2226e9574b1ae82cfc7f4387b4ecfe02b9b19537
[rust-lightning] / lightning / src / ln / peer_handler.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! Top level peer message handling and socket handling logic lives here.
11 //!
12 //! Instead of actually servicing sockets ourselves we require that you implement the
13 //! SocketDescriptor interface and use that to receive actions which you should perform on the
14 //! socket, and call into PeerManager with bytes read from the socket. The PeerManager will then
15 //! call into the provided message handlers (probably a ChannelManager and NetGraphmsgHandler) with messages
16 //! they should handle, and encoding/sending response messages.
17
18 use bitcoin::secp256k1::key::{SecretKey,PublicKey};
19
20 use ln::features::InitFeatures;
21 use ln::msgs;
22 use ln::msgs::{ChannelMessageHandler, LightningError, NetAddress, RoutingMessageHandler};
23 use ln::channelmanager::{SimpleArcChannelManager, SimpleRefChannelManager};
24 use util::ser::{VecWriter, Writeable, Writer};
25 use ln::peer_channel_encryptor::{PeerChannelEncryptor,NextNoiseStep};
26 use ln::wire;
27 use ln::wire::Encode;
28 use util::atomic_counter::AtomicCounter;
29 use util::events::{MessageSendEvent, MessageSendEventsProvider};
30 use util::logger::Logger;
31 use routing::network_graph::{NetworkGraph, NetGraphMsgHandler};
32
33 use prelude::*;
34 use io;
35 use alloc::collections::LinkedList;
36 use sync::{Arc, Mutex, MutexGuard, RwLock};
37 use core::{cmp, hash, fmt, mem};
38 use core::ops::Deref;
39 use core::convert::Infallible;
40 #[cfg(feature = "std")] use std::error;
41
42 use bitcoin::hashes::sha256::Hash as Sha256;
43 use bitcoin::hashes::sha256::HashEngine as Sha256Engine;
44 use bitcoin::hashes::{HashEngine, Hash};
45
46 /// Handler for BOLT1-compliant messages.
47 pub trait CustomMessageHandler: wire::CustomMessageReader {
48         /// Called with the message type that was received and the buffer to be read.
49         /// Can return a `MessageHandlingError` if the message could not be handled.
50         fn handle_custom_message(&self, msg: Self::CustomMessage, sender_node_id: &PublicKey) -> Result<(), LightningError>;
51
52         /// Gets the list of pending messages which were generated by the custom message
53         /// handler, clearing the list in the process. The first tuple element must
54         /// correspond to the intended recipients node ids. If no connection to one of the
55         /// specified node does not exist, the message is simply not sent to it.
56         fn get_and_clear_pending_msg(&self) -> Vec<(PublicKey, Self::CustomMessage)>;
57 }
58
59 /// A dummy struct which implements `RoutingMessageHandler` without storing any routing information
60 /// or doing any processing. You can provide one of these as the route_handler in a MessageHandler.
61 pub struct IgnoringMessageHandler{}
62 impl MessageSendEventsProvider for IgnoringMessageHandler {
63         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> { Vec::new() }
64 }
65 impl RoutingMessageHandler for IgnoringMessageHandler {
66         fn handle_node_announcement(&self, _msg: &msgs::NodeAnnouncement) -> Result<bool, LightningError> { Ok(false) }
67         fn handle_channel_announcement(&self, _msg: &msgs::ChannelAnnouncement) -> Result<bool, LightningError> { Ok(false) }
68         fn handle_channel_update(&self, _msg: &msgs::ChannelUpdate) -> Result<bool, LightningError> { Ok(false) }
69         fn get_next_channel_announcements(&self, _starting_point: u64, _batch_amount: u8) ->
70                 Vec<(msgs::ChannelAnnouncement, Option<msgs::ChannelUpdate>, Option<msgs::ChannelUpdate>)> { Vec::new() }
71         fn get_next_node_announcements(&self, _starting_point: Option<&PublicKey>, _batch_amount: u8) -> Vec<msgs::NodeAnnouncement> { Vec::new() }
72         fn peer_connected(&self, _their_node_id: &PublicKey, _init: &msgs::Init) {}
73         fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: msgs::ReplyChannelRange) -> Result<(), LightningError> { Ok(()) }
74         fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: msgs::ReplyShortChannelIdsEnd) -> Result<(), LightningError> { Ok(()) }
75         fn handle_query_channel_range(&self, _their_node_id: &PublicKey, _msg: msgs::QueryChannelRange) -> Result<(), LightningError> { Ok(()) }
76         fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: msgs::QueryShortChannelIds) -> Result<(), LightningError> { Ok(()) }
77 }
78 impl Deref for IgnoringMessageHandler {
79         type Target = IgnoringMessageHandler;
80         fn deref(&self) -> &Self { self }
81 }
82
83 // Implement Type for Infallible, note that it cannot be constructed, and thus you can never call a
84 // method that takes self for it.
85 impl wire::Type for Infallible {
86         fn type_id(&self) -> u16 {
87                 unreachable!();
88         }
89 }
90 impl Writeable for Infallible {
91         fn write<W: Writer>(&self, _: &mut W) -> Result<(), io::Error> {
92                 unreachable!();
93         }
94 }
95
96 impl wire::CustomMessageReader for IgnoringMessageHandler {
97         type CustomMessage = Infallible;
98         fn read<R: io::Read>(&self, _message_type: u16, _buffer: &mut R) -> Result<Option<Self::CustomMessage>, msgs::DecodeError> {
99                 Ok(None)
100         }
101 }
102
103 impl CustomMessageHandler for IgnoringMessageHandler {
104         fn handle_custom_message(&self, _msg: Infallible, _sender_node_id: &PublicKey) -> Result<(), LightningError> {
105                 // Since we always return `None` in the read the handle method should never be called.
106                 unreachable!();
107         }
108
109         fn get_and_clear_pending_msg(&self) -> Vec<(PublicKey, Self::CustomMessage)> { Vec::new() }
110 }
111
112 /// A dummy struct which implements `ChannelMessageHandler` without having any channels.
113 /// You can provide one of these as the route_handler in a MessageHandler.
114 pub struct ErroringMessageHandler {
115         message_queue: Mutex<Vec<MessageSendEvent>>
116 }
117 impl ErroringMessageHandler {
118         /// Constructs a new ErroringMessageHandler
119         pub fn new() -> Self {
120                 Self { message_queue: Mutex::new(Vec::new()) }
121         }
122         fn push_error(&self, node_id: &PublicKey, channel_id: [u8; 32]) {
123                 self.message_queue.lock().unwrap().push(MessageSendEvent::HandleError {
124                         action: msgs::ErrorAction::SendErrorMessage {
125                                 msg: msgs::ErrorMessage { channel_id, data: "We do not support channel messages, sorry.".to_owned() },
126                         },
127                         node_id: node_id.clone(),
128                 });
129         }
130 }
131 impl MessageSendEventsProvider for ErroringMessageHandler {
132         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
133                 let mut res = Vec::new();
134                 mem::swap(&mut res, &mut self.message_queue.lock().unwrap());
135                 res
136         }
137 }
138 impl ChannelMessageHandler for ErroringMessageHandler {
139         // Any messages which are related to a specific channel generate an error message to let the
140         // peer know we don't care about channels.
141         fn handle_open_channel(&self, their_node_id: &PublicKey, _their_features: InitFeatures, msg: &msgs::OpenChannel) {
142                 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
143         }
144         fn handle_accept_channel(&self, their_node_id: &PublicKey, _their_features: InitFeatures, msg: &msgs::AcceptChannel) {
145                 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
146         }
147         fn handle_funding_created(&self, their_node_id: &PublicKey, msg: &msgs::FundingCreated) {
148                 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
149         }
150         fn handle_funding_signed(&self, their_node_id: &PublicKey, msg: &msgs::FundingSigned) {
151                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
152         }
153         fn handle_funding_locked(&self, their_node_id: &PublicKey, msg: &msgs::FundingLocked) {
154                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
155         }
156         fn handle_shutdown(&self, their_node_id: &PublicKey, _their_features: &InitFeatures, msg: &msgs::Shutdown) {
157                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
158         }
159         fn handle_closing_signed(&self, their_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
160                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
161         }
162         fn handle_update_add_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
163                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
164         }
165         fn handle_update_fulfill_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
166                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
167         }
168         fn handle_update_fail_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
169                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
170         }
171         fn handle_update_fail_malformed_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
172                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
173         }
174         fn handle_commitment_signed(&self, their_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
175                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
176         }
177         fn handle_revoke_and_ack(&self, their_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
178                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
179         }
180         fn handle_update_fee(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFee) {
181                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
182         }
183         fn handle_announcement_signatures(&self, their_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
184                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
185         }
186         fn handle_channel_reestablish(&self, their_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
187                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
188         }
189         // msgs::ChannelUpdate does not contain the channel_id field, so we just drop them.
190         fn handle_channel_update(&self, _their_node_id: &PublicKey, _msg: &msgs::ChannelUpdate) {}
191         fn peer_disconnected(&self, _their_node_id: &PublicKey, _no_connection_possible: bool) {}
192         fn peer_connected(&self, _their_node_id: &PublicKey, _msg: &msgs::Init) {}
193         fn handle_error(&self, _their_node_id: &PublicKey, _msg: &msgs::ErrorMessage) {}
194 }
195 impl Deref for ErroringMessageHandler {
196         type Target = ErroringMessageHandler;
197         fn deref(&self) -> &Self { self }
198 }
199
200 /// Provides references to trait impls which handle different types of messages.
201 pub struct MessageHandler<CM: Deref, RM: Deref> where
202                 CM::Target: ChannelMessageHandler,
203                 RM::Target: RoutingMessageHandler {
204         /// A message handler which handles messages specific to channels. Usually this is just a
205         /// [`ChannelManager`] object or an [`ErroringMessageHandler`].
206         ///
207         /// [`ChannelManager`]: crate::ln::channelmanager::ChannelManager
208         pub chan_handler: CM,
209         /// A message handler which handles messages updating our knowledge of the network channel
210         /// graph. Usually this is just a [`NetGraphMsgHandler`] object or an
211         /// [`IgnoringMessageHandler`].
212         ///
213         /// [`NetGraphMsgHandler`]: crate::routing::network_graph::NetGraphMsgHandler
214         pub route_handler: RM,
215 }
216
217 /// Provides an object which can be used to send data to and which uniquely identifies a connection
218 /// to a remote host. You will need to be able to generate multiple of these which meet Eq and
219 /// implement Hash to meet the PeerManager API.
220 ///
221 /// For efficiency, Clone should be relatively cheap for this type.
222 ///
223 /// Two descriptors may compare equal (by [`cmp::Eq`] and [`hash::Hash`]) as long as the original
224 /// has been disconnected, the [`PeerManager`] has been informed of the disconnection (either by it
225 /// having triggered the disconnection or a call to [`PeerManager::socket_disconnected`]), and no
226 /// further calls to the [`PeerManager`] related to the original socket occur. This allows you to
227 /// use a file descriptor for your SocketDescriptor directly, however for simplicity you may wish
228 /// to simply use another value which is guaranteed to be globally unique instead.
229 pub trait SocketDescriptor : cmp::Eq + hash::Hash + Clone {
230         /// Attempts to send some data from the given slice to the peer.
231         ///
232         /// Returns the amount of data which was sent, possibly 0 if the socket has since disconnected.
233         /// Note that in the disconnected case, [`PeerManager::socket_disconnected`] must still be
234         /// called and further write attempts may occur until that time.
235         ///
236         /// If the returned size is smaller than `data.len()`, a
237         /// [`PeerManager::write_buffer_space_avail`] call must be made the next time more data can be
238         /// written. Additionally, until a `send_data` event completes fully, no further
239         /// [`PeerManager::read_event`] calls should be made for the same peer! Because this is to
240         /// prevent denial-of-service issues, you should not read or buffer any data from the socket
241         /// until then.
242         ///
243         /// If a [`PeerManager::read_event`] call on this descriptor had previously returned true
244         /// (indicating that read events should be paused to prevent DoS in the send buffer),
245         /// `resume_read` may be set indicating that read events on this descriptor should resume. A
246         /// `resume_read` of false carries no meaning, and should not cause any action.
247         fn send_data(&mut self, data: &[u8], resume_read: bool) -> usize;
248         /// Disconnect the socket pointed to by this SocketDescriptor.
249         ///
250         /// You do *not* need to call [`PeerManager::socket_disconnected`] with this socket after this
251         /// call (doing so is a noop).
252         fn disconnect_socket(&mut self);
253 }
254
255 /// Error for PeerManager errors. If you get one of these, you must disconnect the socket and
256 /// generate no further read_event/write_buffer_space_avail/socket_disconnected calls for the
257 /// descriptor.
258 #[derive(Clone)]
259 pub struct PeerHandleError {
260         /// Used to indicate that we probably can't make any future connections to this peer, implying
261         /// we should go ahead and force-close any channels we have with it.
262         pub no_connection_possible: bool,
263 }
264 impl fmt::Debug for PeerHandleError {
265         fn fmt(&self, formatter: &mut fmt::Formatter) -> Result<(), fmt::Error> {
266                 formatter.write_str("Peer Sent Invalid Data")
267         }
268 }
269 impl fmt::Display for PeerHandleError {
270         fn fmt(&self, formatter: &mut fmt::Formatter) -> Result<(), fmt::Error> {
271                 formatter.write_str("Peer Sent Invalid Data")
272         }
273 }
274
275 #[cfg(feature = "std")]
276 impl error::Error for PeerHandleError {
277         fn description(&self) -> &str {
278                 "Peer Sent Invalid Data"
279         }
280 }
281
282 enum InitSyncTracker{
283         NoSyncRequested,
284         ChannelsSyncing(u64),
285         NodesSyncing(PublicKey),
286 }
287
288 /// The ratio between buffer sizes at which we stop sending initial sync messages vs when we stop
289 /// forwarding gossip messages to peers altogether.
290 const FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO: usize = 2;
291
292 /// When the outbound buffer has this many messages, we'll stop reading bytes from the peer until
293 /// we have fewer than this many messages in the outbound buffer again.
294 /// We also use this as the target number of outbound gossip messages to keep in the write buffer,
295 /// refilled as we send bytes.
296 const OUTBOUND_BUFFER_LIMIT_READ_PAUSE: usize = 10;
297 /// When the outbound buffer has this many messages, we'll simply skip relaying gossip messages to
298 /// the peer.
299 const OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP: usize = OUTBOUND_BUFFER_LIMIT_READ_PAUSE * FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO;
300
301 /// If we've sent a ping, and are still awaiting a response, we may need to churn our way through
302 /// the socket receive buffer before receiving the ping.
303 ///
304 /// On a fairly old Arm64 board, with Linux defaults, this can take as long as 20 seconds, not
305 /// including any network delays, outbound traffic, or the same for messages from other peers.
306 ///
307 /// Thus, to avoid needlessly disconnecting a peer, we allow a peer to take this many timer ticks
308 /// per connected peer to respond to a ping, as long as they send us at least one message during
309 /// each tick, ensuring we aren't actually just disconnected.
310 /// With a timer tick interval of ten seconds, this translates to about 40 seconds per connected
311 /// peer.
312 ///
313 /// When we improve parallelism somewhat we should reduce this to e.g. this many timer ticks per
314 /// two connected peers, assuming most LDK-running systems have at least two cores.
315 const MAX_BUFFER_DRAIN_TICK_INTERVALS_PER_PEER: i8 = 4;
316
317 /// This is the minimum number of messages we expect a peer to be able to handle within one timer
318 /// tick. Once we have sent this many messages since the last ping, we send a ping right away to
319 /// ensures we don't just fill up our send buffer and leave the peer with too many messages to
320 /// process before the next ping.
321 const BUFFER_DRAIN_MSGS_PER_TICK: usize = 32;
322
323 struct Peer {
324         channel_encryptor: PeerChannelEncryptor,
325         their_node_id: Option<PublicKey>,
326         their_features: Option<InitFeatures>,
327         their_net_address: Option<NetAddress>,
328
329         pending_outbound_buffer: LinkedList<Vec<u8>>,
330         pending_outbound_buffer_first_msg_offset: usize,
331         awaiting_write_event: bool,
332
333         pending_read_buffer: Vec<u8>,
334         pending_read_buffer_pos: usize,
335         pending_read_is_header: bool,
336
337         sync_status: InitSyncTracker,
338
339         msgs_sent_since_pong: usize,
340         awaiting_pong_timer_tick_intervals: i8,
341         received_message_since_timer_tick: bool,
342         sent_gossip_timestamp_filter: bool,
343 }
344
345 impl Peer {
346         /// Returns true if the channel announcements/updates for the given channel should be
347         /// forwarded to this peer.
348         /// If we are sending our routing table to this peer and we have not yet sent channel
349         /// announcements/updates for the given channel_id then we will send it when we get to that
350         /// point and we shouldn't send it yet to avoid sending duplicate updates. If we've already
351         /// sent the old versions, we should send the update, and so return true here.
352         fn should_forward_channel_announcement(&self, channel_id: u64) -> bool {
353                 if self.their_features.as_ref().unwrap().supports_gossip_queries() &&
354                         !self.sent_gossip_timestamp_filter {
355                                 return false;
356                         }
357                 match self.sync_status {
358                         InitSyncTracker::NoSyncRequested => true,
359                         InitSyncTracker::ChannelsSyncing(i) => i < channel_id,
360                         InitSyncTracker::NodesSyncing(_) => true,
361                 }
362         }
363
364         /// Similar to the above, but for node announcements indexed by node_id.
365         fn should_forward_node_announcement(&self, node_id: PublicKey) -> bool {
366                 if self.their_features.as_ref().unwrap().supports_gossip_queries() &&
367                         !self.sent_gossip_timestamp_filter {
368                                 return false;
369                         }
370                 match self.sync_status {
371                         InitSyncTracker::NoSyncRequested => true,
372                         InitSyncTracker::ChannelsSyncing(_) => false,
373                         InitSyncTracker::NodesSyncing(pk) => pk < node_id,
374                 }
375         }
376 }
377
378 struct PeerHolder<Descriptor: SocketDescriptor> {
379         /// Peer is under its own mutex for sending and receiving bytes, but note that we do *not* hold
380         /// this mutex while we're processing a message. This is fine as [`PeerManager::read_event`]
381         /// requires that there be no parallel calls for a given peer, so mutual exclusion of messages
382         /// handed to the `MessageHandler`s for a given peer is already guaranteed.
383         peers: HashMap<Descriptor, Mutex<Peer>>,
384 }
385
386 /// SimpleArcPeerManager is useful when you need a PeerManager with a static lifetime, e.g.
387 /// when you're using lightning-net-tokio (since tokio::spawn requires parameters with static
388 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
389 /// SimpleRefPeerManager is the more appropriate type. Defining these type aliases prevents
390 /// issues such as overly long function definitions.
391 ///
392 /// (C-not exported) as Arcs don't make sense in bindings
393 pub type SimpleArcPeerManager<SD, M, T, F, C, L> = PeerManager<SD, Arc<SimpleArcChannelManager<M, T, F, L>>, Arc<NetGraphMsgHandler<Arc<NetworkGraph>, Arc<C>, Arc<L>>>, Arc<L>, Arc<IgnoringMessageHandler>>;
394
395 /// SimpleRefPeerManager is a type alias for a PeerManager reference, and is the reference
396 /// counterpart to the SimpleArcPeerManager type alias. Use this type by default when you don't
397 /// need a PeerManager with a static lifetime. You'll need a static lifetime in cases such as
398 /// usage of lightning-net-tokio (since tokio::spawn requires parameters with static lifetimes).
399 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
400 /// helps with issues such as long function definitions.
401 ///
402 /// (C-not exported) as Arcs don't make sense in bindings
403 pub type SimpleRefPeerManager<'a, 'b, 'c, 'd, 'e, 'f, 'g, 'h, SD, M, T, F, C, L> = PeerManager<SD, SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, M, T, F, L>, &'e NetGraphMsgHandler<&'g NetworkGraph, &'h C, &'f L>, &'f L, IgnoringMessageHandler>;
404
405 /// A PeerManager manages a set of peers, described by their [`SocketDescriptor`] and marshalls
406 /// socket events into messages which it passes on to its [`MessageHandler`].
407 ///
408 /// Locks are taken internally, so you must never assume that reentrancy from a
409 /// [`SocketDescriptor`] call back into [`PeerManager`] methods will not deadlock.
410 ///
411 /// Calls to [`read_event`] will decode relevant messages and pass them to the
412 /// [`ChannelMessageHandler`], likely doing message processing in-line. Thus, the primary form of
413 /// parallelism in Rust-Lightning is in calls to [`read_event`]. Note, however, that calls to any
414 /// [`PeerManager`] functions related to the same connection must occur only in serial, making new
415 /// calls only after previous ones have returned.
416 ///
417 /// Rather than using a plain PeerManager, it is preferable to use either a SimpleArcPeerManager
418 /// a SimpleRefPeerManager, for conciseness. See their documentation for more details, but
419 /// essentially you should default to using a SimpleRefPeerManager, and use a
420 /// SimpleArcPeerManager when you require a PeerManager with a static lifetime, such as when
421 /// you're using lightning-net-tokio.
422 ///
423 /// [`read_event`]: PeerManager::read_event
424 pub struct PeerManager<Descriptor: SocketDescriptor, CM: Deref, RM: Deref, L: Deref, CMH: Deref> where
425                 CM::Target: ChannelMessageHandler,
426                 RM::Target: RoutingMessageHandler,
427                 L::Target: Logger,
428                 CMH::Target: CustomMessageHandler {
429         message_handler: MessageHandler<CM, RM>,
430         peers: RwLock<PeerHolder<Descriptor>>,
431         /// Only add to this set when noise completes.
432         /// Locked *after* peers. When an item is removed, it must be removed with the `peers` write
433         /// lock held. Entries may be added with only the `peers` read lock held (though the
434         /// `Descriptor` value must already exist in `peers`).
435         node_id_to_descriptor: Mutex<HashMap<PublicKey, Descriptor>>,
436         our_node_secret: SecretKey,
437         ephemeral_key_midstate: Sha256Engine,
438         custom_message_handler: CMH,
439
440         peer_counter: AtomicCounter,
441
442         logger: L,
443 }
444
445 enum MessageHandlingError {
446         PeerHandleError(PeerHandleError),
447         LightningError(LightningError),
448 }
449
450 impl From<PeerHandleError> for MessageHandlingError {
451         fn from(error: PeerHandleError) -> Self {
452                 MessageHandlingError::PeerHandleError(error)
453         }
454 }
455
456 impl From<LightningError> for MessageHandlingError {
457         fn from(error: LightningError) -> Self {
458                 MessageHandlingError::LightningError(error)
459         }
460 }
461
462 macro_rules! encode_msg {
463         ($msg: expr) => {{
464                 let mut buffer = VecWriter(Vec::new());
465                 wire::write($msg, &mut buffer).unwrap();
466                 buffer.0
467         }}
468 }
469
470 impl<Descriptor: SocketDescriptor, CM: Deref, L: Deref> PeerManager<Descriptor, CM, IgnoringMessageHandler, L, IgnoringMessageHandler> where
471                 CM::Target: ChannelMessageHandler,
472                 L::Target: Logger {
473         /// Constructs a new PeerManager with the given ChannelMessageHandler. No routing message
474         /// handler is used and network graph messages are ignored.
475         ///
476         /// ephemeral_random_data is used to derive per-connection ephemeral keys and must be
477         /// cryptographically secure random bytes.
478         ///
479         /// (C-not exported) as we can't export a PeerManager with a dummy route handler
480         pub fn new_channel_only(channel_message_handler: CM, our_node_secret: SecretKey, ephemeral_random_data: &[u8; 32], logger: L) -> Self {
481                 Self::new(MessageHandler {
482                         chan_handler: channel_message_handler,
483                         route_handler: IgnoringMessageHandler{},
484                 }, our_node_secret, ephemeral_random_data, logger, IgnoringMessageHandler{})
485         }
486 }
487
488 impl<Descriptor: SocketDescriptor, RM: Deref, L: Deref> PeerManager<Descriptor, ErroringMessageHandler, RM, L, IgnoringMessageHandler> where
489                 RM::Target: RoutingMessageHandler,
490                 L::Target: Logger {
491         /// Constructs a new PeerManager with the given RoutingMessageHandler. No channel message
492         /// handler is used and messages related to channels will be ignored (or generate error
493         /// messages). Note that some other lightning implementations time-out connections after some
494         /// time if no channel is built with the peer.
495         ///
496         /// ephemeral_random_data is used to derive per-connection ephemeral keys and must be
497         /// cryptographically secure random bytes.
498         ///
499         /// (C-not exported) as we can't export a PeerManager with a dummy channel handler
500         pub fn new_routing_only(routing_message_handler: RM, our_node_secret: SecretKey, ephemeral_random_data: &[u8; 32], logger: L) -> Self {
501                 Self::new(MessageHandler {
502                         chan_handler: ErroringMessageHandler::new(),
503                         route_handler: routing_message_handler,
504                 }, our_node_secret, ephemeral_random_data, logger, IgnoringMessageHandler{})
505         }
506 }
507
508 /// A simple wrapper that optionally prints " from <pubkey>" for an optional pubkey.
509 /// This works around `format!()` taking a reference to each argument, preventing
510 /// `if let Some(node_id) = peer.their_node_id { format!(.., node_id) } else { .. }` from compiling
511 /// due to lifetime errors.
512 struct OptionalFromDebugger<'a>(&'a Option<PublicKey>);
513 impl core::fmt::Display for OptionalFromDebugger<'_> {
514         fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> Result<(), core::fmt::Error> {
515                 if let Some(node_id) = self.0 { write!(f, " from {}", log_pubkey!(node_id)) } else { Ok(()) }
516         }
517 }
518
519 /// A function used to filter out local or private addresses
520 /// https://www.iana.org./assignments/ipv4-address-space/ipv4-address-space.xhtml
521 /// https://www.iana.org/assignments/ipv6-address-space/ipv6-address-space.xhtml
522 fn filter_addresses(ip_address: Option<NetAddress>) -> Option<NetAddress> {
523         match ip_address{
524                 // For IPv4 range 10.0.0.0 - 10.255.255.255 (10/8)
525                 Some(NetAddress::IPv4{addr: [10, _, _, _], port: _}) => None,
526                 // For IPv4 range 0.0.0.0 - 0.255.255.255 (0/8)
527                 Some(NetAddress::IPv4{addr: [0, _, _, _], port: _}) => None,
528                 // For IPv4 range 100.64.0.0 - 100.127.255.255 (100.64/10)
529                 Some(NetAddress::IPv4{addr: [100, 64..=127, _, _], port: _}) => None,
530                 // For IPv4 range       127.0.0.0 - 127.255.255.255 (127/8)
531                 Some(NetAddress::IPv4{addr: [127, _, _, _], port: _}) => None,
532                 // For IPv4 range       169.254.0.0 - 169.254.255.255 (169.254/16)
533                 Some(NetAddress::IPv4{addr: [169, 254, _, _], port: _}) => None,
534                 // For IPv4 range 172.16.0.0 - 172.31.255.255 (172.16/12)
535                 Some(NetAddress::IPv4{addr: [172, 16..=31, _, _], port: _}) => None,
536                 // For IPv4 range 192.168.0.0 - 192.168.255.255 (192.168/16)
537                 Some(NetAddress::IPv4{addr: [192, 168, _, _], port: _}) => None,
538                 // For IPv4 range 192.88.99.0 - 192.88.99.255  (192.88.99/24)
539                 Some(NetAddress::IPv4{addr: [192, 88, 99, _], port: _}) => None,
540                 // For IPv6 range 2000:0000:0000:0000:0000:0000:0000:0000 - 3fff:ffff:ffff:ffff:ffff:ffff:ffff:ffff (2000::/3)
541                 Some(NetAddress::IPv6{addr: [0x20..=0x3F, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _], port: _}) => ip_address,
542                 // For remaining addresses
543                 Some(NetAddress::IPv6{addr: _, port: _}) => None,
544                 Some(..) => ip_address,
545                 None => None,
546         }
547 }
548
549 impl<Descriptor: SocketDescriptor, CM: Deref, RM: Deref, L: Deref, CMH: Deref> PeerManager<Descriptor, CM, RM, L, CMH> where
550                 CM::Target: ChannelMessageHandler,
551                 RM::Target: RoutingMessageHandler,
552                 L::Target: Logger,
553                 CMH::Target: CustomMessageHandler {
554         /// Constructs a new PeerManager with the given message handlers and node_id secret key
555         /// ephemeral_random_data is used to derive per-connection ephemeral keys and must be
556         /// cryptographically secure random bytes.
557         pub fn new(message_handler: MessageHandler<CM, RM>, our_node_secret: SecretKey, ephemeral_random_data: &[u8; 32], logger: L, custom_message_handler: CMH) -> Self {
558                 let mut ephemeral_key_midstate = Sha256::engine();
559                 ephemeral_key_midstate.input(ephemeral_random_data);
560
561                 PeerManager {
562                         message_handler,
563                         peers: RwLock::new(PeerHolder {
564                                 peers: HashMap::new(),
565                         }),
566                         node_id_to_descriptor: Mutex::new(HashMap::new()),
567                         our_node_secret,
568                         ephemeral_key_midstate,
569                         peer_counter: AtomicCounter::new(),
570                         logger,
571                         custom_message_handler,
572                 }
573         }
574
575         /// Get the list of node ids for peers which have completed the initial handshake.
576         ///
577         /// For outbound connections, this will be the same as the their_node_id parameter passed in to
578         /// new_outbound_connection, however entries will only appear once the initial handshake has
579         /// completed and we are sure the remote peer has the private key for the given node_id.
580         pub fn get_peer_node_ids(&self) -> Vec<PublicKey> {
581                 let peers = self.peers.read().unwrap();
582                 peers.peers.values().filter_map(|peer_mutex| {
583                         let p = peer_mutex.lock().unwrap();
584                         if !p.channel_encryptor.is_ready_for_encryption() || p.their_features.is_none() {
585                                 return None;
586                         }
587                         p.their_node_id
588                 }).collect()
589         }
590
591         fn get_ephemeral_key(&self) -> SecretKey {
592                 let mut ephemeral_hash = self.ephemeral_key_midstate.clone();
593                 let counter = self.peer_counter.get_increment();
594                 ephemeral_hash.input(&counter.to_le_bytes());
595                 SecretKey::from_slice(&Sha256::from_engine(ephemeral_hash).into_inner()).expect("You broke SHA-256!")
596         }
597
598         /// Indicates a new outbound connection has been established to a node with the given node_id
599         /// and an optional remote network address.
600         ///
601         /// The remote network address adds the option to report a remote IP address back to a connecting
602         /// peer using the init message.
603         /// The user should pass the remote network address of the host they are connected to.
604         ///
605         /// Note that if an Err is returned here you MUST NOT call socket_disconnected for the new
606         /// descriptor but must disconnect the connection immediately.
607         ///
608         /// Returns a small number of bytes to send to the remote node (currently always 50).
609         ///
610         /// Panics if descriptor is duplicative with some other descriptor which has not yet been
611         /// [`socket_disconnected()`].
612         ///
613         /// [`socket_disconnected()`]: PeerManager::socket_disconnected
614         pub fn new_outbound_connection(&self, their_node_id: PublicKey, descriptor: Descriptor, remote_network_address: Option<NetAddress>) -> Result<Vec<u8>, PeerHandleError> {
615                 let mut peer_encryptor = PeerChannelEncryptor::new_outbound(their_node_id.clone(), self.get_ephemeral_key());
616                 let res = peer_encryptor.get_act_one().to_vec();
617                 let pending_read_buffer = [0; 50].to_vec(); // Noise act two is 50 bytes
618
619                 let mut peers = self.peers.write().unwrap();
620                 if peers.peers.insert(descriptor, Mutex::new(Peer {
621                         channel_encryptor: peer_encryptor,
622                         their_node_id: None,
623                         their_features: None,
624                         their_net_address: remote_network_address,
625
626                         pending_outbound_buffer: LinkedList::new(),
627                         pending_outbound_buffer_first_msg_offset: 0,
628                         awaiting_write_event: false,
629
630                         pending_read_buffer,
631                         pending_read_buffer_pos: 0,
632                         pending_read_is_header: false,
633
634                         sync_status: InitSyncTracker::NoSyncRequested,
635
636                         msgs_sent_since_pong: 0,
637                         awaiting_pong_timer_tick_intervals: 0,
638                         received_message_since_timer_tick: false,
639                         sent_gossip_timestamp_filter: false,
640                 })).is_some() {
641                         panic!("PeerManager driver duplicated descriptors!");
642                 };
643                 Ok(res)
644         }
645
646         /// Indicates a new inbound connection has been established to a node with an optional remote
647         /// network address.
648         ///
649         /// The remote network address adds the option to report a remote IP address back to a connecting
650         /// peer using the init message.
651         /// The user should pass the remote network address of the host they are connected to.
652         ///
653         /// May refuse the connection by returning an Err, but will never write bytes to the remote end
654         /// (outbound connector always speaks first). Note that if an Err is returned here you MUST NOT
655         /// call socket_disconnected for the new descriptor but must disconnect the connection
656         /// immediately.
657         ///
658         /// Panics if descriptor is duplicative with some other descriptor which has not yet been
659         /// [`socket_disconnected()`].
660         ///
661         /// [`socket_disconnected()`]: PeerManager::socket_disconnected
662         pub fn new_inbound_connection(&self, descriptor: Descriptor, remote_network_address: Option<NetAddress>) -> Result<(), PeerHandleError> {
663                 let peer_encryptor = PeerChannelEncryptor::new_inbound(&self.our_node_secret);
664                 let pending_read_buffer = [0; 50].to_vec(); // Noise act one is 50 bytes
665
666                 let mut peers = self.peers.write().unwrap();
667                 if peers.peers.insert(descriptor, Mutex::new(Peer {
668                         channel_encryptor: peer_encryptor,
669                         their_node_id: None,
670                         their_features: None,
671                         their_net_address: remote_network_address,
672
673                         pending_outbound_buffer: LinkedList::new(),
674                         pending_outbound_buffer_first_msg_offset: 0,
675                         awaiting_write_event: false,
676
677                         pending_read_buffer,
678                         pending_read_buffer_pos: 0,
679                         pending_read_is_header: false,
680
681                         sync_status: InitSyncTracker::NoSyncRequested,
682
683                         msgs_sent_since_pong: 0,
684                         awaiting_pong_timer_tick_intervals: 0,
685                         received_message_since_timer_tick: false,
686                         sent_gossip_timestamp_filter: false,
687                 })).is_some() {
688                         panic!("PeerManager driver duplicated descriptors!");
689                 };
690                 Ok(())
691         }
692
693         fn do_attempt_write_data(&self, descriptor: &mut Descriptor, peer: &mut Peer) {
694                 while !peer.awaiting_write_event {
695                         if peer.pending_outbound_buffer.len() < OUTBOUND_BUFFER_LIMIT_READ_PAUSE && peer.msgs_sent_since_pong < BUFFER_DRAIN_MSGS_PER_TICK {
696                                 match peer.sync_status {
697                                         InitSyncTracker::NoSyncRequested => {},
698                                         InitSyncTracker::ChannelsSyncing(c) if c < 0xffff_ffff_ffff_ffff => {
699                                                 let steps = ((OUTBOUND_BUFFER_LIMIT_READ_PAUSE - peer.pending_outbound_buffer.len() + 2) / 3) as u8;
700                                                 let all_messages = self.message_handler.route_handler.get_next_channel_announcements(c, steps);
701                                                 for &(ref announce, ref update_a_option, ref update_b_option) in all_messages.iter() {
702                                                         self.enqueue_message(peer, announce);
703                                                         if let &Some(ref update_a) = update_a_option {
704                                                                 self.enqueue_message(peer, update_a);
705                                                         }
706                                                         if let &Some(ref update_b) = update_b_option {
707                                                                 self.enqueue_message(peer, update_b);
708                                                         }
709                                                         peer.sync_status = InitSyncTracker::ChannelsSyncing(announce.contents.short_channel_id + 1);
710                                                 }
711                                                 if all_messages.is_empty() || all_messages.len() != steps as usize {
712                                                         peer.sync_status = InitSyncTracker::ChannelsSyncing(0xffff_ffff_ffff_ffff);
713                                                 }
714                                         },
715                                         InitSyncTracker::ChannelsSyncing(c) if c == 0xffff_ffff_ffff_ffff => {
716                                                 let steps = (OUTBOUND_BUFFER_LIMIT_READ_PAUSE - peer.pending_outbound_buffer.len()) as u8;
717                                                 let all_messages = self.message_handler.route_handler.get_next_node_announcements(None, steps);
718                                                 for msg in all_messages.iter() {
719                                                         self.enqueue_message(peer, msg);
720                                                         peer.sync_status = InitSyncTracker::NodesSyncing(msg.contents.node_id);
721                                                 }
722                                                 if all_messages.is_empty() || all_messages.len() != steps as usize {
723                                                         peer.sync_status = InitSyncTracker::NoSyncRequested;
724                                                 }
725                                         },
726                                         InitSyncTracker::ChannelsSyncing(_) => unreachable!(),
727                                         InitSyncTracker::NodesSyncing(key) => {
728                                                 let steps = (OUTBOUND_BUFFER_LIMIT_READ_PAUSE - peer.pending_outbound_buffer.len()) as u8;
729                                                 let all_messages = self.message_handler.route_handler.get_next_node_announcements(Some(&key), steps);
730                                                 for msg in all_messages.iter() {
731                                                         self.enqueue_message(peer, msg);
732                                                         peer.sync_status = InitSyncTracker::NodesSyncing(msg.contents.node_id);
733                                                 }
734                                                 if all_messages.is_empty() || all_messages.len() != steps as usize {
735                                                         peer.sync_status = InitSyncTracker::NoSyncRequested;
736                                                 }
737                                         },
738                                 }
739                         }
740                         if peer.msgs_sent_since_pong >= BUFFER_DRAIN_MSGS_PER_TICK {
741                                 self.maybe_send_extra_ping(peer);
742                         }
743
744                         if {
745                                 let next_buff = match peer.pending_outbound_buffer.front() {
746                                         None => return,
747                                         Some(buff) => buff,
748                                 };
749
750                                 let should_be_reading = peer.pending_outbound_buffer.len() < OUTBOUND_BUFFER_LIMIT_READ_PAUSE;
751                                 let pending = &next_buff[peer.pending_outbound_buffer_first_msg_offset..];
752                                 let data_sent = descriptor.send_data(pending, should_be_reading);
753                                 peer.pending_outbound_buffer_first_msg_offset += data_sent;
754                                 if peer.pending_outbound_buffer_first_msg_offset == next_buff.len() { true } else { false }
755                         } {
756                                 peer.pending_outbound_buffer_first_msg_offset = 0;
757                                 peer.pending_outbound_buffer.pop_front();
758                         } else {
759                                 peer.awaiting_write_event = true;
760                         }
761                 }
762         }
763
764         /// Indicates that there is room to write data to the given socket descriptor.
765         ///
766         /// May return an Err to indicate that the connection should be closed.
767         ///
768         /// May call [`send_data`] on the descriptor passed in (or an equal descriptor) before
769         /// returning. Thus, be very careful with reentrancy issues! The invariants around calling
770         /// [`write_buffer_space_avail`] in case a write did not fully complete must still hold - be
771         /// ready to call `[write_buffer_space_avail`] again if a write call generated here isn't
772         /// sufficient!
773         ///
774         /// [`send_data`]: SocketDescriptor::send_data
775         /// [`write_buffer_space_avail`]: PeerManager::write_buffer_space_avail
776         pub fn write_buffer_space_avail(&self, descriptor: &mut Descriptor) -> Result<(), PeerHandleError> {
777                 let peers = self.peers.read().unwrap();
778                 match peers.peers.get(descriptor) {
779                         None => {
780                                 // This is most likely a simple race condition where the user found that the socket
781                                 // was writeable, then we told the user to `disconnect_socket()`, then they called
782                                 // this method. Return an error to make sure we get disconnected.
783                                 return Err(PeerHandleError { no_connection_possible: false });
784                         },
785                         Some(peer_mutex) => {
786                                 let mut peer = peer_mutex.lock().unwrap();
787                                 peer.awaiting_write_event = false;
788                                 self.do_attempt_write_data(descriptor, &mut peer);
789                         }
790                 };
791                 Ok(())
792         }
793
794         /// Indicates that data was read from the given socket descriptor.
795         ///
796         /// May return an Err to indicate that the connection should be closed.
797         ///
798         /// Will *not* call back into [`send_data`] on any descriptors to avoid reentrancy complexity.
799         /// Thus, however, you should call [`process_events`] after any `read_event` to generate
800         /// [`send_data`] calls to handle responses.
801         ///
802         /// If `Ok(true)` is returned, further read_events should not be triggered until a
803         /// [`send_data`] call on this descriptor has `resume_read` set (preventing DoS issues in the
804         /// send buffer).
805         ///
806         /// [`send_data`]: SocketDescriptor::send_data
807         /// [`process_events`]: PeerManager::process_events
808         pub fn read_event(&self, peer_descriptor: &mut Descriptor, data: &[u8]) -> Result<bool, PeerHandleError> {
809                 match self.do_read_event(peer_descriptor, data) {
810                         Ok(res) => Ok(res),
811                         Err(e) => {
812                                 log_trace!(self.logger, "Peer sent invalid data or we decided to disconnect due to a protocol error");
813                                 self.disconnect_event_internal(peer_descriptor, e.no_connection_possible);
814                                 Err(e)
815                         }
816                 }
817         }
818
819         /// Append a message to a peer's pending outbound/write buffer
820         fn enqueue_encoded_message(&self, peer: &mut Peer, encoded_message: &Vec<u8>) {
821                 peer.msgs_sent_since_pong += 1;
822                 peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encoded_message[..]));
823         }
824
825         /// Append a message to a peer's pending outbound/write buffer
826         fn enqueue_message<M: wire::Type>(&self, peer: &mut Peer, message: &M) {
827                 let mut buffer = VecWriter(Vec::with_capacity(2048));
828                 wire::write(message, &mut buffer).unwrap(); // crash if the write failed
829
830                 if is_gossip_msg(message.type_id()) {
831                         log_gossip!(self.logger, "Enqueueing message {:?} to {}", message, log_pubkey!(peer.their_node_id.unwrap()));
832                 } else {
833                         log_trace!(self.logger, "Enqueueing message {:?} to {}", message, log_pubkey!(peer.their_node_id.unwrap()))
834                 }
835                 self.enqueue_encoded_message(peer, &buffer.0);
836         }
837
838         fn do_read_event(&self, peer_descriptor: &mut Descriptor, data: &[u8]) -> Result<bool, PeerHandleError> {
839                 let mut pause_read = false;
840                 let peers = self.peers.read().unwrap();
841                 let mut msgs_to_forward = Vec::new();
842                 let mut peer_node_id = None;
843                 match peers.peers.get(peer_descriptor) {
844                         None => {
845                                 // This is most likely a simple race condition where the user read some bytes
846                                 // from the socket, then we told the user to `disconnect_socket()`, then they
847                                 // called this method. Return an error to make sure we get disconnected.
848                                 return Err(PeerHandleError { no_connection_possible: false });
849                         },
850                         Some(peer_mutex) => {
851                                 let mut read_pos = 0;
852                                 while read_pos < data.len() {
853                                         macro_rules! try_potential_handleerror {
854                                                 ($peer: expr, $thing: expr) => {
855                                                         match $thing {
856                                                                 Ok(x) => x,
857                                                                 Err(e) => {
858                                                                         match e.action {
859                                                                                 msgs::ErrorAction::DisconnectPeer { msg: _ } => {
860                                                                                         //TODO: Try to push msg
861                                                                                         log_debug!(self.logger, "Error handling message{}; disconnecting peer with: {}", OptionalFromDebugger(&peer_node_id), e.err);
862                                                                                         return Err(PeerHandleError{ no_connection_possible: false });
863                                                                                 },
864                                                                                 msgs::ErrorAction::IgnoreAndLog(level) => {
865                                                                                         log_given_level!(self.logger, level, "Error handling message{}; ignoring: {}", OptionalFromDebugger(&peer_node_id), e.err);
866                                                                                         continue
867                                                                                 },
868                                                                                 msgs::ErrorAction::IgnoreDuplicateGossip => continue, // Don't even bother logging these
869                                                                                 msgs::ErrorAction::IgnoreError => {
870                                                                                         log_debug!(self.logger, "Error handling message{}; ignoring: {}", OptionalFromDebugger(&peer_node_id), e.err);
871                                                                                         continue;
872                                                                                 },
873                                                                                 msgs::ErrorAction::SendErrorMessage { msg } => {
874                                                                                         log_debug!(self.logger, "Error handling message{}; sending error message with: {}", OptionalFromDebugger(&peer_node_id), e.err);
875                                                                                         self.enqueue_message($peer, &msg);
876                                                                                         continue;
877                                                                                 },
878                                                                                 msgs::ErrorAction::SendWarningMessage { msg, log_level } => {
879                                                                                         log_given_level!(self.logger, log_level, "Error handling message{}; sending warning message with: {}", OptionalFromDebugger(&peer_node_id), e.err);
880                                                                                         self.enqueue_message($peer, &msg);
881                                                                                         continue;
882                                                                                 },
883                                                                         }
884                                                                 }
885                                                         }
886                                                 }
887                                         }
888
889                                         let mut peer_lock = peer_mutex.lock().unwrap();
890                                         let peer = &mut *peer_lock;
891                                         let mut msg_to_handle = None;
892                                         if peer_node_id.is_none() {
893                                                 peer_node_id = peer.their_node_id.clone();
894                                         }
895
896                                         assert!(peer.pending_read_buffer.len() > 0);
897                                         assert!(peer.pending_read_buffer.len() > peer.pending_read_buffer_pos);
898
899                                         {
900                                                 let data_to_copy = cmp::min(peer.pending_read_buffer.len() - peer.pending_read_buffer_pos, data.len() - read_pos);
901                                                 peer.pending_read_buffer[peer.pending_read_buffer_pos..peer.pending_read_buffer_pos + data_to_copy].copy_from_slice(&data[read_pos..read_pos + data_to_copy]);
902                                                 read_pos += data_to_copy;
903                                                 peer.pending_read_buffer_pos += data_to_copy;
904                                         }
905
906                                         if peer.pending_read_buffer_pos == peer.pending_read_buffer.len() {
907                                                 peer.pending_read_buffer_pos = 0;
908
909                                                 macro_rules! insert_node_id {
910                                                         () => {
911                                                                 match self.node_id_to_descriptor.lock().unwrap().entry(peer.their_node_id.unwrap()) {
912                                                                         hash_map::Entry::Occupied(_) => {
913                                                                                 log_trace!(self.logger, "Got second connection with {}, closing", log_pubkey!(peer.their_node_id.unwrap()));
914                                                                                 peer.their_node_id = None; // Unset so that we don't generate a peer_disconnected event
915                                                                                 return Err(PeerHandleError{ no_connection_possible: false })
916                                                                         },
917                                                                         hash_map::Entry::Vacant(entry) => {
918                                                                                 log_debug!(self.logger, "Finished noise handshake for connection with {}", log_pubkey!(peer.their_node_id.unwrap()));
919                                                                                 entry.insert(peer_descriptor.clone())
920                                                                         },
921                                                                 };
922                                                         }
923                                                 }
924
925                                                 let next_step = peer.channel_encryptor.get_noise_step();
926                                                 match next_step {
927                                                         NextNoiseStep::ActOne => {
928                                                                 let act_two = try_potential_handleerror!(peer,
929                                                                         peer.channel_encryptor.process_act_one_with_keys(&peer.pending_read_buffer[..], &self.our_node_secret, self.get_ephemeral_key())).to_vec();
930                                                                 peer.pending_outbound_buffer.push_back(act_two);
931                                                                 peer.pending_read_buffer = [0; 66].to_vec(); // act three is 66 bytes long
932                                                         },
933                                                         NextNoiseStep::ActTwo => {
934                                                                 let (act_three, their_node_id) = try_potential_handleerror!(peer,
935                                                                         peer.channel_encryptor.process_act_two(&peer.pending_read_buffer[..], &self.our_node_secret));
936                                                                 peer.pending_outbound_buffer.push_back(act_three.to_vec());
937                                                                 peer.pending_read_buffer = [0; 18].to_vec(); // Message length header is 18 bytes
938                                                                 peer.pending_read_is_header = true;
939
940                                                                 peer.their_node_id = Some(their_node_id);
941                                                                 insert_node_id!();
942                                                                 let features = InitFeatures::known();
943                                                                 let resp = msgs::Init { features, remote_network_address: filter_addresses(peer.their_net_address.clone()) };
944                                                                 self.enqueue_message(peer, &resp);
945                                                                 peer.awaiting_pong_timer_tick_intervals = 0;
946                                                         },
947                                                         NextNoiseStep::ActThree => {
948                                                                 let their_node_id = try_potential_handleerror!(peer,
949                                                                         peer.channel_encryptor.process_act_three(&peer.pending_read_buffer[..]));
950                                                                 peer.pending_read_buffer = [0; 18].to_vec(); // Message length header is 18 bytes
951                                                                 peer.pending_read_is_header = true;
952                                                                 peer.their_node_id = Some(their_node_id);
953                                                                 insert_node_id!();
954                                                                 let features = InitFeatures::known();
955                                                                 let resp = msgs::Init { features, remote_network_address: filter_addresses(peer.their_net_address.clone()) };
956                                                                 self.enqueue_message(peer, &resp);
957                                                                 peer.awaiting_pong_timer_tick_intervals = 0;
958                                                         },
959                                                         NextNoiseStep::NoiseComplete => {
960                                                                 if peer.pending_read_is_header {
961                                                                         let msg_len = try_potential_handleerror!(peer,
962                                                                                 peer.channel_encryptor.decrypt_length_header(&peer.pending_read_buffer[..]));
963                                                                         peer.pending_read_buffer = Vec::with_capacity(msg_len as usize + 16);
964                                                                         peer.pending_read_buffer.resize(msg_len as usize + 16, 0);
965                                                                         if msg_len < 2 { // Need at least the message type tag
966                                                                                 return Err(PeerHandleError{ no_connection_possible: false });
967                                                                         }
968                                                                         peer.pending_read_is_header = false;
969                                                                 } else {
970                                                                         let msg_data = try_potential_handleerror!(peer,
971                                                                                 peer.channel_encryptor.decrypt_message(&peer.pending_read_buffer[..]));
972                                                                         assert!(msg_data.len() >= 2);
973
974                                                                         // Reset read buffer
975                                                                         peer.pending_read_buffer = [0; 18].to_vec();
976                                                                         peer.pending_read_is_header = true;
977
978                                                                         let mut reader = io::Cursor::new(&msg_data[..]);
979                                                                         let message_result = wire::read(&mut reader, &*self.custom_message_handler);
980                                                                         let message = match message_result {
981                                                                                 Ok(x) => x,
982                                                                                 Err(e) => {
983                                                                                         match e {
984                                                                                                 // Note that to avoid recursion we never call
985                                                                                                 // `do_attempt_write_data` from here, causing
986                                                                                                 // the messages enqueued here to not actually
987                                                                                                 // be sent before the peer is disconnected.
988                                                                                                 (msgs::DecodeError::UnknownRequiredFeature, Some(ty)) if is_gossip_msg(ty) => {
989                                                                                                         log_gossip!(self.logger, "Got a channel/node announcement with an unknown required feature flag, you may want to update!");
990                                                                                                         continue;
991                                                                                                 }
992                                                                                                 (msgs::DecodeError::UnsupportedCompression, _) => {
993                                                                                                         log_gossip!(self.logger, "We don't support zlib-compressed message fields, sending a warning and ignoring message");
994                                                                                                         self.enqueue_message(peer, &msgs::WarningMessage { channel_id: [0; 32], data: "Unsupported message compression: zlib".to_owned() });
995                                                                                                         continue;
996                                                                                                 }
997                                                                                                 (_, Some(ty)) if is_gossip_msg(ty) => {
998                                                                                                         log_gossip!(self.logger, "Got an invalid value while deserializing a gossip message");
999                                                                                                         self.enqueue_message(peer, &msgs::WarningMessage { channel_id: [0; 32], data: "Unreadable/bogus gossip message".to_owned() });
1000                                                                                                         continue;
1001                                                                                                 }
1002                                                                                                 (msgs::DecodeError::UnknownRequiredFeature, ty) => {
1003                                                                                                         log_gossip!(self.logger, "Received a message with an unknown required feature flag or TLV, you may want to update!");
1004                                                                                                         self.enqueue_message(peer, &msgs::WarningMessage { channel_id: [0; 32], data: format!("Received an unknown required feature/TLV in message type {:?}", ty) });
1005                                                                                                         return Err(PeerHandleError { no_connection_possible: false });
1006                                                                                                 }
1007                                                                                                 (msgs::DecodeError::UnknownVersion, _) => return Err(PeerHandleError { no_connection_possible: false }),
1008                                                                                                 (msgs::DecodeError::InvalidValue, _) => {
1009                                                                                                         log_debug!(self.logger, "Got an invalid value while deserializing message");
1010                                                                                                         return Err(PeerHandleError { no_connection_possible: false });
1011                                                                                                 }
1012                                                                                                 (msgs::DecodeError::ShortRead, _) => {
1013                                                                                                         log_debug!(self.logger, "Deserialization failed due to shortness of message");
1014                                                                                                         return Err(PeerHandleError { no_connection_possible: false });
1015                                                                                                 }
1016                                                                                                 (msgs::DecodeError::BadLengthDescriptor, _) => return Err(PeerHandleError { no_connection_possible: false }),
1017                                                                                                 (msgs::DecodeError::Io(_), _) => return Err(PeerHandleError { no_connection_possible: false }),
1018                                                                                         }
1019                                                                                 }
1020                                                                         };
1021
1022                                                                         msg_to_handle = Some(message);
1023                                                                 }
1024                                                         }
1025                                                 }
1026                                         }
1027                                         pause_read = peer.pending_outbound_buffer.len() > OUTBOUND_BUFFER_LIMIT_READ_PAUSE;
1028
1029                                         if let Some(message) = msg_to_handle {
1030                                                 match self.handle_message(&peer_mutex, peer_lock, message) {
1031                                                         Err(handling_error) => match handling_error {
1032                                                                 MessageHandlingError::PeerHandleError(e) => { return Err(e) },
1033                                                                 MessageHandlingError::LightningError(e) => {
1034                                                                         try_potential_handleerror!(&mut peer_mutex.lock().unwrap(), Err(e));
1035                                                                 },
1036                                                         },
1037                                                         Ok(Some(msg)) => {
1038                                                                 msgs_to_forward.push(msg);
1039                                                         },
1040                                                         Ok(None) => {},
1041                                                 }
1042                                         }
1043                                 }
1044                         }
1045                 }
1046
1047                 for msg in msgs_to_forward.drain(..) {
1048                         self.forward_broadcast_msg(&*peers, &msg, peer_node_id.as_ref());
1049                 }
1050
1051                 Ok(pause_read)
1052         }
1053
1054         /// Process an incoming message and return a decision (ok, lightning error, peer handling error) regarding the next action with the peer
1055         /// Returns the message back if it needs to be broadcasted to all other peers.
1056         fn handle_message(
1057                 &self,
1058                 peer_mutex: &Mutex<Peer>,
1059                 mut peer_lock: MutexGuard<Peer>,
1060                 message: wire::Message<<<CMH as core::ops::Deref>::Target as wire::CustomMessageReader>::CustomMessage>
1061         ) -> Result<Option<wire::Message<<<CMH as core::ops::Deref>::Target as wire::CustomMessageReader>::CustomMessage>>, MessageHandlingError> {
1062                 let their_node_id = peer_lock.their_node_id.clone().expect("We know the peer's public key by the time we receive messages");
1063                 peer_lock.received_message_since_timer_tick = true;
1064
1065                 // Need an Init as first message
1066                 if let wire::Message::Init(msg) = message {
1067                         if msg.features.requires_unknown_bits() {
1068                                 log_debug!(self.logger, "Peer features required unknown version bits");
1069                                 return Err(PeerHandleError{ no_connection_possible: true }.into());
1070                         }
1071                         if peer_lock.their_features.is_some() {
1072                                 return Err(PeerHandleError{ no_connection_possible: false }.into());
1073                         }
1074
1075                         log_info!(self.logger, "Received peer Init message from {}: {}", log_pubkey!(their_node_id), msg.features);
1076
1077                         // For peers not supporting gossip queries start sync now, otherwise wait until we receive a filter.
1078                         if msg.features.initial_routing_sync() && !msg.features.supports_gossip_queries() {
1079                                 peer_lock.sync_status = InitSyncTracker::ChannelsSyncing(0);
1080                         }
1081
1082                         if !msg.features.supports_static_remote_key() {
1083                                 log_debug!(self.logger, "Peer {} does not support static remote key, disconnecting with no_connection_possible", log_pubkey!(their_node_id));
1084                                 return Err(PeerHandleError{ no_connection_possible: true }.into());
1085                         }
1086
1087                         self.message_handler.route_handler.peer_connected(&their_node_id, &msg);
1088
1089                         self.message_handler.chan_handler.peer_connected(&their_node_id, &msg);
1090                         peer_lock.their_features = Some(msg.features);
1091                         return Ok(None);
1092                 } else if peer_lock.their_features.is_none() {
1093                         log_debug!(self.logger, "Peer {} sent non-Init first message", log_pubkey!(their_node_id));
1094                         return Err(PeerHandleError{ no_connection_possible: false }.into());
1095                 }
1096
1097                 if let wire::Message::GossipTimestampFilter(_msg) = message {
1098                         // When supporting gossip messages, start inital gossip sync only after we receive
1099                         // a GossipTimestampFilter
1100                         if peer_lock.their_features.as_ref().unwrap().supports_gossip_queries() &&
1101                                 !peer_lock.sent_gossip_timestamp_filter {
1102                                 peer_lock.sent_gossip_timestamp_filter = true;
1103                                 peer_lock.sync_status = InitSyncTracker::ChannelsSyncing(0);
1104                         }
1105                         return Ok(None);
1106                 }
1107
1108                 let their_features = peer_lock.their_features.clone();
1109                 mem::drop(peer_lock);
1110
1111                 if is_gossip_msg(message.type_id()) {
1112                         log_gossip!(self.logger, "Received message {:?} from {}", message, log_pubkey!(their_node_id));
1113                 } else {
1114                         log_trace!(self.logger, "Received message {:?} from {}", message, log_pubkey!(their_node_id));
1115                 }
1116
1117                 let mut should_forward = None;
1118
1119                 match message {
1120                         // Setup and Control messages:
1121                         wire::Message::Init(_) => {
1122                                 // Handled above
1123                         },
1124                         wire::Message::GossipTimestampFilter(_) => {
1125                                 // Handled above
1126                         },
1127                         wire::Message::Error(msg) => {
1128                                 let mut data_is_printable = true;
1129                                 for b in msg.data.bytes() {
1130                                         if b < 32 || b > 126 {
1131                                                 data_is_printable = false;
1132                                                 break;
1133                                         }
1134                                 }
1135
1136                                 if data_is_printable {
1137                                         log_debug!(self.logger, "Got Err message from {}: {}", log_pubkey!(their_node_id), msg.data);
1138                                 } else {
1139                                         log_debug!(self.logger, "Got Err message from {} with non-ASCII error message", log_pubkey!(their_node_id));
1140                                 }
1141                                 self.message_handler.chan_handler.handle_error(&their_node_id, &msg);
1142                                 if msg.channel_id == [0; 32] {
1143                                         return Err(PeerHandleError{ no_connection_possible: true }.into());
1144                                 }
1145                         },
1146                         wire::Message::Warning(msg) => {
1147                                 let mut data_is_printable = true;
1148                                 for b in msg.data.bytes() {
1149                                         if b < 32 || b > 126 {
1150                                                 data_is_printable = false;
1151                                                 break;
1152                                         }
1153                                 }
1154
1155                                 if data_is_printable {
1156                                         log_debug!(self.logger, "Got warning message from {}: {}", log_pubkey!(their_node_id), msg.data);
1157                                 } else {
1158                                         log_debug!(self.logger, "Got warning message from {} with non-ASCII error message", log_pubkey!(their_node_id));
1159                                 }
1160                         },
1161
1162                         wire::Message::Ping(msg) => {
1163                                 if msg.ponglen < 65532 {
1164                                         let resp = msgs::Pong { byteslen: msg.ponglen };
1165                                         self.enqueue_message(&mut *peer_mutex.lock().unwrap(), &resp);
1166                                 }
1167                         },
1168                         wire::Message::Pong(_msg) => {
1169                                 let mut peer_lock = peer_mutex.lock().unwrap();
1170                                 peer_lock.awaiting_pong_timer_tick_intervals = 0;
1171                                 peer_lock.msgs_sent_since_pong = 0;
1172                         },
1173
1174                         // Channel messages:
1175                         wire::Message::OpenChannel(msg) => {
1176                                 self.message_handler.chan_handler.handle_open_channel(&their_node_id, their_features.clone().unwrap(), &msg);
1177                         },
1178                         wire::Message::AcceptChannel(msg) => {
1179                                 self.message_handler.chan_handler.handle_accept_channel(&their_node_id, their_features.clone().unwrap(), &msg);
1180                         },
1181
1182                         wire::Message::FundingCreated(msg) => {
1183                                 self.message_handler.chan_handler.handle_funding_created(&their_node_id, &msg);
1184                         },
1185                         wire::Message::FundingSigned(msg) => {
1186                                 self.message_handler.chan_handler.handle_funding_signed(&their_node_id, &msg);
1187                         },
1188                         wire::Message::FundingLocked(msg) => {
1189                                 self.message_handler.chan_handler.handle_funding_locked(&their_node_id, &msg);
1190                         },
1191
1192                         wire::Message::Shutdown(msg) => {
1193                                 self.message_handler.chan_handler.handle_shutdown(&their_node_id, their_features.as_ref().unwrap(), &msg);
1194                         },
1195                         wire::Message::ClosingSigned(msg) => {
1196                                 self.message_handler.chan_handler.handle_closing_signed(&their_node_id, &msg);
1197                         },
1198
1199                         // Commitment messages:
1200                         wire::Message::UpdateAddHTLC(msg) => {
1201                                 self.message_handler.chan_handler.handle_update_add_htlc(&their_node_id, &msg);
1202                         },
1203                         wire::Message::UpdateFulfillHTLC(msg) => {
1204                                 self.message_handler.chan_handler.handle_update_fulfill_htlc(&their_node_id, &msg);
1205                         },
1206                         wire::Message::UpdateFailHTLC(msg) => {
1207                                 self.message_handler.chan_handler.handle_update_fail_htlc(&their_node_id, &msg);
1208                         },
1209                         wire::Message::UpdateFailMalformedHTLC(msg) => {
1210                                 self.message_handler.chan_handler.handle_update_fail_malformed_htlc(&their_node_id, &msg);
1211                         },
1212
1213                         wire::Message::CommitmentSigned(msg) => {
1214                                 self.message_handler.chan_handler.handle_commitment_signed(&their_node_id, &msg);
1215                         },
1216                         wire::Message::RevokeAndACK(msg) => {
1217                                 self.message_handler.chan_handler.handle_revoke_and_ack(&their_node_id, &msg);
1218                         },
1219                         wire::Message::UpdateFee(msg) => {
1220                                 self.message_handler.chan_handler.handle_update_fee(&their_node_id, &msg);
1221                         },
1222                         wire::Message::ChannelReestablish(msg) => {
1223                                 self.message_handler.chan_handler.handle_channel_reestablish(&their_node_id, &msg);
1224                         },
1225
1226                         // Routing messages:
1227                         wire::Message::AnnouncementSignatures(msg) => {
1228                                 self.message_handler.chan_handler.handle_announcement_signatures(&their_node_id, &msg);
1229                         },
1230                         wire::Message::ChannelAnnouncement(msg) => {
1231                                 if self.message_handler.route_handler.handle_channel_announcement(&msg)
1232                                                 .map_err(|e| -> MessageHandlingError { e.into() })? {
1233                                         should_forward = Some(wire::Message::ChannelAnnouncement(msg));
1234                                 }
1235                         },
1236                         wire::Message::NodeAnnouncement(msg) => {
1237                                 if self.message_handler.route_handler.handle_node_announcement(&msg)
1238                                                 .map_err(|e| -> MessageHandlingError { e.into() })? {
1239                                         should_forward = Some(wire::Message::NodeAnnouncement(msg));
1240                                 }
1241                         },
1242                         wire::Message::ChannelUpdate(msg) => {
1243                                 self.message_handler.chan_handler.handle_channel_update(&their_node_id, &msg);
1244                                 if self.message_handler.route_handler.handle_channel_update(&msg)
1245                                                 .map_err(|e| -> MessageHandlingError { e.into() })? {
1246                                         should_forward = Some(wire::Message::ChannelUpdate(msg));
1247                                 }
1248                         },
1249                         wire::Message::QueryShortChannelIds(msg) => {
1250                                 self.message_handler.route_handler.handle_query_short_channel_ids(&their_node_id, msg)?;
1251                         },
1252                         wire::Message::ReplyShortChannelIdsEnd(msg) => {
1253                                 self.message_handler.route_handler.handle_reply_short_channel_ids_end(&their_node_id, msg)?;
1254                         },
1255                         wire::Message::QueryChannelRange(msg) => {
1256                                 self.message_handler.route_handler.handle_query_channel_range(&their_node_id, msg)?;
1257                         },
1258                         wire::Message::ReplyChannelRange(msg) => {
1259                                 self.message_handler.route_handler.handle_reply_channel_range(&their_node_id, msg)?;
1260                         },
1261
1262                         // Unknown messages:
1263                         wire::Message::Unknown(type_id) if message.is_even() => {
1264                                 log_debug!(self.logger, "Received unknown even message of type {}, disconnecting peer!", type_id);
1265                                 // Fail the channel if message is an even, unknown type as per BOLT #1.
1266                                 return Err(PeerHandleError{ no_connection_possible: true }.into());
1267                         },
1268                         wire::Message::Unknown(type_id) => {
1269                                 log_trace!(self.logger, "Received unknown odd message of type {}, ignoring", type_id);
1270                         },
1271                         wire::Message::Custom(custom) => {
1272                                 self.custom_message_handler.handle_custom_message(custom, &their_node_id)?;
1273                         },
1274                 };
1275                 Ok(should_forward)
1276         }
1277
1278         fn forward_broadcast_msg(&self, peers: &PeerHolder<Descriptor>, msg: &wire::Message<<<CMH as core::ops::Deref>::Target as wire::CustomMessageReader>::CustomMessage>, except_node: Option<&PublicKey>) {
1279                 match msg {
1280                         wire::Message::ChannelAnnouncement(ref msg) => {
1281                                 log_gossip!(self.logger, "Sending message to all peers except {:?} or the announced channel's counterparties: {:?}", except_node, msg);
1282                                 let encoded_msg = encode_msg!(msg);
1283
1284                                 for (_, peer_mutex) in peers.peers.iter() {
1285                                         let mut peer = peer_mutex.lock().unwrap();
1286                                         if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_features.is_none() ||
1287                                                         !peer.should_forward_channel_announcement(msg.contents.short_channel_id) {
1288                                                 continue
1289                                         }
1290                                         if peer.pending_outbound_buffer.len() > OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP
1291                                                 || peer.msgs_sent_since_pong > BUFFER_DRAIN_MSGS_PER_TICK * FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO
1292                                         {
1293                                                 log_gossip!(self.logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id);
1294                                                 continue;
1295                                         }
1296                                         if peer.their_node_id.as_ref() == Some(&msg.contents.node_id_1) ||
1297                                            peer.their_node_id.as_ref() == Some(&msg.contents.node_id_2) {
1298                                                 continue;
1299                                         }
1300                                         if except_node.is_some() && peer.their_node_id.as_ref() == except_node {
1301                                                 continue;
1302                                         }
1303                                         self.enqueue_encoded_message(&mut *peer, &encoded_msg);
1304                                 }
1305                         },
1306                         wire::Message::NodeAnnouncement(ref msg) => {
1307                                 log_gossip!(self.logger, "Sending message to all peers except {:?} or the announced node: {:?}", except_node, msg);
1308                                 let encoded_msg = encode_msg!(msg);
1309
1310                                 for (_, peer_mutex) in peers.peers.iter() {
1311                                         let mut peer = peer_mutex.lock().unwrap();
1312                                         if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_features.is_none() ||
1313                                                         !peer.should_forward_node_announcement(msg.contents.node_id) {
1314                                                 continue
1315                                         }
1316                                         if peer.pending_outbound_buffer.len() > OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP
1317                                                 || peer.msgs_sent_since_pong > BUFFER_DRAIN_MSGS_PER_TICK * FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO
1318                                         {
1319                                                 log_gossip!(self.logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id);
1320                                                 continue;
1321                                         }
1322                                         if peer.their_node_id.as_ref() == Some(&msg.contents.node_id) {
1323                                                 continue;
1324                                         }
1325                                         if except_node.is_some() && peer.their_node_id.as_ref() == except_node {
1326                                                 continue;
1327                                         }
1328                                         self.enqueue_encoded_message(&mut *peer, &encoded_msg);
1329                                 }
1330                         },
1331                         wire::Message::ChannelUpdate(ref msg) => {
1332                                 log_gossip!(self.logger, "Sending message to all peers except {:?}: {:?}", except_node, msg);
1333                                 let encoded_msg = encode_msg!(msg);
1334
1335                                 for (_, peer_mutex) in peers.peers.iter() {
1336                                         let mut peer = peer_mutex.lock().unwrap();
1337                                         if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_features.is_none() ||
1338                                                         !peer.should_forward_channel_announcement(msg.contents.short_channel_id)  {
1339                                                 continue
1340                                         }
1341                                         if peer.pending_outbound_buffer.len() > OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP
1342                                                 || peer.msgs_sent_since_pong > BUFFER_DRAIN_MSGS_PER_TICK * FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO
1343                                         {
1344                                                 log_gossip!(self.logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id);
1345                                                 continue;
1346                                         }
1347                                         if except_node.is_some() && peer.their_node_id.as_ref() == except_node {
1348                                                 continue;
1349                                         }
1350                                         self.enqueue_encoded_message(&mut *peer, &encoded_msg);
1351                                 }
1352                         },
1353                         _ => debug_assert!(false, "We shouldn't attempt to forward anything but gossip messages"),
1354                 }
1355         }
1356
1357         /// Checks for any events generated by our handlers and processes them. Includes sending most
1358         /// response messages as well as messages generated by calls to handler functions directly (eg
1359         /// functions like [`ChannelManager::process_pending_htlc_forwards`] or [`send_payment`]).
1360         ///
1361         /// May call [`send_data`] on [`SocketDescriptor`]s. Thus, be very careful with reentrancy
1362         /// issues!
1363         ///
1364         /// You don't have to call this function explicitly if you are using [`lightning-net-tokio`]
1365         /// or one of the other clients provided in our language bindings.
1366         ///
1367         /// [`send_payment`]: crate::ln::channelmanager::ChannelManager::send_payment
1368         /// [`ChannelManager::process_pending_htlc_forwards`]: crate::ln::channelmanager::ChannelManager::process_pending_htlc_forwards
1369         /// [`send_data`]: SocketDescriptor::send_data
1370         pub fn process_events(&self) {
1371                 {
1372                         // TODO: There are some DoS attacks here where you can flood someone's outbound send
1373                         // buffer by doing things like announcing channels on another node. We should be willing to
1374                         // drop optional-ish messages when send buffers get full!
1375
1376                         let mut peers_lock = self.peers.write().unwrap();
1377                         let mut events_generated = self.message_handler.chan_handler.get_and_clear_pending_msg_events();
1378                         events_generated.append(&mut self.message_handler.route_handler.get_and_clear_pending_msg_events());
1379                         let peers = &mut *peers_lock;
1380                         macro_rules! get_peer_for_forwarding {
1381                                 ($node_id: expr) => {
1382                                         {
1383                                                 match self.node_id_to_descriptor.lock().unwrap().get($node_id) {
1384                                                         Some(descriptor) => match peers.peers.get_mut(&descriptor) {
1385                                                                 Some(peer_mutex) => {
1386                                                                         let peer_lock = peer_mutex.lock().unwrap();
1387                                                                         if peer_lock.their_features.is_none() {
1388                                                                                 continue;
1389                                                                         }
1390                                                                         peer_lock
1391                                                                 },
1392                                                                 None => panic!("Inconsistent peers set state!"),
1393                                                         },
1394                                                         None => {
1395                                                                 continue;
1396                                                         },
1397                                                 }
1398                                         }
1399                                 }
1400                         }
1401                         for event in events_generated.drain(..) {
1402                                 match event {
1403                                         MessageSendEvent::SendAcceptChannel { ref node_id, ref msg } => {
1404                                                 log_debug!(self.logger, "Handling SendAcceptChannel event in peer_handler for node {} for channel {}",
1405                                                                 log_pubkey!(node_id),
1406                                                                 log_bytes!(msg.temporary_channel_id));
1407                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1408                                         },
1409                                         MessageSendEvent::SendOpenChannel { ref node_id, ref msg } => {
1410                                                 log_debug!(self.logger, "Handling SendOpenChannel event in peer_handler for node {} for channel {}",
1411                                                                 log_pubkey!(node_id),
1412                                                                 log_bytes!(msg.temporary_channel_id));
1413                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1414                                         },
1415                                         MessageSendEvent::SendFundingCreated { ref node_id, ref msg } => {
1416                                                 log_debug!(self.logger, "Handling SendFundingCreated event in peer_handler for node {} for channel {} (which becomes {})",
1417                                                                 log_pubkey!(node_id),
1418                                                                 log_bytes!(msg.temporary_channel_id),
1419                                                                 log_funding_channel_id!(msg.funding_txid, msg.funding_output_index));
1420                                                 // TODO: If the peer is gone we should generate a DiscardFunding event
1421                                                 // indicating to the wallet that they should just throw away this funding transaction
1422                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1423                                         },
1424                                         MessageSendEvent::SendFundingSigned { ref node_id, ref msg } => {
1425                                                 log_debug!(self.logger, "Handling SendFundingSigned event in peer_handler for node {} for channel {}",
1426                                                                 log_pubkey!(node_id),
1427                                                                 log_bytes!(msg.channel_id));
1428                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1429                                         },
1430                                         MessageSendEvent::SendFundingLocked { ref node_id, ref msg } => {
1431                                                 log_debug!(self.logger, "Handling SendFundingLocked event in peer_handler for node {} for channel {}",
1432                                                                 log_pubkey!(node_id),
1433                                                                 log_bytes!(msg.channel_id));
1434                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1435                                         },
1436                                         MessageSendEvent::SendAnnouncementSignatures { ref node_id, ref msg } => {
1437                                                 log_debug!(self.logger, "Handling SendAnnouncementSignatures event in peer_handler for node {} for channel {})",
1438                                                                 log_pubkey!(node_id),
1439                                                                 log_bytes!(msg.channel_id));
1440                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1441                                         },
1442                                         MessageSendEvent::UpdateHTLCs { ref node_id, updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fulfill_htlcs, ref update_fail_htlcs, ref update_fail_malformed_htlcs, ref update_fee, ref commitment_signed } } => {
1443                                                 log_debug!(self.logger, "Handling UpdateHTLCs event in peer_handler for node {} with {} adds, {} fulfills, {} fails for channel {}",
1444                                                                 log_pubkey!(node_id),
1445                                                                 update_add_htlcs.len(),
1446                                                                 update_fulfill_htlcs.len(),
1447                                                                 update_fail_htlcs.len(),
1448                                                                 log_bytes!(commitment_signed.channel_id));
1449                                                 let mut peer = get_peer_for_forwarding!(node_id);
1450                                                 for msg in update_add_htlcs {
1451                                                         self.enqueue_message(&mut *peer, msg);
1452                                                 }
1453                                                 for msg in update_fulfill_htlcs {
1454                                                         self.enqueue_message(&mut *peer, msg);
1455                                                 }
1456                                                 for msg in update_fail_htlcs {
1457                                                         self.enqueue_message(&mut *peer, msg);
1458                                                 }
1459                                                 for msg in update_fail_malformed_htlcs {
1460                                                         self.enqueue_message(&mut *peer, msg);
1461                                                 }
1462                                                 if let &Some(ref msg) = update_fee {
1463                                                         self.enqueue_message(&mut *peer, msg);
1464                                                 }
1465                                                 self.enqueue_message(&mut *peer, commitment_signed);
1466                                         },
1467                                         MessageSendEvent::SendRevokeAndACK { ref node_id, ref msg } => {
1468                                                 log_debug!(self.logger, "Handling SendRevokeAndACK event in peer_handler for node {} for channel {}",
1469                                                                 log_pubkey!(node_id),
1470                                                                 log_bytes!(msg.channel_id));
1471                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1472                                         },
1473                                         MessageSendEvent::SendClosingSigned { ref node_id, ref msg } => {
1474                                                 log_debug!(self.logger, "Handling SendClosingSigned event in peer_handler for node {} for channel {}",
1475                                                                 log_pubkey!(node_id),
1476                                                                 log_bytes!(msg.channel_id));
1477                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1478                                         },
1479                                         MessageSendEvent::SendShutdown { ref node_id, ref msg } => {
1480                                                 log_debug!(self.logger, "Handling Shutdown event in peer_handler for node {} for channel {}",
1481                                                                 log_pubkey!(node_id),
1482                                                                 log_bytes!(msg.channel_id));
1483                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1484                                         },
1485                                         MessageSendEvent::SendChannelReestablish { ref node_id, ref msg } => {
1486                                                 log_debug!(self.logger, "Handling SendChannelReestablish event in peer_handler for node {} for channel {}",
1487                                                                 log_pubkey!(node_id),
1488                                                                 log_bytes!(msg.channel_id));
1489                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1490                                         },
1491                                         MessageSendEvent::BroadcastChannelAnnouncement { msg, update_msg } => {
1492                                                 log_debug!(self.logger, "Handling BroadcastChannelAnnouncement event in peer_handler for short channel id {}", msg.contents.short_channel_id);
1493                                                 match self.message_handler.route_handler.handle_channel_announcement(&msg) {
1494                                                         Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
1495                                                                 self.forward_broadcast_msg(peers, &wire::Message::ChannelAnnouncement(msg), None),
1496                                                         _ => {},
1497                                                 }
1498                                                 match self.message_handler.route_handler.handle_channel_update(&update_msg) {
1499                                                         Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
1500                                                                 self.forward_broadcast_msg(peers, &wire::Message::ChannelUpdate(update_msg), None),
1501                                                         _ => {},
1502                                                 }
1503                                         },
1504                                         MessageSendEvent::BroadcastNodeAnnouncement { msg } => {
1505                                                 log_debug!(self.logger, "Handling BroadcastNodeAnnouncement event in peer_handler");
1506                                                 match self.message_handler.route_handler.handle_node_announcement(&msg) {
1507                                                         Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
1508                                                                 self.forward_broadcast_msg(peers, &wire::Message::NodeAnnouncement(msg), None),
1509                                                         _ => {},
1510                                                 }
1511                                         },
1512                                         MessageSendEvent::BroadcastChannelUpdate { msg } => {
1513                                                 log_debug!(self.logger, "Handling BroadcastChannelUpdate event in peer_handler for short channel id {}", msg.contents.short_channel_id);
1514                                                 match self.message_handler.route_handler.handle_channel_update(&msg) {
1515                                                         Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
1516                                                                 self.forward_broadcast_msg(peers, &wire::Message::ChannelUpdate(msg), None),
1517                                                         _ => {},
1518                                                 }
1519                                         },
1520                                         MessageSendEvent::SendChannelUpdate { ref node_id, ref msg } => {
1521                                                 log_trace!(self.logger, "Handling SendChannelUpdate event in peer_handler for node {} for channel {}",
1522                                                                 log_pubkey!(node_id), msg.contents.short_channel_id);
1523                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1524                                         },
1525                                         MessageSendEvent::HandleError { ref node_id, ref action } => {
1526                                                 match *action {
1527                                                         msgs::ErrorAction::DisconnectPeer { ref msg } => {
1528                                                                 // Note that since we are holding the peers *write* lock we can
1529                                                                 // remove from node_id_to_descriptor immediately (as no other
1530                                                                 // thread can be holding the peer lock if we have the global write
1531                                                                 // lock).
1532                                                                 if let Some(mut descriptor) = self.node_id_to_descriptor.lock().unwrap().remove(node_id) {
1533                                                                         if let Some(peer_mutex) = peers.peers.remove(&descriptor) {
1534                                                                                 if let Some(ref msg) = *msg {
1535                                                                                         log_trace!(self.logger, "Handling DisconnectPeer HandleError event in peer_handler for node {} with message {}",
1536                                                                                                         log_pubkey!(node_id),
1537                                                                                                         msg.data);
1538                                                                                         let mut peer = peer_mutex.lock().unwrap();
1539                                                                                         self.enqueue_message(&mut *peer, msg);
1540                                                                                         // This isn't guaranteed to work, but if there is enough free
1541                                                                                         // room in the send buffer, put the error message there...
1542                                                                                         self.do_attempt_write_data(&mut descriptor, &mut *peer);
1543                                                                                 } else {
1544                                                                                         log_gossip!(self.logger, "Handling DisconnectPeer HandleError event in peer_handler for node {} with no message", log_pubkey!(node_id));
1545                                                                                 }
1546                                                                         }
1547                                                                         descriptor.disconnect_socket();
1548                                                                         self.message_handler.chan_handler.peer_disconnected(&node_id, false);
1549                                                                 }
1550                                                         },
1551                                                         msgs::ErrorAction::IgnoreAndLog(level) => {
1552                                                                 log_given_level!(self.logger, level, "Received a HandleError event to be ignored for node {}", log_pubkey!(node_id));
1553                                                         },
1554                                                         msgs::ErrorAction::IgnoreDuplicateGossip => {},
1555                                                         msgs::ErrorAction::IgnoreError => {
1556                                                                 log_debug!(self.logger, "Received a HandleError event to be ignored for node {}", log_pubkey!(node_id));
1557                                                         },
1558                                                         msgs::ErrorAction::SendErrorMessage { ref msg } => {
1559                                                                 log_trace!(self.logger, "Handling SendErrorMessage HandleError event in peer_handler for node {} with message {}",
1560                                                                                 log_pubkey!(node_id),
1561                                                                                 msg.data);
1562                                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1563                                                         },
1564                                                         msgs::ErrorAction::SendWarningMessage { ref msg, ref log_level } => {
1565                                                                 log_given_level!(self.logger, *log_level, "Handling SendWarningMessage HandleError event in peer_handler for node {} with message {}",
1566                                                                                 log_pubkey!(node_id),
1567                                                                                 msg.data);
1568                                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1569                                                         },
1570                                                 }
1571                                         },
1572                                         MessageSendEvent::SendChannelRangeQuery { ref node_id, ref msg } => {
1573                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1574                                         },
1575                                         MessageSendEvent::SendShortIdsQuery { ref node_id, ref msg } => {
1576                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1577                                         }
1578                                         MessageSendEvent::SendReplyChannelRange { ref node_id, ref msg } => {
1579                                                 log_gossip!(self.logger, "Handling SendReplyChannelRange event in peer_handler for node {} with num_scids={} first_blocknum={} number_of_blocks={}, sync_complete={}",
1580                                                         log_pubkey!(node_id),
1581                                                         msg.short_channel_ids.len(),
1582                                                         msg.first_blocknum,
1583                                                         msg.number_of_blocks,
1584                                                         msg.sync_complete);
1585                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1586                                         }
1587                                         MessageSendEvent::SendGossipTimestampFilter { ref node_id, ref msg } => {
1588                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1589                                         }
1590                                 }
1591                         }
1592
1593                         for (node_id, msg) in self.custom_message_handler.get_and_clear_pending_msg() {
1594                                 self.enqueue_message(&mut *get_peer_for_forwarding!(&node_id), &msg);
1595                         }
1596
1597                         for (descriptor, peer_mutex) in peers.peers.iter_mut() {
1598                                 self.do_attempt_write_data(&mut (*descriptor).clone(), &mut *peer_mutex.lock().unwrap());
1599                         }
1600                 }
1601         }
1602
1603         /// Indicates that the given socket descriptor's connection is now closed.
1604         pub fn socket_disconnected(&self, descriptor: &Descriptor) {
1605                 self.disconnect_event_internal(descriptor, false);
1606         }
1607
1608         fn disconnect_event_internal(&self, descriptor: &Descriptor, no_connection_possible: bool) {
1609                 let mut peers = self.peers.write().unwrap();
1610                 let peer_option = peers.peers.remove(descriptor);
1611                 match peer_option {
1612                         None => {
1613                                 // This is most likely a simple race condition where the user found that the socket
1614                                 // was disconnected, then we told the user to `disconnect_socket()`, then they
1615                                 // called this method. Either way we're disconnected, return.
1616                         },
1617                         Some(peer_lock) => {
1618                                 let peer = peer_lock.lock().unwrap();
1619                                 match peer.their_node_id {
1620                                         Some(node_id) => {
1621                                                 log_trace!(self.logger,
1622                                                         "Handling disconnection of peer {}, with {}future connection to the peer possible.",
1623                                                         log_pubkey!(node_id), if no_connection_possible { "no " } else { "" });
1624                                                 self.node_id_to_descriptor.lock().unwrap().remove(&node_id);
1625                                                 self.message_handler.chan_handler.peer_disconnected(&node_id, no_connection_possible);
1626                                         },
1627                                         None => {}
1628                                 }
1629                         }
1630                 };
1631         }
1632
1633         /// Disconnect a peer given its node id.
1634         ///
1635         /// Set `no_connection_possible` to true to prevent any further connection with this peer,
1636         /// force-closing any channels we have with it.
1637         ///
1638         /// If a peer is connected, this will call [`disconnect_socket`] on the descriptor for the
1639         /// peer. Thus, be very careful about reentrancy issues.
1640         ///
1641         /// [`disconnect_socket`]: SocketDescriptor::disconnect_socket
1642         pub fn disconnect_by_node_id(&self, node_id: PublicKey, no_connection_possible: bool) {
1643                 let mut peers_lock = self.peers.write().unwrap();
1644                 if let Some(mut descriptor) = self.node_id_to_descriptor.lock().unwrap().remove(&node_id) {
1645                         log_trace!(self.logger, "Disconnecting peer with id {} due to client request", node_id);
1646                         peers_lock.peers.remove(&descriptor);
1647                         self.message_handler.chan_handler.peer_disconnected(&node_id, no_connection_possible);
1648                         descriptor.disconnect_socket();
1649                 }
1650         }
1651
1652         /// Disconnects all currently-connected peers. This is useful on platforms where there may be
1653         /// an indication that TCP sockets have stalled even if we weren't around to time them out
1654         /// using regular ping/pongs.
1655         pub fn disconnect_all_peers(&self) {
1656                 let mut peers_lock = self.peers.write().unwrap();
1657                 self.node_id_to_descriptor.lock().unwrap().clear();
1658                 let peers = &mut *peers_lock;
1659                 for (mut descriptor, peer) in peers.peers.drain() {
1660                         if let Some(node_id) = peer.lock().unwrap().their_node_id {
1661                                 log_trace!(self.logger, "Disconnecting peer with id {} due to client request to disconnect all peers", node_id);
1662                                 self.message_handler.chan_handler.peer_disconnected(&node_id, false);
1663                         }
1664                         descriptor.disconnect_socket();
1665                 }
1666         }
1667
1668         /// This is called when we're blocked on sending additional gossip messages until we receive a
1669         /// pong. If we aren't waiting on a pong, we take this opportunity to send a ping (setting
1670         /// `awaiting_pong_timer_tick_intervals` to a special flag value to indicate this).
1671         fn maybe_send_extra_ping(&self, peer: &mut Peer) {
1672                 if peer.awaiting_pong_timer_tick_intervals == 0 {
1673                         peer.awaiting_pong_timer_tick_intervals = -1;
1674                         let ping = msgs::Ping {
1675                                 ponglen: 0,
1676                                 byteslen: 64,
1677                         };
1678                         self.enqueue_message(peer, &ping);
1679                 }
1680         }
1681
1682         /// Send pings to each peer and disconnect those which did not respond to the last round of
1683         /// pings.
1684         ///
1685         /// This may be called on any timescale you want, however, roughly once every ten seconds is
1686         /// preferred. The call rate determines both how often we send a ping to our peers and how much
1687         /// time they have to respond before we disconnect them.
1688         ///
1689         /// May call [`send_data`] on all [`SocketDescriptor`]s. Thus, be very careful with reentrancy
1690         /// issues!
1691         ///
1692         /// [`send_data`]: SocketDescriptor::send_data
1693         pub fn timer_tick_occurred(&self) {
1694                 let mut peers_lock = self.peers.write().unwrap();
1695                 {
1696                         let mut descriptors_needing_disconnect = Vec::new();
1697                         let peer_count = peers_lock.peers.len();
1698
1699                         peers_lock.peers.retain(|descriptor, peer_mutex| {
1700                                 let mut peer = peer_mutex.lock().unwrap();
1701                                 let mut do_disconnect_peer = false;
1702                                 if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_node_id.is_none() {
1703                                         // The peer needs to complete its handshake before we can exchange messages. We
1704                                         // give peers one timer tick to complete handshake, reusing
1705                                         // `awaiting_pong_timer_tick_intervals` to track number of timer ticks taken
1706                                         // for handshake completion.
1707                                         if peer.awaiting_pong_timer_tick_intervals != 0 {
1708                                                 do_disconnect_peer = true;
1709                                         } else {
1710                                                 peer.awaiting_pong_timer_tick_intervals = 1;
1711                                                 return true;
1712                                         }
1713                                 }
1714
1715                                 if peer.awaiting_pong_timer_tick_intervals == -1 {
1716                                         // Magic value set in `maybe_send_extra_ping`.
1717                                         peer.awaiting_pong_timer_tick_intervals = 1;
1718                                         peer.received_message_since_timer_tick = false;
1719                                         return true;
1720                                 }
1721
1722                                 if do_disconnect_peer
1723                                         || (peer.awaiting_pong_timer_tick_intervals > 0 && !peer.received_message_since_timer_tick)
1724                                         || peer.awaiting_pong_timer_tick_intervals as u64 >
1725                                                 MAX_BUFFER_DRAIN_TICK_INTERVALS_PER_PEER as u64 * peer_count as u64
1726                                 {
1727                                         descriptors_needing_disconnect.push(descriptor.clone());
1728                                         match peer.their_node_id {
1729                                                 Some(node_id) => {
1730                                                         log_trace!(self.logger, "Disconnecting peer with id {} due to ping timeout", node_id);
1731                                                         self.node_id_to_descriptor.lock().unwrap().remove(&node_id);
1732                                                         self.message_handler.chan_handler.peer_disconnected(&node_id, false);
1733                                                 }
1734                                                 None => {},
1735                                         }
1736                                         return false;
1737                                 }
1738                                 peer.received_message_since_timer_tick = false;
1739
1740                                 if peer.awaiting_pong_timer_tick_intervals > 0 {
1741                                         peer.awaiting_pong_timer_tick_intervals += 1;
1742                                         return true;
1743                                 }
1744
1745                                 peer.awaiting_pong_timer_tick_intervals = 1;
1746                                 let ping = msgs::Ping {
1747                                         ponglen: 0,
1748                                         byteslen: 64,
1749                                 };
1750                                 self.enqueue_message(&mut *peer, &ping);
1751                                 self.do_attempt_write_data(&mut (descriptor.clone()), &mut *peer);
1752
1753                                 true
1754                         });
1755
1756                         for mut descriptor in descriptors_needing_disconnect.drain(..) {
1757                                 descriptor.disconnect_socket();
1758                         }
1759                 }
1760         }
1761 }
1762
1763 fn is_gossip_msg(type_id: u16) -> bool {
1764         match type_id {
1765                 msgs::ChannelAnnouncement::TYPE |
1766                 msgs::ChannelUpdate::TYPE |
1767                 msgs::NodeAnnouncement::TYPE |
1768                 msgs::QueryChannelRange::TYPE |
1769                 msgs::ReplyChannelRange::TYPE |
1770                 msgs::QueryShortChannelIds::TYPE |
1771                 msgs::ReplyShortChannelIdsEnd::TYPE => true,
1772                 _ => false
1773         }
1774 }
1775
1776 #[cfg(test)]
1777 mod tests {
1778         use ln::peer_handler::{PeerManager, MessageHandler, SocketDescriptor, IgnoringMessageHandler, filter_addresses};
1779         use ln::msgs;
1780         use ln::msgs::NetAddress;
1781         use util::events;
1782         use util::test_utils;
1783
1784         use bitcoin::secp256k1::Secp256k1;
1785         use bitcoin::secp256k1::key::{SecretKey, PublicKey};
1786
1787         use prelude::*;
1788         use sync::{Arc, Mutex};
1789         use core::sync::atomic::Ordering;
1790
1791         #[derive(Clone)]
1792         struct FileDescriptor {
1793                 fd: u16,
1794                 outbound_data: Arc<Mutex<Vec<u8>>>,
1795         }
1796         impl PartialEq for FileDescriptor {
1797                 fn eq(&self, other: &Self) -> bool {
1798                         self.fd == other.fd
1799                 }
1800         }
1801         impl Eq for FileDescriptor { }
1802         impl core::hash::Hash for FileDescriptor {
1803                 fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
1804                         self.fd.hash(hasher)
1805                 }
1806         }
1807
1808         impl SocketDescriptor for FileDescriptor {
1809                 fn send_data(&mut self, data: &[u8], _resume_read: bool) -> usize {
1810                         self.outbound_data.lock().unwrap().extend_from_slice(data);
1811                         data.len()
1812                 }
1813
1814                 fn disconnect_socket(&mut self) {}
1815         }
1816
1817         struct PeerManagerCfg {
1818                 chan_handler: test_utils::TestChannelMessageHandler,
1819                 routing_handler: test_utils::TestRoutingMessageHandler,
1820                 logger: test_utils::TestLogger,
1821         }
1822
1823         fn create_peermgr_cfgs(peer_count: usize) -> Vec<PeerManagerCfg> {
1824                 let mut cfgs = Vec::new();
1825                 for _ in 0..peer_count {
1826                         cfgs.push(
1827                                 PeerManagerCfg{
1828                                         chan_handler: test_utils::TestChannelMessageHandler::new(),
1829                                         logger: test_utils::TestLogger::new(),
1830                                         routing_handler: test_utils::TestRoutingMessageHandler::new(),
1831                                 }
1832                         );
1833                 }
1834
1835                 cfgs
1836         }
1837
1838         fn create_network<'a>(peer_count: usize, cfgs: &'a Vec<PeerManagerCfg>) -> Vec<PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, &'a test_utils::TestLogger, IgnoringMessageHandler>> {
1839                 let mut peers = Vec::new();
1840                 for i in 0..peer_count {
1841                         let node_secret = SecretKey::from_slice(&[42 + i as u8; 32]).unwrap();
1842                         let ephemeral_bytes = [i as u8; 32];
1843                         let msg_handler = MessageHandler { chan_handler: &cfgs[i].chan_handler, route_handler: &cfgs[i].routing_handler };
1844                         let peer = PeerManager::new(msg_handler, node_secret, &ephemeral_bytes, &cfgs[i].logger, IgnoringMessageHandler {});
1845                         peers.push(peer);
1846                 }
1847
1848                 peers
1849         }
1850
1851         fn establish_connection<'a>(peer_a: &PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, &'a test_utils::TestLogger, IgnoringMessageHandler>, peer_b: &PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, &'a test_utils::TestLogger, IgnoringMessageHandler>) -> (FileDescriptor, FileDescriptor) {
1852                 let secp_ctx = Secp256k1::new();
1853                 let a_id = PublicKey::from_secret_key(&secp_ctx, &peer_a.our_node_secret);
1854                 let mut fd_a = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
1855                 let mut fd_b = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
1856                 let initial_data = peer_b.new_outbound_connection(a_id, fd_b.clone(), None).unwrap();
1857                 peer_a.new_inbound_connection(fd_a.clone(), None).unwrap();
1858                 assert_eq!(peer_a.read_event(&mut fd_a, &initial_data).unwrap(), false);
1859                 peer_a.process_events();
1860                 assert_eq!(peer_b.read_event(&mut fd_b, &fd_a.outbound_data.lock().unwrap().split_off(0)).unwrap(), false);
1861                 peer_b.process_events();
1862                 assert_eq!(peer_a.read_event(&mut fd_a, &fd_b.outbound_data.lock().unwrap().split_off(0)).unwrap(), false);
1863                 peer_a.process_events();
1864                 assert_eq!(peer_b.read_event(&mut fd_b, &fd_a.outbound_data.lock().unwrap().split_off(0)).unwrap(), false);
1865                 (fd_a.clone(), fd_b.clone())
1866         }
1867
1868         #[test]
1869         fn test_disconnect_peer() {
1870                 // Simple test which builds a network of PeerManager, connects and brings them to NoiseState::Finished and
1871                 // push a DisconnectPeer event to remove the node flagged by id
1872                 let cfgs = create_peermgr_cfgs(2);
1873                 let chan_handler = test_utils::TestChannelMessageHandler::new();
1874                 let mut peers = create_network(2, &cfgs);
1875                 establish_connection(&peers[0], &peers[1]);
1876                 assert_eq!(peers[0].peers.read().unwrap().peers.len(), 1);
1877
1878                 let secp_ctx = Secp256k1::new();
1879                 let their_id = PublicKey::from_secret_key(&secp_ctx, &peers[1].our_node_secret);
1880
1881                 chan_handler.pending_events.lock().unwrap().push(events::MessageSendEvent::HandleError {
1882                         node_id: their_id,
1883                         action: msgs::ErrorAction::DisconnectPeer { msg: None },
1884                 });
1885                 assert_eq!(chan_handler.pending_events.lock().unwrap().len(), 1);
1886                 peers[0].message_handler.chan_handler = &chan_handler;
1887
1888                 peers[0].process_events();
1889                 assert_eq!(peers[0].peers.read().unwrap().peers.len(), 0);
1890         }
1891
1892         #[test]
1893         fn test_timer_tick_occurred() {
1894                 // Create peers, a vector of two peer managers, perform initial set up and check that peers[0] has one Peer.
1895                 let cfgs = create_peermgr_cfgs(2);
1896                 let peers = create_network(2, &cfgs);
1897                 establish_connection(&peers[0], &peers[1]);
1898                 assert_eq!(peers[0].peers.read().unwrap().peers.len(), 1);
1899
1900                 // peers[0] awaiting_pong is set to true, but the Peer is still connected
1901                 peers[0].timer_tick_occurred();
1902                 peers[0].process_events();
1903                 assert_eq!(peers[0].peers.read().unwrap().peers.len(), 1);
1904
1905                 // Since timer_tick_occurred() is called again when awaiting_pong is true, all Peers are disconnected
1906                 peers[0].timer_tick_occurred();
1907                 peers[0].process_events();
1908                 assert_eq!(peers[0].peers.read().unwrap().peers.len(), 0);
1909         }
1910
1911         #[test]
1912         fn test_do_attempt_write_data() {
1913                 // Create 2 peers with custom TestRoutingMessageHandlers and connect them.
1914                 let cfgs = create_peermgr_cfgs(2);
1915                 cfgs[0].routing_handler.request_full_sync.store(true, Ordering::Release);
1916                 cfgs[1].routing_handler.request_full_sync.store(true, Ordering::Release);
1917                 let peers = create_network(2, &cfgs);
1918
1919                 // By calling establish_connect, we trigger do_attempt_write_data between
1920                 // the peers. Previously this function would mistakenly enter an infinite loop
1921                 // when there were more channel messages available than could fit into a peer's
1922                 // buffer. This issue would now be detected by this test (because we use custom
1923                 // RoutingMessageHandlers that intentionally return more channel messages
1924                 // than can fit into a peer's buffer).
1925                 let (mut fd_a, mut fd_b) = establish_connection(&peers[0], &peers[1]);
1926
1927                 // Make each peer to read the messages that the other peer just wrote to them. Note that
1928                 // due to the max-message-before-ping limits this may take a few iterations to complete.
1929                 for _ in 0..150/super::BUFFER_DRAIN_MSGS_PER_TICK + 1 {
1930                         peers[1].process_events();
1931                         let a_read_data = fd_b.outbound_data.lock().unwrap().split_off(0);
1932                         assert!(!a_read_data.is_empty());
1933
1934                         peers[0].read_event(&mut fd_a, &a_read_data).unwrap();
1935                         peers[0].process_events();
1936
1937                         let b_read_data = fd_a.outbound_data.lock().unwrap().split_off(0);
1938                         assert!(!b_read_data.is_empty());
1939                         peers[1].read_event(&mut fd_b, &b_read_data).unwrap();
1940
1941                         peers[0].process_events();
1942                         assert_eq!(fd_a.outbound_data.lock().unwrap().len(), 0, "Until A receives data, it shouldn't send more messages");
1943                 }
1944
1945                 // Check that each peer has received the expected number of channel updates and channel
1946                 // announcements.
1947                 assert_eq!(cfgs[0].routing_handler.chan_upds_recvd.load(Ordering::Acquire), 100);
1948                 assert_eq!(cfgs[0].routing_handler.chan_anns_recvd.load(Ordering::Acquire), 50);
1949                 assert_eq!(cfgs[1].routing_handler.chan_upds_recvd.load(Ordering::Acquire), 100);
1950                 assert_eq!(cfgs[1].routing_handler.chan_anns_recvd.load(Ordering::Acquire), 50);
1951         }
1952
1953         #[test]
1954         fn test_handshake_timeout() {
1955                 // Tests that we time out a peer still waiting on handshake completion after a full timer
1956                 // tick.
1957                 let cfgs = create_peermgr_cfgs(2);
1958                 cfgs[0].routing_handler.request_full_sync.store(true, Ordering::Release);
1959                 cfgs[1].routing_handler.request_full_sync.store(true, Ordering::Release);
1960                 let peers = create_network(2, &cfgs);
1961
1962                 let secp_ctx = Secp256k1::new();
1963                 let a_id = PublicKey::from_secret_key(&secp_ctx, &peers[0].our_node_secret);
1964                 let mut fd_a = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
1965                 let mut fd_b = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
1966                 let initial_data = peers[1].new_outbound_connection(a_id, fd_b.clone(), None).unwrap();
1967                 peers[0].new_inbound_connection(fd_a.clone(), None).unwrap();
1968
1969                 // If we get a single timer tick before completion, that's fine
1970                 assert_eq!(peers[0].peers.read().unwrap().peers.len(), 1);
1971                 peers[0].timer_tick_occurred();
1972                 assert_eq!(peers[0].peers.read().unwrap().peers.len(), 1);
1973
1974                 assert_eq!(peers[0].read_event(&mut fd_a, &initial_data).unwrap(), false);
1975                 peers[0].process_events();
1976                 assert_eq!(peers[1].read_event(&mut fd_b, &fd_a.outbound_data.lock().unwrap().split_off(0)).unwrap(), false);
1977                 peers[1].process_events();
1978
1979                 // ...but if we get a second timer tick, we should disconnect the peer
1980                 peers[0].timer_tick_occurred();
1981                 assert_eq!(peers[0].peers.read().unwrap().peers.len(), 0);
1982
1983                 assert!(peers[0].read_event(&mut fd_a, &fd_b.outbound_data.lock().unwrap().split_off(0)).is_err());
1984         }
1985
1986         #[test]
1987         fn test_filter_addresses(){
1988                 // Tests the filter_addresses function.
1989
1990                 // For (10/8)
1991                 let ip_address = NetAddress::IPv4{addr: [10, 0, 0, 0], port: 1000};
1992                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
1993                 let ip_address = NetAddress::IPv4{addr: [10, 0, 255, 201], port: 1000};
1994                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
1995                 let ip_address = NetAddress::IPv4{addr: [10, 255, 255, 255], port: 1000};
1996                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
1997
1998                 // For (0/8)
1999                 let ip_address = NetAddress::IPv4{addr: [0, 0, 0, 0], port: 1000};
2000                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2001                 let ip_address = NetAddress::IPv4{addr: [0, 0, 255, 187], port: 1000};
2002                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2003                 let ip_address = NetAddress::IPv4{addr: [0, 255, 255, 255], port: 1000};
2004                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2005
2006                 // For (100.64/10)
2007                 let ip_address = NetAddress::IPv4{addr: [100, 64, 0, 0], port: 1000};
2008                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2009                 let ip_address = NetAddress::IPv4{addr: [100, 78, 255, 0], port: 1000};
2010                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2011                 let ip_address = NetAddress::IPv4{addr: [100, 127, 255, 255], port: 1000};
2012                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2013
2014                 // For (127/8)
2015                 let ip_address = NetAddress::IPv4{addr: [127, 0, 0, 0], port: 1000};
2016                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2017                 let ip_address = NetAddress::IPv4{addr: [127, 65, 73, 0], port: 1000};
2018                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2019                 let ip_address = NetAddress::IPv4{addr: [127, 255, 255, 255], port: 1000};
2020                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2021
2022                 // For (169.254/16)
2023                 let ip_address = NetAddress::IPv4{addr: [169, 254, 0, 0], port: 1000};
2024                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2025                 let ip_address = NetAddress::IPv4{addr: [169, 254, 221, 101], port: 1000};
2026                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2027                 let ip_address = NetAddress::IPv4{addr: [169, 254, 255, 255], port: 1000};
2028                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2029
2030                 // For (172.16/12)
2031                 let ip_address = NetAddress::IPv4{addr: [172, 16, 0, 0], port: 1000};
2032                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2033                 let ip_address = NetAddress::IPv4{addr: [172, 27, 101, 23], port: 1000};
2034                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2035                 let ip_address = NetAddress::IPv4{addr: [172, 31, 255, 255], port: 1000};
2036                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2037
2038                 // For (192.168/16)
2039                 let ip_address = NetAddress::IPv4{addr: [192, 168, 0, 0], port: 1000};
2040                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2041                 let ip_address = NetAddress::IPv4{addr: [192, 168, 205, 159], port: 1000};
2042                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2043                 let ip_address = NetAddress::IPv4{addr: [192, 168, 255, 255], port: 1000};
2044                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2045
2046                 // For (192.88.99/24)
2047                 let ip_address = NetAddress::IPv4{addr: [192, 88, 99, 0], port: 1000};
2048                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2049                 let ip_address = NetAddress::IPv4{addr: [192, 88, 99, 140], port: 1000};
2050                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2051                 let ip_address = NetAddress::IPv4{addr: [192, 88, 99, 255], port: 1000};
2052                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2053
2054                 // For other IPv4 addresses
2055                 let ip_address = NetAddress::IPv4{addr: [188, 255, 99, 0], port: 1000};
2056                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2057                 let ip_address = NetAddress::IPv4{addr: [123, 8, 129, 14], port: 1000};
2058                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2059                 let ip_address = NetAddress::IPv4{addr: [2, 88, 9, 255], port: 1000};
2060                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2061
2062                 // For (2000::/3)
2063                 let ip_address = NetAddress::IPv6{addr: [32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], port: 1000};
2064                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2065                 let ip_address = NetAddress::IPv6{addr: [45, 34, 209, 190, 0, 123, 55, 34, 0, 0, 3, 27, 201, 0, 0, 0], port: 1000};
2066                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2067                 let ip_address = NetAddress::IPv6{addr: [63, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255], port: 1000};
2068                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2069
2070                 // For other IPv6 addresses
2071                 let ip_address = NetAddress::IPv6{addr: [24, 240, 12, 32, 0, 0, 0, 0, 20, 97, 0, 32, 121, 254, 0, 0], port: 1000};
2072                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2073                 let ip_address = NetAddress::IPv6{addr: [68, 23, 56, 63, 0, 0, 2, 7, 75, 109, 0, 39, 0, 0, 0, 0], port: 1000};
2074                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2075                 let ip_address = NetAddress::IPv6{addr: [101, 38, 140, 230, 100, 0, 30, 98, 0, 26, 0, 0, 57, 96, 0, 0], port: 1000};
2076                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2077
2078                 // For (None)
2079                 assert_eq!(filter_addresses(None), None);
2080         }
2081 }