Add unknown message handler to peer manager
[rust-lightning] / lightning / src / ln / peer_handler.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! Top level peer message handling and socket handling logic lives here.
11 //!
12 //! Instead of actually servicing sockets ourselves we require that you implement the
13 //! SocketDescriptor interface and use that to receive actions which you should perform on the
14 //! socket, and call into PeerManager with bytes read from the socket. The PeerManager will then
15 //! call into the provided message handlers (probably a ChannelManager and NetGraphmsgHandler) with messages
16 //! they should handle, and encoding/sending response messages.
17
18 use bitcoin::secp256k1::key::{SecretKey,PublicKey};
19
20 use ln::features::InitFeatures;
21 use ln::msgs;
22 use ln::msgs::{ChannelMessageHandler, LightningError, RoutingMessageHandler};
23 use ln::channelmanager::{SimpleArcChannelManager, SimpleRefChannelManager};
24 use util::ser::{VecWriter, Writeable};
25 use ln::peer_channel_encryptor::{PeerChannelEncryptor,NextNoiseStep};
26 use ln::wire;
27 use ln::wire::Encode;
28 use util::byte_utils;
29 use util::events::{MessageSendEvent, MessageSendEventsProvider};
30 use util::logger::Logger;
31 use routing::network_graph::NetGraphMsgHandler;
32
33 use prelude::*;
34 use alloc::collections::LinkedList;
35 use alloc::fmt::Debug;
36 use std::sync::{Arc, Mutex};
37 use core::sync::atomic::{AtomicUsize, Ordering};
38 use core::{cmp, hash, fmt, mem};
39 use core::ops::Deref;
40 use std::error;
41
42 use bitcoin::hashes::sha256::Hash as Sha256;
43 use bitcoin::hashes::sha256::HashEngine as Sha256Engine;
44 use bitcoin::hashes::{HashEngine, Hash};
45
46 /// A dummy struct which implements `RoutingMessageHandler` without storing any routing information
47 /// or doing any processing. You can provide one of these as the route_handler in a MessageHandler.
48 pub struct IgnoringMessageHandler{}
49 impl MessageSendEventsProvider for IgnoringMessageHandler {
50         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> { Vec::new() }
51 }
52 impl RoutingMessageHandler for IgnoringMessageHandler {
53         fn handle_node_announcement(&self, _msg: &msgs::NodeAnnouncement) -> Result<bool, LightningError> { Ok(false) }
54         fn handle_channel_announcement(&self, _msg: &msgs::ChannelAnnouncement) -> Result<bool, LightningError> { Ok(false) }
55         fn handle_channel_update(&self, _msg: &msgs::ChannelUpdate) -> Result<bool, LightningError> { Ok(false) }
56         fn handle_htlc_fail_channel_update(&self, _update: &msgs::HTLCFailChannelUpdate) {}
57         fn get_next_channel_announcements(&self, _starting_point: u64, _batch_amount: u8) ->
58                 Vec<(msgs::ChannelAnnouncement, Option<msgs::ChannelUpdate>, Option<msgs::ChannelUpdate>)> { Vec::new() }
59         fn get_next_node_announcements(&self, _starting_point: Option<&PublicKey>, _batch_amount: u8) -> Vec<msgs::NodeAnnouncement> { Vec::new() }
60         fn sync_routing_table(&self, _their_node_id: &PublicKey, _init: &msgs::Init) {}
61         fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: msgs::ReplyChannelRange) -> Result<(), LightningError> { Ok(()) }
62         fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: msgs::ReplyShortChannelIdsEnd) -> Result<(), LightningError> { Ok(()) }
63         fn handle_query_channel_range(&self, _their_node_id: &PublicKey, _msg: msgs::QueryChannelRange) -> Result<(), LightningError> { Ok(()) }
64         fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: msgs::QueryShortChannelIds) -> Result<(), LightningError> { Ok(()) }
65 }
66 impl Deref for IgnoringMessageHandler {
67         type Target = IgnoringMessageHandler;
68         fn deref(&self) -> &Self { self }
69 }
70
71 /// A dummy implementation of `UnknownMessageHandler` that does nothing.
72 pub struct IgnoringUnknownMessageHandler{}
73 impl MessageSendEventsProvider for IgnoringUnknownMessageHandler {
74         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
75                 Vec::new()
76         }
77 }
78
79 /// Define a dummy type to satisfy the constraint of UnknownMessageHandle `Message`
80 /// associated type for implementing it for IgnoringUnknownMessageHandler.
81 type DummyType = ();
82 impl Encode for DummyType {
83         const TYPE: u16 = 0;
84 }
85 impl Writeable for DummyType {
86         fn write<W: ::util::ser::Writer>(&self, _writer: &mut W) -> Result<(), ::std::io::Error> {
87                 Ok(())
88         }
89 }
90
91 impl UnknownMessageHandler for IgnoringUnknownMessageHandler {
92         type MessageEnum = ();
93         type Message = DummyType;
94         fn read<R: ::std::io::Read>(&self, _message_type: u16, _buffer: &mut R) -> Result<Option<Self::MessageEnum>, msgs::DecodeError> {
95                 Ok(None)
96         }
97
98         fn handle_unknown_message(&self, _msg: Self::MessageEnum) -> Result<(), MessageHandlingError> {
99                 // Since we always return `None` in the read the handle method should never be called.
100                 unreachable!();
101         }
102
103         fn get_and_clear_pending_msgs(&self) -> Vec<(&PublicKey, Self::Message)> {
104                 Vec::new()
105         }
106 }
107 impl Deref for IgnoringUnknownMessageHandler {
108         type Target = IgnoringUnknownMessageHandler;
109         fn deref(&self) -> &Self { self }
110 }
111
112 /// A dummy struct which implements `ChannelMessageHandler` without having any channels.
113 /// You can provide one of these as the route_handler in a MessageHandler.
114 pub struct ErroringMessageHandler {
115         message_queue: Mutex<Vec<MessageSendEvent>>
116 }
117 impl ErroringMessageHandler {
118         /// Constructs a new ErroringMessageHandler
119         pub fn new() -> Self {
120                 Self { message_queue: Mutex::new(Vec::new()) }
121         }
122         fn push_error(&self, node_id: &PublicKey, channel_id: [u8; 32]) {
123                 self.message_queue.lock().unwrap().push(MessageSendEvent::HandleError {
124                         action: msgs::ErrorAction::SendErrorMessage {
125                                 msg: msgs::ErrorMessage { channel_id, data: "We do not support channel messages, sorry.".to_owned() },
126                         },
127                         node_id: node_id.clone(),
128                 });
129         }
130 }
131 impl MessageSendEventsProvider for ErroringMessageHandler {
132         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
133                 let mut res = Vec::new();
134                 mem::swap(&mut res, &mut self.message_queue.lock().unwrap());
135                 res
136         }
137 }
138 impl ChannelMessageHandler for ErroringMessageHandler {
139         // Any messages which are related to a specific channel generate an error message to let the
140         // peer know we don't care about channels.
141         fn handle_open_channel(&self, their_node_id: &PublicKey, _their_features: InitFeatures, msg: &msgs::OpenChannel) {
142                 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
143         }
144         fn handle_accept_channel(&self, their_node_id: &PublicKey, _their_features: InitFeatures, msg: &msgs::AcceptChannel) {
145                 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
146         }
147         fn handle_funding_created(&self, their_node_id: &PublicKey, msg: &msgs::FundingCreated) {
148                 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
149         }
150         fn handle_funding_signed(&self, their_node_id: &PublicKey, msg: &msgs::FundingSigned) {
151                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
152         }
153         fn handle_funding_locked(&self, their_node_id: &PublicKey, msg: &msgs::FundingLocked) {
154                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
155         }
156         fn handle_shutdown(&self, their_node_id: &PublicKey, _their_features: &InitFeatures, msg: &msgs::Shutdown) {
157                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
158         }
159         fn handle_closing_signed(&self, their_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
160                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
161         }
162         fn handle_update_add_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
163                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
164         }
165         fn handle_update_fulfill_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
166                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
167         }
168         fn handle_update_fail_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
169                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
170         }
171         fn handle_update_fail_malformed_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
172                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
173         }
174         fn handle_commitment_signed(&self, their_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
175                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
176         }
177         fn handle_revoke_and_ack(&self, their_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
178                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
179         }
180         fn handle_update_fee(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFee) {
181                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
182         }
183         fn handle_announcement_signatures(&self, their_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
184                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
185         }
186         fn handle_channel_reestablish(&self, their_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
187                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
188         }
189         // msgs::ChannelUpdate does not contain the channel_id field, so we just drop them.
190         fn handle_channel_update(&self, _their_node_id: &PublicKey, _msg: &msgs::ChannelUpdate) {}
191         fn peer_disconnected(&self, _their_node_id: &PublicKey, _no_connection_possible: bool) {}
192         fn peer_connected(&self, _their_node_id: &PublicKey, _msg: &msgs::Init) {}
193         fn handle_error(&self, _their_node_id: &PublicKey, _msg: &msgs::ErrorMessage) {}
194 }
195 impl Deref for ErroringMessageHandler {
196         type Target = ErroringMessageHandler;
197         fn deref(&self) -> &Self { self }
198 }
199
200 /// Provides references to trait impls which handle different types of messages.
201 pub struct MessageHandler<CM: Deref, RM: Deref> where
202                 CM::Target: ChannelMessageHandler,
203                 RM::Target: RoutingMessageHandler {
204         /// A message handler which handles messages specific to channels. Usually this is just a
205         /// [`ChannelManager`] object or an [`ErroringMessageHandler`].
206         ///
207         /// [`ChannelManager`]: crate::ln::channelmanager::ChannelManager
208         pub chan_handler: CM,
209         /// A message handler which handles messages updating our knowledge of the network channel
210         /// graph. Usually this is just a [`NetGraphMsgHandler`] object or an
211         /// [`IgnoringMessageHandler`].
212         ///
213         /// [`NetGraphMsgHandler`]: crate::routing::network_graph::NetGraphMsgHandler
214         pub route_handler: RM,
215 }
216
217 /// Handler for messages external to the LN protocol.
218 pub trait UnknownMessageHandler where Self::Message : Encode + Writeable + Debug {
219         /// A type that represents a message that can be sent over the wire
220         type Message;
221         /// A type that represents an enumeration of messages that can be handled by the handler.
222         type MessageEnum;
223         ///
224         fn read<R: ::std::io::Read>(&self, msg_type: u16, buffer: &mut R) -> Result<Option<Self::MessageEnum>, msgs::DecodeError>;
225         /// Called with the message type that was received and the buffer to be read. If the handler
226         /// could handle the message, should return `Ok(Some(wire::Message::HandledUnknownMessage(msg_type)))`,
227         /// otherwise Ok(None). Can also return a `DecodingError` if the buffer contained unexpected data
228         /// for the given message type.
229         fn handle_unknown_message(&self, msg: Self::MessageEnum) -> Result<(), MessageHandlingError>;
230         /// Get messages to be sent to specified peers.
231         fn get_and_clear_pending_msgs(&self) -> Vec<(&PublicKey, Self::Message)>;
232 }
233
234 /// Provides an object which can be used to send data to and which uniquely identifies a connection
235 /// to a remote host. You will need to be able to generate multiple of these which meet Eq and
236 /// implement Hash to meet the PeerManager API.
237 ///
238 /// For efficiency, Clone should be relatively cheap for this type.
239 ///
240 /// Two descriptors may compare equal (by [`cmp::Eq`] and [`hash::Hash`]) as long as the original
241 /// has been disconnected, the [`PeerManager`] has been informed of the disconnection (either by it
242 /// having triggered the disconnection or a call to [`PeerManager::socket_disconnected`]), and no
243 /// further calls to the [`PeerManager`] related to the original socket occur. This allows you to
244 /// use a file descriptor for your SocketDescriptor directly, however for simplicity you may wish
245 /// to simply use another value which is guaranteed to be globally unique instead.
246 pub trait SocketDescriptor : cmp::Eq + hash::Hash + Clone {
247         /// Attempts to send some data from the given slice to the peer.
248         ///
249         /// Returns the amount of data which was sent, possibly 0 if the socket has since disconnected.
250         /// Note that in the disconnected case, [`PeerManager::socket_disconnected`] must still be
251         /// called and further write attempts may occur until that time.
252         ///
253         /// If the returned size is smaller than `data.len()`, a
254         /// [`PeerManager::write_buffer_space_avail`] call must be made the next time more data can be
255         /// written. Additionally, until a `send_data` event completes fully, no further
256         /// [`PeerManager::read_event`] calls should be made for the same peer! Because this is to
257         /// prevent denial-of-service issues, you should not read or buffer any data from the socket
258         /// until then.
259         ///
260         /// If a [`PeerManager::read_event`] call on this descriptor had previously returned true
261         /// (indicating that read events should be paused to prevent DoS in the send buffer),
262         /// `resume_read` may be set indicating that read events on this descriptor should resume. A
263         /// `resume_read` of false carries no meaning, and should not cause any action.
264         fn send_data(&mut self, data: &[u8], resume_read: bool) -> usize;
265         /// Disconnect the socket pointed to by this SocketDescriptor.
266         ///
267         /// You do *not* need to call [`PeerManager::socket_disconnected`] with this socket after this
268         /// call (doing so is a noop).
269         fn disconnect_socket(&mut self);
270 }
271
272 /// Error for PeerManager errors. If you get one of these, you must disconnect the socket and
273 /// generate no further read_event/write_buffer_space_avail/socket_disconnected calls for the
274 /// descriptor.
275 #[derive(Clone)]
276 pub struct PeerHandleError {
277         /// Used to indicate that we probably can't make any future connections to this peer, implying
278         /// we should go ahead and force-close any channels we have with it.
279         pub no_connection_possible: bool,
280 }
281 impl fmt::Debug for PeerHandleError {
282         fn fmt(&self, formatter: &mut fmt::Formatter) -> Result<(), fmt::Error> {
283                 formatter.write_str("Peer Sent Invalid Data")
284         }
285 }
286 impl fmt::Display for PeerHandleError {
287         fn fmt(&self, formatter: &mut fmt::Formatter) -> Result<(), fmt::Error> {
288                 formatter.write_str("Peer Sent Invalid Data")
289         }
290 }
291 impl error::Error for PeerHandleError {
292         fn description(&self) -> &str {
293                 "Peer Sent Invalid Data"
294         }
295 }
296
297 enum InitSyncTracker{
298         NoSyncRequested,
299         ChannelsSyncing(u64),
300         NodesSyncing(PublicKey),
301 }
302
303 /// When the outbound buffer has this many messages, we'll stop reading bytes from the peer until
304 /// we have fewer than this many messages in the outbound buffer again.
305 /// We also use this as the target number of outbound gossip messages to keep in the write buffer,
306 /// refilled as we send bytes.
307 const OUTBOUND_BUFFER_LIMIT_READ_PAUSE: usize = 10;
308 /// When the outbound buffer has this many messages, we'll simply skip relaying gossip messages to
309 /// the peer.
310 const OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP: usize = 20;
311
312 struct Peer {
313         channel_encryptor: PeerChannelEncryptor,
314         their_node_id: Option<PublicKey>,
315         their_features: Option<InitFeatures>,
316
317         pending_outbound_buffer: LinkedList<Vec<u8>>,
318         pending_outbound_buffer_first_msg_offset: usize,
319         awaiting_write_event: bool,
320
321         pending_read_buffer: Vec<u8>,
322         pending_read_buffer_pos: usize,
323         pending_read_is_header: bool,
324
325         sync_status: InitSyncTracker,
326
327         awaiting_pong: bool,
328 }
329
330 impl Peer {
331         /// Returns true if the channel announcements/updates for the given channel should be
332         /// forwarded to this peer.
333         /// If we are sending our routing table to this peer and we have not yet sent channel
334         /// announcements/updates for the given channel_id then we will send it when we get to that
335         /// point and we shouldn't send it yet to avoid sending duplicate updates. If we've already
336         /// sent the old versions, we should send the update, and so return true here.
337         fn should_forward_channel_announcement(&self, channel_id: u64)->bool{
338                 match self.sync_status {
339                         InitSyncTracker::NoSyncRequested => true,
340                         InitSyncTracker::ChannelsSyncing(i) => i < channel_id,
341                         InitSyncTracker::NodesSyncing(_) => true,
342                 }
343         }
344
345         /// Similar to the above, but for node announcements indexed by node_id.
346         fn should_forward_node_announcement(&self, node_id: PublicKey) -> bool {
347                 match self.sync_status {
348                         InitSyncTracker::NoSyncRequested => true,
349                         InitSyncTracker::ChannelsSyncing(_) => false,
350                         InitSyncTracker::NodesSyncing(pk) => pk < node_id,
351                 }
352         }
353 }
354
355 struct PeerHolder<Descriptor: SocketDescriptor> {
356         peers: HashMap<Descriptor, Peer>,
357         /// Only add to this set when noise completes:
358         node_id_to_descriptor: HashMap<PublicKey, Descriptor>,
359 }
360
361 #[cfg(not(any(target_pointer_width = "32", target_pointer_width = "64")))]
362 fn _check_usize_is_32_or_64() {
363         // See below, less than 32 bit pointers may be unsafe here!
364         unsafe { mem::transmute::<*const usize, [u8; 4]>(panic!()); }
365 }
366
367 /// SimpleArcPeerManager is useful when you need a PeerManager with a static lifetime, e.g.
368 /// when you're using lightning-net-tokio (since tokio::spawn requires parameters with static
369 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
370 /// SimpleRefPeerManager is the more appropriate type. Defining these type aliases prevents
371 /// issues such as overly long function definitions.
372 pub type SimpleArcPeerManager<SD, M, T, F, C, L, UMH> = PeerManager<SD, Arc<SimpleArcChannelManager<M, T, F, L>>, Arc<NetGraphMsgHandler<Arc<C>, Arc<L>>>, Arc<L>, UMH>;
373
374 /// SimpleRefPeerManager is a type alias for a PeerManager reference, and is the reference
375 /// counterpart to the SimpleArcPeerManager type alias. Use this type by default when you don't
376 /// need a PeerManager with a static lifetime. You'll need a static lifetime in cases such as
377 /// usage of lightning-net-tokio (since tokio::spawn requires parameters with static lifetimes).
378 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
379 /// helps with issues such as long function definitions.
380 pub type SimpleRefPeerManager<'a, 'b, 'c, 'd, 'e, 'f, 'g, SD, M, T, F, C, L, UMH> = PeerManager<SD, SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, M, T, F, L>, &'e NetGraphMsgHandler<&'g C, &'f L>, &'f L, UMH>;
381
382 /// A PeerManager manages a set of peers, described by their [`SocketDescriptor`] and marshalls
383 /// socket events into messages which it passes on to its [`MessageHandler`].
384 ///
385 /// Locks are taken internally, so you must never assume that reentrancy from a
386 /// [`SocketDescriptor`] call back into [`PeerManager`] methods will not deadlock.
387 ///
388 /// Calls to [`read_event`] will decode relevant messages and pass them to the
389 /// [`ChannelMessageHandler`], likely doing message processing in-line. Thus, the primary form of
390 /// parallelism in Rust-Lightning is in calls to [`read_event`]. Note, however, that calls to any
391 /// [`PeerManager`] functions related to the same connection must occur only in serial, making new
392 /// calls only after previous ones have returned.
393 ///
394 /// Rather than using a plain PeerManager, it is preferable to use either a SimpleArcPeerManager
395 /// a SimpleRefPeerManager, for conciseness. See their documentation for more details, but
396 /// essentially you should default to using a SimpleRefPeerManager, and use a
397 /// SimpleArcPeerManager when you require a PeerManager with a static lifetime, such as when
398 /// you're using lightning-net-tokio.
399 ///
400 /// [`read_event`]: PeerManager::read_event
401 pub struct PeerManager<Descriptor: SocketDescriptor, CM: Deref, RM: Deref, L: Deref, UMH: Deref> where
402                 CM::Target: ChannelMessageHandler,
403                 RM::Target: RoutingMessageHandler,
404                 L::Target: Logger,
405                 UMH::Target: UnknownMessageHandler {
406         message_handler: MessageHandler<CM, RM>,
407         peers: Mutex<PeerHolder<Descriptor>>,
408         our_node_secret: SecretKey,
409         ephemeral_key_midstate: Sha256Engine,
410         unknown_message_handler: UMH,
411
412         // Usize needs to be at least 32 bits to avoid overflowing both low and high. If usize is 64
413         // bits we will never realistically count into high:
414         peer_counter_low: AtomicUsize,
415         peer_counter_high: AtomicUsize,
416
417         logger: L,
418 }
419
420 /// An error indicating a failure to handle a received message.
421 pub enum MessageHandlingError {
422         /// An error related to communication with a peer.
423         PeerHandleError(PeerHandleError),
424         /// An error related to the LN protocol.
425         LightningError(LightningError),
426 }
427
428 impl From<PeerHandleError> for MessageHandlingError {
429         fn from(error: PeerHandleError) -> Self {
430                 MessageHandlingError::PeerHandleError(error)
431         }
432 }
433
434 impl From<LightningError> for MessageHandlingError {
435         fn from(error: LightningError) -> Self {
436                 MessageHandlingError::LightningError(error)
437         }
438 }
439
440 macro_rules! encode_msg {
441         ($msg: expr) => {{
442                 let mut buffer = VecWriter(Vec::new());
443                 wire::write($msg, &mut buffer).unwrap();
444                 buffer.0
445         }}
446 }
447
448 impl<Descriptor: SocketDescriptor, CM: Deref, L: Deref> PeerManager<Descriptor, CM, IgnoringMessageHandler, L, IgnoringUnknownMessageHandler> where
449                 CM::Target: ChannelMessageHandler,
450                 L::Target: Logger {
451         /// Constructs a new PeerManager with the given ChannelMessageHandler. No routing message
452         /// handler is used and network graph messages are ignored.
453         ///
454         /// ephemeral_random_data is used to derive per-connection ephemeral keys and must be
455         /// cryptographically secure random bytes.
456         ///
457         /// (C-not exported) as we can't export a PeerManager with a dummy route handler
458         pub fn new_channel_only(channel_message_handler: CM, our_node_secret: SecretKey, ephemeral_random_data: &[u8; 32], logger: L) -> Self {
459                 Self::new(MessageHandler {
460                         chan_handler: channel_message_handler,
461                         route_handler: IgnoringMessageHandler{},
462                 }, our_node_secret, ephemeral_random_data, logger, IgnoringUnknownMessageHandler{})
463         }
464 }
465
466 impl<Descriptor: SocketDescriptor, RM: Deref, L: Deref> PeerManager<Descriptor, ErroringMessageHandler, RM, L, IgnoringUnknownMessageHandler> where
467                 RM::Target: RoutingMessageHandler,
468                 L::Target: Logger {
469         /// Constructs a new PeerManager with the given RoutingMessageHandler. No channel message
470         /// handler is used and messages related to channels will be ignored (or generate error
471         /// messages). Note that some other lightning implementations time-out connections after some
472         /// time if no channel is built with the peer.
473         ///
474         /// ephemeral_random_data is used to derive per-connection ephemeral keys and must be
475         /// cryptographically secure random bytes.
476         ///
477         /// (C-not exported) as we can't export a PeerManager with a dummy channel handler
478         pub fn new_routing_only(routing_message_handler: RM, our_node_secret: SecretKey, ephemeral_random_data: &[u8; 32], logger: L) -> Self {
479                 Self::new(MessageHandler {
480                         chan_handler: ErroringMessageHandler::new(),
481                         route_handler: routing_message_handler,
482                 }, our_node_secret, ephemeral_random_data, logger, IgnoringUnknownMessageHandler{})
483         }
484 }
485
486 impl<Descriptor: SocketDescriptor, CM: Deref, RM: Deref, L: Deref, UMH: Deref> PeerManager<Descriptor, CM, RM, L, UMH> where
487                 CM::Target: ChannelMessageHandler,
488                 RM::Target: RoutingMessageHandler,
489                 L::Target: Logger,
490                 UMH::Target: UnknownMessageHandler {
491         /// Constructs a new PeerManager with the given message handlers and node_id secret key
492         /// ephemeral_random_data is used to derive per-connection ephemeral keys and must be
493         /// cryptographically secure random bytes.
494         pub fn new(message_handler: MessageHandler<CM, RM>, our_node_secret: SecretKey, ephemeral_random_data: &[u8; 32], logger: L, unknown_message_handler: UMH) -> Self {
495                 let mut ephemeral_key_midstate = Sha256::engine();
496                 ephemeral_key_midstate.input(ephemeral_random_data);
497
498                 PeerManager {
499                         message_handler,
500                         peers: Mutex::new(PeerHolder {
501                                 peers: HashMap::new(),
502                                 node_id_to_descriptor: HashMap::new()
503                         }),
504                         our_node_secret,
505                         ephemeral_key_midstate,
506                         peer_counter_low: AtomicUsize::new(0),
507                         peer_counter_high: AtomicUsize::new(0),
508                         logger,
509                         unknown_message_handler,
510                 }
511         }
512
513         /// Get the list of node ids for peers which have completed the initial handshake.
514         ///
515         /// For outbound connections, this will be the same as the their_node_id parameter passed in to
516         /// new_outbound_connection, however entries will only appear once the initial handshake has
517         /// completed and we are sure the remote peer has the private key for the given node_id.
518         pub fn get_peer_node_ids(&self) -> Vec<PublicKey> {
519                 let peers = self.peers.lock().unwrap();
520                 peers.peers.values().filter_map(|p| {
521                         if !p.channel_encryptor.is_ready_for_encryption() || p.their_features.is_none() {
522                                 return None;
523                         }
524                         p.their_node_id
525                 }).collect()
526         }
527
528         fn get_ephemeral_key(&self) -> SecretKey {
529                 let mut ephemeral_hash = self.ephemeral_key_midstate.clone();
530                 let low = self.peer_counter_low.fetch_add(1, Ordering::AcqRel);
531                 let high = if low == 0 {
532                         self.peer_counter_high.fetch_add(1, Ordering::AcqRel)
533                 } else {
534                         self.peer_counter_high.load(Ordering::Acquire)
535                 };
536                 ephemeral_hash.input(&byte_utils::le64_to_array(low as u64));
537                 ephemeral_hash.input(&byte_utils::le64_to_array(high as u64));
538                 SecretKey::from_slice(&Sha256::from_engine(ephemeral_hash).into_inner()).expect("You broke SHA-256!")
539         }
540
541         /// Indicates a new outbound connection has been established to a node with the given node_id.
542         /// Note that if an Err is returned here you MUST NOT call socket_disconnected for the new
543         /// descriptor but must disconnect the connection immediately.
544         ///
545         /// Returns a small number of bytes to send to the remote node (currently always 50).
546         ///
547         /// Panics if descriptor is duplicative with some other descriptor which has not yet been
548         /// [`socket_disconnected()`].
549         ///
550         /// [`socket_disconnected()`]: PeerManager::socket_disconnected
551         pub fn new_outbound_connection(&self, their_node_id: PublicKey, descriptor: Descriptor) -> Result<Vec<u8>, PeerHandleError> {
552                 let mut peer_encryptor = PeerChannelEncryptor::new_outbound(their_node_id.clone(), self.get_ephemeral_key());
553                 let res = peer_encryptor.get_act_one().to_vec();
554                 let pending_read_buffer = [0; 50].to_vec(); // Noise act two is 50 bytes
555
556                 let mut peers = self.peers.lock().unwrap();
557                 if peers.peers.insert(descriptor, Peer {
558                         channel_encryptor: peer_encryptor,
559                         their_node_id: None,
560                         their_features: None,
561
562                         pending_outbound_buffer: LinkedList::new(),
563                         pending_outbound_buffer_first_msg_offset: 0,
564                         awaiting_write_event: false,
565
566                         pending_read_buffer,
567                         pending_read_buffer_pos: 0,
568                         pending_read_is_header: false,
569
570                         sync_status: InitSyncTracker::NoSyncRequested,
571
572                         awaiting_pong: false,
573                 }).is_some() {
574                         panic!("PeerManager driver duplicated descriptors!");
575                 };
576                 Ok(res)
577         }
578
579         /// Indicates a new inbound connection has been established.
580         ///
581         /// May refuse the connection by returning an Err, but will never write bytes to the remote end
582         /// (outbound connector always speaks first). Note that if an Err is returned here you MUST NOT
583         /// call socket_disconnected for the new descriptor but must disconnect the connection
584         /// immediately.
585         ///
586         /// Panics if descriptor is duplicative with some other descriptor which has not yet been
587         /// [`socket_disconnected()`].
588         ///
589         /// [`socket_disconnected()`]: PeerManager::socket_disconnected
590         pub fn new_inbound_connection(&self, descriptor: Descriptor) -> Result<(), PeerHandleError> {
591                 let peer_encryptor = PeerChannelEncryptor::new_inbound(&self.our_node_secret);
592                 let pending_read_buffer = [0; 50].to_vec(); // Noise act one is 50 bytes
593
594                 let mut peers = self.peers.lock().unwrap();
595                 if peers.peers.insert(descriptor, Peer {
596                         channel_encryptor: peer_encryptor,
597                         their_node_id: None,
598                         their_features: None,
599
600                         pending_outbound_buffer: LinkedList::new(),
601                         pending_outbound_buffer_first_msg_offset: 0,
602                         awaiting_write_event: false,
603
604                         pending_read_buffer,
605                         pending_read_buffer_pos: 0,
606                         pending_read_is_header: false,
607
608                         sync_status: InitSyncTracker::NoSyncRequested,
609
610                         awaiting_pong: false,
611                 }).is_some() {
612                         panic!("PeerManager driver duplicated descriptors!");
613                 };
614                 Ok(())
615         }
616
617         fn do_attempt_write_data(&self, descriptor: &mut Descriptor, peer: &mut Peer) {
618                 while !peer.awaiting_write_event {
619                         if peer.pending_outbound_buffer.len() < OUTBOUND_BUFFER_LIMIT_READ_PAUSE {
620                                 match peer.sync_status {
621                                         InitSyncTracker::NoSyncRequested => {},
622                                         InitSyncTracker::ChannelsSyncing(c) if c < 0xffff_ffff_ffff_ffff => {
623                                                 let steps = ((OUTBOUND_BUFFER_LIMIT_READ_PAUSE - peer.pending_outbound_buffer.len() + 2) / 3) as u8;
624                                                 let all_messages = self.message_handler.route_handler.get_next_channel_announcements(c, steps);
625                                                 for &(ref announce, ref update_a_option, ref update_b_option) in all_messages.iter() {
626                                                         self.enqueue_message(peer, announce);
627                                                         if let &Some(ref update_a) = update_a_option {
628                                                                 self.enqueue_message(peer, update_a);
629                                                         }
630                                                         if let &Some(ref update_b) = update_b_option {
631                                                                 self.enqueue_message(peer, update_b);
632                                                         }
633                                                         peer.sync_status = InitSyncTracker::ChannelsSyncing(announce.contents.short_channel_id + 1);
634                                                 }
635                                                 if all_messages.is_empty() || all_messages.len() != steps as usize {
636                                                         peer.sync_status = InitSyncTracker::ChannelsSyncing(0xffff_ffff_ffff_ffff);
637                                                 }
638                                         },
639                                         InitSyncTracker::ChannelsSyncing(c) if c == 0xffff_ffff_ffff_ffff => {
640                                                 let steps = (OUTBOUND_BUFFER_LIMIT_READ_PAUSE - peer.pending_outbound_buffer.len()) as u8;
641                                                 let all_messages = self.message_handler.route_handler.get_next_node_announcements(None, steps);
642                                                 for msg in all_messages.iter() {
643                                                         self.enqueue_message(peer, msg);
644                                                         peer.sync_status = InitSyncTracker::NodesSyncing(msg.contents.node_id);
645                                                 }
646                                                 if all_messages.is_empty() || all_messages.len() != steps as usize {
647                                                         peer.sync_status = InitSyncTracker::NoSyncRequested;
648                                                 }
649                                         },
650                                         InitSyncTracker::ChannelsSyncing(_) => unreachable!(),
651                                         InitSyncTracker::NodesSyncing(key) => {
652                                                 let steps = (OUTBOUND_BUFFER_LIMIT_READ_PAUSE - peer.pending_outbound_buffer.len()) as u8;
653                                                 let all_messages = self.message_handler.route_handler.get_next_node_announcements(Some(&key), steps);
654                                                 for msg in all_messages.iter() {
655                                                         self.enqueue_message(peer, msg);
656                                                         peer.sync_status = InitSyncTracker::NodesSyncing(msg.contents.node_id);
657                                                 }
658                                                 if all_messages.is_empty() || all_messages.len() != steps as usize {
659                                                         peer.sync_status = InitSyncTracker::NoSyncRequested;
660                                                 }
661                                         },
662                                 }
663                         }
664
665                         if {
666                                 let next_buff = match peer.pending_outbound_buffer.front() {
667                                         None => return,
668                                         Some(buff) => buff,
669                                 };
670
671                                 let should_be_reading = peer.pending_outbound_buffer.len() < OUTBOUND_BUFFER_LIMIT_READ_PAUSE;
672                                 let pending = &next_buff[peer.pending_outbound_buffer_first_msg_offset..];
673                                 let data_sent = descriptor.send_data(pending, should_be_reading);
674                                 peer.pending_outbound_buffer_first_msg_offset += data_sent;
675                                 if peer.pending_outbound_buffer_first_msg_offset == next_buff.len() { true } else { false }
676                         } {
677                                 peer.pending_outbound_buffer_first_msg_offset = 0;
678                                 peer.pending_outbound_buffer.pop_front();
679                         } else {
680                                 peer.awaiting_write_event = true;
681                         }
682                 }
683         }
684
685         /// Indicates that there is room to write data to the given socket descriptor.
686         ///
687         /// May return an Err to indicate that the connection should be closed.
688         ///
689         /// May call [`send_data`] on the descriptor passed in (or an equal descriptor) before
690         /// returning. Thus, be very careful with reentrancy issues! The invariants around calling
691         /// [`write_buffer_space_avail`] in case a write did not fully complete must still hold - be
692         /// ready to call `[write_buffer_space_avail`] again if a write call generated here isn't
693         /// sufficient!
694         ///
695         /// [`send_data`]: SocketDescriptor::send_data
696         /// [`write_buffer_space_avail`]: PeerManager::write_buffer_space_avail
697         pub fn write_buffer_space_avail(&self, descriptor: &mut Descriptor) -> Result<(), PeerHandleError> {
698                 let mut peers = self.peers.lock().unwrap();
699                 match peers.peers.get_mut(descriptor) {
700                         None => {
701                                 // This is most likely a simple race condition where the user found that the socket
702                                 // was writeable, then we told the user to `disconnect_socket()`, then they called
703                                 // this method. Return an error to make sure we get disconnected.
704                                 return Err(PeerHandleError { no_connection_possible: false });
705                         },
706                         Some(peer) => {
707                                 peer.awaiting_write_event = false;
708                                 self.do_attempt_write_data(descriptor, peer);
709                         }
710                 };
711                 Ok(())
712         }
713
714         /// Indicates that data was read from the given socket descriptor.
715         ///
716         /// May return an Err to indicate that the connection should be closed.
717         ///
718         /// Will *not* call back into [`send_data`] on any descriptors to avoid reentrancy complexity.
719         /// Thus, however, you should call [`process_events`] after any `read_event` to generate
720         /// [`send_data`] calls to handle responses.
721         ///
722         /// If `Ok(true)` is returned, further read_events should not be triggered until a
723         /// [`send_data`] call on this descriptor has `resume_read` set (preventing DoS issues in the
724         /// send buffer).
725         ///
726         /// [`send_data`]: SocketDescriptor::send_data
727         /// [`process_events`]: PeerManager::process_events
728         pub fn read_event(&self, peer_descriptor: &mut Descriptor, data: &[u8]) -> Result<bool, PeerHandleError> {
729                 match self.do_read_event(peer_descriptor, data) {
730                         Ok(res) => Ok(res),
731                         Err(e) => {
732                                 self.disconnect_event_internal(peer_descriptor, e.no_connection_possible);
733                                 Err(e)
734                         }
735                 }
736         }
737
738         /// Append a message to a peer's pending outbound/write buffer, and update the map of peers needing sends accordingly.
739         fn enqueue_message<M: Encode + Writeable + Debug>(&self, peer: &mut Peer, message: &M) {
740                 let mut buffer = VecWriter(Vec::new());
741                 wire::write(message, &mut buffer).unwrap(); // crash if the write failed
742                 let encoded_message = buffer.0;
743
744                 log_trace!(self.logger, "Enqueueing message {:?} to {}", message, log_pubkey!(peer.their_node_id.unwrap()));
745                 peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encoded_message[..]));
746         }
747
748         fn do_read_event(&self, peer_descriptor: &mut Descriptor, data: &[u8]) -> Result<bool, PeerHandleError> {
749                 let pause_read = {
750                         let mut peers_lock = self.peers.lock().unwrap();
751                         let peers = &mut *peers_lock;
752                         let mut msgs_to_forward = Vec::new();
753                         let mut peer_node_id = None;
754                         let pause_read = match peers.peers.get_mut(peer_descriptor) {
755                                 None => {
756                                         // This is most likely a simple race condition where the user read some bytes
757                                         // from the socket, then we told the user to `disconnect_socket()`, then they
758                                         // called this method. Return an error to make sure we get disconnected.
759                                         return Err(PeerHandleError { no_connection_possible: false });
760                                 },
761                                 Some(peer) => {
762                                         assert!(peer.pending_read_buffer.len() > 0);
763                                         assert!(peer.pending_read_buffer.len() > peer.pending_read_buffer_pos);
764
765                                         let mut read_pos = 0;
766                                         while read_pos < data.len() {
767                                                 {
768                                                         let data_to_copy = cmp::min(peer.pending_read_buffer.len() - peer.pending_read_buffer_pos, data.len() - read_pos);
769                                                         peer.pending_read_buffer[peer.pending_read_buffer_pos..peer.pending_read_buffer_pos + data_to_copy].copy_from_slice(&data[read_pos..read_pos + data_to_copy]);
770                                                         read_pos += data_to_copy;
771                                                         peer.pending_read_buffer_pos += data_to_copy;
772                                                 }
773
774                                                 if peer.pending_read_buffer_pos == peer.pending_read_buffer.len() {
775                                                         peer.pending_read_buffer_pos = 0;
776
777                                                         macro_rules! try_potential_handleerror {
778                                                                 ($thing: expr) => {
779                                                                         match $thing {
780                                                                                 Ok(x) => x,
781                                                                                 Err(e) => {
782                                                                                         match e.action {
783                                                                                                 msgs::ErrorAction::DisconnectPeer { msg: _ } => {
784                                                                                                         //TODO: Try to push msg
785                                                                                                         log_debug!(self.logger, "Error handling message; disconnecting peer with: {}", e.err);
786                                                                                                         return Err(PeerHandleError{ no_connection_possible: false });
787                                                                                                 },
788                                                                                                 msgs::ErrorAction::IgnoreAndLog(level) => {
789                                                                                                         log_given_level!(self.logger, level, "Error handling message; ignoring: {}", e.err);
790                                                                                                         continue
791                                                                                                 },
792                                                                                                 msgs::ErrorAction::IgnoreError => {
793                                                                                                         log_debug!(self.logger, "Error handling message; ignoring: {}", e.err);
794                                                                                                         continue;
795                                                                                                 },
796                                                                                                 msgs::ErrorAction::SendErrorMessage { msg } => {
797                                                                                                         log_debug!(self.logger, "Error handling message; sending error message with: {}", e.err);
798                                                                                                         self.enqueue_message(peer, &msg);
799                                                                                                         continue;
800                                                                                                 },
801                                                                                         }
802                                                                                 }
803                                                                         };
804                                                                 }
805                                                         }
806
807                                                         macro_rules! insert_node_id {
808                                                                 () => {
809                                                                         match peers.node_id_to_descriptor.entry(peer.their_node_id.unwrap()) {
810                                                                                 hash_map::Entry::Occupied(_) => {
811                                                                                         log_trace!(self.logger, "Got second connection with {}, closing", log_pubkey!(peer.their_node_id.unwrap()));
812                                                                                         peer.their_node_id = None; // Unset so that we don't generate a peer_disconnected event
813                                                                                         return Err(PeerHandleError{ no_connection_possible: false })
814                                                                                 },
815                                                                                 hash_map::Entry::Vacant(entry) => {
816                                                                                         log_debug!(self.logger, "Finished noise handshake for connection with {}", log_pubkey!(peer.their_node_id.unwrap()));
817                                                                                         entry.insert(peer_descriptor.clone())
818                                                                                 },
819                                                                         };
820                                                                 }
821                                                         }
822
823                                                         let next_step = peer.channel_encryptor.get_noise_step();
824                                                         match next_step {
825                                                                 NextNoiseStep::ActOne => {
826                                                                         let act_two = try_potential_handleerror!(peer.channel_encryptor.process_act_one_with_keys(&peer.pending_read_buffer[..], &self.our_node_secret, self.get_ephemeral_key())).to_vec();
827                                                                         peer.pending_outbound_buffer.push_back(act_two);
828                                                                         peer.pending_read_buffer = [0; 66].to_vec(); // act three is 66 bytes long
829                                                                 },
830                                                                 NextNoiseStep::ActTwo => {
831                                                                         let (act_three, their_node_id) = try_potential_handleerror!(peer.channel_encryptor.process_act_two(&peer.pending_read_buffer[..], &self.our_node_secret));
832                                                                         peer.pending_outbound_buffer.push_back(act_three.to_vec());
833                                                                         peer.pending_read_buffer = [0; 18].to_vec(); // Message length header is 18 bytes
834                                                                         peer.pending_read_is_header = true;
835
836                                                                         peer.their_node_id = Some(their_node_id);
837                                                                         insert_node_id!();
838                                                                         let features = InitFeatures::known();
839                                                                         let resp = msgs::Init { features };
840                                                                         self.enqueue_message(peer, &resp);
841                                                                 },
842                                                                 NextNoiseStep::ActThree => {
843                                                                         let their_node_id = try_potential_handleerror!(peer.channel_encryptor.process_act_three(&peer.pending_read_buffer[..]));
844                                                                         peer.pending_read_buffer = [0; 18].to_vec(); // Message length header is 18 bytes
845                                                                         peer.pending_read_is_header = true;
846                                                                         peer.their_node_id = Some(their_node_id);
847                                                                         insert_node_id!();
848                                                                         let features = InitFeatures::known();
849                                                                         let resp = msgs::Init { features };
850                                                                         self.enqueue_message(peer, &resp);
851                                                                 },
852                                                                 NextNoiseStep::NoiseComplete => {
853                                                                         if peer.pending_read_is_header {
854                                                                                 let msg_len = try_potential_handleerror!(peer.channel_encryptor.decrypt_length_header(&peer.pending_read_buffer[..]));
855                                                                                 peer.pending_read_buffer = Vec::with_capacity(msg_len as usize + 16);
856                                                                                 peer.pending_read_buffer.resize(msg_len as usize + 16, 0);
857                                                                                 if msg_len < 2 { // Need at least the message type tag
858                                                                                         return Err(PeerHandleError{ no_connection_possible: false });
859                                                                                 }
860                                                                                 peer.pending_read_is_header = false;
861                                                                         } else {
862                                                                                 let msg_data = try_potential_handleerror!(peer.channel_encryptor.decrypt_message(&peer.pending_read_buffer[..]));
863                                                                                 assert!(msg_data.len() >= 2);
864
865                                                                                 // Reset read buffer
866                                                                                 peer.pending_read_buffer = [0; 18].to_vec();
867                                                                                 peer.pending_read_is_header = true;
868
869                                                                                 let mut message_result = wire::read(&mut ::std::io::Cursor::new(&msg_data[..]));
870
871                                                                                 // Need an Init as first message
872                                                                                 if let Ok(wire::Message::Init(_)) = message_result {
873                                                                                 } else if peer.their_features.is_none() {
874                                                                                         log_debug!(self.logger, "Peer {} sent non-Init first message", log_pubkey!(peer.their_node_id.unwrap()));
875                                                                                         return Err(PeerHandleError{ no_connection_possible: false }.into());
876                                                                                 }
877
878                                                                                 let mut message_err = Ok(());
879                                                                                 let mut handle_err = Ok(());
880                                                                                 match message_result {
881                                                                                         Ok(wire::Message::Unknown(msg_type)) => {
882                                                                                                 let mut type_bytes = [0; 2];
883                                                                                                 let mut reader = ::std::io::Cursor::new(&msg_data[..]);
884                                                                                                 reader.read_exact(&mut type_bytes).expect("How did we read these to begin with?");
885                                                                                                 match self.unknown_message_handler.read(*msg_type, &mut reader) {
886                                                                                                         Ok(Some(msg)) => {
887                                                                                                                 handle_err = self.unknown_message_handler.handle_unknown_message(msg);
888                                                                                                         },
889                                                                                                         Ok(None) => {
890                                                                                                                 if *msg_type % 2 == 0 {
891                                                                                                                         return Err(PeerHandleError { no_connection_possible: true });
892                                                                                                                 }
893                                                                                                         }
894                                                                                                         Err(e) => { message_err = Err(e); },
895                                                                                                 }
896                                                                                         },
897                                                                                         Ok(msg) => {
898                                                                                                 match self.handle_message(peer, msg) {
899                                                                                                         Ok(Some(forward_msg)) => {
900                                                                                                                 peer_node_id = Some(peer.their_node_id.expect("After noise is complete, their_node_id is always set"));
901                                                                                                                 msgs_to_forward.push(forward_msg);
902                                                                                                         },
903                                                                                                         Ok(None) => {},
904                                                                                                         Err(e) => { handle_err = Err(e); },
905                                                                                                 }
906                                                                                         },
907                                                                                         Err(e) => { message_err = Err(e); },
908                                                                                 }
909
910                                                                                 match message_err {
911                                                                                         Ok(()) => {},
912                                                                                         Err(e) => match e {
913                                                                                                 msgs::DecodeError::UnknownVersion => return Err(PeerHandleError { no_connection_possible: false }),
914                                                                                                 msgs::DecodeError::UnknownRequiredFeature => {
915                                                                                                         log_trace!(self.logger, "Got a channel/node announcement with an known required feature flag, you may want to update!");
916                                                                                                         continue;
917                                                                                                 }
918                                                                                                 msgs::DecodeError::InvalidValue => {
919                                                                                                         log_debug!(self.logger, "Got an invalid value while deserializing message");
920                                                                                                         return Err(PeerHandleError { no_connection_possible: false });
921                                                                                                 }
922                                                                                                 msgs::DecodeError::ShortRead => {
923                                                                                                         log_debug!(self.logger, "Deserialization failed due to shortness of message");
924                                                                                                         return Err(PeerHandleError { no_connection_possible: false });
925                                                                                                 }
926                                                                                                 msgs::DecodeError::BadLengthDescriptor => return Err(PeerHandleError { no_connection_possible: false }),
927                                                                                                 msgs::DecodeError::Io(_) => return Err(PeerHandleError { no_connection_possible: false }),
928                                                                                                 msgs::DecodeError::UnsupportedCompression => {
929                                                                                                         log_trace!(self.logger, "We don't support zlib-compressed message fields, ignoring message");
930                                                                                                         continue;
931                                                                                                 }
932                                                                                         },
933                                                                                 }
934
935                                                                                 match handle_err {
936                                                                                         Ok(()) => {},
937                                                                                         Err(e) =>
938                                                                                                 match e {
939                                                                                                         MessageHandlingError::PeerHandleError(e) => { return Err(e) },
940                                                                                                         MessageHandlingError::LightningError(e) => {
941                                                                                                                 try_potential_handleerror!(Err(e));
942                                                                                                         }
943                                                                                                 }
944                                                                                 }
945                                                                         }
946                                                                 }
947                                                         }
948                                                 }
949                                         }
950
951                                         peer.pending_outbound_buffer.len() > OUTBOUND_BUFFER_LIMIT_READ_PAUSE // pause_read
952                                 }
953                         };
954
955                         for msg in msgs_to_forward.drain(..) {
956                                 self.forward_broadcast_msg(peers, &msg, peer_node_id.as_ref());
957                         }
958
959                         pause_read
960                 };
961
962                 Ok(pause_read)
963         }
964
965         /// Process an incoming message and return a decision (ok, lightning error, peer handling error) regarding the next action with the peer
966         /// Returns the message back if it needs to be broadcasted to all other peers.
967         fn handle_message(&self, peer: &mut Peer, message: wire::Message) -> Result<Option<wire::Message>, MessageHandlingError> {
968                 log_trace!(self.logger, "Received message {:?} from {}", message, log_pubkey!(peer.their_node_id.unwrap()));
969
970                 let mut should_forward = None;
971
972                 match message {
973                         // Setup and Control messages:
974                         wire::Message::Init(msg) => {
975                                 if msg.features.requires_unknown_bits() {
976                                         log_debug!(self.logger, "Peer features required unknown version bits");
977                                         return Err(PeerHandleError{ no_connection_possible: true }.into());
978                                 }
979                                 if peer.their_features.is_some() {
980                                         return Err(PeerHandleError{ no_connection_possible: false }.into());
981                                 }
982
983                                 log_info!(
984                                         self.logger, "Received peer Init message: data_loss_protect: {}, initial_routing_sync: {}, upfront_shutdown_script: {}, gossip_queries: {}, static_remote_key: {}, unknown flags (local and global): {}",
985                                         if msg.features.supports_data_loss_protect() { "supported" } else { "not supported"},
986                                         if msg.features.initial_routing_sync() { "requested" } else { "not requested" },
987                                         if msg.features.supports_upfront_shutdown_script() { "supported" } else { "not supported"},
988                                         if msg.features.supports_gossip_queries() { "supported" } else { "not supported" },
989                                         if msg.features.supports_static_remote_key() { "supported" } else { "not supported"},
990                                         if msg.features.supports_unknown_bits() { "present" } else { "none" }
991                                 );
992
993                                 if msg.features.initial_routing_sync() {
994                                         peer.sync_status = InitSyncTracker::ChannelsSyncing(0);
995                                 }
996                                 if !msg.features.supports_static_remote_key() {
997                                         log_debug!(self.logger, "Peer {} does not support static remote key, disconnecting with no_connection_possible", log_pubkey!(peer.their_node_id.unwrap()));
998                                         return Err(PeerHandleError{ no_connection_possible: true }.into());
999                                 }
1000
1001                                 self.message_handler.route_handler.sync_routing_table(&peer.their_node_id.unwrap(), &msg);
1002
1003                                 self.message_handler.chan_handler.peer_connected(&peer.their_node_id.unwrap(), &msg);
1004                                 peer.their_features = Some(msg.features);
1005                         },
1006                         wire::Message::Error(msg) => {
1007                                 let mut data_is_printable = true;
1008                                 for b in msg.data.bytes() {
1009                                         if b < 32 || b > 126 {
1010                                                 data_is_printable = false;
1011                                                 break;
1012                                         }
1013                                 }
1014
1015                                 if data_is_printable {
1016                                         log_debug!(self.logger, "Got Err message from {}: {}", log_pubkey!(peer.their_node_id.unwrap()), msg.data);
1017                                 } else {
1018                                         log_debug!(self.logger, "Got Err message from {} with non-ASCII error message", log_pubkey!(peer.their_node_id.unwrap()));
1019                                 }
1020                                 self.message_handler.chan_handler.handle_error(&peer.their_node_id.unwrap(), &msg);
1021                                 if msg.channel_id == [0; 32] {
1022                                         return Err(PeerHandleError{ no_connection_possible: true }.into());
1023                                 }
1024                         },
1025
1026                         wire::Message::Ping(msg) => {
1027                                 if msg.ponglen < 65532 {
1028                                         let resp = msgs::Pong { byteslen: msg.ponglen };
1029                                         self.enqueue_message(peer, &resp);
1030                                 }
1031                         },
1032                         wire::Message::Pong(_msg) => {
1033                                 peer.awaiting_pong = false;
1034                         },
1035
1036                         // Channel messages:
1037                         wire::Message::OpenChannel(msg) => {
1038                                 self.message_handler.chan_handler.handle_open_channel(&peer.their_node_id.unwrap(), peer.their_features.clone().unwrap(), &msg);
1039                         },
1040                         wire::Message::AcceptChannel(msg) => {
1041                                 self.message_handler.chan_handler.handle_accept_channel(&peer.their_node_id.unwrap(), peer.their_features.clone().unwrap(), &msg);
1042                         },
1043
1044                         wire::Message::FundingCreated(msg) => {
1045                                 self.message_handler.chan_handler.handle_funding_created(&peer.their_node_id.unwrap(), &msg);
1046                         },
1047                         wire::Message::FundingSigned(msg) => {
1048                                 self.message_handler.chan_handler.handle_funding_signed(&peer.their_node_id.unwrap(), &msg);
1049                         },
1050                         wire::Message::FundingLocked(msg) => {
1051                                 self.message_handler.chan_handler.handle_funding_locked(&peer.their_node_id.unwrap(), &msg);
1052                         },
1053
1054                         wire::Message::Shutdown(msg) => {
1055                                 self.message_handler.chan_handler.handle_shutdown(&peer.their_node_id.unwrap(), peer.their_features.as_ref().unwrap(), &msg);
1056                         },
1057                         wire::Message::ClosingSigned(msg) => {
1058                                 self.message_handler.chan_handler.handle_closing_signed(&peer.their_node_id.unwrap(), &msg);
1059                         },
1060
1061                         // Commitment messages:
1062                         wire::Message::UpdateAddHTLC(msg) => {
1063                                 self.message_handler.chan_handler.handle_update_add_htlc(&peer.their_node_id.unwrap(), &msg);
1064                         },
1065                         wire::Message::UpdateFulfillHTLC(msg) => {
1066                                 self.message_handler.chan_handler.handle_update_fulfill_htlc(&peer.their_node_id.unwrap(), &msg);
1067                         },
1068                         wire::Message::UpdateFailHTLC(msg) => {
1069                                 self.message_handler.chan_handler.handle_update_fail_htlc(&peer.their_node_id.unwrap(), &msg);
1070                         },
1071                         wire::Message::UpdateFailMalformedHTLC(msg) => {
1072                                 self.message_handler.chan_handler.handle_update_fail_malformed_htlc(&peer.their_node_id.unwrap(), &msg);
1073                         },
1074
1075                         wire::Message::CommitmentSigned(msg) => {
1076                                 self.message_handler.chan_handler.handle_commitment_signed(&peer.their_node_id.unwrap(), &msg);
1077                         },
1078                         wire::Message::RevokeAndACK(msg) => {
1079                                 self.message_handler.chan_handler.handle_revoke_and_ack(&peer.their_node_id.unwrap(), &msg);
1080                         },
1081                         wire::Message::UpdateFee(msg) => {
1082                                 self.message_handler.chan_handler.handle_update_fee(&peer.their_node_id.unwrap(), &msg);
1083                         },
1084                         wire::Message::ChannelReestablish(msg) => {
1085                                 self.message_handler.chan_handler.handle_channel_reestablish(&peer.their_node_id.unwrap(), &msg);
1086                         },
1087
1088                         // Routing messages:
1089                         wire::Message::AnnouncementSignatures(msg) => {
1090                                 self.message_handler.chan_handler.handle_announcement_signatures(&peer.their_node_id.unwrap(), &msg);
1091                         },
1092                         wire::Message::ChannelAnnouncement(msg) => {
1093                                 if self.message_handler.route_handler.handle_channel_announcement(&msg)
1094                                                 .map_err(|e| -> MessageHandlingError { e.into() })? {
1095                                         should_forward = Some(wire::Message::ChannelAnnouncement(msg));
1096                                 }
1097                         },
1098                         wire::Message::NodeAnnouncement(msg) => {
1099                                 if self.message_handler.route_handler.handle_node_announcement(&msg)
1100                                                 .map_err(|e| -> MessageHandlingError { e.into() })? {
1101                                         should_forward = Some(wire::Message::NodeAnnouncement(msg));
1102                                 }
1103                         },
1104                         wire::Message::ChannelUpdate(msg) => {
1105                                 self.message_handler.chan_handler.handle_channel_update(&peer.their_node_id.unwrap(), &msg);
1106                                 if self.message_handler.route_handler.handle_channel_update(&msg)
1107                                                 .map_err(|e| -> MessageHandlingError { e.into() })? {
1108                                         should_forward = Some(wire::Message::ChannelUpdate(msg));
1109                                 }
1110                         },
1111                         wire::Message::QueryShortChannelIds(msg) => {
1112                                 self.message_handler.route_handler.handle_query_short_channel_ids(&peer.their_node_id.unwrap(), msg)?;
1113                         },
1114                         wire::Message::ReplyShortChannelIdsEnd(msg) => {
1115                                 self.message_handler.route_handler.handle_reply_short_channel_ids_end(&peer.their_node_id.unwrap(), msg)?;
1116                         },
1117                         wire::Message::QueryChannelRange(msg) => {
1118                                 self.message_handler.route_handler.handle_query_channel_range(&peer.their_node_id.unwrap(), msg)?;
1119                         },
1120                         wire::Message::ReplyChannelRange(msg) => {
1121                                 self.message_handler.route_handler.handle_reply_channel_range(&peer.their_node_id.unwrap(), msg)?;
1122                         },
1123                         wire::Message::GossipTimestampFilter(_msg) => {
1124                                 // TODO: handle message
1125                         },
1126
1127                         // Unknown messages:
1128                         wire::Message::Unknown(_msg) => {
1129                                 // Handled in `do_read_event`.
1130                         },
1131                 };
1132                 Ok(should_forward)
1133         }
1134
1135         fn forward_broadcast_msg(&self, peers: &mut PeerHolder<Descriptor>, msg: &wire::Message, except_node: Option<&PublicKey>) {
1136                 match msg {
1137                         wire::Message::ChannelAnnouncement(ref msg) => {
1138                                 log_trace!(self.logger, "Sending message to all peers except {:?} or the announced channel's counterparties: {:?}", except_node, msg);
1139                                 let encoded_msg = encode_msg!(msg);
1140
1141                                 for (_, peer) in peers.peers.iter_mut() {
1142                                         if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_features.is_none() ||
1143                                                         !peer.should_forward_channel_announcement(msg.contents.short_channel_id) {
1144                                                 continue
1145                                         }
1146                                         if peer.pending_outbound_buffer.len() > OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP {
1147                                                 log_trace!(self.logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id);
1148                                                 continue;
1149                                         }
1150                                         if peer.their_node_id.as_ref() == Some(&msg.contents.node_id_1) ||
1151                                            peer.their_node_id.as_ref() == Some(&msg.contents.node_id_2) {
1152                                                 continue;
1153                                         }
1154                                         if except_node.is_some() && peer.their_node_id.as_ref() == except_node {
1155                                                 continue;
1156                                         }
1157                                         peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encoded_msg[..]));
1158                                 }
1159                         },
1160                         wire::Message::NodeAnnouncement(ref msg) => {
1161                                 log_trace!(self.logger, "Sending message to all peers except {:?} or the announced node: {:?}", except_node, msg);
1162                                 let encoded_msg = encode_msg!(msg);
1163
1164                                 for (_, peer) in peers.peers.iter_mut() {
1165                                         if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_features.is_none() ||
1166                                                         !peer.should_forward_node_announcement(msg.contents.node_id) {
1167                                                 continue
1168                                         }
1169                                         if peer.pending_outbound_buffer.len() > OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP {
1170                                                 log_trace!(self.logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id);
1171                                                 continue;
1172                                         }
1173                                         if peer.their_node_id.as_ref() == Some(&msg.contents.node_id) {
1174                                                 continue;
1175                                         }
1176                                         if except_node.is_some() && peer.their_node_id.as_ref() == except_node {
1177                                                 continue;
1178                                         }
1179                                         peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encoded_msg[..]));
1180                                 }
1181                         },
1182                         wire::Message::ChannelUpdate(ref msg) => {
1183                                 log_trace!(self.logger, "Sending message to all peers except {:?}: {:?}", except_node, msg);
1184                                 let encoded_msg = encode_msg!(msg);
1185
1186                                 for (_, peer) in peers.peers.iter_mut() {
1187                                         if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_features.is_none() ||
1188                                                         !peer.should_forward_channel_announcement(msg.contents.short_channel_id)  {
1189                                                 continue
1190                                         }
1191                                         if peer.pending_outbound_buffer.len() > OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP {
1192                                                 log_trace!(self.logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id);
1193                                                 continue;
1194                                         }
1195                                         if except_node.is_some() && peer.their_node_id.as_ref() == except_node {
1196                                                 continue;
1197                                         }
1198                                         peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encoded_msg[..]));
1199                                 }
1200                         },
1201                         _ => debug_assert!(false, "We shouldn't attempt to forward anything but gossip messages"),
1202                 }
1203         }
1204
1205         /// Checks for any events generated by our handlers and processes them. Includes sending most
1206         /// response messages as well as messages generated by calls to handler functions directly (eg
1207         /// functions like [`ChannelManager::process_pending_htlc_forwards`] or [`send_payment`]).
1208         ///
1209         /// May call [`send_data`] on [`SocketDescriptor`]s. Thus, be very careful with reentrancy
1210         /// issues!
1211         ///
1212         /// [`send_payment`]: crate::ln::channelmanager::ChannelManager::send_payment
1213         /// [`ChannelManager::process_pending_htlc_forwards`]: crate::ln::channelmanager::ChannelManager::process_pending_htlc_forwards
1214         /// [`send_data`]: SocketDescriptor::send_data
1215         pub fn process_events(&self) {
1216                 {
1217                         // TODO: There are some DoS attacks here where you can flood someone's outbound send
1218                         // buffer by doing things like announcing channels on another node. We should be willing to
1219                         // drop optional-ish messages when send buffers get full!
1220
1221                         let mut peers_lock = self.peers.lock().unwrap();
1222                         let mut events_generated = self.message_handler.chan_handler.get_and_clear_pending_msg_events();
1223                         events_generated.append(&mut self.message_handler.route_handler.get_and_clear_pending_msg_events());
1224                         let peers = &mut *peers_lock;
1225
1226                         macro_rules! get_peer_for_forwarding {
1227                                 ($node_id: expr) => {
1228                                         {
1229                                                 match peers.node_id_to_descriptor.get($node_id) {
1230                                                         Some(descriptor) => match peers.peers.get_mut(&descriptor) {
1231                                                                 Some(peer) => {
1232                                                                         if peer.their_features.is_none() {
1233                                                                                 continue;
1234                                                                         }
1235                                                                         peer
1236                                                                 },
1237                                                                 None => panic!("Inconsistent peers set state!"),
1238                                                         },
1239                                                         None => {
1240                                                                 continue;
1241                                                         },
1242                                                 }
1243                                         }
1244                                 }
1245                         }
1246
1247                         for event in events_generated.drain(..) {
1248                                 match event {
1249                                         MessageSendEvent::SendAcceptChannel { ref node_id, ref msg } => {
1250                                                 log_debug!(self.logger, "Handling SendAcceptChannel event in peer_handler for node {} for channel {}",
1251                                                                 log_pubkey!(node_id),
1252                                                                 log_bytes!(msg.temporary_channel_id));
1253                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1254                                         },
1255                                         MessageSendEvent::SendOpenChannel { ref node_id, ref msg } => {
1256                                                 log_debug!(self.logger, "Handling SendOpenChannel event in peer_handler for node {} for channel {}",
1257                                                                 log_pubkey!(node_id),
1258                                                                 log_bytes!(msg.temporary_channel_id));
1259                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1260                                         },
1261                                         MessageSendEvent::SendFundingCreated { ref node_id, ref msg } => {
1262                                                 log_debug!(self.logger, "Handling SendFundingCreated event in peer_handler for node {} for channel {} (which becomes {})",
1263                                                                 log_pubkey!(node_id),
1264                                                                 log_bytes!(msg.temporary_channel_id),
1265                                                                 log_funding_channel_id!(msg.funding_txid, msg.funding_output_index));
1266                                                 // TODO: If the peer is gone we should generate a DiscardFunding event
1267                                                 // indicating to the wallet that they should just throw away this funding transaction
1268                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1269                                         },
1270                                         MessageSendEvent::SendFundingSigned { ref node_id, ref msg } => {
1271                                                 log_debug!(self.logger, "Handling SendFundingSigned event in peer_handler for node {} for channel {}",
1272                                                                 log_pubkey!(node_id),
1273                                                                 log_bytes!(msg.channel_id));
1274                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1275                                         },
1276                                         MessageSendEvent::SendFundingLocked { ref node_id, ref msg } => {
1277                                                 log_debug!(self.logger, "Handling SendFundingLocked event in peer_handler for node {} for channel {}",
1278                                                                 log_pubkey!(node_id),
1279                                                                 log_bytes!(msg.channel_id));
1280                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1281                                         },
1282                                         MessageSendEvent::SendAnnouncementSignatures { ref node_id, ref msg } => {
1283                                                 log_debug!(self.logger, "Handling SendAnnouncementSignatures event in peer_handler for node {} for channel {})",
1284                                                                 log_pubkey!(node_id),
1285                                                                 log_bytes!(msg.channel_id));
1286                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1287                                         },
1288                                         MessageSendEvent::UpdateHTLCs { ref node_id, updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fulfill_htlcs, ref update_fail_htlcs, ref update_fail_malformed_htlcs, ref update_fee, ref commitment_signed } } => {
1289                                                 log_debug!(self.logger, "Handling UpdateHTLCs event in peer_handler for node {} with {} adds, {} fulfills, {} fails for channel {}",
1290                                                                 log_pubkey!(node_id),
1291                                                                 update_add_htlcs.len(),
1292                                                                 update_fulfill_htlcs.len(),
1293                                                                 update_fail_htlcs.len(),
1294                                                                 log_bytes!(commitment_signed.channel_id));
1295                                                 let peer = get_peer_for_forwarding!(node_id);
1296                                                 for msg in update_add_htlcs {
1297                                                         self.enqueue_message(peer, msg);
1298                                                 }
1299                                                 for msg in update_fulfill_htlcs {
1300                                                         self.enqueue_message(peer, msg);
1301                                                 }
1302                                                 for msg in update_fail_htlcs {
1303                                                         self.enqueue_message(peer, msg);
1304                                                 }
1305                                                 for msg in update_fail_malformed_htlcs {
1306                                                         self.enqueue_message(peer, msg);
1307                                                 }
1308                                                 if let &Some(ref msg) = update_fee {
1309                                                         self.enqueue_message(peer, msg);
1310                                                 }
1311                                                 self.enqueue_message(peer, commitment_signed);
1312                                         },
1313                                         MessageSendEvent::SendRevokeAndACK { ref node_id, ref msg } => {
1314                                                 log_debug!(self.logger, "Handling SendRevokeAndACK event in peer_handler for node {} for channel {}",
1315                                                                 log_pubkey!(node_id),
1316                                                                 log_bytes!(msg.channel_id));
1317                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1318                                         },
1319                                         MessageSendEvent::SendClosingSigned { ref node_id, ref msg } => {
1320                                                 log_debug!(self.logger, "Handling SendClosingSigned event in peer_handler for node {} for channel {}",
1321                                                                 log_pubkey!(node_id),
1322                                                                 log_bytes!(msg.channel_id));
1323                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1324                                         },
1325                                         MessageSendEvent::SendShutdown { ref node_id, ref msg } => {
1326                                                 log_debug!(self.logger, "Handling Shutdown event in peer_handler for node {} for channel {}",
1327                                                                 log_pubkey!(node_id),
1328                                                                 log_bytes!(msg.channel_id));
1329                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1330                                         },
1331                                         MessageSendEvent::SendChannelReestablish { ref node_id, ref msg } => {
1332                                                 log_debug!(self.logger, "Handling SendChannelReestablish event in peer_handler for node {} for channel {}",
1333                                                                 log_pubkey!(node_id),
1334                                                                 log_bytes!(msg.channel_id));
1335                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1336                                         },
1337                                         MessageSendEvent::BroadcastChannelAnnouncement { msg, update_msg } => {
1338                                                 log_debug!(self.logger, "Handling BroadcastChannelAnnouncement event in peer_handler for short channel id {}", msg.contents.short_channel_id);
1339                                                 if self.message_handler.route_handler.handle_channel_announcement(&msg).is_ok() && self.message_handler.route_handler.handle_channel_update(&update_msg).is_ok() {
1340                                                         self.forward_broadcast_msg(peers, &wire::Message::ChannelAnnouncement(msg), None);
1341                                                         self.forward_broadcast_msg(peers, &wire::Message::ChannelUpdate(update_msg), None);
1342                                                 }
1343                                         },
1344                                         MessageSendEvent::BroadcastNodeAnnouncement { msg } => {
1345                                                 log_debug!(self.logger, "Handling BroadcastNodeAnnouncement event in peer_handler");
1346                                                 if self.message_handler.route_handler.handle_node_announcement(&msg).is_ok() {
1347                                                         self.forward_broadcast_msg(peers, &wire::Message::NodeAnnouncement(msg), None);
1348                                                 }
1349                                         },
1350                                         MessageSendEvent::BroadcastChannelUpdate { msg } => {
1351                                                 log_debug!(self.logger, "Handling BroadcastChannelUpdate event in peer_handler for short channel id {}", msg.contents.short_channel_id);
1352                                                 if self.message_handler.route_handler.handle_channel_update(&msg).is_ok() {
1353                                                         self.forward_broadcast_msg(peers, &wire::Message::ChannelUpdate(msg), None);
1354                                                 }
1355                                         },
1356                                         MessageSendEvent::SendChannelUpdate { ref node_id, ref msg } => {
1357                                                 log_trace!(self.logger, "Handling SendChannelUpdate event in peer_handler for node {} for channel {}",
1358                                                                 log_pubkey!(node_id), msg.contents.short_channel_id);
1359                                                 let peer = get_peer_for_forwarding!(node_id);
1360                                                 peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg)));
1361                                         },
1362                                         MessageSendEvent::PaymentFailureNetworkUpdate { ref update } => {
1363                                                 self.message_handler.route_handler.handle_htlc_fail_channel_update(update);
1364                                         },
1365                                         MessageSendEvent::HandleError { ref node_id, ref action } => {
1366                                                 match *action {
1367                                                         msgs::ErrorAction::DisconnectPeer { ref msg } => {
1368                                                                 if let Some(mut descriptor) = peers.node_id_to_descriptor.remove(node_id) {
1369                                                                         if let Some(mut peer) = peers.peers.remove(&descriptor) {
1370                                                                                 if let Some(ref msg) = *msg {
1371                                                                                         log_trace!(self.logger, "Handling DisconnectPeer HandleError event in peer_handler for node {} with message {}",
1372                                                                                                         log_pubkey!(node_id),
1373                                                                                                         msg.data);
1374                                                                                         self.enqueue_message(&mut peer, msg);
1375                                                                                         // This isn't guaranteed to work, but if there is enough free
1376                                                                                         // room in the send buffer, put the error message there...
1377                                                                                         self.do_attempt_write_data(&mut descriptor, &mut peer);
1378                                                                                 } else {
1379                                                                                         log_trace!(self.logger, "Handling DisconnectPeer HandleError event in peer_handler for node {} with no message", log_pubkey!(node_id));
1380                                                                                 }
1381                                                                         }
1382                                                                         descriptor.disconnect_socket();
1383                                                                         self.message_handler.chan_handler.peer_disconnected(&node_id, false);
1384                                                                 }
1385                                                         },
1386                                                         msgs::ErrorAction::IgnoreAndLog(level) => {
1387                                                                 log_given_level!(self.logger, level, "Received a HandleError event to be ignored for node {}", log_pubkey!(node_id));
1388                                                         },
1389                                                         msgs::ErrorAction::IgnoreError => {
1390                                                                 log_debug!(self.logger, "Received a HandleError event to be ignored for node {}", log_pubkey!(node_id));
1391                                                         },
1392                                                         msgs::ErrorAction::SendErrorMessage { ref msg } => {
1393                                                                 log_trace!(self.logger, "Handling SendErrorMessage HandleError event in peer_handler for node {} with message {}",
1394                                                                                 log_pubkey!(node_id),
1395                                                                                 msg.data);
1396                                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1397                                                         },
1398                                                 }
1399                                         },
1400                                         MessageSendEvent::SendChannelRangeQuery { ref node_id, ref msg } => {
1401                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1402                                         },
1403                                         MessageSendEvent::SendShortIdsQuery { ref node_id, ref msg } => {
1404                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1405                                         }
1406                                         MessageSendEvent::SendReplyChannelRange { ref node_id, ref msg } => {
1407                                                 log_trace!(self.logger, "Handling SendReplyChannelRange event in peer_handler for node {} with num_scids={} first_blocknum={} number_of_blocks={}, sync_complete={}",
1408                                                         log_pubkey!(node_id),
1409                                                         msg.short_channel_ids.len(),
1410                                                         msg.first_blocknum,
1411                                                         msg.number_of_blocks,
1412                                                         msg.sync_complete);
1413                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1414                                         },
1415                                 }
1416                         }
1417
1418                         for (node_id, message) in self.unknown_message_handler.get_and_clear_pending_msgs() {
1419                                 self.enqueue_message(get_peer_for_forwarding!(node_id), &message);
1420                         }
1421
1422                         for (descriptor, peer) in peers.peers.iter_mut() {
1423                                 self.do_attempt_write_data(&mut (*descriptor).clone(), peer);
1424                         }
1425                 }
1426         }
1427
1428         /// Indicates that the given socket descriptor's connection is now closed.
1429         pub fn socket_disconnected(&self, descriptor: &Descriptor) {
1430                 self.disconnect_event_internal(descriptor, false);
1431         }
1432
1433         fn disconnect_event_internal(&self, descriptor: &Descriptor, no_connection_possible: bool) {
1434                 let mut peers = self.peers.lock().unwrap();
1435                 let peer_option = peers.peers.remove(descriptor);
1436                 match peer_option {
1437                         None => {
1438                                 // This is most likely a simple race condition where the user found that the socket
1439                                 // was disconnected, then we told the user to `disconnect_socket()`, then they
1440                                 // called this method. Either way we're disconnected, return.
1441                         },
1442                         Some(peer) => {
1443                                 match peer.their_node_id {
1444                                         Some(node_id) => {
1445                                                 peers.node_id_to_descriptor.remove(&node_id);
1446                                                 self.message_handler.chan_handler.peer_disconnected(&node_id, no_connection_possible);
1447                                         },
1448                                         None => {}
1449                                 }
1450                         }
1451                 };
1452         }
1453
1454         /// Disconnect a peer given its node id.
1455         ///
1456         /// Set `no_connection_possible` to true to prevent any further connection with this peer,
1457         /// force-closing any channels we have with it.
1458         ///
1459         /// If a peer is connected, this will call [`disconnect_socket`] on the descriptor for the
1460         /// peer. Thus, be very careful about reentrancy issues.
1461         ///
1462         /// [`disconnect_socket`]: SocketDescriptor::disconnect_socket
1463         pub fn disconnect_by_node_id(&self, node_id: PublicKey, no_connection_possible: bool) {
1464                 let mut peers_lock = self.peers.lock().unwrap();
1465                 if let Some(mut descriptor) = peers_lock.node_id_to_descriptor.remove(&node_id) {
1466                         log_trace!(self.logger, "Disconnecting peer with id {} due to client request", node_id);
1467                         peers_lock.peers.remove(&descriptor);
1468                         self.message_handler.chan_handler.peer_disconnected(&node_id, no_connection_possible);
1469                         descriptor.disconnect_socket();
1470                 }
1471         }
1472
1473         /// This function should be called roughly once every 30 seconds.
1474         /// It will send pings to each peer and disconnect those which did not respond to the last
1475         /// round of pings.
1476         ///
1477         /// May call [`send_data`] on all [`SocketDescriptor`]s. Thus, be very careful with reentrancy
1478         /// issues!
1479         ///
1480         /// [`send_data`]: SocketDescriptor::send_data
1481         pub fn timer_tick_occurred(&self) {
1482                 let mut peers_lock = self.peers.lock().unwrap();
1483                 {
1484                         let peers = &mut *peers_lock;
1485                         let node_id_to_descriptor = &mut peers.node_id_to_descriptor;
1486                         let peers = &mut peers.peers;
1487                         let mut descriptors_needing_disconnect = Vec::new();
1488
1489                         peers.retain(|descriptor, peer| {
1490                                 if peer.awaiting_pong {
1491                                         descriptors_needing_disconnect.push(descriptor.clone());
1492                                         match peer.their_node_id {
1493                                                 Some(node_id) => {
1494                                                         log_trace!(self.logger, "Disconnecting peer with id {} due to ping timeout", node_id);
1495                                                         node_id_to_descriptor.remove(&node_id);
1496                                                         self.message_handler.chan_handler.peer_disconnected(&node_id, false);
1497                                                 }
1498                                                 None => {
1499                                                         // This can't actually happen as we should have hit
1500                                                         // is_ready_for_encryption() previously on this same peer.
1501                                                         unreachable!();
1502                                                 },
1503                                         }
1504                                         return false;
1505                                 }
1506
1507                                 if !peer.channel_encryptor.is_ready_for_encryption() {
1508                                         // The peer needs to complete its handshake before we can exchange messages
1509                                         return true;
1510                                 }
1511
1512                                 let ping = msgs::Ping {
1513                                         ponglen: 0,
1514                                         byteslen: 64,
1515                                 };
1516                                 self.enqueue_message(peer, &ping);
1517
1518                                 let mut descriptor_clone = descriptor.clone();
1519                                 self.do_attempt_write_data(&mut descriptor_clone, peer);
1520
1521                                 peer.awaiting_pong = true;
1522                                 true
1523                         });
1524
1525                         for mut descriptor in descriptors_needing_disconnect.drain(..) {
1526                                 descriptor.disconnect_socket();
1527                         }
1528                 }
1529         }
1530 }
1531
1532 #[cfg(test)]
1533 mod tests {
1534         use ln::peer_handler::{PeerManager, MessageHandler, SocketDescriptor, IgnoringUnknownMessageHandler};
1535         use ln::msgs;
1536         use util::events;
1537         use util::test_utils;
1538
1539         use bitcoin::secp256k1::Secp256k1;
1540         use bitcoin::secp256k1::key::{SecretKey, PublicKey};
1541
1542         use prelude::*;
1543         use std::sync::{Arc, Mutex};
1544         use core::sync::atomic::Ordering;
1545
1546         #[derive(Clone)]
1547         struct FileDescriptor {
1548                 fd: u16,
1549                 outbound_data: Arc<Mutex<Vec<u8>>>,
1550         }
1551         impl PartialEq for FileDescriptor {
1552                 fn eq(&self, other: &Self) -> bool {
1553                         self.fd == other.fd
1554                 }
1555         }
1556         impl Eq for FileDescriptor { }
1557         impl core::hash::Hash for FileDescriptor {
1558                 fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
1559                         self.fd.hash(hasher)
1560                 }
1561         }
1562
1563         impl SocketDescriptor for FileDescriptor {
1564                 fn send_data(&mut self, data: &[u8], _resume_read: bool) -> usize {
1565                         self.outbound_data.lock().unwrap().extend_from_slice(data);
1566                         data.len()
1567                 }
1568
1569                 fn disconnect_socket(&mut self) {}
1570         }
1571
1572         struct PeerManagerCfg {
1573                 chan_handler: test_utils::TestChannelMessageHandler,
1574                 routing_handler: test_utils::TestRoutingMessageHandler,
1575                 logger: test_utils::TestLogger,
1576         }
1577
1578         fn create_peermgr_cfgs(peer_count: usize) -> Vec<PeerManagerCfg> {
1579                 let mut cfgs = Vec::new();
1580                 for _ in 0..peer_count {
1581                         cfgs.push(
1582                                 PeerManagerCfg{
1583                                         chan_handler: test_utils::TestChannelMessageHandler::new(),
1584                                         logger: test_utils::TestLogger::new(),
1585                                         routing_handler: test_utils::TestRoutingMessageHandler::new(),
1586                                 }
1587                         );
1588                 }
1589
1590                 cfgs
1591         }
1592
1593         fn create_network<'a>(peer_count: usize, cfgs: &'a Vec<PeerManagerCfg>) -> Vec<PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, &'a test_utils::TestLogger, IgnoringUnknownMessageHandler>> {
1594                 let mut peers = Vec::new();
1595                 for i in 0..peer_count {
1596                         let node_secret = SecretKey::from_slice(&[42 + i as u8; 32]).unwrap();
1597                         let ephemeral_bytes = [i as u8; 32];
1598                         let msg_handler = MessageHandler { chan_handler: &cfgs[i].chan_handler, route_handler: &cfgs[i].routing_handler };
1599                         let peer = PeerManager::new(msg_handler, node_secret, &ephemeral_bytes, &cfgs[i].logger, IgnoringUnknownMessageHandler {});
1600                         peers.push(peer);
1601                 }
1602
1603                 peers
1604         }
1605
1606         fn establish_connection<'a>(peer_a: &PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, &'a test_utils::TestLogger, IgnoringUnknownMessageHandler>, peer_b: &PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, &'a test_utils::TestLogger, IgnoringUnknownMessageHandler>) -> (FileDescriptor, FileDescriptor) {
1607                 let secp_ctx = Secp256k1::new();
1608                 let a_id = PublicKey::from_secret_key(&secp_ctx, &peer_a.our_node_secret);
1609                 let mut fd_a = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
1610                 let mut fd_b = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
1611                 let initial_data = peer_b.new_outbound_connection(a_id, fd_b.clone()).unwrap();
1612                 peer_a.new_inbound_connection(fd_a.clone()).unwrap();
1613                 assert_eq!(peer_a.read_event(&mut fd_a, &initial_data).unwrap(), false);
1614                 peer_a.process_events();
1615                 assert_eq!(peer_b.read_event(&mut fd_b, &fd_a.outbound_data.lock().unwrap().split_off(0)).unwrap(), false);
1616                 peer_b.process_events();
1617                 assert_eq!(peer_a.read_event(&mut fd_a, &fd_b.outbound_data.lock().unwrap().split_off(0)).unwrap(), false);
1618                 (fd_a.clone(), fd_b.clone())
1619         }
1620
1621         #[test]
1622         fn test_disconnect_peer() {
1623                 // Simple test which builds a network of PeerManager, connects and brings them to NoiseState::Finished and
1624                 // push a DisconnectPeer event to remove the node flagged by id
1625                 let cfgs = create_peermgr_cfgs(2);
1626                 let chan_handler = test_utils::TestChannelMessageHandler::new();
1627                 let mut peers = create_network(2, &cfgs);
1628                 establish_connection(&peers[0], &peers[1]);
1629                 assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 1);
1630
1631                 let secp_ctx = Secp256k1::new();
1632                 let their_id = PublicKey::from_secret_key(&secp_ctx, &peers[1].our_node_secret);
1633
1634                 chan_handler.pending_events.lock().unwrap().push(events::MessageSendEvent::HandleError {
1635                         node_id: their_id,
1636                         action: msgs::ErrorAction::DisconnectPeer { msg: None },
1637                 });
1638                 assert_eq!(chan_handler.pending_events.lock().unwrap().len(), 1);
1639                 peers[0].message_handler.chan_handler = &chan_handler;
1640
1641                 peers[0].process_events();
1642                 assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 0);
1643         }
1644
1645         #[test]
1646         fn test_timer_tick_occurred() {
1647                 // Create peers, a vector of two peer managers, perform initial set up and check that peers[0] has one Peer.
1648                 let cfgs = create_peermgr_cfgs(2);
1649                 let peers = create_network(2, &cfgs);
1650                 establish_connection(&peers[0], &peers[1]);
1651                 assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 1);
1652
1653                 // peers[0] awaiting_pong is set to true, but the Peer is still connected
1654                 peers[0].timer_tick_occurred();
1655                 peers[0].process_events();
1656                 assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 1);
1657
1658                 // Since timer_tick_occurred() is called again when awaiting_pong is true, all Peers are disconnected
1659                 peers[0].timer_tick_occurred();
1660                 peers[0].process_events();
1661                 assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 0);
1662         }
1663
1664         #[test]
1665         fn test_do_attempt_write_data() {
1666                 // Create 2 peers with custom TestRoutingMessageHandlers and connect them.
1667                 let cfgs = create_peermgr_cfgs(2);
1668                 cfgs[0].routing_handler.request_full_sync.store(true, Ordering::Release);
1669                 cfgs[1].routing_handler.request_full_sync.store(true, Ordering::Release);
1670                 let peers = create_network(2, &cfgs);
1671
1672                 // By calling establish_connect, we trigger do_attempt_write_data between
1673                 // the peers. Previously this function would mistakenly enter an infinite loop
1674                 // when there were more channel messages available than could fit into a peer's
1675                 // buffer. This issue would now be detected by this test (because we use custom
1676                 // RoutingMessageHandlers that intentionally return more channel messages
1677                 // than can fit into a peer's buffer).
1678                 let (mut fd_a, mut fd_b) = establish_connection(&peers[0], &peers[1]);
1679
1680                 // Make each peer to read the messages that the other peer just wrote to them.
1681                 peers[0].process_events();
1682                 peers[1].read_event(&mut fd_b, &fd_a.outbound_data.lock().unwrap().split_off(0)).unwrap();
1683                 peers[1].process_events();
1684                 peers[0].read_event(&mut fd_a, &fd_b.outbound_data.lock().unwrap().split_off(0)).unwrap();
1685
1686                 // Check that each peer has received the expected number of channel updates and channel
1687                 // announcements.
1688                 assert_eq!(cfgs[0].routing_handler.chan_upds_recvd.load(Ordering::Acquire), 100);
1689                 assert_eq!(cfgs[0].routing_handler.chan_anns_recvd.load(Ordering::Acquire), 50);
1690                 assert_eq!(cfgs[1].routing_handler.chan_upds_recvd.load(Ordering::Acquire), 100);
1691                 assert_eq!(cfgs[1].routing_handler.chan_anns_recvd.load(Ordering::Acquire), 50);
1692         }
1693 }