usize = 10;
297 /// When the outbound buffer has this many messages, we'll simply skip relaying gossip messages to
298 /// the peer.
299 const OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP: usize = OUTBOUND_BUFFER_LIMIT_READ_PAUSE * FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO;
300
301 /// If we've sent a ping, and are still awaiting a response, we may need to churn our way through
302 /// the socket receive buffer before receiving the ping.
303 ///
304 /// On a fairly old Arm64 board, with Linux defaults, this can take as long as 20 seconds, not
305 /// including any network delays, outbound traffic, or the same for messages from other peers.
306 ///
307 /// Thus, to avoid needlessly disconnecting a peer, we allow a peer to take this many timer ticks
308 /// per connected peer to respond to a ping, as long as they send us at least one message during
309 /// each tick, ensuring we aren't actually just disconnected.
310 /// With a timer tick interval of ten seconds, this translates to about 40 seconds per connected
311 /// peer.
312 ///
313 /// When we improve parallelism somewhat we should reduce this to e.g. this many timer ticks per
314 /// two connected peers, assuming most LDK-running systems have at least two cores.
315 const MAX_BUFFER_DRAIN_TICK_INTERVALS_PER_PEER: i8 = 4;
316
317 /// This is the minimum number of messages we expect a peer to be able to handle within one timer
318 /// tick. Once we have sent this many messages since the last ping, we send a ping right away to
319 /// ensures we don't just fill up our send buffer and leave the peer with too many messages to
320 /// process before the next ping.
321 const BUFFER_DRAIN_MSGS_PER_TICK: usize = 32;
322
323 struct Peer {
324         channel_encryptor: PeerChannelEncryptor,
325         their_node_id: Option<PublicKey>,
326         their_features: Option<InitFeatures>,
327         their_net_address: Option<NetAddress>,
328
329         pending_outbound_buffer: LinkedList<Vec<u8>>,
330         pending_outbound_buffer_first_msg_offset: usize,
331         awaiting_write_event: bool,
332
333         pending_read_buffer: Vec<u8>,
334         pending_read_buffer_pos: usize,
335         pending_read_is_header: bool,
336
337         sync_status: InitSyncTracker,
338
339         msgs_sent_since_pong: usize,
340         awaiting_pong_timer_tick_intervals: i8,
341         received_message_since_timer_tick: bool,
342         sent_gossip_timestamp_filter: bool,
343 }
344
345 impl Peer {
346         /// Returns true if the channel announcements/updates for the given channel should be
347         /// forwarded to this peer.
348         /// If we are sending our routing table to this peer and we have not yet sent channel
349         /// announcements/updates for the given channel_id then we will send it when we get to that
350         /// point and we shouldn't send it yet to avoid sending duplicate updates. If we've already
351         /// sent the old versions, we should send the update, and so return true here.
352         fn should_forward_channel_announcement(&self, channel_id: u64) -> bool {
353                 if self.their_features.as_ref().unwrap().supports_gossip_queries() &&
354                         !self.sent_gossip_timestamp_filter {
355                                 return false;
356                         }
357                 match self.sync_status {
358                         InitSyncTracker::NoSyncRequested => true,
359                         InitSyncTracker::ChannelsSyncing(i) => i < channel_id,
360                         InitSyncTracker::NodesSyncing(_) => true,
361                 }
362         }
363
364         /// Similar to the above, but for node announcements indexed by node_id.
365         fn should_forward_node_announcement(&self, node_id: PublicKey) -> bool {
366                 if self.their_features.as_ref().unwrap().supports_gossip_queries() &&
367                         !self.sent_gossip_timestamp_filter {
368                                 return false;
369                         }
370                 match self.sync_status {
371                         InitSyncTracker::NoSyncRequested => true,
372                         InitSyncTracker::ChannelsSyncing(_) => false,
373                         InitSyncTracker::NodesSyncing(pk) => pk < node_id,
374                 }
375         }
376 }
377
378 struct PeerHolder<Descriptor: SocketDescriptor> {
379         peers: HashMap<Descriptor, Peer>,
380         /// Only add to this set when noise completes:
381         node_id_to_descriptor: HashMap<PublicKey, Descriptor>,
382 }
383
384 /// SimpleArcPeerManager is useful when you need a PeerManager with a static lifetime, e.g.
385 /// when you're using lightning-net-tokio (since tokio::spawn requires parameters with static
386 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
387 /// SimpleRefPeerManager is the more appropriate type. Defining these type aliases prevents
388 /// issues such as overly long function definitions.
389 ///
390 /// (C-not exported) as Arcs don't make sense in bindings
391 pub type SimpleArcPeerManager<SD, M, T, F, C, L> = PeerManager<SD, Arc<SimpleArcChannelManager<M, T, F, L>>, Arc<NetGraphMsgHandler<Arc<NetworkGraph>, Arc<C>, Arc<L>>>, Arc<L>, Arc<IgnoringMessageHandler>>;
392
393 /// SimpleRefPeerManager is a type alias for a PeerManager reference, and is the reference
394 /// counterpart to the SimpleArcPeerManager type alias. Use this type by default when you don't
395 /// need a PeerManager with a static lifetime. You'll need a static lifetime in cases such as
396 /// usage of lightning-net-tokio (since tokio::spawn requires parameters with static lifetimes).
397 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
398 /// helps with issues such as long function definitions.
399 ///
400 /// (C-not exported) as Arcs don't make sense in bindings
401 pub type SimpleRefPeerManager<'a, 'b, 'c, 'd, 'e, 'f, 'g, 'h, SD, M, T, F, C, L> = PeerManager<SD, SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, M, T, F, L>, &'e NetGraphMsgHandler<&'g NetworkGraph, &'h C, &'f L>, &'f L, IgnoringMessageHandler>;
402
403 /// A PeerManager manages a set of peers, described by their [`SocketDescriptor`] and marshalls
404 /// socket events into messages which it passes on to its [`MessageHandler`].
405 ///
406 /// Locks are taken internally, so you must never assume that reentrancy from a
407 /// [`SocketDescriptor`] call back into [`PeerManager`] methods will not deadlock.
408 ///
409 /// Calls to [`read_event`] will decode relevant messages and pass them to the
410 /// [`ChannelMessageHandler`], likely doing message processing in-line. Thus, the primary form of
411 /// parallelism in Rust-Lightning is in calls to [`read_event`]. Note, however, that calls to any
412 /// [`PeerManager`] functions related to the same connection must occur only in serial, making new
413 /// calls only after previous ones have returned.
414 ///
415 /// Rather than using a plain PeerManager, it is preferable to use either a SimpleArcPeerManager
416 /// a SimpleRefPeerManager, for conciseness. See their documentation for more details, but
417 /// essentially you should default to using a SimpleRefPeerManager, and use a
418 /// SimpleArcPeerManager when you require a PeerManager with a static lifetime, such as when
419 /// you're using lightning-net-tokio.
420 ///
421 /// [`read_event`]: PeerManager::read_event
422 pub struct PeerManager<Descriptor: SocketDescriptor, CM: Deref, RM: Deref, L: Deref, CMH: Deref> where
423                 CM::Target: ChannelMessageHandler,
424                 RM::Target: RoutingMessageHandler,
425                 L::Target: Logger,
426                 CMH::Target: CustomMessageHandler {
427         message_handler: MessageHandler<CM, RM>,
428         peers: Mutex<PeerHolder<Descriptor>>,
429         our_node_secret: SecretKey,
430         ephemeral_key_midstate: Sha256Engine,
431         custom_message_handler: CMH,
432
433         peer_counter: AtomicCounter,
434
435         logger: L,
436 }
437
438 enum MessageHandlingError {
439         PeerHandleError(PeerHandleError),
440         LightningError(LightningError),
441 }
442
443 impl From<PeerHandleError> for MessageHandlingError {
444         fn from(error: PeerHandleError) -> Self {
445                 MessageHandlingError::PeerHandleError(error)
446         }
447 }
448
449 impl From<LightningError> for MessageHandlingError {
450         fn from(error: LightningError) -> Self {
451                 MessageHandlingError::LightningError(error)
452         }
453 }
454
455 macro_rules! encode_msg {
456         ($msg: expr) => {{
457                 let mut buffer = VecWriter(Vec::new());
458                 wire::write($msg, &mut buffer).unwrap();
459                 buffer.0
460         }}
461 }
462
463 impl<Descriptor: SocketDescriptor, CM: Deref, L: Deref> PeerManager<Descriptor, CM, IgnoringMessageHandler, L, IgnoringMessageHandler> where
464                 CM::Target: ChannelMessageHandler,
465                 L::Target: Logger {
466         /// Constructs a new PeerManager with the given ChannelMessageHandler. No routing message
467         /// handler is used and network graph messages are ignored.
468         ///
469         /// ephemeral_random_data is used to derive per-connection ephemeral keys and must be
470         /// cryptographically secure random bytes.
471         ///
472         /// (C-not exported) as we can't export a PeerManager with a dummy route handler
473         pub fn new_channel_only(channel_message_handler: CM, our_node_secret: SecretKey, ephemeral_random_data: &[u8; 32], logger: L) -> Self {
474                 Self::new(MessageHandler {
475                         chan_handler: channel_message_handler,
476                         route_handler: IgnoringMessageHandler{},
477                 }, our_node_secret, ephemeral_random_data, logger, IgnoringMessageHandler{})
478         }
479 }
480
481 impl<Descriptor: SocketDescriptor, RM: Deref, L: Deref> PeerManager<Descriptor, ErroringMessageHandler, RM, L, IgnoringMessageHandler> where
482                 RM::Target: RoutingMessageHandler,
483                 L::Target: Logger {
484         /// Constructs a new PeerManager with the given RoutingMessageHandler. No channel message
485         /// handler is used and messages related to channels will be ignored (or generate error
486         /// messages). Note that some other lightning implementations time-out connections after some
487         /// time if no channel is built with the peer.
488         ///
489         /// ephemeral_random_data is used to derive per-connection ephemeral keys and must be
490         /// cryptographically secure random bytes.
491         ///
492         /// (C-not exported) as we can't export a PeerManager with a dummy channel handler
493         pub fn new_routing_only(routing_message_handler: RM, our_node_secret: SecretKey, ephemeral_random_data: &[u8; 32], logger: L) -> Self {
494                 Self::new(MessageHandler {
495                         chan_handler: ErroringMessageHandler::new(),
496                         route_handler: routing_message_handler,
497                 }, our_node_secret, ephemeral_random_data, logger, IgnoringMessageHandler{})
498         }
499 }
500
501 /// A simple wrapper that optionally prints " from <pubkey>" for an optional pubkey.
502 /// This works around `format!()` taking a reference to each argument, preventing
503 /// `if let Some(node_id) = peer.their_node_id { format!(.., node_id) } else { .. }` from compiling
504 /// due to lifetime errors.
505 struct OptionalFromDebugger<'a>(&'a Option<PublicKey>);
506 impl core::fmt::Display for OptionalFromDebugger<'_> {
507         fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> Result<(), core::fmt::Error> {
508                 if let Some(node_id) = self.0 { write!(f, " from {}", log_pubkey!(node_id)) } else { Ok(()) }
509         }
510 }
511
512 /// A function used to filter out local or private addresses
513 /// https://www.iana.org./assignments/ipv4-address-space/ipv4-address-space.xhtml
514 /// https://www.iana.org/assignments/ipv6-address-space/ipv6-address-space.xhtml
515 fn filter_addresses(ip_address: Option<NetAddress>) -> Option<NetAddress> {
516         match ip_address{
517                 // For IPv4 range 10.0.0.0 - 10.255.255.255 (10/8)
518                 Some(NetAddress::IPv4{addr: [10, _, _, _], port: _}) => None,
519                 // For IPv4 range 0.0.0.0 - 0.255.255.255 (0/8)
520                 Some(NetAddress::IPv4{addr: [0, _, _, _], port: _}) => None,
521                 // For IPv4 range 100.64.0.0 - 100.127.255.255 (100.64/10)
522                 Some(NetAddress::IPv4{addr: [100, 64..=127, _, _], port: _}) => None,
523                 // For IPv4 range       127.0.0.0 - 127.255.255.255 (127/8)
524                 Some(NetAddress::IPv4{addr: [127, _, _, _], port: _}) => None,
525                 // For IPv4 range       169.254.0.0 - 169.254.255.255 (169.254/16)
526                 Some(NetAddress::IPv4{addr: [169, 254, _, _], port: _}) => None,
527                 // For IPv4 range 172.16.0.0 - 172.31.255.255 (172.16/12)
528                 Some(NetAddress::IPv4{addr: [172, 16..=31, _, _], port: _}) => None,
529                 // For IPv4 range 192.168.0.0 - 192.168.255.255 (192.168/16)
530                 Some(NetAddress::IPv4{addr: [192, 168, _, _], port: _}) => None,
531                 // For IPv4 range 192.88.99.0 - 192.88.99.255  (192.88.99/24)
532                 Some(NetAddress::IPv4{addr: [192, 88, 99, _], port: _}) => None,
533                 // For IPv6 range 2000:0000:0000:0000:0000:0000:0000:0000 - 3fff:ffff:ffff:ffff:ffff:ffff:ffff:ffff (2000::/3)
534                 Some(NetAddress::IPv6{addr: [0x20..=0x3F, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _], port: _}) => ip_address,
535                 // For remaining addresses
536                 Some(NetAddress::IPv6{addr: _, port: _}) => None,
537                 Some(..) => ip_address,
538                 None => None,
539         }
540 }
541
542 impl<Descriptor: SocketDescriptor, CM: Deref, RM: Deref, L: Deref, CMH: Deref> PeerManager<Descriptor, CM, RM, L, CMH> where
543                 CM::Target: ChannelMessageHandler,
544                 RM::Target: RoutingMessageHandler,
545                 L::Target: Logger,
546                 CMH::Target: CustomMessageHandler {
547         /// Constructs a new PeerManager with the given message handlers and node_id secret key
548         /// ephemeral_random_data is used to derive per-connection ephemeral keys and must be
549         /// cryptographically secure random bytes.
550         pub fn new(message_handler: MessageHandler<CM, RM>, our_node_secret: SecretKey, ephemeral_random_data: &[u8; 32], logger: L, custom_message_handler: CMH) -> Self {
551                 let mut ephemeral_key_midstate = Sha256::engine();
552                 ephemeral_key_midstate.input(ephemeral_random_data);
553
554                 PeerManager {
555                         message_handler,
556                         peers: Mutex::new(PeerHolder {
557                                 peers: HashMap::new(),
558                                 node_id_to_descriptor: HashMap::new()
559                         }),
560                         our_node_secret,
561                         ephemeral_key_midstate,
562                         peer_counter: AtomicCounter::new(),
563                         logger,
564                         custom_message_handler,
565                 }
566         }
567
568         /// Get the list of node ids for peers which have completed the initial handshake.
569         ///
570         /// For outbound connections, this will be the same as the their_node_id parameter passed in to
571         /// new_outbound_connection, however entries will only appear once the initial handshake has
572         /// completed and we are sure the remote peer has the private key for the given node_id.
573         pub fn get_peer_node_ids(&self) -> Vec<PublicKey> {
574                 let peers = self.peers.lock().unwrap();
575                 peers.peers.values().filter_map(|p| {
576                         if !p.channel_encryptor.is_ready_for_encryption() || p.their_features.is_none() {
577                                 return None;
578                         }
579                         p.their_node_id
580                 }).collect()
581         }
582
583         fn get_ephemeral_key(&self) -> SecretKey {
584                 let mut ephemeral_hash = self.ephemeral_key_midstate.clone();
585                 let counter = self.peer_counter.get_increment();
586                 ephemeral_hash.input(&counter.to_le_bytes());
587                 SecretKey::from_slice(&Sha256::from_engine(ephemeral_hash).into_inner()).expect("You broke SHA-256!")
588         }
589
590         /// Indicates a new outbound connection has been established to a node with the given node_id
591         /// and an optional remote network address.
592         ///
593         /// The remote network address adds the option to report a remote IP address back to a connecting
594         /// peer using the init message.
595         /// The user should pass the remote network address of the host they are connected to.
596         ///
597         /// Note that if an Err is returned here you MUST NOT call socket_disconnected for the new
598         /// descriptor but must disconnect the connection immediately.
599         ///
600         /// Returns a small number of bytes to send to the remote node (currently always 50).
601         ///
602         /// Panics if descriptor is duplicative with some other descriptor which has not yet been
603         /// [`socket_disconnected()`].
604         ///
605         /// [`socket_disconnected()`]: PeerManager::socket_disconnected
606         pub fn new_outbound_connection(&self, their_node_id: PublicKey, descriptor: Descriptor, remote_network_address: Option<NetAddress>) -> Result<Vec<u8>, PeerHandleError> {
607                 let mut peer_encryptor = PeerChannelEncryptor::new_outbound(their_node_id.clone(), self.get_ephemeral_key());
608                 let res = peer_encryptor.get_act_one().to_vec();
609                 let pending_read_buffer = [0; 50].to_vec(); // Noise act two is 50 bytes
610
611                 let mut peers = self.peers.lock().unwrap();
612                 if peers.peers.insert(descriptor, Peer {
613                         channel_encryptor: peer_encryptor,
614                         their_node_id: None,
615                         their_features: None,
616                         their_net_address: remote_network_address,
617
618                         pending_outbound_buffer: LinkedList::new(),
619                         pending_outbound_buffer_first_msg_offset: 0,
620                         awaiting_write_event: false,
621
622                         pending_read_buffer,
623                         pending_read_buffer_pos: 0,
624                         pending_read_is_header: false,
625
626                         sync_status: InitSyncTracker::NoSyncRequested,
627
628                         msgs_sent_since_pong: 0,
629                         awaiting_pong_timer_tick_intervals: 0,
630                         received_message_since_timer_tick: false,
631                         sent_gossip_timestamp_filter: false,
632                 }).is_some() {
633                         panic!("PeerManager driver duplicated descriptors!");
634                 };
635                 Ok(res)
636         }
637
638         /// Indicates a new inbound connection has been established to a node with an optional remote
639         /// network address.
640         ///
641         /// The remote network address adds the option to report a remote IP address back to a connecting
642         /// peer using the init message.
643         /// The user should pass the remote network address of the host they are connected to.
644         ///
645         /// May refuse the connection by returning an Err, but will never write bytes to the remote end
646         /// (outbound connector always speaks first). Note that if an Err is returned here you MUST NOT
647         /// call socket_disconnected for the new descriptor but must disconnect the connection
648         /// immediately.
649         ///
650         /// Panics if descriptor is duplicative with some other descriptor which has not yet been
651         /// [`socket_disconnected()`].
652         ///
653         /// [`socket_disconnected()`]: PeerManager::socket_disconnected
654         pub fn new_inbound_connection(&self, descriptor: Descriptor, remote_network_address: Option<NetAddress>) -> Result<(), PeerHandleError> {
655                 let peer_encryptor = PeerChannelEncryptor::new_inbound(&self.our_node_secret);
656                 let pending_read_buffer = [0; 50].to_vec(); // Noise act one is 50 bytes
657
658                 let mut peers = self.peers.lock().unwrap();
659                 if peers.peers.insert(descriptor, Peer {
660                         channel_encryptor: peer_encryptor,
661                         their_node_id: None,
662                         their_features: None,
663                         their_net_address: remote_network_address,
664
665                         pending_outbound_buffer: LinkedList::new(),
666                         pending_outbound_buffer_first_msg_offset: 0,
667                         awaiting_write_event: false,
668
669                         pending_read_buffer,
670                         pending_read_buffer_pos: 0,
671                         pending_read_is_header: false,
672
673                         sync_status: InitSyncTracker::NoSyncRequested,
674
675                         msgs_sent_since_pong: 0,
676                         awaiting_pong_timer_tick_intervals: 0,
677                         received_message_since_timer_tick: false,
678                         sent_gossip_timestamp_filter: false,
679                 }).is_some() {
680                         panic!("PeerManager driver duplicated descriptors!");
681                 };
682                 Ok(())
683         }
684
685         fn do_attempt_write_data(&self, descriptor: &mut Descriptor, peer: &mut Peer) {
686                 while !peer.awaiting_write_event {
687                         if peer.pending_outbound_buffer.len() < OUTBOUND_BUFFER_LIMIT_READ_PAUSE && peer.msgs_sent_since_pong < BUFFER_DRAIN_MSGS_PER_TICK {
688                                 match peer.sync_status {
689                                         InitSyncTracker::NoSyncRequested => {},
690                                         InitSyncTracker::ChannelsSyncing(c) if c < 0xffff_ffff_ffff_ffff => {
691                                                 let steps = ((OUTBOUND_BUFFER_LIMIT_READ_PAUSE - peer.pending_outbound_buffer.len() + 2) / 3) as u8;
692                                                 let all_messages = self.message_handler.route_handler.get_next_channel_announcements(c, steps);
693                                                 for &(ref announce, ref update_a_option, ref update_b_option) in all_messages.iter() {
694                                                         self.enqueue_message(peer, announce);
695                                                         if let &Some(ref update_a) = update_a_option {
696                                                                 self.enqueue_message(peer, update_a);
697                                                         }
698                                                         if let &Some(ref update_b) = update_b_option {
699                                                                 self.enqueue_message(peer, update_b);
700                                                         }
701                                                         peer.sync_status = InitSyncTracker::ChannelsSyncing(announce.contents.short_channel_id + 1);
702                                                 }
703                                                 if all_messages.is_empty() || all_messages.len() != steps as usize {
704                                                         peer.sync_status = InitSyncTracker::ChannelsSyncing(0xffff_ffff_ffff_ffff);
705                                                 }
706                                         },
707                                         InitSyncTracker::ChannelsSyncing(c) if c == 0xffff_ffff_ffff_ffff => {
708                                                 let steps = (OUTBOUND_BUFFER_LIMIT_READ_PAUSE - peer.pending_outbound_buffer.len()) as u8;
709                                                 let all_messages = self.message_handler.route_handler.get_next_node_announcements(None, steps);
710                                                 for msg in all_messages.iter() {
711                                                         self.enqueue_message(peer, msg);
712                                                         peer.sync_status = InitSyncTracker::NodesSyncing(msg.contents.node_id);
713                                                 }
714                                                 if all_messages.is_empty() || all_messages.len() != steps as usize {
715                                                         peer.sync_status = InitSyncTracker::NoSyncRequested;
716                                                 }
717                                         },
718                                         InitSyncTracker::ChannelsSyncing(_) => unreachable!(),
719                                         InitSyncTracker::NodesSyncing(key) => {
720                                                 let steps = (OUTBOUND_BUFFER_LIMIT_READ_PAUSE - peer.pending_outbound_buffer.len()) as u8;
721                                                 let all_messages = self.message_handler.route_handler.get_next_node_announcements(Some(&key), steps);
722                                                 for msg in all_messages.iter() {
723                                                         self.enqueue_message(peer, msg);
724                                                         peer.sync_status = InitSyncTracker::NodesSyncing(msg.contents.node_id);
725                                                 }
726                                                 if all_messages.is_empty() || all_messages.len() != steps as usize {
727                                                         peer.sync_status = InitSyncTracker::NoSyncRequested;
728                                                 }
729                                         },
730                                 }
731                         }
732                         if peer.msgs_sent_since_pong >= BUFFER_DRAIN_MSGS_PER_TICK {
733                                 self.maybe_send_extra_ping(peer);
734                         }
735
736                         if {
737                                 let next_buff = match peer.pending_outbound_buffer.front() {
738                                         None => return,
739                                         Some(buff) => buff,
740                                 };
741
742                                 let should_be_reading = peer.pending_outbound_buffer.len() < OUTBOUND_BUFFER_LIMIT_READ_PAUSE;
743                                 let pending = &next_buff[peer.pending_outbound_buffer_first_msg_offset..];
744                                 let data_sent = descriptor.send_data(pending, should_be_reading);
745                                 peer.pending_outbound_buffer_first_msg_offset += data_sent;
746                                 if peer.pending_outbound_buffer_first_msg_offset == next_buff.len() { true } else { false }
747                         } {
748                                 peer.pending_outbound_buffer_first_msg_offset = 0;
749                                 peer.pending_outbound_buffer.pop_front();
750                         } else {
751                                 peer.awaiting_write_event = true;
752                         }
753                 }
754         }
755
756         /// Indicates that there is room to write data to the given socket descriptor.
757         ///
758         /// May return an Err to indicate that the connection should be closed.
759         ///
760         /// May call [`send_data`] on the descriptor passed in (or an equal descriptor) before
761         /// returning. Thus, be very careful with reentrancy issues! The invariants around calling
762         /// [`write_buffer_space_avail`] in case a write did not fully complete must still hold - be
763         /// ready to call `[write_buffer_space_avail`] again if a write call generated here isn't
764         /// sufficient!
765         ///
766         /// [`send_data`]: SocketDescriptor::send_data
767         /// [`write_buffer_space_avail`]: PeerManager::write_buffer_space_avail
768         pub fn write_buffer_space_avail(&self, descriptor: &mut Descriptor) -> Result<(), PeerHandleError> {
769                 let mut peers = self.peers.lock().unwrap();
770                 match peers.peers.get_mut(descriptor) {
771                         None => {
772                                 // This is most likely a simple race condition where the user found that the socket
773                                 // was writeable, then we told the user to `disconnect_socket()`, then they called
774                                 // this method. Return an error to make sure we get disconnected.
775                                 return Err(PeerHandleError { no_connection_possible: false });
776                         },
777                         Some(peer) => {
778                                 peer.awaiting_write_event = false;
779                                 self.do_attempt_write_data(descriptor, peer);
780                         }
781                 };
782                 Ok(())
783         }
784
785         /// Indicates that data was read from the given socket descriptor.
786         ///
787         /// May return an Err to indicate that the connection should be closed.
788         ///
789         /// Will *not* call back into [`send_data`] on any descriptors to avoid reentrancy complexity.
790         /// Thus, however, you should call [`process_events`] after any `read_event` to generate
791         /// [`send_data`] calls to handle responses.
792         ///
793         /// If `Ok(true)` is returned, further read_events should not be triggered until a
794         /// [`send_data`] call on this descriptor has `resume_read` set (preventing DoS issues in the
795         /// send buffer).
796         ///
797         /// [`send_data`]: SocketDescriptor::send_data
798         /// [`process_events`]: PeerManager::process_events
799         pub fn read_event(&self, peer_descriptor: &mut Descriptor, data: &[u8]) -> Result<bool, PeerHandleError> {
800                 match self.do_read_event(peer_descriptor, data) {
801                         Ok(res) => Ok(res),
802                         Err(e) => {
803                                 log_trace!(self.logger, "Peer sent invalid data or we decided to disconnect due to a protocol error");
804                                 self.disconnect_event_internal(peer_descriptor, e.no_connection_possible);
805                                 Err(e)
806                         }
807                 }
808         }
809
810         /// Append a message to a peer's pending outbound/write buffer
811         fn enqueue_encoded_message(&self, peer: &mut Peer, encoded_message: &Vec<u8>) {
812                 peer.msgs_sent_since_pong += 1;
813                 peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encoded_message[..]));
814         }
815
816         /// Append a message to a peer's pending outbound/write buffer
817         fn enqueue_message<M: wire::Type>(&self, peer: &mut Peer, message: &M) {
818                 let mut buffer = VecWriter(Vec::with_capacity(2048));
819                 wire::write(message, &mut buffer).unwrap(); // crash if the write failed
820
821                 if is_gossip_msg(message.type_id()) {
822                         log_gossip!(self.logger, "Enqueueing message {:?} to {}", message, log_pubkey!(peer.their_node_id.unwrap()));
823                 } else {
824                         log_trace!(self.logger, "Enqueueing message {:?} to {}", message, log_pubkey!(peer.their_node_id.unwrap()))
825                 }
826                 self.enqueue_encoded_message(peer, &buffer.0);
827         }
828
829         fn do_read_event(&self, peer_descriptor: &mut Descriptor, data: &[u8]) -> Result<bool, PeerHandleError> {
830                 let pause_read = {
831                         let mut peers_lock = self.peers.lock().unwrap();
832                         let peers = &mut *peers_lock;
833                         let mut msgs_to_forward = Vec::new();
834                         let mut peer_node_id = None;
835                         let pause_read = match peers.peers.get_mut(peer_descriptor) {
836                                 None => {
837                                         // This is most likely a simple race condition where the user read some bytes
838                                         // from the socket, then we told the user to `disconnect_socket()`, then they
839                                         // called this method. Return an error to make sure we get disconnected.
840                                         return Err(PeerHandleError { no_connection_possible: false });
841                                 },
842                                 Some(peer) => {
843                                         assert!(peer.pending_read_buffer.len() > 0);
844                                         assert!(peer.pending_read_buffer.len() > peer.pending_read_buffer_pos);
845
846                                         let mut read_pos = 0;
847                                         while read_pos < data.len() {
848                                                 {
849                                                         let data_to_copy = cmp::min(peer.pending_read_buffer.len() - peer.pending_read_buffer_pos, data.len() - read_pos);
850                                                         peer.pending_read_buffer[peer.pending_read_buffer_pos..peer.pending_read_buffer_pos + data_to_copy].copy_from_slice(&data[read_pos..read_pos + data_to_copy]);
851                                                         read_pos += data_to_copy;
852                                                         peer.pending_read_buffer_pos += data_to_copy;
853                                                 }
854
855                                                 if peer.pending_read_buffer_pos == peer.pending_read_buffer.len() {
856                                                         peer.pending_read_buffer_pos = 0;
857
858                                                         macro_rules! try_potential_handleerror {
859                                                                 ($thing: expr) => {
860                                                                         match $thing {
861                                                                                 Ok(x) => x,
862                                                                                 Err(e) => {
863                                                                                         match e.action {
864                                                                                                 msgs::ErrorAction::DisconnectPeer { msg: _ } => {
865                                                                                                         //TODO: Try to push msg
866                                                                                                         log_debug!(self.logger, "Error handling message{}; disconnecting peer with: {}", OptionalFromDebugger(&peer.their_node_id), e.err);
867                                                                                                         return Err(PeerHandleError{ no_connection_possible: false });
868                                                                                                 },
869                                                                                                 msgs::ErrorAction::IgnoreAndLog(level) => {
870                                                                                                         log_given_level!(self.logger, level, "Error handling message{}; ignoring: {}", OptionalFromDebugger(&peer.their_node_id), e.err);
871                                                                                                         continue
872                                                                                                 },
873                                                                                                 msgs::ErrorAction::IgnoreDuplicateGossip => continue, // Don't even bother logging these
874                                                                                                 msgs::ErrorAction::IgnoreError => {
875                                                                                                         log_debug!(self.logger, "Error handling message{}; ignoring: {}", OptionalFromDebugger(&peer.their_node_id), e.err);
876                                                                                                         continue;
877                                                                                                 },
878                                                                                                 msgs::ErrorAction::SendErrorMessage { msg } => {
879                                                                                                         log_debug!(self.logger, "Error handling message{}; sending error message with: {}", OptionalFromDebugger(&peer.their_node_id), e.err);
880                                                                                                         self.enqueue_message(peer, &msg);
881                                                                                                         continue;
882                                                                                                 },
883                                                                                                 msgs::ErrorAction::SendWarningMessage { msg, log_level } => {
884                                                                                                         log_given_level!(self.logger, log_level, "Error handling message{}; sending warning message with: {}", OptionalFromDebugger(&peer.their_node_id), e.err);
885                                                                                                         self.enqueue_message(peer, &msg);
886                                                                                                         continue;
887                                                                                                 },
888                                                                                         }
889                                                                                 }
890                                                                         }
891                                                                 }
892                                                         }
893
894                                                         macro_rules! insert_node_id {
895                                                                 () => {
896                                                                         match peers.node_id_to_descriptor.entry(peer.their_node_id.unwrap()) {
897                                                                                 hash_map::Entry::Occupied(_) => {
898                                                                                         log_trace!(self.logger, "Got second connection with {}, closing", log_pubkey!(peer.their_node_id.unwrap()));
899                                                                                         peer.their_node_id = None; // Unset so that we don't generate a peer_disconnected event
900                                                                                         return Err(PeerHandleError{ no_connection_possible: false })
901                                                                                 },
902                                                                                 hash_map::Entry::Vacant(entry) => {
903                                                                                         log_debug!(self.logger, "Finished noise handshake for connection with {}", log_pubkey!(peer.their_node_id.unwrap()));
904                                                                                         entry.insert(peer_descriptor.clone())
905                                                                                 },
906                                                                         };
907                                                                 }
908                                                         }
909
910                                                         let next_step = peer.channel_encryptor.get_noise_step();
911                                                         match next_step {
912                                                                 NextNoiseStep::ActOne => {
913                                                                         let act_two = try_potential_handleerror!(peer.channel_encryptor.process_act_one_with_keys(&peer.pending_read_buffer[..], &self.our_node_secret, self.get_ephemeral_key())).to_vec();
914                                                                         peer.pending_outbound_buffer.push_back(act_two);
915                                                                         peer.pending_read_buffer = [0; 66].to_vec(); // act three is 66 bytes long
916                                                                 },
917                                                                 NextNoiseStep::ActTwo => {
918                                                                         let (act_three, their_node_id) = try_potential_handleerror!(peer.channel_encryptor.process_act_two(&peer.pending_read_buffer[..], &self.our_node_secret));
919                                                                         peer.pending_outbound_buffer.push_back(act_three.to_vec());
920                                                                         peer.pending_read_buffer = [0; 18].to_vec(); // Message length header is 18 bytes
921                                                                         peer.pending_read_is_header = true;
922
923                                                                         peer.their_node_id = Some(their_node_id);
924                                                                         insert_node_id!();
925                                                                         let features = InitFeatures::known();
926                                                                         let resp = msgs::Init { features, remote_network_address: filter_addresses(peer.their_net_address.clone())};
927                                                                         self.enqueue_message(peer, &resp);
928                                                                         peer.awaiting_pong_timer_tick_intervals = 0;
929                                                                 },
930                                                                 NextNoiseStep::ActThree => {
931                                                                         let their_node_id = try_potential_handleerror!(peer.channel_encryptor.process_act_three(&peer.pending_read_buffer[..]));
932                                                                         peer.pending_read_buffer = [0; 18].to_vec(); // Message length header is 18 bytes
933                                                                         peer.pending_read_is_header = true;
934                                                                         peer.their_node_id = Some(their_node_id);
935                                                                         insert_node_id!();
936                                                                         let features = InitFeatures::known();
937                                                                         let resp = msgs::Init { features, remote_network_address: filter_addresses(peer.their_net_address.clone())};
938                                                                         self.enqueue_message(peer, &resp);
939                                                                         peer.awaiting_pong_timer_tick_intervals = 0;
940                                                                 },
941                                                                 NextNoiseStep::NoiseComplete => {
942                                                                         if peer.pending_read_is_header {
943                                                                                 let msg_len = try_potential_handleerror!(peer.channel_encryptor.decrypt_length_header(&peer.pending_read_buffer[..]));
944                                                                                 peer.pending_read_buffer = Vec::with_capacity(msg_len as usize + 16);
945                                                                                 peer.pending_read_buffer.resize(msg_len as usize + 16, 0);
946                                                                                 if msg_len < 2 { // Need at least the message type tag
947                                                                                         return Err(PeerHandleError{ no_connection_possible: false });
948                                                                                 }
949                                                                                 peer.pending_read_is_header = false;
950                                                                         } else {
951                                                                                 let msg_data = try_potential_handleerror!(peer.channel_encryptor.decrypt_message(&peer.pending_read_buffer[..]));
952                                                                                 assert!(msg_data.len() >= 2);
953
954                                                                                 // Reset read buffer
955                                                                                 peer.pending_read_buffer = [0; 18].to_vec();
956                                                                                 peer.pending_read_is_header = true;
957
958                                                                                 let mut reader = io::Cursor::new(&msg_data[..]);
959                                                                                 let message_result = wire::read(&mut reader, &*self.custom_message_handler);
960                                                                                 let message = match message_result {
961                                                                                         Ok(x) => x,
962                                                                                         Err(e) => {
963                                                                                                 match e {
964                                                                                                         // Note that to avoid recursion we never call
965                                                                                                         // `do_attempt_write_data` from here, causing
966                                                                                                         // the messages enqueued here to not actually
967                                                                                                         // be sent before the peer is disconnected.
968                                                                                                         (msgs::DecodeError::UnknownRequiredFeature, Some(ty)) if is_gossip_msg(ty) => {
969                                                                                                                 log_gossip!(self.logger, "Got a channel/node announcement with an unknown required feature flag, you may want to update!");
970                                                                                                                 continue;
971                                                                                                         }
972                                                                                                         (msgs::DecodeError::UnsupportedCompression, _) => {
973                                                                                                                 log_gossip!(self.logger, "We don't support zlib-compressed message fields, sending a warning and ignoring message");
974                                                                                                                 self.enqueue_message(peer, &msgs::WarningMessage { channel_id: [0; 32], data: "Unsupported message compression: zlib".to_owned() });
975                                                                                                                 continue;
976                                                                                                         }
977                                                                                                         (_, Some(ty)) if is_gossip_msg(ty) => {
978                                                                                                                 log_gossip!(self.logger, "Got an invalid value while deserializing a gossip message");
979                                                                                                                 self.enqueue_message(peer, &msgs::WarningMessage { channel_id: [0; 32], data: "Unreadable/bogus gossip message".to_owned() });
980                                                                                                                 continue;
981                                                                                                         }
982                                                                                                         (msgs::DecodeError::UnknownRequiredFeature, ty) => {
983                                                                                                                 log_gossip!(self.logger, "Received a message with an unknown required feature flag or TLV, you may want to update!");
984                                                                                                                 self.enqueue_message(peer, &msgs::WarningMessage { channel_id: [0; 32], data: format!("Received an unknown required feature/TLV in message type {:?}", ty) });
985                                                                                                                 return Err(PeerHandleError { no_connection_possible: false });
986                                                                                                         }
987                                                                                                         (msgs::DecodeError::UnknownVersion, _) => return Err(PeerHandleError { no_connection_possible: false }),
988                                                                                                         (msgs::DecodeError::InvalidValue, _) => {
989                                                                                                                 log_debug!(self.logger, "Got an invalid value while deserializing message");
990                                                                                                                 return Err(PeerHandleError { no_connection_possible: false });
991                                                                                                         }
992                                                                                                         (msgs::DecodeError::ShortRead, _) => {
993                                                                                                                 log_debug!(self.logger, "Deserialization failed due to shortness of message");
994                                                                                                                 return Err(PeerHandleError { no_connection_possible: false });
995                                                                                                         }
996                                                                                                         (msgs::DecodeError::BadLengthDescriptor, _) => return Err(PeerHandleError { no_connection_possible: false }),
997                                                                                                         (msgs::DecodeError::Io(_), _) => return Err(PeerHandleError { no_connection_possible: false }),
998                                                                                                 }
999                                                                                         }
1000                                                                                 };
1001
1002                                                                                 match self.handle_message(peer, message) {
1003                                                                                         Err(handling_error) => match handling_error {
1004                                                                                                 MessageHandlingError::PeerHandleError(e) => { return Err(e) },
1005                                                                                                 MessageHandlingError::LightningError(e) => {
1006                                                                                                         try_potential_handleerror!(Err(e));
1007                                                                                                 },
1008                                                                                         },
1009                                                                                         Ok(Some(msg)) => {
1010                                                                                                 peer_node_id = Some(peer.their_node_id.expect("After noise is complete, their_node_id is always set"));
1011                                                                                                 msgs_to_forward.push(msg);
1012                                                                                         },
1013                                                                                         Ok(None) => {},
1014                                                                                 }
1015                                                                         }
1016                                                                 }
1017                                                         }
1018                                                 }
1019                                         }
1020
1021                                         peer.pending_outbound_buffer.len() > OUTBOUND_BUFFER_LIMIT_READ_PAUSE // pause_read
1022                                 }
1023                         };
1024
1025                         for msg in msgs_to_forward.drain(..) {
1026                                 self.forward_broadcast_msg(peers, &msg, peer_node_id.as_ref());
1027                         }
1028
1029                         pause_read
1030                 };
1031
1032                 Ok(pause_read)
1033         }
1034
1035         /// Process an incoming message and return a decision (ok, lightning error, peer handling error) regarding the next action with the peer
1036         /// Returns the message back if it needs to be broadcasted to all other peers.
1037         fn handle_message(
1038                 &self,
1039                 peer: &mut Peer,
1040                 message: wire::Message<<<CMH as core::ops::Deref>::Target as wire::CustomMessageReader>::CustomMessage>
1041         ) -> Result<Option<wire::Message<<<CMH as core::ops::Deref>::Target as wire::CustomMessageReader>::CustomMessage>>, MessageHandlingError> {
1042                 if is_gossip_msg(message.type_id()) {
1043                         log_gossip!(self.logger, "Received message {:?} from {}", message, log_pubkey!(peer.their_node_id.unwrap()));
1044                 } else {
1045                         log_trace!(self.logger, "Received message {:?} from {}", message, log_pubkey!(peer.their_node_id.unwrap()));
1046                 }
1047
1048                 peer.received_message_since_timer_tick = true;
1049
1050                 // Need an Init as first message
1051                 if let wire::Message::Init(_) = message {
1052                 } else if peer.their_features.is_none() {
1053                         log_debug!(self.logger, "Peer {} sent non-Init first message", log_pubkey!(peer.their_node_id.unwrap()));
1054                         return Err(PeerHandleError{ no_connection_possible: false }.into());
1055                 }
1056
1057                 let mut should_forward = None;
1058
1059                 match message {
1060                         // Setup and Control messages:
1061                         wire::Message::Init(msg) => {
1062                                 if msg.features.requires_unknown_bits() {
1063                                         log_debug!(self.logger, "Peer features required unknown version bits");
1064                                         return Err(PeerHandleError{ no_connection_possible: true }.into());
1065                                 }
1066                                 if peer.their_features.is_some() {
1067                                         return Err(PeerHandleError{ no_connection_possible: false }.into());
1068                                 }
1069
1070                                 log_info!(self.logger, "Received peer Init message from {}: {}", log_pubkey!(peer.their_node_id.unwrap()), msg.features);
1071
1072                                 // For peers not supporting gossip queries start sync now, otherwise wait until we receive a filter.
1073                                 if msg.features.initial_routing_sync() && !msg.features.supports_gossip_queries() {
1074                                         peer.sync_status = InitSyncTracker::ChannelsSyncing(0);
1075                                 }
1076                                 if !msg.features.supports_static_remote_key() {
1077                                         log_debug!(self.logger, "Peer {} does not support static remote key, disconnecting with no_connection_possible", log_pubkey!(peer.their_node_id.unwrap()));
1078                                         return Err(PeerHandleError{ no_connection_possible: true }.into());
1079                                 }
1080
1081                                 self.message_handler.route_handler.peer_connected(&peer.their_node_id.unwrap(), &msg);
1082
1083                                 self.message_handler.chan_handler.peer_connected(&peer.their_node_id.unwrap(), &msg);
1084                                 peer.their_features = Some(msg.features);
1085                         },
1086                         wire::Message::Error(msg) => {
1087                                 let mut data_is_printable = true;
1088                                 for b in msg.data.bytes() {
1089                                         if b < 32 || b > 126 {
1090                                                 data_is_printable = false;
1091                                                 break;
1092                                         }
1093                                 }
1094
1095                                 if data_is_printable {
1096                                         log_debug!(self.logger, "Got Err message from {}: {}", log_pubkey!(peer.their_node_id.unwrap()), msg.data);
1097                                 } else {
1098                                         log_debug!(self.logger, "Got Err message from {} with non-ASCII error message", log_pubkey!(peer.their_node_id.unwrap()));
1099                                 }
1100                                 self.message_handler.chan_handler.handle_error(&peer.their_node_id.unwrap(), &msg);
1101                                 if msg.channel_id == [0; 32] {
1102                                         return Err(PeerHandleError{ no_connection_possible: true }.into());
1103                                 }
1104                         },
1105                         wire::Message::Warning(msg) => {
1106                                 let mut data_is_printable = true;
1107                                 for b in msg.data.bytes() {
1108                                         if b < 32 || b > 126 {
1109                                                 data_is_printable = false;
1110                                                 break;
1111                                         }
1112                                 }
1113
1114                                 if data_is_printable {
1115                                         log_debug!(self.logger, "Got warning message from {}: {}", log_pubkey!(peer.their_node_id.unwrap()), msg.data);
1116                                 } else {
1117                                         log_debug!(self.logger, "Got warning message from {} with non-ASCII error message", log_pubkey!(peer.their_node_id.unwrap()));
1118                                 }
1119                         },
1120
1121                         wire::Message::Ping(msg) => {
1122                                 if msg.ponglen < 65532 {
1123                                         let resp = msgs::Pong { byteslen: msg.ponglen };
1124                                         self.enqueue_message(peer, &resp);
1125                                 }
1126                         },
1127                         wire::Message::Pong(_msg) => {
1128                                 peer.awaiting_pong_timer_tick_intervals = 0;
1129                                 peer.msgs_sent_since_pong = 0;
1130                         },
1131
1132                         // Channel messages:
1133                         wire::Message::OpenChannel(msg) => {
1134                                 self.message_handler.chan_handler.handle_open_channel(&peer.their_node_id.unwrap(), peer.their_features.clone().unwrap(), &msg);
1135                         },
1136                         wire::Message::AcceptChannel(msg) => {
1137                                 self.message_handler.chan_handler.handle_accept_channel(&peer.their_node_id.unwrap(), peer.their_features.clone().unwrap(), &msg);
1138                         },
1139
1140                         wire::Message::FundingCreated(msg) => {
1141                                 self.message_handler.chan_handler.handle_funding_created(&peer.their_node_id.unwrap(), &msg);
1142                         },
1143                         wire::Message::FundingSigned(msg) => {
1144                                 self.message_handler.chan_handler.handle_funding_signed(&peer.their_node_id.unwrap(), &msg);
1145                         },
1146                         wire::Message::FundingLocked(msg) => {
1147                                 self.message_handler.chan_handler.handle_funding_locked(&peer.their_node_id.unwrap(), &msg);
1148                         },
1149
1150                         wire::Message::Shutdown(msg) => {
1151                                 self.message_handler.chan_handler.handle_shutdown(&peer.their_node_id.unwrap(), peer.their_features.as_ref().unwrap(), &msg);
1152                         },
1153                         wire::Message::ClosingSigned(msg) => {
1154                                 self.message_handler.chan_handler.handle_closing_signed(&peer.their_node_id.unwrap(), &msg);
1155                         },
1156
1157                         // Commitment messages:
1158                         wire::Message::UpdateAddHTLC(msg) => {
1159                                 self.message_handler.chan_handler.handle_update_add_htlc(&peer.their_node_id.unwrap(), &msg);
1160                         },
1161                         wire::Message::UpdateFulfillHTLC(msg) => {
1162                                 self.message_handler.chan_handler.handle_update_fulfill_htlc(&peer.their_node_id.unwrap(), &msg);
1163                         },
1164                         wire::Message::UpdateFailHTLC(msg) => {
1165                                 self.message_handler.chan_handler.handle_update_fail_htlc(&peer.their_node_id.unwrap(), &msg);
1166                         },
1167                         wire::Message::UpdateFailMalformedHTLC(msg) => {
1168                                 self.message_handler.chan_handler.handle_update_fail_malformed_htlc(&peer.their_node_id.unwrap(), &msg);
1169                         },
1170
1171                         wire::Message::CommitmentSigned(msg) => {
1172                                 self.message_handler.chan_handler.handle_commitment_signed(&peer.their_node_id.unwrap(), &msg);
1173                         },
1174                         wire::Message::RevokeAndACK(msg) => {
1175                                 self.message_handler.chan_handler.handle_revoke_and_ack(&peer.their_node_id.unwrap(), &msg);
1176                         },
1177                         wire::Message::UpdateFee(msg) => {
1178                                 self.message_handler.chan_handler.handle_update_fee(&peer.their_node_id.unwrap(), &msg);
1179                         },
1180                         wire::Message::ChannelReestablish(msg) => {
1181                                 self.message_handler.chan_handler.handle_channel_reestablish(&peer.their_node_id.unwrap(), &msg);
1182                         },
1183
1184                         // Routing messages:
1185                         wire::Message::AnnouncementSignatures(msg) => {
1186                                 self.message_handler.chan_handler.handle_announcement_signatures(&peer.their_node_id.unwrap(), &msg);
1187                         },
1188                         wire::Message::ChannelAnnouncement(msg) => {
1189                                 if self.message_handler.route_handler.handle_channel_announcement(&msg)
1190                                                 .map_err(|e| -> MessageHandlingError { e.into() })? {
1191                                         should_forward = Some(wire::Message::ChannelAnnouncement(msg));
1192                                 }
1193                         },
1194                         wire::Message::NodeAnnouncement(msg) => {
1195                                 if self.message_handler.route_handler.handle_node_announcement(&msg)
1196                                                 .map_err(|e| -> MessageHandlingError { e.into() })? {
1197                                         should_forward = Some(wire::Message::NodeAnnouncement(msg));
1198                                 }
1199                         },
1200                         wire::Message::ChannelUpdate(msg) => {
1201                                 self.message_handler.chan_handler.handle_channel_update(&peer.their_node_id.unwrap(), &msg);
1202                                 if self.message_handler.route_handler.handle_channel_update(&msg)
1203                                                 .map_err(|e| -> MessageHandlingError { e.into() })? {
1204                                         should_forward = Some(wire::Message::ChannelUpdate(msg));
1205                                 }
1206                         },
1207                         wire::Message::QueryShortChannelIds(msg) => {
1208                                 self.message_handler.route_handler.handle_query_short_channel_ids(&peer.their_node_id.unwrap(), msg)?;
1209                         },
1210                         wire::Message::ReplyShortChannelIdsEnd(msg) => {
1211                                 self.message_handler.route_handler.handle_reply_short_channel_ids_end(&peer.their_node_id.unwrap(), msg)?;
1212                         },
1213                         wire::Message::QueryChannelRange(msg) => {
1214                                 self.message_handler.route_handler.handle_query_channel_range(&peer.their_node_id.unwrap(), msg)?;
1215                         },
1216                         wire::Message::ReplyChannelRange(msg) => {
1217                                 self.message_handler.route_handler.handle_reply_channel_range(&peer.their_node_id.unwrap(), msg)?;
1218                         },
1219                         wire::Message::GossipTimestampFilter(_msg) => {
1220                                 // When supporting gossip messages, start inital gossip sync only after we receive
1221                                 // a GossipTimestampFilter
1222                                 if peer.their_features.as_ref().unwrap().supports_gossip_queries() &&
1223                                         !peer.sent_gossip_timestamp_filter {
1224                                         peer.sent_gossip_timestamp_filter = true;
1225                                         peer.sync_status = InitSyncTracker::ChannelsSyncing(0);
1226                                 }
1227                         },
1228
1229                         // Unknown messages:
1230                         wire::Message::Unknown(type_id) if message.is_even() => {
1231                                 log_debug!(self.logger, "Received unknown even message of type {}, disconnecting peer!", type_id);
1232                                 // Fail the channel if message is an even, unknown type as per BOLT #1.
1233                                 return Err(PeerHandleError{ no_connection_possible: true }.into());
1234                         },
1235                         wire::Message::Unknown(type_id) => {
1236                                 log_trace!(self.logger, "Received unknown odd message of type {}, ignoring", type_id);
1237                         },
1238                         wire::Message::Custom(custom) => {
1239                                 self.custom_message_handler.handle_custom_message(custom, &peer.their_node_id.unwrap())?;
1240                         },
1241                 };
1242                 Ok(should_forward)
1243         }
1244
1245         fn forward_broadcast_msg(&self, peers: &mut PeerHolder<Descriptor>, msg: &wire::Message<<<CMH as core::ops::Deref>::Target as wire::CustomMessageReader>::CustomMessage>, except_node: Option<&PublicKey>) {
1246                 match msg {
1247                         wire::Message::ChannelAnnouncement(ref msg) => {
1248                                 log_gossip!(self.logger, "Sending message to all peers except {:?} or the announced channel's counterparties: {:?}", except_node, msg);
1249                                 let encoded_msg = encode_msg!(msg);
1250
1251                                 for (_, peer) in peers.peers.iter_mut() {
1252                                         if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_features.is_none() ||
1253                                                         !peer.should_forward_channel_announcement(msg.contents.short_channel_id) {
1254                                                 continue
1255                                         }
1256                                         if peer.pending_outbound_buffer.len() > OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP
1257                                                 || peer.msgs_sent_since_pong > BUFFER_DRAIN_MSGS_PER_TICK * FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO
1258                                         {
1259                                                 log_gossip!(self.logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id);
1260                                                 continue;
1261                                         }
1262                                         if peer.their_node_id.as_ref() == Some(&msg.contents.node_id_1) ||
1263                                            peer.their_node_id.as_ref() == Some(&msg.contents.node_id_2) {
1264                                                 continue;
1265                                         }
1266                                         if except_node.is_some() && peer.their_node_id.as_ref() == except_node {
1267                                                 continue;
1268                                         }
1269                                         self.enqueue_encoded_message(peer, &encoded_msg);
1270                                 }
1271                         },
1272                         wire::Message::NodeAnnouncement(ref msg) => {
1273                                 log_gossip!(self.logger, "Sending message to all peers except {:?} or the announced node: {:?}", except_node, msg);
1274                                 let encoded_msg = encode_msg!(msg);
1275
1276                                 for (_, peer) in peers.peers.iter_mut() {
1277                                         if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_features.is_none() ||
1278                                                         !peer.should_forward_node_announcement(msg.contents.node_id) {
1279                                                 continue
1280                                         }
1281                                         if peer.pending_outbound_buffer.len() > OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP
1282                                                 || peer.msgs_sent_since_pong > BUFFER_DRAIN_MSGS_PER_TICK * FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO
1283                                         {
1284                                                 log_gossip!(self.logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id);
1285                                                 continue;
1286                                         }
1287                                         if peer.their_node_id.as_ref() == Some(&msg.contents.node_id) {
1288                                                 continue;
1289                                         }
1290                                         if except_node.is_some() && peer.their_node_id.as_ref() == except_node {
1291                                                 continue;
1292                                         }
1293                                         self.enqueue_encoded_message(peer, &encoded_msg);
1294                                 }
1295                         },
1296                         wire::Message::ChannelUpdate(ref msg) => {
1297                                 log_gossip!(self.logger, "Sending message to all peers except {:?}: {:?}", except_node, msg);
1298                                 let encoded_msg = encode_msg!(msg);
1299
1300                                 for (_, peer) in peers.peers.iter_mut() {
1301                                         if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_features.is_none() ||
1302                                                         !peer.should_forward_channel_announcement(msg.contents.short_channel_id)  {
1303                                                 continue
1304                                         }
1305                                         if peer.pending_outbound_buffer.len() > OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP
1306                                                 || peer.msgs_sent_since_pong > BUFFER_DRAIN_MSGS_PER_TICK * FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO
1307                                         {
1308                                                 log_gossip!(self.logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id);
1309                                                 continue;
1310                                         }
1311                                         if except_node.is_some() && peer.their_node_id.as_ref() == except_node {
1312                                                 continue;
1313                                         }
1314                                         self.enqueue_encoded_message(peer, &encoded_msg);
1315                                 }
1316                         },
1317                         _ => debug_assert!(false, "We shouldn't attempt to forward anything but gossip messages"),
1318                 }
1319         }
1320
1321         /// Checks for any events generated by our handlers and processes them. Includes sending most
1322         /// response messages as well as messages generated by calls to handler functions directly (eg
1323         /// functions like [`ChannelManager::process_pending_htlc_forwards`] or [`send_payment`]).
1324         ///
1325         /// May call [`send_data`] on [`SocketDescriptor`]s. Thus, be very careful with reentrancy
1326         /// issues!
1327         ///
1328         /// You don't have to call this function explicitly if you are using [`lightning-net-tokio`]
1329         /// or one of the other clients provided in our language bindings.
1330         ///
1331         /// [`send_payment`]: crate::ln::channelmanager::ChannelManager::send_payment
1332         /// [`ChannelManager::process_pending_htlc_forwards`]: crate::ln::channelmanager::ChannelManager::process_pending_htlc_forwards
1333         /// [`send_data`]: SocketDescriptor::send_data
1334         pub fn process_events(&self) {
1335                 {
1336                         // TODO: There are some DoS attacks here where you can flood someone's outbound send
1337                         // buffer by doing things like announcing channels on another node. We should be willing to
1338                         // drop optional-ish messages when send buffers get full!
1339
1340                         let mut peers_lock = self.peers.lock().unwrap();
1341                         let mut events_generated = self.message_handler.chan_handler.get_and_clear_pending_msg_events();
1342                         events_generated.append(&mut self.message_handler.route_handler.get_and_clear_pending_msg_events());
1343                         let peers = &mut *peers_lock;
1344                         macro_rules! get_peer_for_forwarding {
1345                                 ($node_id: expr) => {
1346                                         {
1347                                                 match peers.node_id_to_descriptor.get($node_id) {
1348                                                         Some(descriptor) => match peers.peers.get_mut(&descriptor) {
1349                                                                 Some(peer) => {
1350                                                                         if peer.their_features.is_none() {
1351                                                                                 continue;
1352                                                                         }
1353                                                                         peer
1354                                                                 },
1355                                                                 None => panic!("Inconsistent peers set state!"),
1356                                                         },
1357                                                         None => {
1358                                                                 continue;
1359                                                         },
1360                                                 }
1361                                         }
1362                                 }
1363                         }
1364                         for event in events_generated.drain(..) {
1365                                 match event {
1366                                         MessageSendEvent::SendAcceptChannel { ref node_id, ref msg } => {
1367                                                 log_debug!(self.logger, "Handling SendAcceptChannel event in peer_handler for node {} for channel {}",
1368                                                                 log_pubkey!(node_id),
1369                                                                 log_bytes!(msg.temporary_channel_id));
1370                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1371                                         },
1372                                         MessageSendEvent::SendOpenChannel { ref node_id, ref msg } => {
1373                                                 log_debug!(self.logger, "Handling SendOpenChannel event in peer_handler for node {} for channel {}",
1374                                                                 log_pubkey!(node_id),
1375                                                                 log_bytes!(msg.temporary_channel_id));
1376                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1377                                         },
1378                                         MessageSendEvent::SendFundingCreated { ref node_id, ref msg } => {
1379                                                 log_debug!(self.logger, "Handling SendFundingCreated event in peer_handler for node {} for channel {} (which becomes {})",
1380                                                                 log_pubkey!(node_id),
1381                                                                 log_bytes!(msg.temporary_channel_id),
1382                                                                 log_funding_channel_id!(msg.funding_txid, msg.funding_output_index));
1383                                                 // TODO: If the peer is gone we should generate a DiscardFunding event
1384                                                 // indicating to the wallet that they should just throw away this funding transaction
1385                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1386                                         },
1387                                         MessageSendEvent::SendFundingSigned { ref node_id, ref msg } => {
1388                                                 log_debug!(self.logger, "Handling SendFundingSigned event in peer_handler for node {} for channel {}",
1389                                                                 log_pubkey!(node_id),
1390                                                                 log_bytes!(msg.channel_id));
1391                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1392                                         },
1393                                         MessageSendEvent::SendFundingLocked { ref node_id, ref msg } => {
1394                                                 log_debug!(self.logger, "Handling SendFundingLocked event in peer_handler for node {} for channel {}",
1395                                                                 log_pubkey!(node_id),
1396                                                                 log_bytes!(msg.channel_id));
1397                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1398                                         },
1399                                         MessageSendEvent::SendAnnouncementSignatures { ref node_id, ref msg } => {
1400                                                 log_debug!(self.logger, "Handling SendAnnouncementSignatures event in peer_handler for node {} for channel {})",
1401                                                                 log_pubkey!(node_id),
1402                                                                 log_bytes!(msg.channel_id));
1403                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1404                                         },
1405                                         MessageSendEvent::UpdateHTLCs { ref node_id, updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fulfill_htlcs, ref update_fail_htlcs, ref update_fail_malformed_htlcs, ref update_fee, ref commitment_signed } } => {
1406                                                 log_debug!(self.logger, "Handling UpdateHTLCs event in peer_handler for node {} with {} adds, {} fulfills, {} fails for channel {}",
1407                                                                 log_pubkey!(node_id),
1408                                                                 update_add_htlcs.len(),
1409                                                                 update_fulfill_htlcs.len(),
1410                                                                 update_fail_htlcs.len(),
1411                                                                 log_bytes!(commitment_signed.channel_id));
1412                                                 let peer = get_peer_for_forwarding!(node_id);
1413                                                 for msg in update_add_htlcs {
1414                                                         self.enqueue_message(peer, msg);
1415                                                 }
1416                                                 for msg in update_fulfill_htlcs {
1417                                                         self.enqueue_message(peer, msg);
1418                                                 }
1419                                                 for msg in update_fail_htlcs {
1420                                                         self.enqueue_message(peer, msg);
1421                                                 }
1422                                                 for msg in update_fail_malformed_htlcs {
1423                                                         self.enqueue_message(peer, msg);
1424                                                 }
1425                                                 if let &Some(ref msg) = update_fee {
1426                                                         self.enqueue_message(peer, msg);
1427                                                 }
1428                                                 self.enqueue_message(peer, commitment_signed);
1429                                         },
1430                                         MessageSendEvent::SendRevokeAndACK { ref node_id, ref msg } => {
1431                                                 log_debug!(self.logger, "Handling SendRevokeAndACK event in peer_handler for node {} for channel {}",
1432                                                                 log_pubkey!(node_id),
1433                                                                 log_bytes!(msg.channel_id));
1434                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1435                                         },
1436                                         MessageSendEvent::SendClosingSigned { ref node_id, ref msg } => {
1437                                                 log_debug!(self.logger, "Handling SendClosingSigned event in peer_handler for node {} for channel {}",
1438                                                                 log_pubkey!(node_id),
1439                                                                 log_bytes!(msg.channel_id));
1440                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1441                                         },
1442                                         MessageSendEvent::SendShutdown { ref node_id, ref msg } => {
1443                                                 log_debug!(self.logger, "Handling Shutdown event in peer_handler for node {} for channel {}",
1444                                                                 log_pubkey!(node_id),
1445                                                                 log_bytes!(msg.channel_id));
1446                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1447                                         },
1448                                         MessageSendEvent::SendChannelReestablish { ref node_id, ref msg } => {
1449                                                 log_debug!(self.logger, "Handling SendChannelReestablish event in peer_handler for node {} for channel {}",
1450                                                                 log_pubkey!(node_id),
1451                                                                 log_bytes!(msg.channel_id));
1452                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1453                                         },
1454                                         MessageSendEvent::BroadcastChannelAnnouncement { msg, update_msg } => {
1455                                                 log_debug!(self.logger, "Handling BroadcastChannelAnnouncement event in peer_handler for short channel id {}", msg.contents.short_channel_id);
1456                                                 match self.message_handler.route_handler.handle_channel_announcement(&msg) {
1457                                                         Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
1458                                                                 self.forward_broadcast_msg(peers, &wire::Message::ChannelAnnouncement(msg), None),
1459                                                         _ => {},
1460                                                 }
1461                                                 match self.message_handler.route_handler.handle_channel_update(&update_msg) {
1462                                                         Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
1463                                                                 self.forward_broadcast_msg(peers, &wire::Message::ChannelUpdate(update_msg), None),
1464                                                         _ => {},
1465                                                 }
1466                                         },
1467                                         MessageSendEvent::BroadcastNodeAnnouncement { msg } => {
1468                                                 log_debug!(self.logger, "Handling BroadcastNodeAnnouncement event in peer_handler");
1469                                                 match self.message_handler.route_handler.handle_node_announcement(&msg) {
1470                                                         Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
1471                                                                 self.forward_broadcast_msg(peers, &wire::Message::NodeAnnouncement(msg), None),
1472                                                         _ => {},
1473                                                 }
1474                                         },
1475                                         MessageSendEvent::BroadcastChannelUpdate { msg } => {
1476                                                 log_debug!(self.logger, "Handling BroadcastChannelUpdate event in peer_handler for short channel id {}", msg.contents.short_channel_id);
1477                                                 match self.message_handler.route_handler.handle_channel_update(&msg) {
1478                                                         Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
1479                                                                 self.forward_broadcast_msg(peers, &wire::Message::ChannelUpdate(msg), None),
1480                                                         _ => {},
1481                                                 }
1482                                         },
1483                                         MessageSendEvent::SendChannelUpdate { ref node_id, ref msg } => {
1484                                                 log_trace!(self.logger, "Handling SendChannelUpdate event in peer_handler for node {} for channel {}",
1485                                                                 log_pubkey!(node_id), msg.contents.short_channel_id);
1486                                                 let peer = get_peer_for_forwarding!(node_id);
1487                                                 peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg)));
1488                                         },
1489                                         MessageSendEvent::HandleError { ref node_id, ref action } => {
1490                                                 match *action {
1491                                                         msgs::ErrorAction::DisconnectPeer { ref msg } => {
1492                                                                 if let Some(mut descriptor) = peers.node_id_to_descriptor.remove(node_id) {
1493                                                                         if let Some(mut peer) = peers.peers.remove(&descriptor) {
1494                                                                                 if let Some(ref msg) = *msg {
1495                                                                                         log_trace!(self.logger, "Handling DisconnectPeer HandleError event in peer_handler for node {} with message {}",
1496                                                                                                         log_pubkey!(node_id),
1497                                                                                                         msg.data);
1498                                                                                         self.enqueue_message(&mut peer, msg);
1499                                                                                         // This isn't guaranteed to work, but if there is enough free
1500                                                                                         // room in the send buffer, put the error message there...
1501                                                                                         self.do_attempt_write_data(&mut descriptor, &mut peer);
1502                                                                                 } else {
1503                                                                                         log_gossip!(self.logger, "Handling DisconnectPeer HandleError event in peer_handler for node {} with no message", log_pubkey!(node_id));
1504                                                                                 }
1505                                                                         }
1506                                                                         descriptor.disconnect_socket();
1507                                                                         self.message_handler.chan_handler.peer_disconnected(&node_id, false);
1508                                                                 }
1509                                                         },
1510                                                         msgs::ErrorAction::IgnoreAndLog(level) => {
1511                                                                 log_given_level!(self.logger, level, "Received a HandleError event to be ignored for node {}", log_pubkey!(node_id));
1512                                                         },
1513                                                         msgs::ErrorAction::IgnoreDuplicateGossip => {},
1514                                                         msgs::ErrorAction::IgnoreError => {
1515                                                                 log_debug!(self.logger, "Received a HandleError event to be ignored for node {}", log_pubkey!(node_id));
1516                                                         },
1517                                                         msgs::ErrorAction::SendErrorMessage { ref msg } => {
1518                                                                 log_trace!(self.logger, "Handling SendErrorMessage HandleError event in peer_handler for node {} with message {}",
1519                                                                                 log_pubkey!(node_id),
1520                                                                                 msg.data);
1521                                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1522                                                         },
1523                                                         msgs::ErrorAction::SendWarningMessage { ref msg, ref log_level } => {
1524                                                                 log_given_level!(self.logger, *log_level, "Handling SendWarningMessage HandleError event in peer_handler for node {} with message {}",
1525                                                                                 log_pubkey!(node_id),
1526                                                                                 msg.data);
1527                                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1528                                                         },
1529                                                 }
1530                                         },
1531                                         MessageSendEvent::SendChannelRangeQuery { ref node_id, ref msg } => {
1532                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1533                                         },
1534                                         MessageSendEvent::SendShortIdsQuery { ref node_id, ref msg } => {
1535                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1536                                         }
1537                                         MessageSendEvent::SendReplyChannelRange { ref node_id, ref msg } => {
1538                                                 log_gossip!(self.logger, "Handling SendReplyChannelRange event in peer_handler for node {} with num_scids={} first_blocknum={} number_of_blocks={}, sync_complete={}",
1539                                                         log_pubkey!(node_id),
1540                                                         msg.short_channel_ids.len(),
1541                                                         msg.first_blocknum,
1542                                                         msg.number_of_blocks,
1543                                                         msg.sync_complete);
1544                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1545                                         }
1546                                         MessageSendEvent::SendGossipTimestampFilter { ref node_id, ref msg } => {
1547                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1548                                         }
1549                                 }
1550                         }
1551
1552                         for (node_id, msg) in self.custom_message_handler.get_and_clear_pending_msg() {
1553                                 self.enqueue_message(get_peer_for_forwarding!(&node_id), &msg);
1554                         }
1555
1556                         for (descriptor, peer) in peers.peers.iter_mut() {
1557                                 self.do_attempt_write_data(&mut (*descriptor).clone(), peer);
1558                         }
1559                 }
1560         }
1561
1562         /// Indicates that the given socket descriptor's connection is now closed.
1563         pub fn socket_disconnected(&self, descriptor: &Descriptor) {
1564                 self.disconnect_event_internal(descriptor, false);
1565         }
1566
1567         fn disconnect_event_internal(&self, descriptor: &Descriptor, no_connection_possible: bool) {
1568                 let mut peers = self.peers.lock().unwrap();
1569                 let peer_option = peers.peers.remove(descriptor);
1570                 match peer_option {
1571                         None => {
1572                                 // This is most likely a simple race condition where the user found that the socket
1573                                 // was disconnected, then we told the user to `disconnect_socket()`, then they
1574                                 // called this method. Either way we're disconnected, return.
1575                         },
1576                         Some(peer) => {
1577                                 match peer.their_node_id {
1578                                         Some(node_id) => {
1579                                                 log_trace!(self.logger,
1580                                                         "Handling disconnection of peer {}, with {}future connection to the peer possible.",
1581                                                         log_pubkey!(node_id), if no_connection_possible { "no " } else { "" });
1582                                                 peers.node_id_to_descriptor.remove(&node_id);
1583                                                 self.message_handler.chan_handler.peer_disconnected(&node_id, no_connection_possible);
1584                                         },
1585                                         None => {}
1586                                 }
1587                         }
1588                 };
1589         }
1590
1591         /// Disconnect a peer given its node id.
1592         ///
1593         /// Set `no_connection_possible` to true to prevent any further connection with this peer,
1594         /// force-closing any channels we have with it.
1595         ///
1596         /// If a peer is connected, this will call [`disconnect_socket`] on the descriptor for the
1597         /// peer. Thus, be very careful about reentrancy issues.
1598         ///
1599         /// [`disconnect_socket`]: SocketDescriptor::disconnect_socket
1600         pub fn disconnect_by_node_id(&self, node_id: PublicKey, no_connection_possible: bool) {
1601                 let mut peers_lock = self.peers.lock().unwrap();
1602                 if let Some(mut descriptor) = peers_lock.node_id_to_descriptor.remove(&node_id) {
1603                         log_trace!(self.logger, "Disconnecting peer with id {} due to client request", node_id);
1604                         peers_lock.peers.remove(&descriptor);
1605                         self.message_handler.chan_handler.peer_disconnected(&node_id, no_connection_possible);
1606                         descriptor.disconnect_socket();
1607                 }
1608         }
1609
1610         /// Disconnects all currently-connected peers. This is useful on platforms where there may be
1611         /// an indication that TCP sockets have stalled even if we weren't around to time them out
1612         /// using regular ping/pongs.
1613         pub fn disconnect_all_peers(&self) {
1614                 let mut peers_lock = self.peers.lock().unwrap();
1615                 let peers = &mut *peers_lock;
1616                 for (mut descriptor, peer) in peers.peers.drain() {
1617                         if let Some(node_id) = peer.their_node_id {
1618                                 log_trace!(self.logger, "Disconnecting peer with id {} due to client request to disconnect all peers", node_id);
1619                                 peers.node_id_to_descriptor.remove(&node_id);
1620                                 self.message_handler.chan_handler.peer_disconnected(&node_id, false);
1621                         }
1622                         descriptor.disconnect_socket();
1623                 }
1624                 debug_assert!(peers.node_id_to_descriptor.is_empty());
1625         }
1626
1627         /// This is called when we're blocked on sending additional gossip messages until we receive a
1628         /// pong. If we aren't waiting on a pong, we take this opportunity to send a ping (setting
1629         /// `awaiting_pong_timer_tick_intervals` to a special flag value to indicate this).
1630         fn maybe_send_extra_ping(&self, peer: &mut Peer) {
1631                 if peer.awaiting_pong_timer_tick_intervals == 0 {
1632                         peer.awaiting_pong_timer_tick_intervals = -1;
1633                         let ping = msgs::Ping {
1634                                 ponglen: 0,
1635                                 byteslen: 64,
1636                         };
1637                         self.enqueue_message(peer, &ping);
1638                 }
1639         }
1640
1641         /// Send pings to each peer and disconnect those which did not respond to the last round of
1642         /// pings.
1643         ///
1644         /// This may be called on any timescale you want, however, roughly once every ten seconds is
1645         /// preferred. The call rate determines both how often we send a ping to our peers and how much
1646         /// time they have to respond before we disconnect them.
1647         ///
1648         /// May call [`send_data`] on all [`SocketDescriptor`]s. Thus, be very careful with reentrancy
1649         /// issues!
1650         ///
1651         /// [`send_data`]: SocketDescriptor::send_data
1652         pub fn timer_tick_occurred(&self) {
1653                 let mut peers_lock = self.peers.lock().unwrap();
1654                 {
1655                         let peers = &mut *peers_lock;
1656                         let node_id_to_descriptor = &mut peers.node_id_to_descriptor;
1657                         let peers = &mut peers.peers;
1658                         let mut descriptors_needing_disconnect = Vec::new();
1659                         let peer_count = peers.len();
1660
1661                         peers.retain(|descriptor, peer| {
1662                                 let mut do_disconnect_peer = false;
1663                                 if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_node_id.is_none() {
1664                                         // The peer needs to complete its handshake before we can exchange messages. We
1665                                         // give peers one timer tick to complete handshake, reusing
1666                                         // `awaiting_pong_timer_tick_intervals` to track number of timer ticks taken
1667                                         // for handshake completion.
1668                                         if peer.awaiting_pong_timer_tick_intervals != 0 {
1669                                                 do_disconnect_peer = true;
1670                                         } else {
1671                                                 peer.awaiting_pong_timer_tick_intervals = 1;
1672                                                 return true;
1673                                         }
1674                                 }
1675
1676                                 if peer.awaiting_pong_timer_tick_intervals == -1 {
1677                                         // Magic value set in `maybe_send_extra_ping`.
1678                                         peer.awaiting_pong_timer_tick_intervals = 1;
1679                                         peer.received_message_since_timer_tick = false;
1680                                         return true;
1681                                 }
1682
1683                                 if do_disconnect_peer
1684                                         || (peer.awaiting_pong_timer_tick_intervals > 0 && !peer.received_message_since_timer_tick)
1685                                         || peer.awaiting_pong_timer_tick_intervals as u64 >
1686                                                 MAX_BUFFER_DRAIN_TICK_INTERVALS_PER_PEER as u64 * peer_count as u64
1687                                 {
1688                                         descriptors_needing_disconnect.push(descriptor.clone());
1689                                         match peer.their_node_id {
1690                                                 Some(node_id) => {
1691                                                         log_trace!(self.logger, "Disconnecting peer with id {} due to ping timeout", node_id);
1692                                                         node_id_to_descriptor.remove(&node_id);
1693                                                         self.message_handler.chan_handler.peer_disconnected(&node_id, false);
1694                                                 }
1695                                                 None => {},
1696                                         }
1697                                         return false;
1698                                 }
1699                                 peer.received_message_since_timer_tick = false;
1700
1701                                 if peer.awaiting_pong_timer_tick_intervals > 0 {
1702                                         peer.awaiting_pong_timer_tick_intervals += 1;
1703                                         return true;
1704                                 }
1705
1706                                 peer.awaiting_pong_timer_tick_intervals = 1;
1707                                 let ping = msgs::Ping {
1708                                         ponglen: 0,
1709                                         byteslen: 64,
1710                                 };
1711                                 self.enqueue_message(peer, &ping);
1712                                 self.do_attempt_write_data(&mut (descriptor.clone()), &mut *peer);
1713
1714                                 true
1715                         });
1716
1717                         for mut descriptor in descriptors_needing_disconnect.drain(..) {
1718                                 descriptor.disconnect_socket();
1719                         }
1720                 }
1721         }
1722 }
1723
1724 fn is_gossip_msg(type_id: u16) -> bool {
1725         match type_id {
1726                 msgs::ChannelAnnouncement::TYPE |
1727                 msgs::ChannelUpdate::TYPE |
1728                 msgs::NodeAnnouncement::TYPE |
1729                 msgs::QueryChannelRange::TYPE |
1730                 msgs::ReplyChannelRange::TYPE |
1731                 msgs::QueryShortChannelIds::TYPE |
1732                 msgs::ReplyShortChannelIdsEnd::TYPE => true,
1733                 _ => false
1734         }
1735 }
1736
1737 #[cfg(test)]
1738 mod tests {
1739         use ln::peer_handler::{PeerManager, MessageHandler, SocketDescriptor, IgnoringMessageHandler, filter_addresses};
1740         use ln::msgs;
1741         use ln::msgs::NetAddress;
1742         use util::events;
1743         use util::test_utils;
1744
1745         use bitcoin::secp256k1::Secp256k1;
1746         use bitcoin::secp256k1::key::{SecretKey, PublicKey};
1747
1748         use prelude::*;
1749         use sync::{Arc, Mutex};
1750         use core::sync::atomic::Ordering;
1751
1752         #[derive(Clone)]
1753         struct FileDescriptor {
1754                 fd: u16,
1755                 outbound_data: Arc<Mutex<Vec<u8>>>,
1756         }
1757         impl PartialEq for FileDescriptor {
1758                 fn eq(&self, other: &Self) -> bool {
1759                         self.fd == other.fd
1760                 }
1761         }
1762         impl Eq for FileDescriptor { }
1763         impl core::hash::Hash for FileDescriptor {
1764                 fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
1765                         self.fd.hash(hasher)
1766                 }
1767         }
1768
1769         impl SocketDescriptor for FileDescriptor {
1770                 fn send_data(&mut self, data: &[u8], _resume_read: bool) -> usize {
1771                         self.outbound_data.lock().unwrap().extend_from_slice(data);
1772                         data.len()
1773                 }
1774
1775                 fn disconnect_socket(&mut self) {}
1776         }
1777
1778         struct PeerManagerCfg {
1779                 chan_handler: test_utils::TestChannelMessageHandler,
1780                 routing_handler: test_utils::TestRoutingMessageHandler,
1781                 logger: test_utils::TestLogger,
1782         }
1783
1784         fn create_peermgr_cfgs(peer_count: usize) -> Vec<PeerManagerCfg> {
1785                 let mut cfgs = Vec::new();
1786                 for _ in 0..peer_count {
1787                         cfgs.push(
1788                                 PeerManagerCfg{
1789                                         chan_handler: test_utils::TestChannelMessageHandler::new(),
1790                                         logger: test_utils::TestLogger::new(),
1791                                         routing_handler: test_utils::TestRoutingMessageHandler::new(),
1792                                 }
1793                         );
1794                 }
1795
1796                 cfgs
1797         }
1798
1799         fn create_network<'a>(peer_count: usize, cfgs: &'a Vec<PeerManagerCfg>) -> Vec<PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, &'a test_utils::TestLogger, IgnoringMessageHandler>> {
1800                 let mut peers = Vec::new();
1801                 for i in 0..peer_count {
1802                         let node_secret = SecretKey::from_slice(&[42 + i as u8; 32]).unwrap();
1803                         let ephemeral_bytes = [i as u8; 32];
1804                         let msg_handler = MessageHandler { chan_handler: &cfgs[i].chan_handler, route_handler: &cfgs[i].routing_handler };
1805                         let peer = PeerManager::new(msg_handler, node_secret, &ephemeral_bytes, &cfgs[i].logger, IgnoringMessageHandler {});
1806                         peers.push(peer);
1807                 }
1808
1809                 peers
1810         }
1811
1812         fn establish_connection<'a>(peer_a: &PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, &'a test_utils::TestLogger, IgnoringMessageHandler>, peer_b: &PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, &'a test_utils::TestLogger, IgnoringMessageHandler>) -> (FileDescriptor, FileDescriptor) {
1813                 let secp_ctx = Secp256k1::new();
1814                 let a_id = PublicKey::from_secret_key(&secp_ctx, &peer_a.our_node_secret);
1815                 let mut fd_a = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
1816                 let mut fd_b = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
1817                 let initial_data = peer_b.new_outbound_connection(a_id, fd_b.clone(), None).unwrap();
1818                 peer_a.new_inbound_connection(fd_a.clone(), None).unwrap();
1819                 assert_eq!(peer_a.read_event(&mut fd_a, &initial_data).unwrap(), false);
1820                 peer_a.process_events();
1821                 assert_eq!(peer_b.read_event(&mut fd_b, &fd_a.outbound_data.lock().unwrap().split_off(0)).unwrap(), false);
1822                 peer_b.process_events();
1823                 assert_eq!(peer_a.read_event(&mut fd_a, &fd_b.outbound_data.lock().unwrap().split_off(0)).unwrap(), false);
1824                 peer_a.process_events();
1825                 assert_eq!(peer_b.read_event(&mut fd_b, &fd_a.outbound_data.lock().unwrap().split_off(0)).unwrap(), false);
1826                 (fd_a.clone(), fd_b.clone())
1827         }
1828
1829         #[test]
1830         fn test_disconnect_peer() {
1831                 // Simple test which builds a network of PeerManager, connects and brings them to NoiseState::Finished and
1832                 // push a DisconnectPeer event to remove the node flagged by id
1833                 let cfgs = create_peermgr_cfgs(2);
1834                 let chan_handler = test_utils::TestChannelMessageHandler::new();
1835                 let mut peers = create_network(2, &cfgs);
1836                 establish_connection(&peers[0], &peers[1]);
1837                 assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 1);
1838
1839                 let secp_ctx = Secp256k1::new();
1840                 let their_id = PublicKey::from_secret_key(&secp_ctx, &peers[1].our_node_secret);
1841
1842                 chan_handler.pending_events.lock().unwrap().push(events::MessageSendEvent::HandleError {
1843                         node_id: their_id,
1844                         action: msgs::ErrorAction::DisconnectPeer { msg: None },
1845                 });
1846                 assert_eq!(chan_handler.pending_events.lock().unwrap().len(), 1);
1847                 peers[0].message_handler.chan_handler = &chan_handler;
1848
1849                 peers[0].process_events();
1850                 assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 0);
1851         }
1852
1853         #[test]
1854         fn test_timer_tick_occurred() {
1855                 // Create peers, a vector of two peer managers, perform initial set up and check that peers[0] has one Peer.
1856                 let cfgs = create_peermgr_cfgs(2);
1857                 let peers = create_network(2, &cfgs);
1858                 establish_connection(&peers[0], &peers[1]);
1859                 assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 1);
1860
1861                 // peers[0] awaiting_pong is set to true, but the Peer is still connected
1862                 peers[0].timer_tick_occurred();
1863                 peers[0].process_events();
1864                 assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 1);
1865
1866                 // Since timer_tick_occurred() is called again when awaiting_pong is true, all Peers are disconnected
1867                 peers[0].timer_tick_occurred();
1868                 peers[0].process_events();
1869                 assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 0);
1870         }
1871
1872         #[test]
1873         fn test_do_attempt_write_data() {
1874                 // Create 2 peers with custom TestRoutingMessageHandlers and connect them.
1875                 let cfgs = create_peermgr_cfgs(2);
1876                 cfgs[0].routing_handler.request_full_sync.store(true, Ordering::Release);
1877                 cfgs[1].routing_handler.request_full_sync.store(true, Ordering::Release);
1878                 let peers = create_network(2, &cfgs);
1879
1880                 // By calling establish_connect, we trigger do_attempt_write_data between
1881                 // the peers. Previously this function would mistakenly enter an infinite loop
1882                 // when there were more channel messages available than could fit into a peer's
1883                 // buffer. This issue would now be detected by this test (because we use custom
1884                 // RoutingMessageHandlers that intentionally return more channel messages
1885                 // than can fit into a peer's buffer).
1886                 let (mut fd_a, mut fd_b) = establish_connection(&peers[0], &peers[1]);
1887
1888                 // Make each peer to read the messages that the other peer just wrote to them. Note that
1889                 // due to the max-message-before-ping limits this may take a few iterations to complete.
1890                 for _ in 0..150/super::BUFFER_DRAIN_MSGS_PER_TICK + 1 {
1891                         peers[1].process_events();
1892                         let a_read_data = fd_b.outbound_data.lock().unwrap().split_off(0);
1893                         assert!(!a_read_data.is_empty());
1894
1895                         peers[0].read_event(&mut fd_a, &a_read_data).unwrap();
1896                         peers[0].process_events();
1897
1898                         let b_read_data = fd_a.outbound_data.lock().unwrap().split_off(0);
1899                         assert!(!b_read_data.is_empty());
1900                         peers[1].read_event(&mut fd_b, &b_read_data).unwrap();
1901
1902                         peers[0].process_events();
1903                         assert_eq!(fd_a.outbound_data.lock().unwrap().len(), 0, "Until A receives data, it shouldn't send more messages");
1904                 }
1905
1906                 // Check that each peer has received the expected number of channel updates and channel
1907                 // announcements.
1908                 assert_eq!(cfgs[0].routing_handler.chan_upds_recvd.load(Ordering::Acquire), 100);
1909                 assert_eq!(cfgs[0].routing_handler.chan_anns_recvd.load(Ordering::Acquire), 50);
1910                 assert_eq!(cfgs[1].routing_handler.chan_upds_recvd.load(Ordering::Acquire), 100);
1911                 assert_eq!(cfgs[1].routing_handler.chan_anns_recvd.load(Ordering::Acquire), 50);
1912         }
1913
1914         #[test]
1915         fn test_handshake_timeout() {
1916                 // Tests that we time out a peer still waiting on handshake completion after a full timer
1917                 // tick.
1918                 let cfgs = create_peermgr_cfgs(2);
1919                 cfgs[0].routing_handler.request_full_sync.store(true, Ordering::Release);
1920                 cfgs[1].routing_handler.request_full_sync.store(true, Ordering::Release);
1921                 let peers = create_network(2, &cfgs);
1922
1923                 let secp_ctx = Secp256k1::new();
1924                 let a_id = PublicKey::from_secret_key(&secp_ctx, &peers[0].our_node_secret);
1925                 let mut fd_a = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
1926                 let mut fd_b = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
1927                 let initial_data = peers[1].new_outbound_connection(a_id, fd_b.clone(), None).unwrap();
1928                 peers[0].new_inbound_connection(fd_a.clone(), None).unwrap();
1929
1930                 // If we get a single timer tick before completion, that's fine
1931                 assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 1);
1932                 peers[0].timer_tick_occurred();
1933                 assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 1);
1934
1935                 assert_eq!(peers[0].read_event(&mut fd_a, &initial_data).unwrap(), false);
1936                 peers[0].process_events();
1937                 assert_eq!(peers[1].read_event(&mut fd_b, &fd_a.outbound_data.lock().unwrap().split_off(0)).unwrap(), false);
1938                 peers[1].process_events();
1939
1940                 // ...but if we get a second timer tick, we should disconnect the peer
1941                 peers[0].timer_tick_occurred();
1942                 assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 0);
1943
1944                 assert!(peers[0].read_event(&mut fd_a, &fd_b.outbound_data.lock().unwrap().split_off(0)).is_err());
1945         }
1946
1947         #[test]
1948         fn test_filter_addresses(){
1949                 // Tests the filter_addresses function.
1950
1951                 // For (10/8)
1952                 let ip_address = NetAddress::IPv4{addr: [10, 0, 0, 0], port: 1000};
1953                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
1954                 let ip_address = NetAddress::IPv4{addr: [10, 0, 255, 201], port: 1000};
1955                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
1956                 let ip_address = NetAddress::IPv4{addr: [10, 255, 255, 255], port: 1000};
1957                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
1958
1959                 // For (0/8)
1960                 let ip_address = NetAddress::IPv4{addr: [0, 0, 0, 0], port: 1000};
1961                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
1962                 let ip_address = NetAddress::IPv4{addr: [0, 0, 255, 187], port: 1000};
1963                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
1964                 let ip_address = NetAddress::IPv4{addr: [0, 255, 255, 255], port: 1000};
1965                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
1966
1967                 // For (100.64/10)
1968                 let ip_address = NetAddress::IPv4{addr: [100, 64, 0, 0], port: 1000};
1969                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
1970                 let ip_address = NetAddress::IPv4{addr: [100, 78, 255, 0], port: 1000};
1971                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
1972                 let ip_address = NetAddress::IPv4{addr: [100, 127, 255, 255], port: 1000};
1973                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
1974
1975                 // For (127/8)
1976                 let ip_address = NetAddress::IPv4{addr: [127, 0, 0, 0], port: 1000};
1977                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
1978                 let ip_address = NetAddress::IPv4{addr: [127, 65, 73, 0], port: 1000};
1979                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
1980                 let ip_address = NetAddress::IPv4{addr: [127, 255, 255, 255], port: 1000};
1981                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
1982
1983                 // For (169.254/16)
1984                 let ip_address = NetAddress::IPv4{addr: [169, 254, 0, 0], port: 1000};
1985                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
1986                 let ip_address = NetAddress::IPv4{addr: [169, 254, 221, 101], port: 1000};
1987                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
1988                 let ip_address = NetAddress::IPv4{addr: [169, 254, 255, 255], port: 1000};
1989                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
1990
1991                 // For (172.16/12)
1992                 let ip_address = NetAddress::IPv4{addr: [172, 16, 0, 0], port: 1000};
1993                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
1994                 let ip_address = NetAddress::IPv4{addr: [172, 27, 101, 23], port: 1000};
1995                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
1996                 let ip_address = NetAddress::IPv4{addr: [172, 31, 255, 255], port: 1000};
1997                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
1998
1999                 // For (192.168/16)
2000                 let ip_address = NetAddress::IPv4{addr: [192, 168, 0, 0], port: 1000};
2001                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2002                 let ip_address = NetAddress::IPv4{addr: [192, 168, 205, 159], port: 1000};
2003                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2004                 let ip_address = NetAddress::IPv4{addr: [192, 168, 255, 255], port: 1000};
2005                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2006
2007                 // For (192.88.99/24)
2008                 let ip_address = NetAddress::IPv4{addr: [192, 88, 99, 0], port: 1000};
2009                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2010                 let ip_address = NetAddress::IPv4{addr: [192, 88, 99, 140], port: 1000};
2011                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2012                 let ip_address = NetAddress::IPv4{addr: [192, 88, 99, 255], port: 1000};
2013                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2014
2015                 // For other IPv4 addresses
2016                 let ip_address = NetAddress::IPv4{addr: [188, 255, 99, 0], port: 1000};
2017                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2018                 let ip_address = NetAddress::IPv4{addr: [123, 8, 129, 14], port: 1000};
2019                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2020                 let ip_address = NetAddress::IPv4{addr: [2, 88, 9, 255], port: 1000};
2021                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2022
2023                 // For (2000::/3)
2024                 let ip_address = NetAddress::IPv6{addr: [32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], port: 1000};
2025                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2026                 let ip_address = NetAddress::IPv6{addr: [45, 34, 209, 190, 0, 123, 55, 34, 0, 0, 3, 27, 201, 0, 0, 0], port: 1000};
2027                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2028                 let ip_address = NetAddress::IPv6{addr: [63, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255], port: 1000};
2029                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2030
2031                 // For other IPv6 addresses
2032                 let ip_address = NetAddress::IPv6{addr: [24, 240, 12, 32, 0, 0, 0, 0, 20, 97, 0, 32, 121, 254, 0, 0], port: 1000};
2033                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2034                 let ip_address = NetAddress::IPv6{addr: [68, 23, 56, 63, 0, 0, 2, 7, 75, 109, 0, 39, 0, 0, 0, 0], port: 1000};
2035                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2036                 let ip_address = NetAddress::IPv6{addr: [101, 38, 140, 230, 100, 0, 30, 98, 0, 26, 0, 0, 57, 96, 0, 0], port: 1000};
2037                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2038
2039                 // For (None)
2040                 assert_eq!(filter_addresses(None), None);
2041         }
2042 }