Avoid taking the peers write lock during event processing
[rust-lightning] / lightning / src / ln / peer_handler.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! Top level peer message handling and socket handling logic lives here.
11 //!
12 //! Instead of actually servicing sockets ourselves we require that you implement the
13 //! SocketDescriptor interface and use that to receive actions which you should perform on the
14 //! socket, and call into PeerManager with bytes read from the socket. The PeerManager will then
15 //! call into the provided message handlers (probably a ChannelManager and NetGraphmsgHandler) with messages
16 //! they should handle, and encoding/sending response messages.
17
18 use bitcoin::secp256k1::key::{SecretKey,PublicKey};
19
20 use ln::features::InitFeatures;
21 use ln::msgs;
22 use ln::msgs::{ChannelMessageHandler, LightningError, NetAddress, RoutingMessageHandler};
23 use ln::channelmanager::{SimpleArcChannelManager, SimpleRefChannelManager};
24 use util::ser::{VecWriter, Writeable, Writer};
25 use ln::peer_channel_encryptor::{PeerChannelEncryptor,NextNoiseStep};
26 use ln::wire;
27 use ln::wire::Encode;
28 use util::atomic_counter::AtomicCounter;
29 use util::events::{MessageSendEvent, MessageSendEventsProvider};
30 use util::logger::Logger;
31 use routing::network_graph::{NetworkGraph, NetGraphMsgHandler};
32
33 use prelude::*;
34 use io;
35 use alloc::collections::LinkedList;
36 use sync::{Arc, Mutex, MutexGuard, RwLock};
37 use core::{cmp, hash, fmt, mem};
38 use core::ops::Deref;
39 use core::convert::Infallible;
40 #[cfg(feature = "std")] use std::error;
41
42 use bitcoin::hashes::sha256::Hash as Sha256;
43 use bitcoin::hashes::sha256::HashEngine as Sha256Engine;
44 use bitcoin::hashes::{HashEngine, Hash};
45
46 /// Handler for BOLT1-compliant messages.
47 pub trait CustomMessageHandler: wire::CustomMessageReader {
48         /// Called with the message type that was received and the buffer to be read.
49         /// Can return a `MessageHandlingError` if the message could not be handled.
50         fn handle_custom_message(&self, msg: Self::CustomMessage, sender_node_id: &PublicKey) -> Result<(), LightningError>;
51
52         /// Gets the list of pending messages which were generated by the custom message
53         /// handler, clearing the list in the process. The first tuple element must
54         /// correspond to the intended recipients node ids. If no connection to one of the
55         /// specified node does not exist, the message is simply not sent to it.
56         fn get_and_clear_pending_msg(&self) -> Vec<(PublicKey, Self::CustomMessage)>;
57 }
58
59 /// A dummy struct which implements `RoutingMessageHandler` without storing any routing information
60 /// or doing any processing. You can provide one of these as the route_handler in a MessageHandler.
61 pub struct IgnoringMessageHandler{}
62 impl MessageSendEventsProvider for IgnoringMessageHandler {
63         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> { Vec::new() }
64 }
65 impl RoutingMessageHandler for IgnoringMessageHandler {
66         fn handle_node_announcement(&self, _msg: &msgs::NodeAnnouncement) -> Result<bool, LightningError> { Ok(false) }
67         fn handle_channel_announcement(&self, _msg: &msgs::ChannelAnnouncement) -> Result<bool, LightningError> { Ok(false) }
68         fn handle_channel_update(&self, _msg: &msgs::ChannelUpdate) -> Result<bool, LightningError> { Ok(false) }
69         fn get_next_channel_announcements(&self, _starting_point: u64, _batch_amount: u8) ->
70                 Vec<(msgs::ChannelAnnouncement, Option<msgs::ChannelUpdate>, Option<msgs::ChannelUpdate>)> { Vec::new() }
71         fn get_next_node_announcements(&self, _starting_point: Option<&PublicKey>, _batch_amount: u8) -> Vec<msgs::NodeAnnouncement> { Vec::new() }
72         fn peer_connected(&self, _their_node_id: &PublicKey, _init: &msgs::Init) {}
73         fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: msgs::ReplyChannelRange) -> Result<(), LightningError> { Ok(()) }
74         fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: msgs::ReplyShortChannelIdsEnd) -> Result<(), LightningError> { Ok(()) }
75         fn handle_query_channel_range(&self, _their_node_id: &PublicKey, _msg: msgs::QueryChannelRange) -> Result<(), LightningError> { Ok(()) }
76         fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: msgs::QueryShortChannelIds) -> Result<(), LightningError> { Ok(()) }
77 }
78 impl Deref for IgnoringMessageHandler {
79         type Target = IgnoringMessageHandler;
80         fn deref(&self) -> &Self { self }
81 }
82
83 // Implement Type for Infallible, note that it cannot be constructed, and thus you can never call a
84 // method that takes self for it.
85 impl wire::Type for Infallible {
86         fn type_id(&self) -> u16 {
87                 unreachable!();
88         }
89 }
90 impl Writeable for Infallible {
91         fn write<W: Writer>(&self, _: &mut W) -> Result<(), io::Error> {
92                 unreachable!();
93         }
94 }
95
96 impl wire::CustomMessageReader for IgnoringMessageHandler {
97         type CustomMessage = Infallible;
98         fn read<R: io::Read>(&self, _message_type: u16, _buffer: &mut R) -> Result<Option<Self::CustomMessage>, msgs::DecodeError> {
99                 Ok(None)
100         }
101 }
102
103 impl CustomMessageHandler for IgnoringMessageHandler {
104         fn handle_custom_message(&self, _msg: Infallible, _sender_node_id: &PublicKey) -> Result<(), LightningError> {
105                 // Since we always return `None` in the read the handle method should never be called.
106                 unreachable!();
107         }
108
109         fn get_and_clear_pending_msg(&self) -> Vec<(PublicKey, Self::CustomMessage)> { Vec::new() }
110 }
111
112 /// A dummy struct which implements `ChannelMessageHandler` without having any channels.
113 /// You can provide one of these as the route_handler in a MessageHandler.
114 pub struct ErroringMessageHandler {
115         message_queue: Mutex<Vec<MessageSendEvent>>
116 }
117 impl ErroringMessageHandler {
118         /// Constructs a new ErroringMessageHandler
119         pub fn new() -> Self {
120                 Self { message_queue: Mutex::new(Vec::new()) }
121         }
122         fn push_error(&self, node_id: &PublicKey, channel_id: [u8; 32]) {
123                 self.message_queue.lock().unwrap().push(MessageSendEvent::HandleError {
124                         action: msgs::ErrorAction::SendErrorMessage {
125                                 msg: msgs::ErrorMessage { channel_id, data: "We do not support channel messages, sorry.".to_owned() },
126                         },
127                         node_id: node_id.clone(),
128                 });
129         }
130 }
131 impl MessageSendEventsProvider for ErroringMessageHandler {
132         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
133                 let mut res = Vec::new();
134                 mem::swap(&mut res, &mut self.message_queue.lock().unwrap());
135                 res
136         }
137 }
138 impl ChannelMessageHandler for ErroringMessageHandler {
139         // Any messages which are related to a specific channel generate an error message to let the
140         // peer know we don't care about channels.
141         fn handle_open_channel(&self, their_node_id: &PublicKey, _their_features: InitFeatures, msg: &msgs::OpenChannel) {
142                 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
143         }
144         fn handle_accept_channel(&self, their_node_id: &PublicKey, _their_features: InitFeatures, msg: &msgs::AcceptChannel) {
145                 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
146         }
147         fn handle_funding_created(&self, their_node_id: &PublicKey, msg: &msgs::FundingCreated) {
148                 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
149         }
150         fn handle_funding_signed(&self, their_node_id: &PublicKey, msg: &msgs::FundingSigned) {
151                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
152         }
153         fn handle_funding_locked(&self, their_node_id: &PublicKey, msg: &msgs::FundingLocked) {
154                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
155         }
156         fn handle_shutdown(&self, their_node_id: &PublicKey, _their_features: &InitFeatures, msg: &msgs::Shutdown) {
157                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
158         }
159         fn handle_closing_signed(&self, their_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
160                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
161         }
162         fn handle_update_add_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
163                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
164         }
165         fn handle_update_fulfill_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
166                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
167         }
168         fn handle_update_fail_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
169                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
170         }
171         fn handle_update_fail_malformed_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
172                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
173         }
174         fn handle_commitment_signed(&self, their_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
175                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
176         }
177         fn handle_revoke_and_ack(&self, their_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
178                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
179         }
180         fn handle_update_fee(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFee) {
181                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
182         }
183         fn handle_announcement_signatures(&self, their_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
184                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
185         }
186         fn handle_channel_reestablish(&self, their_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
187                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
188         }
189         // msgs::ChannelUpdate does not contain the channel_id field, so we just drop them.
190         fn handle_channel_update(&self, _their_node_id: &PublicKey, _msg: &msgs::ChannelUpdate) {}
191         fn peer_disconnected(&self, _their_node_id: &PublicKey, _no_connection_possible: bool) {}
192         fn peer_connected(&self, _their_node_id: &PublicKey, _msg: &msgs::Init) {}
193         fn handle_error(&self, _their_node_id: &PublicKey, _msg: &msgs::ErrorMessage) {}
194 }
195 impl Deref for ErroringMessageHandler {
196         type Target = ErroringMessageHandler;
197         fn deref(&self) -> &Self { self }
198 }
199
200 /// Provides references to trait impls which handle different types of messages.
201 pub struct MessageHandler<CM: Deref, RM: Deref> where
202                 CM::Target: ChannelMessageHandler,
203                 RM::Target: RoutingMessageHandler {
204         /// A message handler which handles messages specific to channels. Usually this is just a
205         /// [`ChannelManager`] object or an [`ErroringMessageHandler`].
206         ///
207         /// [`ChannelManager`]: crate::ln::channelmanager::ChannelManager
208         pub chan_handler: CM,
209         /// A message handler which handles messages updating our knowledge of the network channel
210         /// graph. Usually this is just a [`NetGraphMsgHandler`] object or an
211         /// [`IgnoringMessageHandler`].
212         ///
213         /// [`NetGraphMsgHandler`]: crate::routing::network_graph::NetGraphMsgHandler
214         pub route_handler: RM,
215 }
216
217 /// Provides an object which can be used to send data to and which uniquely identifies a connection
218 /// to a remote host. You will need to be able to generate multiple of these which meet Eq and
219 /// implement Hash to meet the PeerManager API.
220 ///
221 /// For efficiency, Clone should be relatively cheap for this type.
222 ///
223 /// Two descriptors may compare equal (by [`cmp::Eq`] and [`hash::Hash`]) as long as the original
224 /// has been disconnected, the [`PeerManager`] has been informed of the disconnection (either by it
225 /// having triggered the disconnection or a call to [`PeerManager::socket_disconnected`]), and no
226 /// further calls to the [`PeerManager`] related to the original socket occur. This allows you to
227 /// use a file descriptor for your SocketDescriptor directly, however for simplicity you may wish
228 /// to simply use another value which is guaranteed to be globally unique instead.
229 pub trait SocketDescriptor : cmp::Eq + hash::Hash + Clone {
230         /// Attempts to send some data from the given slice to the peer.
231         ///
232         /// Returns the amount of data which was sent, possibly 0 if the socket has since disconnected.
233         /// Note that in the disconnected case, [`PeerManager::socket_disconnected`] must still be
234         /// called and further write attempts may occur until that time.
235         ///
236         /// If the returned size is smaller than `data.len()`, a
237         /// [`PeerManager::write_buffer_space_avail`] call must be made the next time more data can be
238         /// written. Additionally, until a `send_data` event completes fully, no further
239         /// [`PeerManager::read_event`] calls should be made for the same peer! Because this is to
240         /// prevent denial-of-service issues, you should not read or buffer any data from the socket
241         /// until then.
242         ///
243         /// If a [`PeerManager::read_event`] call on this descriptor had previously returned true
244         /// (indicating that read events should be paused to prevent DoS in the send buffer),
245         /// `resume_read` may be set indicating that read events on this descriptor should resume. A
246         /// `resume_read` of false carries no meaning, and should not cause any action.
247         fn send_data(&mut self, data: &[u8], resume_read: bool) -> usize;
248         /// Disconnect the socket pointed to by this SocketDescriptor.
249         ///
250         /// You do *not* need to call [`PeerManager::socket_disconnected`] with this socket after this
251         /// call (doing so is a noop).
252         fn disconnect_socket(&mut self);
253 }
254
255 /// Error for PeerManager errors. If you get one of these, you must disconnect the socket and
256 /// generate no further read_event/write_buffer_space_avail/socket_disconnected calls for the
257 /// descriptor.
258 #[derive(Clone)]
259 pub struct PeerHandleError {
260         /// Used to indicate that we probably can't make any future connections to this peer, implying
261         /// we should go ahead and force-close any channels we have with it.
262         pub no_connection_possible: bool,
263 }
264 impl fmt::Debug for PeerHandleError {
265         fn fmt(&self, formatter: &mut fmt::Formatter) -> Result<(), fmt::Error> {
266                 formatter.write_str("Peer Sent Invalid Data")
267         }
268 }
269 impl fmt::Display for PeerHandleError {
270         fn fmt(&self, formatter: &mut fmt::Formatter) -> Result<(), fmt::Error> {
271                 formatter.write_str("Peer Sent Invalid Data")
272         }
273 }
274
275 #[cfg(feature = "std")]
276 impl error::Error for PeerHandleError {
277         fn description(&self) -> &str {
278                 "Peer Sent Invalid Data"
279         }
280 }
281
282 enum InitSyncTracker{
283         NoSyncRequested,
284         ChannelsSyncing(u64),
285         NodesSyncing(PublicKey),
286 }
287
288 /// The ratio between buffer sizes at which we stop sending initial sync messages vs when we stop
289 /// forwarding gossip messages to peers altogether.
290 const FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO: usize = 2;
291
292 /// When the outbound buffer has this many messages, we'll stop reading bytes from the peer until
293 /// we have fewer than this many messages in the outbound buffer again.
294 /// We also use this as the target number of outbound gossip messages to keep in the write buffer,
295 /// refilled as we send bytes.
296 const OUTBOUND_BUFFER_LIMIT_READ_PAUSE: usize = 10;
297 /// When the outbound buffer has this many messages, we'll simply skip relaying gossip messages to
298 /// the peer.
299 const OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP: usize = OUTBOUND_BUFFER_LIMIT_READ_PAUSE * FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO;
300
301 /// If we've sent a ping, and are still awaiting a response, we may need to churn our way through
302 /// the socket receive buffer before receiving the ping.
303 ///
304 /// On a fairly old Arm64 board, with Linux defaults, this can take as long as 20 seconds, not
305 /// including any network delays, outbound traffic, or the same for messages from other peers.
306 ///
307 /// Thus, to avoid needlessly disconnecting a peer, we allow a peer to take this many timer ticks
308 /// per connected peer to respond to a ping, as long as they send us at least one message during
309 /// each tick, ensuring we aren't actually just disconnected.
310 /// With a timer tick interval of ten seconds, this translates to about 40 seconds per connected
311 /// peer.
312 ///
313 /// When we improve parallelism somewhat we should reduce this to e.g. this many timer ticks per
314 /// two connected peers, assuming most LDK-running systems have at least two cores.
315 const MAX_BUFFER_DRAIN_TICK_INTERVALS_PER_PEER: i8 = 4;
316
317 /// This is the minimum number of messages we expect a peer to be able to handle within one timer
318 /// tick. Once we have sent this many messages since the last ping, we send a ping right away to
319 /// ensures we don't just fill up our send buffer and leave the peer with too many messages to
320 /// process before the next ping.
321 const BUFFER_DRAIN_MSGS_PER_TICK: usize = 32;
322
323 struct Peer {
324         channel_encryptor: PeerChannelEncryptor,
325         their_node_id: Option<PublicKey>,
326         their_features: Option<InitFeatures>,
327         their_net_address: Option<NetAddress>,
328
329         pending_outbound_buffer: LinkedList<Vec<u8>>,
330         pending_outbound_buffer_first_msg_offset: usize,
331         awaiting_write_event: bool,
332
333         pending_read_buffer: Vec<u8>,
334         pending_read_buffer_pos: usize,
335         pending_read_is_header: bool,
336
337         sync_status: InitSyncTracker,
338
339         msgs_sent_since_pong: usize,
340         awaiting_pong_timer_tick_intervals: i8,
341         received_message_since_timer_tick: bool,
342         sent_gossip_timestamp_filter: bool,
343 }
344
345 impl Peer {
346         /// Returns true if the channel announcements/updates for the given channel should be
347         /// forwarded to this peer.
348         /// If we are sending our routing table to this peer and we have not yet sent channel
349         /// announcements/updates for the given channel_id then we will send it when we get to that
350         /// point and we shouldn't send it yet to avoid sending duplicate updates. If we've already
351         /// sent the old versions, we should send the update, and so return true here.
352         fn should_forward_channel_announcement(&self, channel_id: u64) -> bool {
353                 if self.their_features.as_ref().unwrap().supports_gossip_queries() &&
354                         !self.sent_gossip_timestamp_filter {
355                                 return false;
356                         }
357                 match self.sync_status {
358                         InitSyncTracker::NoSyncRequested => true,
359                         InitSyncTracker::ChannelsSyncing(i) => i < channel_id,
360                         InitSyncTracker::NodesSyncing(_) => true,
361                 }
362         }
363
364         /// Similar to the above, but for node announcements indexed by node_id.
365         fn should_forward_node_announcement(&self, node_id: PublicKey) -> bool {
366                 if self.their_features.as_ref().unwrap().supports_gossip_queries() &&
367                         !self.sent_gossip_timestamp_filter {
368                                 return false;
369                         }
370                 match self.sync_status {
371                         InitSyncTracker::NoSyncRequested => true,
372                         InitSyncTracker::ChannelsSyncing(_) => false,
373                         InitSyncTracker::NodesSyncing(pk) => pk < node_id,
374                 }
375         }
376 }
377
378 struct PeerHolder<Descriptor: SocketDescriptor> {
379         /// Peer is under its own mutex for sending and receiving bytes, but note that we do *not* hold
380         /// this mutex while we're processing a message. This is fine as [`PeerManager::read_event`]
381         /// requires that there be no parallel calls for a given peer, so mutual exclusion of messages
382         /// handed to the `MessageHandler`s for a given peer is already guaranteed.
383         peers: HashMap<Descriptor, Mutex<Peer>>,
384 }
385
386 /// SimpleArcPeerManager is useful when you need a PeerManager with a static lifetime, e.g.
387 /// when you're using lightning-net-tokio (since tokio::spawn requires parameters with static
388 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
389 /// SimpleRefPeerManager is the more appropriate type. Defining these type aliases prevents
390 /// issues such as overly long function definitions.
391 ///
392 /// (C-not exported) as Arcs don't make sense in bindings
393 pub type SimpleArcPeerManager<SD, M, T, F, C, L> = PeerManager<SD, Arc<SimpleArcChannelManager<M, T, F, L>>, Arc<NetGraphMsgHandler<Arc<NetworkGraph>, Arc<C>, Arc<L>>>, Arc<L>, Arc<IgnoringMessageHandler>>;
394
395 /// SimpleRefPeerManager is a type alias for a PeerManager reference, and is the reference
396 /// counterpart to the SimpleArcPeerManager type alias. Use this type by default when you don't
397 /// need a PeerManager with a static lifetime. You'll need a static lifetime in cases such as
398 /// usage of lightning-net-tokio (since tokio::spawn requires parameters with static lifetimes).
399 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
400 /// helps with issues such as long function definitions.
401 ///
402 /// (C-not exported) as Arcs don't make sense in bindings
403 pub type SimpleRefPeerManager<'a, 'b, 'c, 'd, 'e, 'f, 'g, 'h, SD, M, T, F, C, L> = PeerManager<SD, SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, M, T, F, L>, &'e NetGraphMsgHandler<&'g NetworkGraph, &'h C, &'f L>, &'f L, IgnoringMessageHandler>;
404
405 /// A PeerManager manages a set of peers, described by their [`SocketDescriptor`] and marshalls
406 /// socket events into messages which it passes on to its [`MessageHandler`].
407 ///
408 /// Locks are taken internally, so you must never assume that reentrancy from a
409 /// [`SocketDescriptor`] call back into [`PeerManager`] methods will not deadlock.
410 ///
411 /// Calls to [`read_event`] will decode relevant messages and pass them to the
412 /// [`ChannelMessageHandler`], likely doing message processing in-line. Thus, the primary form of
413 /// parallelism in Rust-Lightning is in calls to [`read_event`]. Note, however, that calls to any
414 /// [`PeerManager`] functions related to the same connection must occur only in serial, making new
415 /// calls only after previous ones have returned.
416 ///
417 /// Rather than using a plain PeerManager, it is preferable to use either a SimpleArcPeerManager
418 /// a SimpleRefPeerManager, for conciseness. See their documentation for more details, but
419 /// essentially you should default to using a SimpleRefPeerManager, and use a
420 /// SimpleArcPeerManager when you require a PeerManager with a static lifetime, such as when
421 /// you're using lightning-net-tokio.
422 ///
423 /// [`read_event`]: PeerManager::read_event
424 pub struct PeerManager<Descriptor: SocketDescriptor, CM: Deref, RM: Deref, L: Deref, CMH: Deref> where
425                 CM::Target: ChannelMessageHandler,
426                 RM::Target: RoutingMessageHandler,
427                 L::Target: Logger,
428                 CMH::Target: CustomMessageHandler {
429         message_handler: MessageHandler<CM, RM>,
430         peers: RwLock<PeerHolder<Descriptor>>,
431         /// Only add to this set when noise completes.
432         /// Locked *after* peers. When an item is removed, it must be removed with the `peers` write
433         /// lock held. Entries may be added with only the `peers` read lock held (though the
434         /// `Descriptor` value must already exist in `peers`).
435         node_id_to_descriptor: Mutex<HashMap<PublicKey, Descriptor>>,
436         /// We can only have one thread processing events at once, but we don't usually need the full
437         /// `peers` write lock to do so, so instead we block on this empty mutex when entering
438         /// `process_events`.
439         event_processing_lock: Mutex<()>,
440         our_node_secret: SecretKey,
441         ephemeral_key_midstate: Sha256Engine,
442         custom_message_handler: CMH,
443
444         peer_counter: AtomicCounter,
445
446         logger: L,
447 }
448
449 enum MessageHandlingError {
450         PeerHandleError(PeerHandleError),
451         LightningError(LightningError),
452 }
453
454 impl From<PeerHandleError> for MessageHandlingError {
455         fn from(error: PeerHandleError) -> Self {
456                 MessageHandlingError::PeerHandleError(error)
457         }
458 }
459
460 impl From<LightningError> for MessageHandlingError {
461         fn from(error: LightningError) -> Self {
462                 MessageHandlingError::LightningError(error)
463         }
464 }
465
466 macro_rules! encode_msg {
467         ($msg: expr) => {{
468                 let mut buffer = VecWriter(Vec::new());
469                 wire::write($msg, &mut buffer).unwrap();
470                 buffer.0
471         }}
472 }
473
474 impl<Descriptor: SocketDescriptor, CM: Deref, L: Deref> PeerManager<Descriptor, CM, IgnoringMessageHandler, L, IgnoringMessageHandler> where
475                 CM::Target: ChannelMessageHandler,
476                 L::Target: Logger {
477         /// Constructs a new PeerManager with the given ChannelMessageHandler. No routing message
478         /// handler is used and network graph messages are ignored.
479         ///
480         /// ephemeral_random_data is used to derive per-connection ephemeral keys and must be
481         /// cryptographically secure random bytes.
482         ///
483         /// (C-not exported) as we can't export a PeerManager with a dummy route handler
484         pub fn new_channel_only(channel_message_handler: CM, our_node_secret: SecretKey, ephemeral_random_data: &[u8; 32], logger: L) -> Self {
485                 Self::new(MessageHandler {
486                         chan_handler: channel_message_handler,
487                         route_handler: IgnoringMessageHandler{},
488                 }, our_node_secret, ephemeral_random_data, logger, IgnoringMessageHandler{})
489         }
490 }
491
492 impl<Descriptor: SocketDescriptor, RM: Deref, L: Deref> PeerManager<Descriptor, ErroringMessageHandler, RM, L, IgnoringMessageHandler> where
493                 RM::Target: RoutingMessageHandler,
494                 L::Target: Logger {
495         /// Constructs a new PeerManager with the given RoutingMessageHandler. No channel message
496         /// handler is used and messages related to channels will be ignored (or generate error
497         /// messages). Note that some other lightning implementations time-out connections after some
498         /// time if no channel is built with the peer.
499         ///
500         /// ephemeral_random_data is used to derive per-connection ephemeral keys and must be
501         /// cryptographically secure random bytes.
502         ///
503         /// (C-not exported) as we can't export a PeerManager with a dummy channel handler
504         pub fn new_routing_only(routing_message_handler: RM, our_node_secret: SecretKey, ephemeral_random_data: &[u8; 32], logger: L) -> Self {
505                 Self::new(MessageHandler {
506                         chan_handler: ErroringMessageHandler::new(),
507                         route_handler: routing_message_handler,
508                 }, our_node_secret, ephemeral_random_data, logger, IgnoringMessageHandler{})
509         }
510 }
511
512 /// A simple wrapper that optionally prints " from <pubkey>" for an optional pubkey.
513 /// This works around `format!()` taking a reference to each argument, preventing
514 /// `if let Some(node_id) = peer.their_node_id { format!(.., node_id) } else { .. }` from compiling
515 /// due to lifetime errors.
516 struct OptionalFromDebugger<'a>(&'a Option<PublicKey>);
517 impl core::fmt::Display for OptionalFromDebugger<'_> {
518         fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> Result<(), core::fmt::Error> {
519                 if let Some(node_id) = self.0 { write!(f, " from {}", log_pubkey!(node_id)) } else { Ok(()) }
520         }
521 }
522
523 /// A function used to filter out local or private addresses
524 /// https://www.iana.org./assignments/ipv4-address-space/ipv4-address-space.xhtml
525 /// https://www.iana.org/assignments/ipv6-address-space/ipv6-address-space.xhtml
526 fn filter_addresses(ip_address: Option<NetAddress>) -> Option<NetAddress> {
527         match ip_address{
528                 // For IPv4 range 10.0.0.0 - 10.255.255.255 (10/8)
529                 Some(NetAddress::IPv4{addr: [10, _, _, _], port: _}) => None,
530                 // For IPv4 range 0.0.0.0 - 0.255.255.255 (0/8)
531                 Some(NetAddress::IPv4{addr: [0, _, _, _], port: _}) => None,
532                 // For IPv4 range 100.64.0.0 - 100.127.255.255 (100.64/10)
533                 Some(NetAddress::IPv4{addr: [100, 64..=127, _, _], port: _}) => None,
534                 // For IPv4 range       127.0.0.0 - 127.255.255.255 (127/8)
535                 Some(NetAddress::IPv4{addr: [127, _, _, _], port: _}) => None,
536                 // For IPv4 range       169.254.0.0 - 169.254.255.255 (169.254/16)
537                 Some(NetAddress::IPv4{addr: [169, 254, _, _], port: _}) => None,
538                 // For IPv4 range 172.16.0.0 - 172.31.255.255 (172.16/12)
539                 Some(NetAddress::IPv4{addr: [172, 16..=31, _, _], port: _}) => None,
540                 // For IPv4 range 192.168.0.0 - 192.168.255.255 (192.168/16)
541                 Some(NetAddress::IPv4{addr: [192, 168, _, _], port: _}) => None,
542                 // For IPv4 range 192.88.99.0 - 192.88.99.255  (192.88.99/24)
543                 Some(NetAddress::IPv4{addr: [192, 88, 99, _], port: _}) => None,
544                 // For IPv6 range 2000:0000:0000:0000:0000:0000:0000:0000 - 3fff:ffff:ffff:ffff:ffff:ffff:ffff:ffff (2000::/3)
545                 Some(NetAddress::IPv6{addr: [0x20..=0x3F, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _], port: _}) => ip_address,
546                 // For remaining addresses
547                 Some(NetAddress::IPv6{addr: _, port: _}) => None,
548                 Some(..) => ip_address,
549                 None => None,
550         }
551 }
552
553 impl<Descriptor: SocketDescriptor, CM: Deref, RM: Deref, L: Deref, CMH: Deref> PeerManager<Descriptor, CM, RM, L, CMH> where
554                 CM::Target: ChannelMessageHandler,
555                 RM::Target: RoutingMessageHandler,
556                 L::Target: Logger,
557                 CMH::Target: CustomMessageHandler {
558         /// Constructs a new PeerManager with the given message handlers and node_id secret key
559         /// ephemeral_random_data is used to derive per-connection ephemeral keys and must be
560         /// cryptographically secure random bytes.
561         pub fn new(message_handler: MessageHandler<CM, RM>, our_node_secret: SecretKey, ephemeral_random_data: &[u8; 32], logger: L, custom_message_handler: CMH) -> Self {
562                 let mut ephemeral_key_midstate = Sha256::engine();
563                 ephemeral_key_midstate.input(ephemeral_random_data);
564
565                 PeerManager {
566                         message_handler,
567                         peers: RwLock::new(PeerHolder {
568                                 peers: HashMap::new(),
569                         }),
570                         node_id_to_descriptor: Mutex::new(HashMap::new()),
571                         event_processing_lock: Mutex::new(()),
572                         our_node_secret,
573                         ephemeral_key_midstate,
574                         peer_counter: AtomicCounter::new(),
575                         logger,
576                         custom_message_handler,
577                 }
578         }
579
580         /// Get the list of node ids for peers which have completed the initial handshake.
581         ///
582         /// For outbound connections, this will be the same as the their_node_id parameter passed in to
583         /// new_outbound_connection, however entries will only appear once the initial handshake has
584         /// completed and we are sure the remote peer has the private key for the given node_id.
585         pub fn get_peer_node_ids(&self) -> Vec<PublicKey> {
586                 let peers = self.peers.read().unwrap();
587                 peers.peers.values().filter_map(|peer_mutex| {
588                         let p = peer_mutex.lock().unwrap();
589                         if !p.channel_encryptor.is_ready_for_encryption() || p.their_features.is_none() {
590                                 return None;
591                         }
592                         p.their_node_id
593                 }).collect()
594         }
595
596         fn get_ephemeral_key(&self) -> SecretKey {
597                 let mut ephemeral_hash = self.ephemeral_key_midstate.clone();
598                 let counter = self.peer_counter.get_increment();
599                 ephemeral_hash.input(&counter.to_le_bytes());
600                 SecretKey::from_slice(&Sha256::from_engine(ephemeral_hash).into_inner()).expect("You broke SHA-256!")
601         }
602
603         /// Indicates a new outbound connection has been established to a node with the given node_id
604         /// and an optional remote network address.
605         ///
606         /// The remote network address adds the option to report a remote IP address back to a connecting
607         /// peer using the init message.
608         /// The user should pass the remote network address of the host they are connected to.
609         ///
610         /// Note that if an Err is returned here you MUST NOT call socket_disconnected for the new
611         /// descriptor but must disconnect the connection immediately.
612         ///
613         /// Returns a small number of bytes to send to the remote node (currently always 50).
614         ///
615         /// Panics if descriptor is duplicative with some other descriptor which has not yet been
616         /// [`socket_disconnected()`].
617         ///
618         /// [`socket_disconnected()`]: PeerManager::socket_disconnected
619         pub fn new_outbound_connection(&self, their_node_id: PublicKey, descriptor: Descriptor, remote_network_address: Option<NetAddress>) -> Result<Vec<u8>, PeerHandleError> {
620                 let mut peer_encryptor = PeerChannelEncryptor::new_outbound(their_node_id.clone(), self.get_ephemeral_key());
621                 let res = peer_encryptor.get_act_one().to_vec();
622                 let pending_read_buffer = [0; 50].to_vec(); // Noise act two is 50 bytes
623
624                 let mut peers = self.peers.write().unwrap();
625                 if peers.peers.insert(descriptor, Mutex::new(Peer {
626                         channel_encryptor: peer_encryptor,
627                         their_node_id: None,
628                         their_features: None,
629                         their_net_address: remote_network_address,
630
631                         pending_outbound_buffer: LinkedList::new(),
632                         pending_outbound_buffer_first_msg_offset: 0,
633                         awaiting_write_event: false,
634
635                         pending_read_buffer,
636                         pending_read_buffer_pos: 0,
637                         pending_read_is_header: false,
638
639                         sync_status: InitSyncTracker::NoSyncRequested,
640
641                         msgs_sent_since_pong: 0,
642                         awaiting_pong_timer_tick_intervals: 0,
643                         received_message_since_timer_tick: false,
644                         sent_gossip_timestamp_filter: false,
645                 })).is_some() {
646                         panic!("PeerManager driver duplicated descriptors!");
647                 };
648                 Ok(res)
649         }
650
651         /// Indicates a new inbound connection has been established to a node with an optional remote
652         /// network address.
653         ///
654         /// The remote network address adds the option to report a remote IP address back to a connecting
655         /// peer using the init message.
656         /// The user should pass the remote network address of the host they are connected to.
657         ///
658         /// May refuse the connection by returning an Err, but will never write bytes to the remote end
659         /// (outbound connector always speaks first). Note that if an Err is returned here you MUST NOT
660         /// call socket_disconnected for the new descriptor but must disconnect the connection
661         /// immediately.
662         ///
663         /// Panics if descriptor is duplicative with some other descriptor which has not yet been
664         /// [`socket_disconnected()`].
665         ///
666         /// [`socket_disconnected()`]: PeerManager::socket_disconnected
667         pub fn new_inbound_connection(&self, descriptor: Descriptor, remote_network_address: Option<NetAddress>) -> Result<(), PeerHandleError> {
668                 let peer_encryptor = PeerChannelEncryptor::new_inbound(&self.our_node_secret);
669                 let pending_read_buffer = [0; 50].to_vec(); // Noise act one is 50 bytes
670
671                 let mut peers = self.peers.write().unwrap();
672                 if peers.peers.insert(descriptor, Mutex::new(Peer {
673                         channel_encryptor: peer_encryptor,
674                         their_node_id: None,
675                         their_features: None,
676                         their_net_address: remote_network_address,
677
678                         pending_outbound_buffer: LinkedList::new(),
679                         pending_outbound_buffer_first_msg_offset: 0,
680                         awaiting_write_event: false,
681
682                         pending_read_buffer,
683                         pending_read_buffer_pos: 0,
684                         pending_read_is_header: false,
685
686                         sync_status: InitSyncTracker::NoSyncRequested,
687
688                         msgs_sent_since_pong: 0,
689                         awaiting_pong_timer_tick_intervals: 0,
690                         received_message_since_timer_tick: false,
691                         sent_gossip_timestamp_filter: false,
692                 })).is_some() {
693                         panic!("PeerManager driver duplicated descriptors!");
694                 };
695                 Ok(())
696         }
697
698         fn do_attempt_write_data(&self, descriptor: &mut Descriptor, peer: &mut Peer) {
699                 while !peer.awaiting_write_event {
700                         if peer.pending_outbound_buffer.len() < OUTBOUND_BUFFER_LIMIT_READ_PAUSE && peer.msgs_sent_since_pong < BUFFER_DRAIN_MSGS_PER_TICK {
701                                 match peer.sync_status {
702                                         InitSyncTracker::NoSyncRequested => {},
703                                         InitSyncTracker::ChannelsSyncing(c) if c < 0xffff_ffff_ffff_ffff => {
704                                                 let steps = ((OUTBOUND_BUFFER_LIMIT_READ_PAUSE - peer.pending_outbound_buffer.len() + 2) / 3) as u8;
705                                                 let all_messages = self.message_handler.route_handler.get_next_channel_announcements(c, steps);
706                                                 for &(ref announce, ref update_a_option, ref update_b_option) in all_messages.iter() {
707                                                         self.enqueue_message(peer, announce);
708                                                         if let &Some(ref update_a) = update_a_option {
709                                                                 self.enqueue_message(peer, update_a);
710                                                         }
711                                                         if let &Some(ref update_b) = update_b_option {
712                                                                 self.enqueue_message(peer, update_b);
713                                                         }
714                                                         peer.sync_status = InitSyncTracker::ChannelsSyncing(announce.contents.short_channel_id + 1);
715                                                 }
716                                                 if all_messages.is_empty() || all_messages.len() != steps as usize {
717                                                         peer.sync_status = InitSyncTracker::ChannelsSyncing(0xffff_ffff_ffff_ffff);
718                                                 }
719                                         },
720                                         InitSyncTracker::ChannelsSyncing(c) if c == 0xffff_ffff_ffff_ffff => {
721                                                 let steps = (OUTBOUND_BUFFER_LIMIT_READ_PAUSE - peer.pending_outbound_buffer.len()) as u8;
722                                                 let all_messages = self.message_handler.route_handler.get_next_node_announcements(None, steps);
723                                                 for msg in all_messages.iter() {
724                                                         self.enqueue_message(peer, msg);
725                                                         peer.sync_status = InitSyncTracker::NodesSyncing(msg.contents.node_id);
726                                                 }
727                                                 if all_messages.is_empty() || all_messages.len() != steps as usize {
728                                                         peer.sync_status = InitSyncTracker::NoSyncRequested;
729                                                 }
730                                         },
731                                         InitSyncTracker::ChannelsSyncing(_) => unreachable!(),
732                                         InitSyncTracker::NodesSyncing(key) => {
733                                                 let steps = (OUTBOUND_BUFFER_LIMIT_READ_PAUSE - peer.pending_outbound_buffer.len()) as u8;
734                                                 let all_messages = self.message_handler.route_handler.get_next_node_announcements(Some(&key), steps);
735                                                 for msg in all_messages.iter() {
736                                                         self.enqueue_message(peer, msg);
737                                                         peer.sync_status = InitSyncTracker::NodesSyncing(msg.contents.node_id);
738                                                 }
739                                                 if all_messages.is_empty() || all_messages.len() != steps as usize {
740                                                         peer.sync_status = InitSyncTracker::NoSyncRequested;
741                                                 }
742                                         },
743                                 }
744                         }
745                         if peer.msgs_sent_since_pong >= BUFFER_DRAIN_MSGS_PER_TICK {
746                                 self.maybe_send_extra_ping(peer);
747                         }
748
749                         if {
750                                 let next_buff = match peer.pending_outbound_buffer.front() {
751                                         None => return,
752                                         Some(buff) => buff,
753                                 };
754
755                                 let should_be_reading = peer.pending_outbound_buffer.len() < OUTBOUND_BUFFER_LIMIT_READ_PAUSE;
756                                 let pending = &next_buff[peer.pending_outbound_buffer_first_msg_offset..];
757                                 let data_sent = descriptor.send_data(pending, should_be_reading);
758                                 peer.pending_outbound_buffer_first_msg_offset += data_sent;
759                                 if peer.pending_outbound_buffer_first_msg_offset == next_buff.len() { true } else { false }
760                         } {
761                                 peer.pending_outbound_buffer_first_msg_offset = 0;
762                                 peer.pending_outbound_buffer.pop_front();
763                         } else {
764                                 peer.awaiting_write_event = true;
765                         }
766                 }
767         }
768
769         /// Indicates that there is room to write data to the given socket descriptor.
770         ///
771         /// May return an Err to indicate that the connection should be closed.
772         ///
773         /// May call [`send_data`] on the descriptor passed in (or an equal descriptor) before
774         /// returning. Thus, be very careful with reentrancy issues! The invariants around calling
775         /// [`write_buffer_space_avail`] in case a write did not fully complete must still hold - be
776         /// ready to call `[write_buffer_space_avail`] again if a write call generated here isn't
777         /// sufficient!
778         ///
779         /// [`send_data`]: SocketDescriptor::send_data
780         /// [`write_buffer_space_avail`]: PeerManager::write_buffer_space_avail
781         pub fn write_buffer_space_avail(&self, descriptor: &mut Descriptor) -> Result<(), PeerHandleError> {
782                 let peers = self.peers.read().unwrap();
783                 match peers.peers.get(descriptor) {
784                         None => {
785                                 // This is most likely a simple race condition where the user found that the socket
786                                 // was writeable, then we told the user to `disconnect_socket()`, then they called
787                                 // this method. Return an error to make sure we get disconnected.
788                                 return Err(PeerHandleError { no_connection_possible: false });
789                         },
790                         Some(peer_mutex) => {
791                                 let mut peer = peer_mutex.lock().unwrap();
792                                 peer.awaiting_write_event = false;
793                                 self.do_attempt_write_data(descriptor, &mut peer);
794                         }
795                 };
796                 Ok(())
797         }
798
799         /// Indicates that data was read from the given socket descriptor.
800         ///
801         /// May return an Err to indicate that the connection should be closed.
802         ///
803         /// Will *not* call back into [`send_data`] on any descriptors to avoid reentrancy complexity.
804         /// Thus, however, you should call [`process_events`] after any `read_event` to generate
805         /// [`send_data`] calls to handle responses.
806         ///
807         /// If `Ok(true)` is returned, further read_events should not be triggered until a
808         /// [`send_data`] call on this descriptor has `resume_read` set (preventing DoS issues in the
809         /// send buffer).
810         ///
811         /// [`send_data`]: SocketDescriptor::send_data
812         /// [`process_events`]: PeerManager::process_events
813         pub fn read_event(&self, peer_descriptor: &mut Descriptor, data: &[u8]) -> Result<bool, PeerHandleError> {
814                 match self.do_read_event(peer_descriptor, data) {
815                         Ok(res) => Ok(res),
816                         Err(e) => {
817                                 log_trace!(self.logger, "Peer sent invalid data or we decided to disconnect due to a protocol error");
818                                 self.disconnect_event_internal(peer_descriptor, e.no_connection_possible);
819                                 Err(e)
820                         }
821                 }
822         }
823
824         /// Append a message to a peer's pending outbound/write buffer
825         fn enqueue_encoded_message(&self, peer: &mut Peer, encoded_message: &Vec<u8>) {
826                 peer.msgs_sent_since_pong += 1;
827                 peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encoded_message[..]));
828         }
829
830         /// Append a message to a peer's pending outbound/write buffer
831         fn enqueue_message<M: wire::Type>(&self, peer: &mut Peer, message: &M) {
832                 let mut buffer = VecWriter(Vec::with_capacity(2048));
833                 wire::write(message, &mut buffer).unwrap(); // crash if the write failed
834
835                 if is_gossip_msg(message.type_id()) {
836                         log_gossip!(self.logger, "Enqueueing message {:?} to {}", message, log_pubkey!(peer.their_node_id.unwrap()));
837                 } else {
838                         log_trace!(self.logger, "Enqueueing message {:?} to {}", message, log_pubkey!(peer.their_node_id.unwrap()))
839                 }
840                 self.enqueue_encoded_message(peer, &buffer.0);
841         }
842
843         fn do_read_event(&self, peer_descriptor: &mut Descriptor, data: &[u8]) -> Result<bool, PeerHandleError> {
844                 let mut pause_read = false;
845                 let peers = self.peers.read().unwrap();
846                 let mut msgs_to_forward = Vec::new();
847                 let mut peer_node_id = None;
848                 match peers.peers.get(peer_descriptor) {
849                         None => {
850                                 // This is most likely a simple race condition where the user read some bytes
851                                 // from the socket, then we told the user to `disconnect_socket()`, then they
852                                 // called this method. Return an error to make sure we get disconnected.
853                                 return Err(PeerHandleError { no_connection_possible: false });
854                         },
855                         Some(peer_mutex) => {
856                                 let mut read_pos = 0;
857                                 while read_pos < data.len() {
858                                         macro_rules! try_potential_handleerror {
859                                                 ($peer: expr, $thing: expr) => {
860                                                         match $thing {
861                                                                 Ok(x) => x,
862                                                                 Err(e) => {
863                                                                         match e.action {
864                                                                                 msgs::ErrorAction::DisconnectPeer { msg: _ } => {
865                                                                                         //TODO: Try to push msg
866                                                                                         log_debug!(self.logger, "Error handling message{}; disconnecting peer with: {}", OptionalFromDebugger(&peer_node_id), e.err);
867                                                                                         return Err(PeerHandleError{ no_connection_possible: false });
868                                                                                 },
869                                                                                 msgs::ErrorAction::IgnoreAndLog(level) => {
870                                                                                         log_given_level!(self.logger, level, "Error handling message{}; ignoring: {}", OptionalFromDebugger(&peer_node_id), e.err);
871                                                                                         continue
872                                                                                 },
873                                                                                 msgs::ErrorAction::IgnoreDuplicateGossip => continue, // Don't even bother logging these
874                                                                                 msgs::ErrorAction::IgnoreError => {
875                                                                                         log_debug!(self.logger, "Error handling message{}; ignoring: {}", OptionalFromDebugger(&peer_node_id), e.err);
876                                                                                         continue;
877                                                                                 },
878                                                                                 msgs::ErrorAction::SendErrorMessage { msg } => {
879                                                                                         log_debug!(self.logger, "Error handling message{}; sending error message with: {}", OptionalFromDebugger(&peer_node_id), e.err);
880                                                                                         self.enqueue_message($peer, &msg);
881                                                                                         continue;
882                                                                                 },
883                                                                                 msgs::ErrorAction::SendWarningMessage { msg, log_level } => {
884                                                                                         log_given_level!(self.logger, log_level, "Error handling message{}; sending warning message with: {}", OptionalFromDebugger(&peer_node_id), e.err);
885                                                                                         self.enqueue_message($peer, &msg);
886                                                                                         continue;
887                                                                                 },
888                                                                         }
889                                                                 }
890                                                         }
891                                                 }
892                                         }
893
894                                         let mut peer_lock = peer_mutex.lock().unwrap();
895                                         let peer = &mut *peer_lock;
896                                         let mut msg_to_handle = None;
897                                         if peer_node_id.is_none() {
898                                                 peer_node_id = peer.their_node_id.clone();
899                                         }
900
901                                         assert!(peer.pending_read_buffer.len() > 0);
902                                         assert!(peer.pending_read_buffer.len() > peer.pending_read_buffer_pos);
903
904                                         {
905                                                 let data_to_copy = cmp::min(peer.pending_read_buffer.len() - peer.pending_read_buffer_pos, data.len() - read_pos);
906                                                 peer.pending_read_buffer[peer.pending_read_buffer_pos..peer.pending_read_buffer_pos + data_to_copy].copy_from_slice(&data[read_pos..read_pos + data_to_copy]);
907                                                 read_pos += data_to_copy;
908                                                 peer.pending_read_buffer_pos += data_to_copy;
909                                         }
910
911                                         if peer.pending_read_buffer_pos == peer.pending_read_buffer.len() {
912                                                 peer.pending_read_buffer_pos = 0;
913
914                                                 macro_rules! insert_node_id {
915                                                         () => {
916                                                                 match self.node_id_to_descriptor.lock().unwrap().entry(peer.their_node_id.unwrap()) {
917                                                                         hash_map::Entry::Occupied(_) => {
918                                                                                 log_trace!(self.logger, "Got second connection with {}, closing", log_pubkey!(peer.their_node_id.unwrap()));
919                                                                                 peer.their_node_id = None; // Unset so that we don't generate a peer_disconnected event
920                                                                                 return Err(PeerHandleError{ no_connection_possible: false })
921                                                                         },
922                                                                         hash_map::Entry::Vacant(entry) => {
923                                                                                 log_debug!(self.logger, "Finished noise handshake for connection with {}", log_pubkey!(peer.their_node_id.unwrap()));
924                                                                                 entry.insert(peer_descriptor.clone())
925                                                                         },
926                                                                 };
927                                                         }
928                                                 }
929
930                                                 let next_step = peer.channel_encryptor.get_noise_step();
931                                                 match next_step {
932                                                         NextNoiseStep::ActOne => {
933                                                                 let act_two = try_potential_handleerror!(peer,
934                                                                         peer.channel_encryptor.process_act_one_with_keys(&peer.pending_read_buffer[..], &self.our_node_secret, self.get_ephemeral_key())).to_vec();
935                                                                 peer.pending_outbound_buffer.push_back(act_two);
936                                                                 peer.pending_read_buffer = [0; 66].to_vec(); // act three is 66 bytes long
937                                                         },
938                                                         NextNoiseStep::ActTwo => {
939                                                                 let (act_three, their_node_id) = try_potential_handleerror!(peer,
940                                                                         peer.channel_encryptor.process_act_two(&peer.pending_read_buffer[..], &self.our_node_secret));
941                                                                 peer.pending_outbound_buffer.push_back(act_three.to_vec());
942                                                                 peer.pending_read_buffer = [0; 18].to_vec(); // Message length header is 18 bytes
943                                                                 peer.pending_read_is_header = true;
944
945                                                                 peer.their_node_id = Some(their_node_id);
946                                                                 insert_node_id!();
947                                                                 let features = InitFeatures::known();
948                                                                 let resp = msgs::Init { features, remote_network_address: filter_addresses(peer.their_net_address.clone()) };
949                                                                 self.enqueue_message(peer, &resp);
950                                                                 peer.awaiting_pong_timer_tick_intervals = 0;
951                                                         },
952                                                         NextNoiseStep::ActThree => {
953                                                                 let their_node_id = try_potential_handleerror!(peer,
954                                                                         peer.channel_encryptor.process_act_three(&peer.pending_read_buffer[..]));
955                                                                 peer.pending_read_buffer = [0; 18].to_vec(); // Message length header is 18 bytes
956                                                                 peer.pending_read_is_header = true;
957                                                                 peer.their_node_id = Some(their_node_id);
958                                                                 insert_node_id!();
959                                                                 let features = InitFeatures::known();
960                                                                 let resp = msgs::Init { features, remote_network_address: filter_addresses(peer.their_net_address.clone()) };
961                                                                 self.enqueue_message(peer, &resp);
962                                                                 peer.awaiting_pong_timer_tick_intervals = 0;
963                                                         },
964                                                         NextNoiseStep::NoiseComplete => {
965                                                                 if peer.pending_read_is_header {
966                                                                         let msg_len = try_potential_handleerror!(peer,
967                                                                                 peer.channel_encryptor.decrypt_length_header(&peer.pending_read_buffer[..]));
968                                                                         peer.pending_read_buffer = Vec::with_capacity(msg_len as usize + 16);
969                                                                         peer.pending_read_buffer.resize(msg_len as usize + 16, 0);
970                                                                         if msg_len < 2 { // Need at least the message type tag
971                                                                                 return Err(PeerHandleError{ no_connection_possible: false });
972                                                                         }
973                                                                         peer.pending_read_is_header = false;
974                                                                 } else {
975                                                                         let msg_data = try_potential_handleerror!(peer,
976                                                                                 peer.channel_encryptor.decrypt_message(&peer.pending_read_buffer[..]));
977                                                                         assert!(msg_data.len() >= 2);
978
979                                                                         // Reset read buffer
980                                                                         peer.pending_read_buffer = [0; 18].to_vec();
981                                                                         peer.pending_read_is_header = true;
982
983                                                                         let mut reader = io::Cursor::new(&msg_data[..]);
984                                                                         let message_result = wire::read(&mut reader, &*self.custom_message_handler);
985                                                                         let message = match message_result {
986                                                                                 Ok(x) => x,
987                                                                                 Err(e) => {
988                                                                                         match e {
989                                                                                                 // Note that to avoid recursion we never call
990                                                                                                 // `do_attempt_write_data` from here, causing
991                                                                                                 // the messages enqueued here to not actually
992                                                                                                 // be sent before the peer is disconnected.
993                                                                                                 (msgs::DecodeError::UnknownRequiredFeature, Some(ty)) if is_gossip_msg(ty) => {
994                                                                                                         log_gossip!(self.logger, "Got a channel/node announcement with an unknown required feature flag, you may want to update!");
995                                                                                                         continue;
996                                                                                                 }
997                                                                                                 (msgs::DecodeError::UnsupportedCompression, _) => {
998                                                                                                         log_gossip!(self.logger, "We don't support zlib-compressed message fields, sending a warning and ignoring message");
999                                                                                                         self.enqueue_message(peer, &msgs::WarningMessage { channel_id: [0; 32], data: "Unsupported message compression: zlib".to_owned() });
1000                                                                                                         continue;
1001                                                                                                 }
1002                                                                                                 (_, Some(ty)) if is_gossip_msg(ty) => {
1003                                                                                                         log_gossip!(self.logger, "Got an invalid value while deserializing a gossip message");
1004                                                                                                         self.enqueue_message(peer, &msgs::WarningMessage { channel_id: [0; 32], data: "Unreadable/bogus gossip message".to_owned() });
1005                                                                                                         continue;
1006                                                                                                 }
1007                                                                                                 (msgs::DecodeError::UnknownRequiredFeature, ty) => {
1008                                                                                                         log_gossip!(self.logger, "Received a message with an unknown required feature flag or TLV, you may want to update!");
1009                                                                                                         self.enqueue_message(peer, &msgs::WarningMessage { channel_id: [0; 32], data: format!("Received an unknown required feature/TLV in message type {:?}", ty) });
1010                                                                                                         return Err(PeerHandleError { no_connection_possible: false });
1011                                                                                                 }
1012                                                                                                 (msgs::DecodeError::UnknownVersion, _) => return Err(PeerHandleError { no_connection_possible: false }),
1013                                                                                                 (msgs::DecodeError::InvalidValue, _) => {
1014                                                                                                         log_debug!(self.logger, "Got an invalid value while deserializing message");
1015                                                                                                         return Err(PeerHandleError { no_connection_possible: false });
1016                                                                                                 }
1017                                                                                                 (msgs::DecodeError::ShortRead, _) => {
1018                                                                                                         log_debug!(self.logger, "Deserialization failed due to shortness of message");
1019                                                                                                         return Err(PeerHandleError { no_connection_possible: false });
1020                                                                                                 }
1021                                                                                                 (msgs::DecodeError::BadLengthDescriptor, _) => return Err(PeerHandleError { no_connection_possible: false }),
1022                                                                                                 (msgs::DecodeError::Io(_), _) => return Err(PeerHandleError { no_connection_possible: false }),
1023                                                                                         }
1024                                                                                 }
1025                                                                         };
1026
1027                                                                         msg_to_handle = Some(message);
1028                                                                 }
1029                                                         }
1030                                                 }
1031                                         }
1032                                         pause_read = peer.pending_outbound_buffer.len() > OUTBOUND_BUFFER_LIMIT_READ_PAUSE;
1033
1034                                         if let Some(message) = msg_to_handle {
1035                                                 match self.handle_message(&peer_mutex, peer_lock, message) {
1036                                                         Err(handling_error) => match handling_error {
1037                                                                 MessageHandlingError::PeerHandleError(e) => { return Err(e) },
1038                                                                 MessageHandlingError::LightningError(e) => {
1039                                                                         try_potential_handleerror!(&mut peer_mutex.lock().unwrap(), Err(e));
1040                                                                 },
1041                                                         },
1042                                                         Ok(Some(msg)) => {
1043                                                                 msgs_to_forward.push(msg);
1044                                                         },
1045                                                         Ok(None) => {},
1046                                                 }
1047                                         }
1048                                 }
1049                         }
1050                 }
1051
1052                 for msg in msgs_to_forward.drain(..) {
1053                         self.forward_broadcast_msg(&*peers, &msg, peer_node_id.as_ref());
1054                 }
1055
1056                 Ok(pause_read)
1057         }
1058
1059         /// Process an incoming message and return a decision (ok, lightning error, peer handling error) regarding the next action with the peer
1060         /// Returns the message back if it needs to be broadcasted to all other peers.
1061         fn handle_message(
1062                 &self,
1063                 peer_mutex: &Mutex<Peer>,
1064                 mut peer_lock: MutexGuard<Peer>,
1065                 message: wire::Message<<<CMH as core::ops::Deref>::Target as wire::CustomMessageReader>::CustomMessage>
1066         ) -> Result<Option<wire::Message<<<CMH as core::ops::Deref>::Target as wire::CustomMessageReader>::CustomMessage>>, MessageHandlingError> {
1067                 let their_node_id = peer_lock.their_node_id.clone().expect("We know the peer's public key by the time we receive messages");
1068                 peer_lock.received_message_since_timer_tick = true;
1069
1070                 // Need an Init as first message
1071                 if let wire::Message::Init(msg) = message {
1072                         if msg.features.requires_unknown_bits() {
1073                                 log_debug!(self.logger, "Peer features required unknown version bits");
1074                                 return Err(PeerHandleError{ no_connection_possible: true }.into());
1075                         }
1076                         if peer_lock.their_features.is_some() {
1077                                 return Err(PeerHandleError{ no_connection_possible: false }.into());
1078                         }
1079
1080                         log_info!(self.logger, "Received peer Init message from {}: {}", log_pubkey!(their_node_id), msg.features);
1081
1082                         // For peers not supporting gossip queries start sync now, otherwise wait until we receive a filter.
1083                         if msg.features.initial_routing_sync() && !msg.features.supports_gossip_queries() {
1084                                 peer_lock.sync_status = InitSyncTracker::ChannelsSyncing(0);
1085                         }
1086
1087                         if !msg.features.supports_static_remote_key() {
1088                                 log_debug!(self.logger, "Peer {} does not support static remote key, disconnecting with no_connection_possible", log_pubkey!(their_node_id));
1089                                 return Err(PeerHandleError{ no_connection_possible: true }.into());
1090                         }
1091
1092                         self.message_handler.route_handler.peer_connected(&their_node_id, &msg);
1093
1094                         self.message_handler.chan_handler.peer_connected(&their_node_id, &msg);
1095                         peer_lock.their_features = Some(msg.features);
1096                         return Ok(None);
1097                 } else if peer_lock.their_features.is_none() {
1098                         log_debug!(self.logger, "Peer {} sent non-Init first message", log_pubkey!(their_node_id));
1099                         return Err(PeerHandleError{ no_connection_possible: false }.into());
1100                 }
1101
1102                 if let wire::Message::GossipTimestampFilter(_msg) = message {
1103                         // When supporting gossip messages, start inital gossip sync only after we receive
1104                         // a GossipTimestampFilter
1105                         if peer_lock.their_features.as_ref().unwrap().supports_gossip_queries() &&
1106                                 !peer_lock.sent_gossip_timestamp_filter {
1107                                 peer_lock.sent_gossip_timestamp_filter = true;
1108                                 peer_lock.sync_status = InitSyncTracker::ChannelsSyncing(0);
1109                         }
1110                         return Ok(None);
1111                 }
1112
1113                 let their_features = peer_lock.their_features.clone();
1114                 mem::drop(peer_lock);
1115
1116                 if is_gossip_msg(message.type_id()) {
1117                         log_gossip!(self.logger, "Received message {:?} from {}", message, log_pubkey!(their_node_id));
1118                 } else {
1119                         log_trace!(self.logger, "Received message {:?} from {}", message, log_pubkey!(their_node_id));
1120                 }
1121
1122                 let mut should_forward = None;
1123
1124                 match message {
1125                         // Setup and Control messages:
1126                         wire::Message::Init(_) => {
1127                                 // Handled above
1128                         },
1129                         wire::Message::GossipTimestampFilter(_) => {
1130                                 // Handled above
1131                         },
1132                         wire::Message::Error(msg) => {
1133                                 let mut data_is_printable = true;
1134                                 for b in msg.data.bytes() {
1135                                         if b < 32 || b > 126 {
1136                                                 data_is_printable = false;
1137                                                 break;
1138                                         }
1139                                 }
1140
1141                                 if data_is_printable {
1142                                         log_debug!(self.logger, "Got Err message from {}: {}", log_pubkey!(their_node_id), msg.data);
1143                                 } else {
1144                                         log_debug!(self.logger, "Got Err message from {} with non-ASCII error message", log_pubkey!(their_node_id));
1145                                 }
1146                                 self.message_handler.chan_handler.handle_error(&their_node_id, &msg);
1147                                 if msg.channel_id == [0; 32] {
1148                                         return Err(PeerHandleError{ no_connection_possible: true }.into());
1149                                 }
1150                         },
1151                         wire::Message::Warning(msg) => {
1152                                 let mut data_is_printable = true;
1153                                 for b in msg.data.bytes() {
1154                                         if b < 32 || b > 126 {
1155                                                 data_is_printable = false;
1156                                                 break;
1157                                         }
1158                                 }
1159
1160                                 if data_is_printable {
1161                                         log_debug!(self.logger, "Got warning message from {}: {}", log_pubkey!(their_node_id), msg.data);
1162                                 } else {
1163                                         log_debug!(self.logger, "Got warning message from {} with non-ASCII error message", log_pubkey!(their_node_id));
1164                                 }
1165                         },
1166
1167                         wire::Message::Ping(msg) => {
1168                                 if msg.ponglen < 65532 {
1169                                         let resp = msgs::Pong { byteslen: msg.ponglen };
1170                                         self.enqueue_message(&mut *peer_mutex.lock().unwrap(), &resp);
1171                                 }
1172                         },
1173                         wire::Message::Pong(_msg) => {
1174                                 let mut peer_lock = peer_mutex.lock().unwrap();
1175                                 peer_lock.awaiting_pong_timer_tick_intervals = 0;
1176                                 peer_lock.msgs_sent_since_pong = 0;
1177                         },
1178
1179                         // Channel messages:
1180                         wire::Message::OpenChannel(msg) => {
1181                                 self.message_handler.chan_handler.handle_open_channel(&their_node_id, their_features.clone().unwrap(), &msg);
1182                         },
1183                         wire::Message::AcceptChannel(msg) => {
1184                                 self.message_handler.chan_handler.handle_accept_channel(&their_node_id, their_features.clone().unwrap(), &msg);
1185                         },
1186
1187                         wire::Message::FundingCreated(msg) => {
1188                                 self.message_handler.chan_handler.handle_funding_created(&their_node_id, &msg);
1189                         },
1190                         wire::Message::FundingSigned(msg) => {
1191                                 self.message_handler.chan_handler.handle_funding_signed(&their_node_id, &msg);
1192                         },
1193                         wire::Message::FundingLocked(msg) => {
1194                                 self.message_handler.chan_handler.handle_funding_locked(&their_node_id, &msg);
1195                         },
1196
1197                         wire::Message::Shutdown(msg) => {
1198                                 self.message_handler.chan_handler.handle_shutdown(&their_node_id, their_features.as_ref().unwrap(), &msg);
1199                         },
1200                         wire::Message::ClosingSigned(msg) => {
1201                                 self.message_handler.chan_handler.handle_closing_signed(&their_node_id, &msg);
1202                         },
1203
1204                         // Commitment messages:
1205                         wire::Message::UpdateAddHTLC(msg) => {
1206                                 self.message_handler.chan_handler.handle_update_add_htlc(&their_node_id, &msg);
1207                         },
1208                         wire::Message::UpdateFulfillHTLC(msg) => {
1209                                 self.message_handler.chan_handler.handle_update_fulfill_htlc(&their_node_id, &msg);
1210                         },
1211                         wire::Message::UpdateFailHTLC(msg) => {
1212                                 self.message_handler.chan_handler.handle_update_fail_htlc(&their_node_id, &msg);
1213                         },
1214                         wire::Message::UpdateFailMalformedHTLC(msg) => {
1215                                 self.message_handler.chan_handler.handle_update_fail_malformed_htlc(&their_node_id, &msg);
1216                         },
1217
1218                         wire::Message::CommitmentSigned(msg) => {
1219                                 self.message_handler.chan_handler.handle_commitment_signed(&their_node_id, &msg);
1220                         },
1221                         wire::Message::RevokeAndACK(msg) => {
1222                                 self.message_handler.chan_handler.handle_revoke_and_ack(&their_node_id, &msg);
1223                         },
1224                         wire::Message::UpdateFee(msg) => {
1225                                 self.message_handler.chan_handler.handle_update_fee(&their_node_id, &msg);
1226                         },
1227                         wire::Message::ChannelReestablish(msg) => {
1228                                 self.message_handler.chan_handler.handle_channel_reestablish(&their_node_id, &msg);
1229                         },
1230
1231                         // Routing messages:
1232                         wire::Message::AnnouncementSignatures(msg) => {
1233                                 self.message_handler.chan_handler.handle_announcement_signatures(&their_node_id, &msg);
1234                         },
1235                         wire::Message::ChannelAnnouncement(msg) => {
1236                                 if self.message_handler.route_handler.handle_channel_announcement(&msg)
1237                                                 .map_err(|e| -> MessageHandlingError { e.into() })? {
1238                                         should_forward = Some(wire::Message::ChannelAnnouncement(msg));
1239                                 }
1240                         },
1241                         wire::Message::NodeAnnouncement(msg) => {
1242                                 if self.message_handler.route_handler.handle_node_announcement(&msg)
1243                                                 .map_err(|e| -> MessageHandlingError { e.into() })? {
1244                                         should_forward = Some(wire::Message::NodeAnnouncement(msg));
1245                                 }
1246                         },
1247                         wire::Message::ChannelUpdate(msg) => {
1248                                 self.message_handler.chan_handler.handle_channel_update(&their_node_id, &msg);
1249                                 if self.message_handler.route_handler.handle_channel_update(&msg)
1250                                                 .map_err(|e| -> MessageHandlingError { e.into() })? {
1251                                         should_forward = Some(wire::Message::ChannelUpdate(msg));
1252                                 }
1253                         },
1254                         wire::Message::QueryShortChannelIds(msg) => {
1255                                 self.message_handler.route_handler.handle_query_short_channel_ids(&their_node_id, msg)?;
1256                         },
1257                         wire::Message::ReplyShortChannelIdsEnd(msg) => {
1258                                 self.message_handler.route_handler.handle_reply_short_channel_ids_end(&their_node_id, msg)?;
1259                         },
1260                         wire::Message::QueryChannelRange(msg) => {
1261                                 self.message_handler.route_handler.handle_query_channel_range(&their_node_id, msg)?;
1262                         },
1263                         wire::Message::ReplyChannelRange(msg) => {
1264                                 self.message_handler.route_handler.handle_reply_channel_range(&their_node_id, msg)?;
1265                         },
1266
1267                         // Unknown messages:
1268                         wire::Message::Unknown(type_id) if message.is_even() => {
1269                                 log_debug!(self.logger, "Received unknown even message of type {}, disconnecting peer!", type_id);
1270                                 // Fail the channel if message is an even, unknown type as per BOLT #1.
1271                                 return Err(PeerHandleError{ no_connection_possible: true }.into());
1272                         },
1273                         wire::Message::Unknown(type_id) => {
1274                                 log_trace!(self.logger, "Received unknown odd message of type {}, ignoring", type_id);
1275                         },
1276                         wire::Message::Custom(custom) => {
1277                                 self.custom_message_handler.handle_custom_message(custom, &their_node_id)?;
1278                         },
1279                 };
1280                 Ok(should_forward)
1281         }
1282
1283         fn forward_broadcast_msg(&self, peers: &PeerHolder<Descriptor>, msg: &wire::Message<<<CMH as core::ops::Deref>::Target as wire::CustomMessageReader>::CustomMessage>, except_node: Option<&PublicKey>) {
1284                 match msg {
1285                         wire::Message::ChannelAnnouncement(ref msg) => {
1286                                 log_gossip!(self.logger, "Sending message to all peers except {:?} or the announced channel's counterparties: {:?}", except_node, msg);
1287                                 let encoded_msg = encode_msg!(msg);
1288
1289                                 for (_, peer_mutex) in peers.peers.iter() {
1290                                         let mut peer = peer_mutex.lock().unwrap();
1291                                         if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_features.is_none() ||
1292                                                         !peer.should_forward_channel_announcement(msg.contents.short_channel_id) {
1293                                                 continue
1294                                         }
1295                                         if peer.pending_outbound_buffer.len() > OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP
1296                                                 || peer.msgs_sent_since_pong > BUFFER_DRAIN_MSGS_PER_TICK * FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO
1297                                         {
1298                                                 log_gossip!(self.logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id);
1299                                                 continue;
1300                                         }
1301                                         if peer.their_node_id.as_ref() == Some(&msg.contents.node_id_1) ||
1302                                            peer.their_node_id.as_ref() == Some(&msg.contents.node_id_2) {
1303                                                 continue;
1304                                         }
1305                                         if except_node.is_some() && peer.their_node_id.as_ref() == except_node {
1306                                                 continue;
1307                                         }
1308                                         self.enqueue_encoded_message(&mut *peer, &encoded_msg);
1309                                 }
1310                         },
1311                         wire::Message::NodeAnnouncement(ref msg) => {
1312                                 log_gossip!(self.logger, "Sending message to all peers except {:?} or the announced node: {:?}", except_node, msg);
1313                                 let encoded_msg = encode_msg!(msg);
1314
1315                                 for (_, peer_mutex) in peers.peers.iter() {
1316                                         let mut peer = peer_mutex.lock().unwrap();
1317                                         if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_features.is_none() ||
1318                                                         !peer.should_forward_node_announcement(msg.contents.node_id) {
1319                                                 continue
1320                                         }
1321                                         if peer.pending_outbound_buffer.len() > OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP
1322                                                 || peer.msgs_sent_since_pong > BUFFER_DRAIN_MSGS_PER_TICK * FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO
1323                                         {
1324                                                 log_gossip!(self.logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id);
1325                                                 continue;
1326                                         }
1327                                         if peer.their_node_id.as_ref() == Some(&msg.contents.node_id) {
1328                                                 continue;
1329                                         }
1330                                         if except_node.is_some() && peer.their_node_id.as_ref() == except_node {
1331                                                 continue;
1332                                         }
1333                                         self.enqueue_encoded_message(&mut *peer, &encoded_msg);
1334                                 }
1335                         },
1336                         wire::Message::ChannelUpdate(ref msg) => {
1337                                 log_gossip!(self.logger, "Sending message to all peers except {:?}: {:?}", except_node, msg);
1338                                 let encoded_msg = encode_msg!(msg);
1339
1340                                 for (_, peer_mutex) in peers.peers.iter() {
1341                                         let mut peer = peer_mutex.lock().unwrap();
1342                                         if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_features.is_none() ||
1343                                                         !peer.should_forward_channel_announcement(msg.contents.short_channel_id)  {
1344                                                 continue
1345                                         }
1346                                         if peer.pending_outbound_buffer.len() > OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP
1347                                                 || peer.msgs_sent_since_pong > BUFFER_DRAIN_MSGS_PER_TICK * FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO
1348                                         {
1349                                                 log_gossip!(self.logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id);
1350                                                 continue;
1351                                         }
1352                                         if except_node.is_some() && peer.their_node_id.as_ref() == except_node {
1353                                                 continue;
1354                                         }
1355                                         self.enqueue_encoded_message(&mut *peer, &encoded_msg);
1356                                 }
1357                         },
1358                         _ => debug_assert!(false, "We shouldn't attempt to forward anything but gossip messages"),
1359                 }
1360         }
1361
1362         /// Checks for any events generated by our handlers and processes them. Includes sending most
1363         /// response messages as well as messages generated by calls to handler functions directly (eg
1364         /// functions like [`ChannelManager::process_pending_htlc_forwards`] or [`send_payment`]).
1365         ///
1366         /// May call [`send_data`] on [`SocketDescriptor`]s. Thus, be very careful with reentrancy
1367         /// issues!
1368         ///
1369         /// You don't have to call this function explicitly if you are using [`lightning-net-tokio`]
1370         /// or one of the other clients provided in our language bindings.
1371         ///
1372         /// [`send_payment`]: crate::ln::channelmanager::ChannelManager::send_payment
1373         /// [`ChannelManager::process_pending_htlc_forwards`]: crate::ln::channelmanager::ChannelManager::process_pending_htlc_forwards
1374         /// [`send_data`]: SocketDescriptor::send_data
1375         pub fn process_events(&self) {
1376                 let _single_processor_lock = self.event_processing_lock.lock().unwrap();
1377
1378                 let mut peers_to_disconnect = HashMap::new();
1379                 let mut events_generated = self.message_handler.chan_handler.get_and_clear_pending_msg_events();
1380                 events_generated.append(&mut self.message_handler.route_handler.get_and_clear_pending_msg_events());
1381
1382                 {
1383                         // TODO: There are some DoS attacks here where you can flood someone's outbound send
1384                         // buffer by doing things like announcing channels on another node. We should be willing to
1385                         // drop optional-ish messages when send buffers get full!
1386
1387                         let peers_lock = self.peers.read().unwrap();
1388                         let peers = &*peers_lock;
1389                         macro_rules! get_peer_for_forwarding {
1390                                 ($node_id: expr) => {
1391                                         {
1392                                                 if peers_to_disconnect.get($node_id).is_some() {
1393                                                         // If we've "disconnected" this peer, do not send to it.
1394                                                         continue;
1395                                                 }
1396                                                 let descriptor_opt = self.node_id_to_descriptor.lock().unwrap().get($node_id).cloned();
1397                                                 match descriptor_opt {
1398                                                         Some(descriptor) => match peers.peers.get(&descriptor) {
1399                                                                 Some(peer_mutex) => {
1400                                                                         let peer_lock = peer_mutex.lock().unwrap();
1401                                                                         if peer_lock.their_features.is_none() {
1402                                                                                 continue;
1403                                                                         }
1404                                                                         peer_lock
1405                                                                 },
1406                                                                 None => {
1407                                                                         debug_assert!(false, "Inconsistent peers set state!");
1408                                                                         continue;
1409                                                                 }
1410                                                         },
1411                                                         None => {
1412                                                                 continue;
1413                                                         },
1414                                                 }
1415                                         }
1416                                 }
1417                         }
1418                         for event in events_generated.drain(..) {
1419                                 match event {
1420                                         MessageSendEvent::SendAcceptChannel { ref node_id, ref msg } => {
1421                                                 log_debug!(self.logger, "Handling SendAcceptChannel event in peer_handler for node {} for channel {}",
1422                                                                 log_pubkey!(node_id),
1423                                                                 log_bytes!(msg.temporary_channel_id));
1424                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1425                                         },
1426                                         MessageSendEvent::SendOpenChannel { ref node_id, ref msg } => {
1427                                                 log_debug!(self.logger, "Handling SendOpenChannel event in peer_handler for node {} for channel {}",
1428                                                                 log_pubkey!(node_id),
1429                                                                 log_bytes!(msg.temporary_channel_id));
1430                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1431                                         },
1432                                         MessageSendEvent::SendFundingCreated { ref node_id, ref msg } => {
1433                                                 log_debug!(self.logger, "Handling SendFundingCreated event in peer_handler for node {} for channel {} (which becomes {})",
1434                                                                 log_pubkey!(node_id),
1435                                                                 log_bytes!(msg.temporary_channel_id),
1436                                                                 log_funding_channel_id!(msg.funding_txid, msg.funding_output_index));
1437                                                 // TODO: If the peer is gone we should generate a DiscardFunding event
1438                                                 // indicating to the wallet that they should just throw away this funding transaction
1439                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1440                                         },
1441                                         MessageSendEvent::SendFundingSigned { ref node_id, ref msg } => {
1442                                                 log_debug!(self.logger, "Handling SendFundingSigned event in peer_handler for node {} for channel {}",
1443                                                                 log_pubkey!(node_id),
1444                                                                 log_bytes!(msg.channel_id));
1445                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1446                                         },
1447                                         MessageSendEvent::SendFundingLocked { ref node_id, ref msg } => {
1448                                                 log_debug!(self.logger, "Handling SendFundingLocked event in peer_handler for node {} for channel {}",
1449                                                                 log_pubkey!(node_id),
1450                                                                 log_bytes!(msg.channel_id));
1451                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1452                                         },
1453                                         MessageSendEvent::SendAnnouncementSignatures { ref node_id, ref msg } => {
1454                                                 log_debug!(self.logger, "Handling SendAnnouncementSignatures event in peer_handler for node {} for channel {})",
1455                                                                 log_pubkey!(node_id),
1456                                                                 log_bytes!(msg.channel_id));
1457                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1458                                         },
1459                                         MessageSendEvent::UpdateHTLCs { ref node_id, updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fulfill_htlcs, ref update_fail_htlcs, ref update_fail_malformed_htlcs, ref update_fee, ref commitment_signed } } => {
1460                                                 log_debug!(self.logger, "Handling UpdateHTLCs event in peer_handler for node {} with {} adds, {} fulfills, {} fails for channel {}",
1461                                                                 log_pubkey!(node_id),
1462                                                                 update_add_htlcs.len(),
1463                                                                 update_fulfill_htlcs.len(),
1464                                                                 update_fail_htlcs.len(),
1465                                                                 log_bytes!(commitment_signed.channel_id));
1466                                                 let mut peer = get_peer_for_forwarding!(node_id);
1467                                                 for msg in update_add_htlcs {
1468                                                         self.enqueue_message(&mut *peer, msg);
1469                                                 }
1470                                                 for msg in update_fulfill_htlcs {
1471                                                         self.enqueue_message(&mut *peer, msg);
1472                                                 }
1473                                                 for msg in update_fail_htlcs {
1474                                                         self.enqueue_message(&mut *peer, msg);
1475                                                 }
1476                                                 for msg in update_fail_malformed_htlcs {
1477                                                         self.enqueue_message(&mut *peer, msg);
1478                                                 }
1479                                                 if let &Some(ref msg) = update_fee {
1480                                                         self.enqueue_message(&mut *peer, msg);
1481                                                 }
1482                                                 self.enqueue_message(&mut *peer, commitment_signed);
1483                                         },
1484                                         MessageSendEvent::SendRevokeAndACK { ref node_id, ref msg } => {
1485                                                 log_debug!(self.logger, "Handling SendRevokeAndACK event in peer_handler for node {} for channel {}",
1486                                                                 log_pubkey!(node_id),
1487                                                                 log_bytes!(msg.channel_id));
1488                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1489                                         },
1490                                         MessageSendEvent::SendClosingSigned { ref node_id, ref msg } => {
1491                                                 log_debug!(self.logger, "Handling SendClosingSigned event in peer_handler for node {} for channel {}",
1492                                                                 log_pubkey!(node_id),
1493                                                                 log_bytes!(msg.channel_id));
1494                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1495                                         },
1496                                         MessageSendEvent::SendShutdown { ref node_id, ref msg } => {
1497                                                 log_debug!(self.logger, "Handling Shutdown event in peer_handler for node {} for channel {}",
1498                                                                 log_pubkey!(node_id),
1499                                                                 log_bytes!(msg.channel_id));
1500                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1501                                         },
1502                                         MessageSendEvent::SendChannelReestablish { ref node_id, ref msg } => {
1503                                                 log_debug!(self.logger, "Handling SendChannelReestablish event in peer_handler for node {} for channel {}",
1504                                                                 log_pubkey!(node_id),
1505                                                                 log_bytes!(msg.channel_id));
1506                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1507                                         },
1508                                         MessageSendEvent::BroadcastChannelAnnouncement { msg, update_msg } => {
1509                                                 log_debug!(self.logger, "Handling BroadcastChannelAnnouncement event in peer_handler for short channel id {}", msg.contents.short_channel_id);
1510                                                 match self.message_handler.route_handler.handle_channel_announcement(&msg) {
1511                                                         Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
1512                                                                 self.forward_broadcast_msg(peers, &wire::Message::ChannelAnnouncement(msg), None),
1513                                                         _ => {},
1514                                                 }
1515                                                 match self.message_handler.route_handler.handle_channel_update(&update_msg) {
1516                                                         Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
1517                                                                 self.forward_broadcast_msg(peers, &wire::Message::ChannelUpdate(update_msg), None),
1518                                                         _ => {},
1519                                                 }
1520                                         },
1521                                         MessageSendEvent::BroadcastNodeAnnouncement { msg } => {
1522                                                 log_debug!(self.logger, "Handling BroadcastNodeAnnouncement event in peer_handler");
1523                                                 match self.message_handler.route_handler.handle_node_announcement(&msg) {
1524                                                         Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
1525                                                                 self.forward_broadcast_msg(peers, &wire::Message::NodeAnnouncement(msg), None),
1526                                                         _ => {},
1527                                                 }
1528                                         },
1529                                         MessageSendEvent::BroadcastChannelUpdate { msg } => {
1530                                                 log_debug!(self.logger, "Handling BroadcastChannelUpdate event in peer_handler for short channel id {}", msg.contents.short_channel_id);
1531                                                 match self.message_handler.route_handler.handle_channel_update(&msg) {
1532                                                         Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
1533                                                                 self.forward_broadcast_msg(peers, &wire::Message::ChannelUpdate(msg), None),
1534                                                         _ => {},
1535                                                 }
1536                                         },
1537                                         MessageSendEvent::SendChannelUpdate { ref node_id, ref msg } => {
1538                                                 log_trace!(self.logger, "Handling SendChannelUpdate event in peer_handler for node {} for channel {}",
1539                                                                 log_pubkey!(node_id), msg.contents.short_channel_id);
1540                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1541                                         },
1542                                         MessageSendEvent::HandleError { ref node_id, ref action } => {
1543                                                 match *action {
1544                                                         msgs::ErrorAction::DisconnectPeer { ref msg } => {
1545                                                                 // We do not have the peers write lock, so we just store that we're
1546                                                                 // about to disconenct the peer and do it after we finish
1547                                                                 // processing most messages.
1548                                                                 peers_to_disconnect.insert(*node_id, msg.clone());
1549                                                         },
1550                                                         msgs::ErrorAction::IgnoreAndLog(level) => {
1551                                                                 log_given_level!(self.logger, level, "Received a HandleError event to be ignored for node {}", log_pubkey!(node_id));
1552                                                         },
1553                                                         msgs::ErrorAction::IgnoreDuplicateGossip => {},
1554                                                         msgs::ErrorAction::IgnoreError => {
1555                                                                 log_debug!(self.logger, "Received a HandleError event to be ignored for node {}", log_pubkey!(node_id));
1556                                                         },
1557                                                         msgs::ErrorAction::SendErrorMessage { ref msg } => {
1558                                                                 log_trace!(self.logger, "Handling SendErrorMessage HandleError event in peer_handler for node {} with message {}",
1559                                                                                 log_pubkey!(node_id),
1560                                                                                 msg.data);
1561                                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1562                                                         },
1563                                                         msgs::ErrorAction::SendWarningMessage { ref msg, ref log_level } => {
1564                                                                 log_given_level!(self.logger, *log_level, "Handling SendWarningMessage HandleError event in peer_handler for node {} with message {}",
1565                                                                                 log_pubkey!(node_id),
1566                                                                                 msg.data);
1567                                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1568                                                         },
1569                                                 }
1570                                         },
1571                                         MessageSendEvent::SendChannelRangeQuery { ref node_id, ref msg } => {
1572                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1573                                         },
1574                                         MessageSendEvent::SendShortIdsQuery { ref node_id, ref msg } => {
1575                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1576                                         }
1577                                         MessageSendEvent::SendReplyChannelRange { ref node_id, ref msg } => {
1578                                                 log_gossip!(self.logger, "Handling SendReplyChannelRange event in peer_handler for node {} with num_scids={} first_blocknum={} number_of_blocks={}, sync_complete={}",
1579                                                         log_pubkey!(node_id),
1580                                                         msg.short_channel_ids.len(),
1581                                                         msg.first_blocknum,
1582                                                         msg.number_of_blocks,
1583                                                         msg.sync_complete);
1584                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1585                                         }
1586                                         MessageSendEvent::SendGossipTimestampFilter { ref node_id, ref msg } => {
1587                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1588                                         }
1589                                 }
1590                         }
1591
1592                         for (node_id, msg) in self.custom_message_handler.get_and_clear_pending_msg() {
1593                                 if peers_to_disconnect.get(&node_id).is_some() { continue; }
1594                                 self.enqueue_message(&mut *get_peer_for_forwarding!(&node_id), &msg);
1595                         }
1596
1597                         for (descriptor, peer_mutex) in peers.peers.iter() {
1598                                 self.do_attempt_write_data(&mut (*descriptor).clone(), &mut *peer_mutex.lock().unwrap());
1599                         }
1600                 }
1601                 if !peers_to_disconnect.is_empty() {
1602                         let mut peers_lock = self.peers.write().unwrap();
1603                         let peers = &mut *peers_lock;
1604                         for (node_id, msg) in peers_to_disconnect.drain() {
1605                                 // Note that since we are holding the peers *write* lock we can
1606                                 // remove from node_id_to_descriptor immediately (as no other
1607                                 // thread can be holding the peer lock if we have the global write
1608                                 // lock).
1609
1610                                 if let Some(mut descriptor) = self.node_id_to_descriptor.lock().unwrap().remove(&node_id) {
1611                                         if let Some(peer_mutex) = peers.peers.remove(&descriptor) {
1612                                                 if let Some(msg) = msg {
1613                                                         log_trace!(self.logger, "Handling DisconnectPeer HandleError event in peer_handler for node {} with message {}",
1614                                                                         log_pubkey!(node_id),
1615                                                                         msg.data);
1616                                                         let mut peer = peer_mutex.lock().unwrap();
1617                                                         self.enqueue_message(&mut *peer, &msg);
1618                                                         // This isn't guaranteed to work, but if there is enough free
1619                                                         // room in the send buffer, put the error message there...
1620                                                         self.do_attempt_write_data(&mut descriptor, &mut *peer);
1621                                                 } else {
1622                                                         log_trace!(self.logger, "Handling DisconnectPeer HandleError event in peer_handler for node {} with no message", log_pubkey!(node_id));
1623                                                 }
1624                                         }
1625                                         descriptor.disconnect_socket();
1626                                         self.message_handler.chan_handler.peer_disconnected(&node_id, false);
1627                                 }
1628                         }
1629                 }
1630         }
1631
1632         /// Indicates that the given socket descriptor's connection is now closed.
1633         pub fn socket_disconnected(&self, descriptor: &Descriptor) {
1634                 self.disconnect_event_internal(descriptor, false);
1635         }
1636
1637         fn disconnect_event_internal(&self, descriptor: &Descriptor, no_connection_possible: bool) {
1638                 let mut peers = self.peers.write().unwrap();
1639                 let peer_option = peers.peers.remove(descriptor);
1640                 match peer_option {
1641                         None => {
1642                                 // This is most likely a simple race condition where the user found that the socket
1643                                 // was disconnected, then we told the user to `disconnect_socket()`, then they
1644                                 // called this method. Either way we're disconnected, return.
1645                         },
1646                         Some(peer_lock) => {
1647                                 let peer = peer_lock.lock().unwrap();
1648                                 match peer.their_node_id {
1649                                         Some(node_id) => {
1650                                                 log_trace!(self.logger,
1651                                                         "Handling disconnection of peer {}, with {}future connection to the peer possible.",
1652                                                         log_pubkey!(node_id), if no_connection_possible { "no " } else { "" });
1653                                                 self.node_id_to_descriptor.lock().unwrap().remove(&node_id);
1654                                                 self.message_handler.chan_handler.peer_disconnected(&node_id, no_connection_possible);
1655                                         },
1656                                         None => {}
1657                                 }
1658                         }
1659                 };
1660         }
1661
1662         /// Disconnect a peer given its node id.
1663         ///
1664         /// Set `no_connection_possible` to true to prevent any further connection with this peer,
1665         /// force-closing any channels we have with it.
1666         ///
1667         /// If a peer is connected, this will call [`disconnect_socket`] on the descriptor for the
1668         /// peer. Thus, be very careful about reentrancy issues.
1669         ///
1670         /// [`disconnect_socket`]: SocketDescriptor::disconnect_socket
1671         pub fn disconnect_by_node_id(&self, node_id: PublicKey, no_connection_possible: bool) {
1672                 let mut peers_lock = self.peers.write().unwrap();
1673                 if let Some(mut descriptor) = self.node_id_to_descriptor.lock().unwrap().remove(&node_id) {
1674                         log_trace!(self.logger, "Disconnecting peer with id {} due to client request", node_id);
1675                         peers_lock.peers.remove(&descriptor);
1676                         self.message_handler.chan_handler.peer_disconnected(&node_id, no_connection_possible);
1677                         descriptor.disconnect_socket();
1678                 }
1679         }
1680
1681         /// Disconnects all currently-connected peers. This is useful on platforms where there may be
1682         /// an indication that TCP sockets have stalled even if we weren't around to time them out
1683         /// using regular ping/pongs.
1684         pub fn disconnect_all_peers(&self) {
1685                 let mut peers_lock = self.peers.write().unwrap();
1686                 self.node_id_to_descriptor.lock().unwrap().clear();
1687                 let peers = &mut *peers_lock;
1688                 for (mut descriptor, peer) in peers.peers.drain() {
1689                         if let Some(node_id) = peer.lock().unwrap().their_node_id {
1690                                 log_trace!(self.logger, "Disconnecting peer with id {} due to client request to disconnect all peers", node_id);
1691                                 self.message_handler.chan_handler.peer_disconnected(&node_id, false);
1692                         }
1693                         descriptor.disconnect_socket();
1694                 }
1695         }
1696
1697         /// This is called when we're blocked on sending additional gossip messages until we receive a
1698         /// pong. If we aren't waiting on a pong, we take this opportunity to send a ping (setting
1699         /// `awaiting_pong_timer_tick_intervals` to a special flag value to indicate this).
1700         fn maybe_send_extra_ping(&self, peer: &mut Peer) {
1701                 if peer.awaiting_pong_timer_tick_intervals == 0 {
1702                         peer.awaiting_pong_timer_tick_intervals = -1;
1703                         let ping = msgs::Ping {
1704                                 ponglen: 0,
1705                                 byteslen: 64,
1706                         };
1707                         self.enqueue_message(peer, &ping);
1708                 }
1709         }
1710
1711         /// Send pings to each peer and disconnect those which did not respond to the last round of
1712         /// pings.
1713         ///
1714         /// This may be called on any timescale you want, however, roughly once every ten seconds is
1715         /// preferred. The call rate determines both how often we send a ping to our peers and how much
1716         /// time they have to respond before we disconnect them.
1717         ///
1718         /// May call [`send_data`] on all [`SocketDescriptor`]s. Thus, be very careful with reentrancy
1719         /// issues!
1720         ///
1721         /// [`send_data`]: SocketDescriptor::send_data
1722         pub fn timer_tick_occurred(&self) {
1723                 let mut peers_lock = self.peers.write().unwrap();
1724                 {
1725                         let mut descriptors_needing_disconnect = Vec::new();
1726                         let peer_count = peers_lock.peers.len();
1727
1728                         peers_lock.peers.retain(|descriptor, peer_mutex| {
1729                                 let mut peer = peer_mutex.lock().unwrap();
1730                                 let mut do_disconnect_peer = false;
1731                                 if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_node_id.is_none() {
1732                                         // The peer needs to complete its handshake before we can exchange messages. We
1733                                         // give peers one timer tick to complete handshake, reusing
1734                                         // `awaiting_pong_timer_tick_intervals` to track number of timer ticks taken
1735                                         // for handshake completion.
1736                                         if peer.awaiting_pong_timer_tick_intervals != 0 {
1737                                                 do_disconnect_peer = true;
1738                                         } else {
1739                                                 peer.awaiting_pong_timer_tick_intervals = 1;
1740                                                 return true;
1741                                         }
1742                                 }
1743
1744                                 if peer.awaiting_pong_timer_tick_intervals == -1 {
1745                                         // Magic value set in `maybe_send_extra_ping`.
1746                                         peer.awaiting_pong_timer_tick_intervals = 1;
1747                                         peer.received_message_since_timer_tick = false;
1748                                         return true;
1749                                 }
1750
1751                                 if do_disconnect_peer
1752                                         || (peer.awaiting_pong_timer_tick_intervals > 0 && !peer.received_message_since_timer_tick)
1753                                         || peer.awaiting_pong_timer_tick_intervals as u64 >
1754                                                 MAX_BUFFER_DRAIN_TICK_INTERVALS_PER_PEER as u64 * peer_count as u64
1755                                 {
1756                                         descriptors_needing_disconnect.push(descriptor.clone());
1757                                         match peer.their_node_id {
1758                                                 Some(node_id) => {
1759                                                         log_trace!(self.logger, "Disconnecting peer with id {} due to ping timeout", node_id);
1760                                                         self.node_id_to_descriptor.lock().unwrap().remove(&node_id);
1761                                                         self.message_handler.chan_handler.peer_disconnected(&node_id, false);
1762                                                 }
1763                                                 None => {},
1764                                         }
1765                                         return false;
1766                                 }
1767                                 peer.received_message_since_timer_tick = false;
1768
1769                                 if peer.awaiting_pong_timer_tick_intervals > 0 {
1770                                         peer.awaiting_pong_timer_tick_intervals += 1;
1771                                         return true;
1772                                 }
1773
1774                                 peer.awaiting_pong_timer_tick_intervals = 1;
1775                                 let ping = msgs::Ping {
1776                                         ponglen: 0,
1777                                         byteslen: 64,
1778                                 };
1779                                 self.enqueue_message(&mut *peer, &ping);
1780                                 self.do_attempt_write_data(&mut (descriptor.clone()), &mut *peer);
1781
1782                                 true
1783                         });
1784
1785                         for mut descriptor in descriptors_needing_disconnect.drain(..) {
1786                                 descriptor.disconnect_socket();
1787                         }
1788                 }
1789         }
1790 }
1791
1792 fn is_gossip_msg(type_id: u16) -> bool {
1793         match type_id {
1794                 msgs::ChannelAnnouncement::TYPE |
1795                 msgs::ChannelUpdate::TYPE |
1796                 msgs::NodeAnnouncement::TYPE |
1797                 msgs::QueryChannelRange::TYPE |
1798                 msgs::ReplyChannelRange::TYPE |
1799                 msgs::QueryShortChannelIds::TYPE |
1800                 msgs::ReplyShortChannelIdsEnd::TYPE => true,
1801                 _ => false
1802         }
1803 }
1804
1805 #[cfg(test)]
1806 mod tests {
1807         use ln::peer_handler::{PeerManager, MessageHandler, SocketDescriptor, IgnoringMessageHandler, filter_addresses};
1808         use ln::msgs;
1809         use ln::msgs::NetAddress;
1810         use util::events;
1811         use util::test_utils;
1812
1813         use bitcoin::secp256k1::Secp256k1;
1814         use bitcoin::secp256k1::key::{SecretKey, PublicKey};
1815
1816         use prelude::*;
1817         use sync::{Arc, Mutex};
1818         use core::sync::atomic::Ordering;
1819
1820         #[derive(Clone)]
1821         struct FileDescriptor {
1822                 fd: u16,
1823                 outbound_data: Arc<Mutex<Vec<u8>>>,
1824         }
1825         impl PartialEq for FileDescriptor {
1826                 fn eq(&self, other: &Self) -> bool {
1827                         self.fd == other.fd
1828                 }
1829         }
1830         impl Eq for FileDescriptor { }
1831         impl core::hash::Hash for FileDescriptor {
1832                 fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
1833                         self.fd.hash(hasher)
1834                 }
1835         }
1836
1837         impl SocketDescriptor for FileDescriptor {
1838                 fn send_data(&mut self, data: &[u8], _resume_read: bool) -> usize {
1839                         self.outbound_data.lock().unwrap().extend_from_slice(data);
1840                         data.len()
1841                 }
1842
1843                 fn disconnect_socket(&mut self) {}
1844         }
1845
1846         struct PeerManagerCfg {
1847                 chan_handler: test_utils::TestChannelMessageHandler,
1848                 routing_handler: test_utils::TestRoutingMessageHandler,
1849                 logger: test_utils::TestLogger,
1850         }
1851
1852         fn create_peermgr_cfgs(peer_count: usize) -> Vec<PeerManagerCfg> {
1853                 let mut cfgs = Vec::new();
1854                 for _ in 0..peer_count {
1855                         cfgs.push(
1856                                 PeerManagerCfg{
1857                                         chan_handler: test_utils::TestChannelMessageHandler::new(),
1858                                         logger: test_utils::TestLogger::new(),
1859                                         routing_handler: test_utils::TestRoutingMessageHandler::new(),
1860                                 }
1861                         );
1862                 }
1863
1864                 cfgs
1865         }
1866
1867         fn create_network<'a>(peer_count: usize, cfgs: &'a Vec<PeerManagerCfg>) -> Vec<PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, &'a test_utils::TestLogger, IgnoringMessageHandler>> {
1868                 let mut peers = Vec::new();
1869                 for i in 0..peer_count {
1870                         let node_secret = SecretKey::from_slice(&[42 + i as u8; 32]).unwrap();
1871                         let ephemeral_bytes = [i as u8; 32];
1872                         let msg_handler = MessageHandler { chan_handler: &cfgs[i].chan_handler, route_handler: &cfgs[i].routing_handler };
1873                         let peer = PeerManager::new(msg_handler, node_secret, &ephemeral_bytes, &cfgs[i].logger, IgnoringMessageHandler {});
1874                         peers.push(peer);
1875                 }
1876
1877                 peers
1878         }
1879
1880         fn establish_connection<'a>(peer_a: &PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, &'a test_utils::TestLogger, IgnoringMessageHandler>, peer_b: &PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, &'a test_utils::TestLogger, IgnoringMessageHandler>) -> (FileDescriptor, FileDescriptor) {
1881                 let secp_ctx = Secp256k1::new();
1882                 let a_id = PublicKey::from_secret_key(&secp_ctx, &peer_a.our_node_secret);
1883                 let mut fd_a = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
1884                 let mut fd_b = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
1885                 let initial_data = peer_b.new_outbound_connection(a_id, fd_b.clone(), None).unwrap();
1886                 peer_a.new_inbound_connection(fd_a.clone(), None).unwrap();
1887                 assert_eq!(peer_a.read_event(&mut fd_a, &initial_data).unwrap(), false);
1888                 peer_a.process_events();
1889                 assert_eq!(peer_b.read_event(&mut fd_b, &fd_a.outbound_data.lock().unwrap().split_off(0)).unwrap(), false);
1890                 peer_b.process_events();
1891                 assert_eq!(peer_a.read_event(&mut fd_a, &fd_b.outbound_data.lock().unwrap().split_off(0)).unwrap(), false);
1892                 peer_a.process_events();
1893                 assert_eq!(peer_b.read_event(&mut fd_b, &fd_a.outbound_data.lock().unwrap().split_off(0)).unwrap(), false);
1894                 (fd_a.clone(), fd_b.clone())
1895         }
1896
1897         #[test]
1898         fn test_disconnect_peer() {
1899                 // Simple test which builds a network of PeerManager, connects and brings them to NoiseState::Finished and
1900                 // push a DisconnectPeer event to remove the node flagged by id
1901                 let cfgs = create_peermgr_cfgs(2);
1902                 let chan_handler = test_utils::TestChannelMessageHandler::new();
1903                 let mut peers = create_network(2, &cfgs);
1904                 establish_connection(&peers[0], &peers[1]);
1905                 assert_eq!(peers[0].peers.read().unwrap().peers.len(), 1);
1906
1907                 let secp_ctx = Secp256k1::new();
1908                 let their_id = PublicKey::from_secret_key(&secp_ctx, &peers[1].our_node_secret);
1909
1910                 chan_handler.pending_events.lock().unwrap().push(events::MessageSendEvent::HandleError {
1911                         node_id: their_id,
1912                         action: msgs::ErrorAction::DisconnectPeer { msg: None },
1913                 });
1914                 assert_eq!(chan_handler.pending_events.lock().unwrap().len(), 1);
1915                 peers[0].message_handler.chan_handler = &chan_handler;
1916
1917                 peers[0].process_events();
1918                 assert_eq!(peers[0].peers.read().unwrap().peers.len(), 0);
1919         }
1920
1921         #[test]
1922         fn test_timer_tick_occurred() {
1923                 // Create peers, a vector of two peer managers, perform initial set up and check that peers[0] has one Peer.
1924                 let cfgs = create_peermgr_cfgs(2);
1925                 let peers = create_network(2, &cfgs);
1926                 establish_connection(&peers[0], &peers[1]);
1927                 assert_eq!(peers[0].peers.read().unwrap().peers.len(), 1);
1928
1929                 // peers[0] awaiting_pong is set to true, but the Peer is still connected
1930                 peers[0].timer_tick_occurred();
1931                 peers[0].process_events();
1932                 assert_eq!(peers[0].peers.read().unwrap().peers.len(), 1);
1933
1934                 // Since timer_tick_occurred() is called again when awaiting_pong is true, all Peers are disconnected
1935                 peers[0].timer_tick_occurred();
1936                 peers[0].process_events();
1937                 assert_eq!(peers[0].peers.read().unwrap().peers.len(), 0);
1938         }
1939
1940         #[test]
1941         fn test_do_attempt_write_data() {
1942                 // Create 2 peers with custom TestRoutingMessageHandlers and connect them.
1943                 let cfgs = create_peermgr_cfgs(2);
1944                 cfgs[0].routing_handler.request_full_sync.store(true, Ordering::Release);
1945                 cfgs[1].routing_handler.request_full_sync.store(true, Ordering::Release);
1946                 let peers = create_network(2, &cfgs);
1947
1948                 // By calling establish_connect, we trigger do_attempt_write_data between
1949                 // the peers. Previously this function would mistakenly enter an infinite loop
1950                 // when there were more channel messages available than could fit into a peer's
1951                 // buffer. This issue would now be detected by this test (because we use custom
1952                 // RoutingMessageHandlers that intentionally return more channel messages
1953                 // than can fit into a peer's buffer).
1954                 let (mut fd_a, mut fd_b) = establish_connection(&peers[0], &peers[1]);
1955
1956                 // Make each peer to read the messages that the other peer just wrote to them. Note that
1957                 // due to the max-message-before-ping limits this may take a few iterations to complete.
1958                 for _ in 0..150/super::BUFFER_DRAIN_MSGS_PER_TICK + 1 {
1959                         peers[1].process_events();
1960                         let a_read_data = fd_b.outbound_data.lock().unwrap().split_off(0);
1961                         assert!(!a_read_data.is_empty());
1962
1963                         peers[0].read_event(&mut fd_a, &a_read_data).unwrap();
1964                         peers[0].process_events();
1965
1966                         let b_read_data = fd_a.outbound_data.lock().unwrap().split_off(0);
1967                         assert!(!b_read_data.is_empty());
1968                         peers[1].read_event(&mut fd_b, &b_read_data).unwrap();
1969
1970                         peers[0].process_events();
1971                         assert_eq!(fd_a.outbound_data.lock().unwrap().len(), 0, "Until A receives data, it shouldn't send more messages");
1972                 }
1973
1974                 // Check that each peer has received the expected number of channel updates and channel
1975                 // announcements.
1976                 assert_eq!(cfgs[0].routing_handler.chan_upds_recvd.load(Ordering::Acquire), 100);
1977                 assert_eq!(cfgs[0].routing_handler.chan_anns_recvd.load(Ordering::Acquire), 50);
1978                 assert_eq!(cfgs[1].routing_handler.chan_upds_recvd.load(Ordering::Acquire), 100);
1979                 assert_eq!(cfgs[1].routing_handler.chan_anns_recvd.load(Ordering::Acquire), 50);
1980         }
1981
1982         #[test]
1983         fn test_handshake_timeout() {
1984                 // Tests that we time out a peer still waiting on handshake completion after a full timer
1985                 // tick.
1986                 let cfgs = create_peermgr_cfgs(2);
1987                 cfgs[0].routing_handler.request_full_sync.store(true, Ordering::Release);
1988                 cfgs[1].routing_handler.request_full_sync.store(true, Ordering::Release);
1989                 let peers = create_network(2, &cfgs);
1990
1991                 let secp_ctx = Secp256k1::new();
1992                 let a_id = PublicKey::from_secret_key(&secp_ctx, &peers[0].our_node_secret);
1993                 let mut fd_a = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
1994                 let mut fd_b = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
1995                 let initial_data = peers[1].new_outbound_connection(a_id, fd_b.clone(), None).unwrap();
1996                 peers[0].new_inbound_connection(fd_a.clone(), None).unwrap();
1997
1998                 // If we get a single timer tick before completion, that's fine
1999                 assert_eq!(peers[0].peers.read().unwrap().peers.len(), 1);
2000                 peers[0].timer_tick_occurred();
2001                 assert_eq!(peers[0].peers.read().unwrap().peers.len(), 1);
2002
2003                 assert_eq!(peers[0].read_event(&mut fd_a, &initial_data).unwrap(), false);
2004                 peers[0].process_events();
2005                 assert_eq!(peers[1].read_event(&mut fd_b, &fd_a.outbound_data.lock().unwrap().split_off(0)).unwrap(), false);
2006                 peers[1].process_events();
2007
2008                 // ...but if we get a second timer tick, we should disconnect the peer
2009                 peers[0].timer_tick_occurred();
2010                 assert_eq!(peers[0].peers.read().unwrap().peers.len(), 0);
2011
2012                 assert!(peers[0].read_event(&mut fd_a, &fd_b.outbound_data.lock().unwrap().split_off(0)).is_err());
2013         }
2014
2015         #[test]
2016         fn test_filter_addresses(){
2017                 // Tests the filter_addresses function.
2018
2019                 // For (10/8)
2020                 let ip_address = NetAddress::IPv4{addr: [10, 0, 0, 0], port: 1000};
2021                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2022                 let ip_address = NetAddress::IPv4{addr: [10, 0, 255, 201], port: 1000};
2023                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2024                 let ip_address = NetAddress::IPv4{addr: [10, 255, 255, 255], port: 1000};
2025                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2026
2027                 // For (0/8)
2028                 let ip_address = NetAddress::IPv4{addr: [0, 0, 0, 0], port: 1000};
2029                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2030                 let ip_address = NetAddress::IPv4{addr: [0, 0, 255, 187], port: 1000};
2031                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2032                 let ip_address = NetAddress::IPv4{addr: [0, 255, 255, 255], port: 1000};
2033                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2034
2035                 // For (100.64/10)
2036                 let ip_address = NetAddress::IPv4{addr: [100, 64, 0, 0], port: 1000};
2037                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2038                 let ip_address = NetAddress::IPv4{addr: [100, 78, 255, 0], port: 1000};
2039                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2040                 let ip_address = NetAddress::IPv4{addr: [100, 127, 255, 255], port: 1000};
2041                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2042
2043                 // For (127/8)
2044                 let ip_address = NetAddress::IPv4{addr: [127, 0, 0, 0], port: 1000};
2045                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2046                 let ip_address = NetAddress::IPv4{addr: [127, 65, 73, 0], port: 1000};
2047                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2048                 let ip_address = NetAddress::IPv4{addr: [127, 255, 255, 255], port: 1000};
2049                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2050
2051                 // For (169.254/16)
2052                 let ip_address = NetAddress::IPv4{addr: [169, 254, 0, 0], port: 1000};
2053                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2054                 let ip_address = NetAddress::IPv4{addr: [169, 254, 221, 101], port: 1000};
2055                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2056                 let ip_address = NetAddress::IPv4{addr: [169, 254, 255, 255], port: 1000};
2057                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2058
2059                 // For (172.16/12)
2060                 let ip_address = NetAddress::IPv4{addr: [172, 16, 0, 0], port: 1000};
2061                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2062                 let ip_address = NetAddress::IPv4{addr: [172, 27, 101, 23], port: 1000};
2063                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2064                 let ip_address = NetAddress::IPv4{addr: [172, 31, 255, 255], port: 1000};
2065                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2066
2067                 // For (192.168/16)
2068                 let ip_address = NetAddress::IPv4{addr: [192, 168, 0, 0], port: 1000};
2069                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2070                 let ip_address = NetAddress::IPv4{addr: [192, 168, 205, 159], port: 1000};
2071                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2072                 let ip_address = NetAddress::IPv4{addr: [192, 168, 255, 255], port: 1000};
2073                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2074
2075                 // For (192.88.99/24)
2076                 let ip_address = NetAddress::IPv4{addr: [192, 88, 99, 0], port: 1000};
2077                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2078                 let ip_address = NetAddress::IPv4{addr: [192, 88, 99, 140], port: 1000};
2079                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2080                 let ip_address = NetAddress::IPv4{addr: [192, 88, 99, 255], port: 1000};
2081                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2082
2083                 // For other IPv4 addresses
2084                 let ip_address = NetAddress::IPv4{addr: [188, 255, 99, 0], port: 1000};
2085                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2086                 let ip_address = NetAddress::IPv4{addr: [123, 8, 129, 14], port: 1000};
2087                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2088                 let ip_address = NetAddress::IPv4{addr: [2, 88, 9, 255], port: 1000};
2089                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2090
2091                 // For (2000::/3)
2092                 let ip_address = NetAddress::IPv6{addr: [32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], port: 1000};
2093                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2094                 let ip_address = NetAddress::IPv6{addr: [45, 34, 209, 190, 0, 123, 55, 34, 0, 0, 3, 27, 201, 0, 0, 0], port: 1000};
2095                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2096                 let ip_address = NetAddress::IPv6{addr: [63, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255], port: 1000};
2097                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2098
2099                 // For other IPv6 addresses
2100                 let ip_address = NetAddress::IPv6{addr: [24, 240, 12, 32, 0, 0, 0, 0, 20, 97, 0, 32, 121, 254, 0, 0], port: 1000};
2101                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2102                 let ip_address = NetAddress::IPv6{addr: [68, 23, 56, 63, 0, 0, 2, 7, 75, 109, 0, 39, 0, 0, 0, 0], port: 1000};
2103                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2104                 let ip_address = NetAddress::IPv6{addr: [101, 38, 140, 230, 100, 0, 30, 98, 0, 26, 0, 0, 57, 96, 0, 0], port: 1000};
2105                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2106
2107                 // For (None)
2108                 assert_eq!(filter_addresses(None), None);
2109         }
2110 }