5fba871e0c42884d84b0a86bcc08837dc7acbfea
[rust-lightning] / lightning / src / ln / peer_handler.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! Top level peer message handling and socket handling logic lives here.
11 //!
12 //! Instead of actually servicing sockets ourselves we require that you implement the
13 //! SocketDescriptor interface and use that to receive actions which you should perform on the
14 //! socket, and call into PeerManager with bytes read from the socket. The PeerManager will then
15 //! call into the provided message handlers (probably a ChannelManager and NetGraphmsgHandler) with messages
16 //! they should handle, and encoding/sending response messages.
17
18 use bitcoin::secp256k1::key::{SecretKey,PublicKey};
19
20 use ln::features::InitFeatures;
21 use ln::msgs;
22 use ln::msgs::{ChannelMessageHandler, LightningError, RoutingMessageHandler};
23 use ln::channelmanager::{SimpleArcChannelManager, SimpleRefChannelManager};
24 use util::ser::{VecWriter, Writeable};
25 use ln::peer_channel_encryptor::{PeerChannelEncryptor,NextNoiseStep};
26 use ln::wire;
27 use ln::wire::Encode;
28 use util::byte_utils;
29 use util::events::{MessageSendEvent, MessageSendEventsProvider};
30 use util::logger::Logger;
31 use routing::network_graph::NetGraphMsgHandler;
32
33 use prelude::*;
34 use alloc::collections::LinkedList;
35 use std::sync::{Arc, Mutex};
36 use core::sync::atomic::{AtomicUsize, Ordering};
37 use core::{cmp, hash, fmt, mem};
38 use core::ops::Deref;
39 use std::error;
40
41 use bitcoin::hashes::sha256::Hash as Sha256;
42 use bitcoin::hashes::sha256::HashEngine as Sha256Engine;
43 use bitcoin::hashes::{HashEngine, Hash};
44
45 /// A dummy struct which implements `RoutingMessageHandler` without storing any routing information
46 /// or doing any processing. You can provide one of these as the route_handler in a MessageHandler.
47 pub struct IgnoringMessageHandler{}
48 impl MessageSendEventsProvider for IgnoringMessageHandler {
49         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> { Vec::new() }
50 }
51 impl RoutingMessageHandler for IgnoringMessageHandler {
52         fn handle_node_announcement(&self, _msg: &msgs::NodeAnnouncement) -> Result<bool, LightningError> { Ok(false) }
53         fn handle_channel_announcement(&self, _msg: &msgs::ChannelAnnouncement) -> Result<bool, LightningError> { Ok(false) }
54         fn handle_channel_update(&self, _msg: &msgs::ChannelUpdate) -> Result<bool, LightningError> { Ok(false) }
55         fn handle_htlc_fail_channel_update(&self, _update: &msgs::HTLCFailChannelUpdate) {}
56         fn get_next_channel_announcements(&self, _starting_point: u64, _batch_amount: u8) ->
57                 Vec<(msgs::ChannelAnnouncement, Option<msgs::ChannelUpdate>, Option<msgs::ChannelUpdate>)> { Vec::new() }
58         fn get_next_node_announcements(&self, _starting_point: Option<&PublicKey>, _batch_amount: u8) -> Vec<msgs::NodeAnnouncement> { Vec::new() }
59         fn sync_routing_table(&self, _their_node_id: &PublicKey, _init: &msgs::Init) {}
60         fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: msgs::ReplyChannelRange) -> Result<(), LightningError> { Ok(()) }
61         fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: msgs::ReplyShortChannelIdsEnd) -> Result<(), LightningError> { Ok(()) }
62         fn handle_query_channel_range(&self, _their_node_id: &PublicKey, _msg: msgs::QueryChannelRange) -> Result<(), LightningError> { Ok(()) }
63         fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: msgs::QueryShortChannelIds) -> Result<(), LightningError> { Ok(()) }
64 }
65 impl Deref for IgnoringMessageHandler {
66         type Target = IgnoringMessageHandler;
67         fn deref(&self) -> &Self { self }
68 }
69
70 /// A dummy struct which implements `ChannelMessageHandler` without having any channels.
71 /// You can provide one of these as the route_handler in a MessageHandler.
72 pub struct ErroringMessageHandler {
73         message_queue: Mutex<Vec<MessageSendEvent>>
74 }
75 impl ErroringMessageHandler {
76         /// Constructs a new ErroringMessageHandler
77         pub fn new() -> Self {
78                 Self { message_queue: Mutex::new(Vec::new()) }
79         }
80         fn push_error(&self, node_id: &PublicKey, channel_id: [u8; 32]) {
81                 self.message_queue.lock().unwrap().push(MessageSendEvent::HandleError {
82                         action: msgs::ErrorAction::SendErrorMessage {
83                                 msg: msgs::ErrorMessage { channel_id, data: "We do not support channel messages, sorry.".to_owned() },
84                         },
85                         node_id: node_id.clone(),
86                 });
87         }
88 }
89 impl MessageSendEventsProvider for ErroringMessageHandler {
90         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
91                 let mut res = Vec::new();
92                 mem::swap(&mut res, &mut self.message_queue.lock().unwrap());
93                 res
94         }
95 }
96 impl ChannelMessageHandler for ErroringMessageHandler {
97         // Any messages which are related to a specific channel generate an error message to let the
98         // peer know we don't care about channels.
99         fn handle_open_channel(&self, their_node_id: &PublicKey, _their_features: InitFeatures, msg: &msgs::OpenChannel) {
100                 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
101         }
102         fn handle_accept_channel(&self, their_node_id: &PublicKey, _their_features: InitFeatures, msg: &msgs::AcceptChannel) {
103                 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
104         }
105         fn handle_funding_created(&self, their_node_id: &PublicKey, msg: &msgs::FundingCreated) {
106                 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
107         }
108         fn handle_funding_signed(&self, their_node_id: &PublicKey, msg: &msgs::FundingSigned) {
109                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
110         }
111         fn handle_funding_locked(&self, their_node_id: &PublicKey, msg: &msgs::FundingLocked) {
112                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
113         }
114         fn handle_shutdown(&self, their_node_id: &PublicKey, _their_features: &InitFeatures, msg: &msgs::Shutdown) {
115                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
116         }
117         fn handle_closing_signed(&self, their_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
118                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
119         }
120         fn handle_update_add_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
121                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
122         }
123         fn handle_update_fulfill_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
124                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
125         }
126         fn handle_update_fail_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
127                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
128         }
129         fn handle_update_fail_malformed_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
130                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
131         }
132         fn handle_commitment_signed(&self, their_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
133                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
134         }
135         fn handle_revoke_and_ack(&self, their_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
136                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
137         }
138         fn handle_update_fee(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFee) {
139                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
140         }
141         fn handle_announcement_signatures(&self, their_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
142                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
143         }
144         fn handle_channel_reestablish(&self, their_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
145                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
146         }
147         // msgs::ChannelUpdate does not contain the channel_id field, so we just drop them.
148         fn handle_channel_update(&self, _their_node_id: &PublicKey, _msg: &msgs::ChannelUpdate) {}
149         fn peer_disconnected(&self, _their_node_id: &PublicKey, _no_connection_possible: bool) {}
150         fn peer_connected(&self, _their_node_id: &PublicKey, _msg: &msgs::Init) {}
151         fn handle_error(&self, _their_node_id: &PublicKey, _msg: &msgs::ErrorMessage) {}
152 }
153 impl Deref for ErroringMessageHandler {
154         type Target = ErroringMessageHandler;
155         fn deref(&self) -> &Self { self }
156 }
157
158 /// Provides references to trait impls which handle different types of messages.
159 pub struct MessageHandler<CM: Deref, RM: Deref> where
160                 CM::Target: ChannelMessageHandler,
161                 RM::Target: RoutingMessageHandler {
162         /// A message handler which handles messages specific to channels. Usually this is just a
163         /// [`ChannelManager`] object or an [`ErroringMessageHandler`].
164         ///
165         /// [`ChannelManager`]: crate::ln::channelmanager::ChannelManager
166         pub chan_handler: CM,
167         /// A message handler which handles messages updating our knowledge of the network channel
168         /// graph. Usually this is just a [`NetGraphMsgHandler`] object or an
169         /// [`IgnoringMessageHandler`].
170         ///
171         /// [`NetGraphMsgHandler`]: crate::routing::network_graph::NetGraphMsgHandler
172         pub route_handler: RM,
173 }
174
175 /// Provides an object which can be used to send data to and which uniquely identifies a connection
176 /// to a remote host. You will need to be able to generate multiple of these which meet Eq and
177 /// implement Hash to meet the PeerManager API.
178 ///
179 /// For efficiency, Clone should be relatively cheap for this type.
180 ///
181 /// Two descriptors may compare equal (by [`cmp::Eq`] and [`hash::Hash`]) as long as the original
182 /// has been disconnected, the [`PeerManager`] has been informed of the disconnection (either by it
183 /// having triggered the disconnection or a call to [`PeerManager::socket_disconnected`]), and no
184 /// further calls to the [`PeerManager`] related to the original socket occur. This allows you to
185 /// use a file descriptor for your SocketDescriptor directly, however for simplicity you may wish
186 /// to simply use another value which is guaranteed to be globally unique instead.
187 pub trait SocketDescriptor : cmp::Eq + hash::Hash + Clone {
188         /// Attempts to send some data from the given slice to the peer.
189         ///
190         /// Returns the amount of data which was sent, possibly 0 if the socket has since disconnected.
191         /// Note that in the disconnected case, [`PeerManager::socket_disconnected`] must still be
192         /// called and further write attempts may occur until that time.
193         ///
194         /// If the returned size is smaller than `data.len()`, a
195         /// [`PeerManager::write_buffer_space_avail`] call must be made the next time more data can be
196         /// written. Additionally, until a `send_data` event completes fully, no further
197         /// [`PeerManager::read_event`] calls should be made for the same peer! Because this is to
198         /// prevent denial-of-service issues, you should not read or buffer any data from the socket
199         /// until then.
200         ///
201         /// If a [`PeerManager::read_event`] call on this descriptor had previously returned true
202         /// (indicating that read events should be paused to prevent DoS in the send buffer),
203         /// `resume_read` may be set indicating that read events on this descriptor should resume. A
204         /// `resume_read` of false carries no meaning, and should not cause any action.
205         fn send_data(&mut self, data: &[u8], resume_read: bool) -> usize;
206         /// Disconnect the socket pointed to by this SocketDescriptor.
207         ///
208         /// You do *not* need to call [`PeerManager::socket_disconnected`] with this socket after this
209         /// call (doing so is a noop).
210         fn disconnect_socket(&mut self);
211 }
212
213 /// Error for PeerManager errors. If you get one of these, you must disconnect the socket and
214 /// generate no further read_event/write_buffer_space_avail/socket_disconnected calls for the
215 /// descriptor.
216 #[derive(Clone)]
217 pub struct PeerHandleError {
218         /// Used to indicate that we probably can't make any future connections to this peer, implying
219         /// we should go ahead and force-close any channels we have with it.
220         pub no_connection_possible: bool,
221 }
222 impl fmt::Debug for PeerHandleError {
223         fn fmt(&self, formatter: &mut fmt::Formatter) -> Result<(), fmt::Error> {
224                 formatter.write_str("Peer Sent Invalid Data")
225         }
226 }
227 impl fmt::Display for PeerHandleError {
228         fn fmt(&self, formatter: &mut fmt::Formatter) -> Result<(), fmt::Error> {
229                 formatter.write_str("Peer Sent Invalid Data")
230         }
231 }
232 impl error::Error for PeerHandleError {
233         fn description(&self) -> &str {
234                 "Peer Sent Invalid Data"
235         }
236 }
237
238 enum InitSyncTracker{
239         NoSyncRequested,
240         ChannelsSyncing(u64),
241         NodesSyncing(PublicKey),
242 }
243
244 /// When the outbound buffer has this many messages, we'll stop reading bytes from the peer until
245 /// we have fewer than this many messages in the outbound buffer again.
246 /// We also use this as the target number of outbound gossip messages to keep in the write buffer,
247 /// refilled as we send bytes.
248 const OUTBOUND_BUFFER_LIMIT_READ_PAUSE: usize = 10;
249 /// When the outbound buffer has this many messages, we'll simply skip relaying gossip messages to
250 /// the peer.
251 const OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP: usize = 20;
252
253 struct Peer {
254         channel_encryptor: PeerChannelEncryptor,
255         their_node_id: Option<PublicKey>,
256         their_features: Option<InitFeatures>,
257
258         pending_outbound_buffer: LinkedList<Vec<u8>>,
259         pending_outbound_buffer_first_msg_offset: usize,
260         awaiting_write_event: bool,
261
262         pending_read_buffer: Vec<u8>,
263         pending_read_buffer_pos: usize,
264         pending_read_is_header: bool,
265
266         sync_status: InitSyncTracker,
267
268         awaiting_pong: bool,
269 }
270
271 impl Peer {
272         /// Returns true if the channel announcements/updates for the given channel should be
273         /// forwarded to this peer.
274         /// If we are sending our routing table to this peer and we have not yet sent channel
275         /// announcements/updates for the given channel_id then we will send it when we get to that
276         /// point and we shouldn't send it yet to avoid sending duplicate updates. If we've already
277         /// sent the old versions, we should send the update, and so return true here.
278         fn should_forward_channel_announcement(&self, channel_id: u64)->bool{
279                 match self.sync_status {
280                         InitSyncTracker::NoSyncRequested => true,
281                         InitSyncTracker::ChannelsSyncing(i) => i < channel_id,
282                         InitSyncTracker::NodesSyncing(_) => true,
283                 }
284         }
285
286         /// Similar to the above, but for node announcements indexed by node_id.
287         fn should_forward_node_announcement(&self, node_id: PublicKey) -> bool {
288                 match self.sync_status {
289                         InitSyncTracker::NoSyncRequested => true,
290                         InitSyncTracker::ChannelsSyncing(_) => false,
291                         InitSyncTracker::NodesSyncing(pk) => pk < node_id,
292                 }
293         }
294 }
295
296 struct PeerHolder<Descriptor: SocketDescriptor> {
297         peers: HashMap<Descriptor, Peer>,
298         /// Only add to this set when noise completes:
299         node_id_to_descriptor: HashMap<PublicKey, Descriptor>,
300 }
301
302 #[cfg(not(any(target_pointer_width = "32", target_pointer_width = "64")))]
303 fn _check_usize_is_32_or_64() {
304         // See below, less than 32 bit pointers may be unsafe here!
305         unsafe { mem::transmute::<*const usize, [u8; 4]>(panic!()); }
306 }
307
308 /// SimpleArcPeerManager is useful when you need a PeerManager with a static lifetime, e.g.
309 /// when you're using lightning-net-tokio (since tokio::spawn requires parameters with static
310 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
311 /// SimpleRefPeerManager is the more appropriate type. Defining these type aliases prevents
312 /// issues such as overly long function definitions.
313 pub type SimpleArcPeerManager<SD, M, T, F, C, L> = PeerManager<SD, Arc<SimpleArcChannelManager<M, T, F, L>>, Arc<NetGraphMsgHandler<Arc<C>, Arc<L>>>, Arc<L>>;
314
315 /// SimpleRefPeerManager is a type alias for a PeerManager reference, and is the reference
316 /// counterpart to the SimpleArcPeerManager type alias. Use this type by default when you don't
317 /// need a PeerManager with a static lifetime. You'll need a static lifetime in cases such as
318 /// usage of lightning-net-tokio (since tokio::spawn requires parameters with static lifetimes).
319 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
320 /// helps with issues such as long function definitions.
321 pub type SimpleRefPeerManager<'a, 'b, 'c, 'd, 'e, 'f, 'g, SD, M, T, F, C, L> = PeerManager<SD, SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, M, T, F, L>, &'e NetGraphMsgHandler<&'g C, &'f L>, &'f L>;
322
323 /// A PeerManager manages a set of peers, described by their [`SocketDescriptor`] and marshalls
324 /// socket events into messages which it passes on to its [`MessageHandler`].
325 ///
326 /// Locks are taken internally, so you must never assume that reentrancy from a
327 /// [`SocketDescriptor`] call back into [`PeerManager`] methods will not deadlock.
328 ///
329 /// Calls to [`read_event`] will decode relevant messages and pass them to the
330 /// [`ChannelMessageHandler`], likely doing message processing in-line. Thus, the primary form of
331 /// parallelism in Rust-Lightning is in calls to [`read_event`]. Note, however, that calls to any
332 /// [`PeerManager`] functions related to the same connection must occur only in serial, making new
333 /// calls only after previous ones have returned.
334 ///
335 /// Rather than using a plain PeerManager, it is preferable to use either a SimpleArcPeerManager
336 /// a SimpleRefPeerManager, for conciseness. See their documentation for more details, but
337 /// essentially you should default to using a SimpleRefPeerManager, and use a
338 /// SimpleArcPeerManager when you require a PeerManager with a static lifetime, such as when
339 /// you're using lightning-net-tokio.
340 ///
341 /// [`read_event`]: PeerManager::read_event
342 pub struct PeerManager<Descriptor: SocketDescriptor, CM: Deref, RM: Deref, L: Deref> where
343                 CM::Target: ChannelMessageHandler,
344                 RM::Target: RoutingMessageHandler,
345                 L::Target: Logger {
346         message_handler: MessageHandler<CM, RM>,
347         peers: Mutex<PeerHolder<Descriptor>>,
348         our_node_secret: SecretKey,
349         ephemeral_key_midstate: Sha256Engine,
350
351         // Usize needs to be at least 32 bits to avoid overflowing both low and high. If usize is 64
352         // bits we will never realistically count into high:
353         peer_counter_low: AtomicUsize,
354         peer_counter_high: AtomicUsize,
355
356         logger: L,
357 }
358
359 enum MessageHandlingError {
360         PeerHandleError(PeerHandleError),
361         LightningError(LightningError),
362 }
363
364 impl From<PeerHandleError> for MessageHandlingError {
365         fn from(error: PeerHandleError) -> Self {
366                 MessageHandlingError::PeerHandleError(error)
367         }
368 }
369
370 impl From<LightningError> for MessageHandlingError {
371         fn from(error: LightningError) -> Self {
372                 MessageHandlingError::LightningError(error)
373         }
374 }
375
376 macro_rules! encode_msg {
377         ($msg: expr) => {{
378                 let mut buffer = VecWriter(Vec::new());
379                 wire::write($msg, &mut buffer).unwrap();
380                 buffer.0
381         }}
382 }
383
384 impl<Descriptor: SocketDescriptor, CM: Deref, L: Deref> PeerManager<Descriptor, CM, IgnoringMessageHandler, L> where
385                 CM::Target: ChannelMessageHandler,
386                 L::Target: Logger {
387         /// Constructs a new PeerManager with the given ChannelMessageHandler. No routing message
388         /// handler is used and network graph messages are ignored.
389         ///
390         /// ephemeral_random_data is used to derive per-connection ephemeral keys and must be
391         /// cryptographically secure random bytes.
392         ///
393         /// (C-not exported) as we can't export a PeerManager with a dummy route handler
394         pub fn new_channel_only(channel_message_handler: CM, our_node_secret: SecretKey, ephemeral_random_data: &[u8; 32], logger: L) -> Self {
395                 Self::new(MessageHandler {
396                         chan_handler: channel_message_handler,
397                         route_handler: IgnoringMessageHandler{},
398                 }, our_node_secret, ephemeral_random_data, logger)
399         }
400 }
401
402 impl<Descriptor: SocketDescriptor, RM: Deref, L: Deref> PeerManager<Descriptor, ErroringMessageHandler, RM, L> where
403                 RM::Target: RoutingMessageHandler,
404                 L::Target: Logger {
405         /// Constructs a new PeerManager with the given RoutingMessageHandler. No channel message
406         /// handler is used and messages related to channels will be ignored (or generate error
407         /// messages). Note that some other lightning implementations time-out connections after some
408         /// time if no channel is built with the peer.
409         ///
410         /// ephemeral_random_data is used to derive per-connection ephemeral keys and must be
411         /// cryptographically secure random bytes.
412         ///
413         /// (C-not exported) as we can't export a PeerManager with a dummy channel handler
414         pub fn new_routing_only(routing_message_handler: RM, our_node_secret: SecretKey, ephemeral_random_data: &[u8; 32], logger: L) -> Self {
415                 Self::new(MessageHandler {
416                         chan_handler: ErroringMessageHandler::new(),
417                         route_handler: routing_message_handler,
418                 }, our_node_secret, ephemeral_random_data, logger)
419         }
420 }
421
422 impl<Descriptor: SocketDescriptor, CM: Deref, RM: Deref, L: Deref> PeerManager<Descriptor, CM, RM, L> where
423                 CM::Target: ChannelMessageHandler,
424                 RM::Target: RoutingMessageHandler,
425                 L::Target: Logger {
426         /// Constructs a new PeerManager with the given message handlers and node_id secret key
427         /// ephemeral_random_data is used to derive per-connection ephemeral keys and must be
428         /// cryptographically secure random bytes.
429         pub fn new(message_handler: MessageHandler<CM, RM>, our_node_secret: SecretKey, ephemeral_random_data: &[u8; 32], logger: L) -> Self {
430                 let mut ephemeral_key_midstate = Sha256::engine();
431                 ephemeral_key_midstate.input(ephemeral_random_data);
432
433                 PeerManager {
434                         message_handler,
435                         peers: Mutex::new(PeerHolder {
436                                 peers: HashMap::new(),
437                                 node_id_to_descriptor: HashMap::new()
438                         }),
439                         our_node_secret,
440                         ephemeral_key_midstate,
441                         peer_counter_low: AtomicUsize::new(0),
442                         peer_counter_high: AtomicUsize::new(0),
443                         logger,
444                 }
445         }
446
447         /// Get the list of node ids for peers which have completed the initial handshake.
448         ///
449         /// For outbound connections, this will be the same as the their_node_id parameter passed in to
450         /// new_outbound_connection, however entries will only appear once the initial handshake has
451         /// completed and we are sure the remote peer has the private key for the given node_id.
452         pub fn get_peer_node_ids(&self) -> Vec<PublicKey> {
453                 let peers = self.peers.lock().unwrap();
454                 peers.peers.values().filter_map(|p| {
455                         if !p.channel_encryptor.is_ready_for_encryption() || p.their_features.is_none() {
456                                 return None;
457                         }
458                         p.their_node_id
459                 }).collect()
460         }
461
462         fn get_ephemeral_key(&self) -> SecretKey {
463                 let mut ephemeral_hash = self.ephemeral_key_midstate.clone();
464                 let low = self.peer_counter_low.fetch_add(1, Ordering::AcqRel);
465                 let high = if low == 0 {
466                         self.peer_counter_high.fetch_add(1, Ordering::AcqRel)
467                 } else {
468                         self.peer_counter_high.load(Ordering::Acquire)
469                 };
470                 ephemeral_hash.input(&byte_utils::le64_to_array(low as u64));
471                 ephemeral_hash.input(&byte_utils::le64_to_array(high as u64));
472                 SecretKey::from_slice(&Sha256::from_engine(ephemeral_hash).into_inner()).expect("You broke SHA-256!")
473         }
474
475         /// Indicates a new outbound connection has been established to a node with the given node_id.
476         /// Note that if an Err is returned here you MUST NOT call socket_disconnected for the new
477         /// descriptor but must disconnect the connection immediately.
478         ///
479         /// Returns a small number of bytes to send to the remote node (currently always 50).
480         ///
481         /// Panics if descriptor is duplicative with some other descriptor which has not yet been
482         /// [`socket_disconnected()`].
483         ///
484         /// [`socket_disconnected()`]: PeerManager::socket_disconnected
485         pub fn new_outbound_connection(&self, their_node_id: PublicKey, descriptor: Descriptor) -> Result<Vec<u8>, PeerHandleError> {
486                 let mut peer_encryptor = PeerChannelEncryptor::new_outbound(their_node_id.clone(), self.get_ephemeral_key());
487                 let res = peer_encryptor.get_act_one().to_vec();
488                 let pending_read_buffer = [0; 50].to_vec(); // Noise act two is 50 bytes
489
490                 let mut peers = self.peers.lock().unwrap();
491                 if peers.peers.insert(descriptor, Peer {
492                         channel_encryptor: peer_encryptor,
493                         their_node_id: None,
494                         their_features: None,
495
496                         pending_outbound_buffer: LinkedList::new(),
497                         pending_outbound_buffer_first_msg_offset: 0,
498                         awaiting_write_event: false,
499
500                         pending_read_buffer,
501                         pending_read_buffer_pos: 0,
502                         pending_read_is_header: false,
503
504                         sync_status: InitSyncTracker::NoSyncRequested,
505
506                         awaiting_pong: false,
507                 }).is_some() {
508                         panic!("PeerManager driver duplicated descriptors!");
509                 };
510                 Ok(res)
511         }
512
513         /// Indicates a new inbound connection has been established.
514         ///
515         /// May refuse the connection by returning an Err, but will never write bytes to the remote end
516         /// (outbound connector always speaks first). Note that if an Err is returned here you MUST NOT
517         /// call socket_disconnected for the new descriptor but must disconnect the connection
518         /// immediately.
519         ///
520         /// Panics if descriptor is duplicative with some other descriptor which has not yet been
521         /// [`socket_disconnected()`].
522         ///
523         /// [`socket_disconnected()`]: PeerManager::socket_disconnected
524         pub fn new_inbound_connection(&self, descriptor: Descriptor) -> Result<(), PeerHandleError> {
525                 let peer_encryptor = PeerChannelEncryptor::new_inbound(&self.our_node_secret);
526                 let pending_read_buffer = [0; 50].to_vec(); // Noise act one is 50 bytes
527
528                 let mut peers = self.peers.lock().unwrap();
529                 if peers.peers.insert(descriptor, Peer {
530                         channel_encryptor: peer_encryptor,
531                         their_node_id: None,
532                         their_features: None,
533
534                         pending_outbound_buffer: LinkedList::new(),
535                         pending_outbound_buffer_first_msg_offset: 0,
536                         awaiting_write_event: false,
537
538                         pending_read_buffer,
539                         pending_read_buffer_pos: 0,
540                         pending_read_is_header: false,
541
542                         sync_status: InitSyncTracker::NoSyncRequested,
543
544                         awaiting_pong: false,
545                 }).is_some() {
546                         panic!("PeerManager driver duplicated descriptors!");
547                 };
548                 Ok(())
549         }
550
551         fn do_attempt_write_data(&self, descriptor: &mut Descriptor, peer: &mut Peer) {
552                 while !peer.awaiting_write_event {
553                         if peer.pending_outbound_buffer.len() < OUTBOUND_BUFFER_LIMIT_READ_PAUSE {
554                                 match peer.sync_status {
555                                         InitSyncTracker::NoSyncRequested => {},
556                                         InitSyncTracker::ChannelsSyncing(c) if c < 0xffff_ffff_ffff_ffff => {
557                                                 let steps = ((OUTBOUND_BUFFER_LIMIT_READ_PAUSE - peer.pending_outbound_buffer.len() + 2) / 3) as u8;
558                                                 let all_messages = self.message_handler.route_handler.get_next_channel_announcements(c, steps);
559                                                 for &(ref announce, ref update_a_option, ref update_b_option) in all_messages.iter() {
560                                                         self.enqueue_message(peer, announce);
561                                                         if let &Some(ref update_a) = update_a_option {
562                                                                 self.enqueue_message(peer, update_a);
563                                                         }
564                                                         if let &Some(ref update_b) = update_b_option {
565                                                                 self.enqueue_message(peer, update_b);
566                                                         }
567                                                         peer.sync_status = InitSyncTracker::ChannelsSyncing(announce.contents.short_channel_id + 1);
568                                                 }
569                                                 if all_messages.is_empty() || all_messages.len() != steps as usize {
570                                                         peer.sync_status = InitSyncTracker::ChannelsSyncing(0xffff_ffff_ffff_ffff);
571                                                 }
572                                         },
573                                         InitSyncTracker::ChannelsSyncing(c) if c == 0xffff_ffff_ffff_ffff => {
574                                                 let steps = (OUTBOUND_BUFFER_LIMIT_READ_PAUSE - peer.pending_outbound_buffer.len()) as u8;
575                                                 let all_messages = self.message_handler.route_handler.get_next_node_announcements(None, steps);
576                                                 for msg in all_messages.iter() {
577                                                         self.enqueue_message(peer, msg);
578                                                         peer.sync_status = InitSyncTracker::NodesSyncing(msg.contents.node_id);
579                                                 }
580                                                 if all_messages.is_empty() || all_messages.len() != steps as usize {
581                                                         peer.sync_status = InitSyncTracker::NoSyncRequested;
582                                                 }
583                                         },
584                                         InitSyncTracker::ChannelsSyncing(_) => unreachable!(),
585                                         InitSyncTracker::NodesSyncing(key) => {
586                                                 let steps = (OUTBOUND_BUFFER_LIMIT_READ_PAUSE - peer.pending_outbound_buffer.len()) as u8;
587                                                 let all_messages = self.message_handler.route_handler.get_next_node_announcements(Some(&key), steps);
588                                                 for msg in all_messages.iter() {
589                                                         self.enqueue_message(peer, msg);
590                                                         peer.sync_status = InitSyncTracker::NodesSyncing(msg.contents.node_id);
591                                                 }
592                                                 if all_messages.is_empty() || all_messages.len() != steps as usize {
593                                                         peer.sync_status = InitSyncTracker::NoSyncRequested;
594                                                 }
595                                         },
596                                 }
597                         }
598
599                         if {
600                                 let next_buff = match peer.pending_outbound_buffer.front() {
601                                         None => return,
602                                         Some(buff) => buff,
603                                 };
604
605                                 let should_be_reading = peer.pending_outbound_buffer.len() < OUTBOUND_BUFFER_LIMIT_READ_PAUSE;
606                                 let pending = &next_buff[peer.pending_outbound_buffer_first_msg_offset..];
607                                 let data_sent = descriptor.send_data(pending, should_be_reading);
608                                 peer.pending_outbound_buffer_first_msg_offset += data_sent;
609                                 if peer.pending_outbound_buffer_first_msg_offset == next_buff.len() { true } else { false }
610                         } {
611                                 peer.pending_outbound_buffer_first_msg_offset = 0;
612                                 peer.pending_outbound_buffer.pop_front();
613                         } else {
614                                 peer.awaiting_write_event = true;
615                         }
616                 }
617         }
618
619         /// Indicates that there is room to write data to the given socket descriptor.
620         ///
621         /// May return an Err to indicate that the connection should be closed.
622         ///
623         /// May call [`send_data`] on the descriptor passed in (or an equal descriptor) before
624         /// returning. Thus, be very careful with reentrancy issues! The invariants around calling
625         /// [`write_buffer_space_avail`] in case a write did not fully complete must still hold - be
626         /// ready to call `[write_buffer_space_avail`] again if a write call generated here isn't
627         /// sufficient!
628         ///
629         /// [`send_data`]: SocketDescriptor::send_data
630         /// [`write_buffer_space_avail`]: PeerManager::write_buffer_space_avail
631         pub fn write_buffer_space_avail(&self, descriptor: &mut Descriptor) -> Result<(), PeerHandleError> {
632                 let mut peers = self.peers.lock().unwrap();
633                 match peers.peers.get_mut(descriptor) {
634                         None => {
635                                 // This is most likely a simple race condition where the user found that the socket
636                                 // was writeable, then we told the user to `disconnect_socket()`, then they called
637                                 // this method. Return an error to make sure we get disconnected.
638                                 return Err(PeerHandleError { no_connection_possible: false });
639                         },
640                         Some(peer) => {
641                                 peer.awaiting_write_event = false;
642                                 self.do_attempt_write_data(descriptor, peer);
643                         }
644                 };
645                 Ok(())
646         }
647
648         /// Indicates that data was read from the given socket descriptor.
649         ///
650         /// May return an Err to indicate that the connection should be closed.
651         ///
652         /// Will *not* call back into [`send_data`] on any descriptors to avoid reentrancy complexity.
653         /// Thus, however, you should call [`process_events`] after any `read_event` to generate
654         /// [`send_data`] calls to handle responses.
655         ///
656         /// If `Ok(true)` is returned, further read_events should not be triggered until a
657         /// [`send_data`] call on this descriptor has `resume_read` set (preventing DoS issues in the
658         /// send buffer).
659         ///
660         /// [`send_data`]: SocketDescriptor::send_data
661         /// [`process_events`]: PeerManager::process_events
662         pub fn read_event(&self, peer_descriptor: &mut Descriptor, data: &[u8]) -> Result<bool, PeerHandleError> {
663                 match self.do_read_event(peer_descriptor, data) {
664                         Ok(res) => Ok(res),
665                         Err(e) => {
666                                 self.disconnect_event_internal(peer_descriptor, e.no_connection_possible);
667                                 Err(e)
668                         }
669                 }
670         }
671
672         /// Append a message to a peer's pending outbound/write buffer, and update the map of peers needing sends accordingly.
673         fn enqueue_message<M: Encode + Writeable>(&self, peer: &mut Peer, message: &M) {
674                 let mut buffer = VecWriter(Vec::new());
675                 wire::write(message, &mut buffer).unwrap(); // crash if the write failed
676                 let encoded_message = buffer.0;
677
678                 log_trace!(self.logger, "Enqueueing message of type {} to {}", message.type_id(), log_pubkey!(peer.their_node_id.unwrap()));
679                 peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encoded_message[..]));
680         }
681
682         fn do_read_event(&self, peer_descriptor: &mut Descriptor, data: &[u8]) -> Result<bool, PeerHandleError> {
683                 let pause_read = {
684                         let mut peers_lock = self.peers.lock().unwrap();
685                         let peers = &mut *peers_lock;
686                         let mut msgs_to_forward = Vec::new();
687                         let mut peer_node_id = None;
688                         let pause_read = match peers.peers.get_mut(peer_descriptor) {
689                                 None => {
690                                         // This is most likely a simple race condition where the user read some bytes
691                                         // from the socket, then we told the user to `disconnect_socket()`, then they
692                                         // called this method. Return an error to make sure we get disconnected.
693                                         return Err(PeerHandleError { no_connection_possible: false });
694                                 },
695                                 Some(peer) => {
696                                         assert!(peer.pending_read_buffer.len() > 0);
697                                         assert!(peer.pending_read_buffer.len() > peer.pending_read_buffer_pos);
698
699                                         let mut read_pos = 0;
700                                         while read_pos < data.len() {
701                                                 {
702                                                         let data_to_copy = cmp::min(peer.pending_read_buffer.len() - peer.pending_read_buffer_pos, data.len() - read_pos);
703                                                         peer.pending_read_buffer[peer.pending_read_buffer_pos..peer.pending_read_buffer_pos + data_to_copy].copy_from_slice(&data[read_pos..read_pos + data_to_copy]);
704                                                         read_pos += data_to_copy;
705                                                         peer.pending_read_buffer_pos += data_to_copy;
706                                                 }
707
708                                                 if peer.pending_read_buffer_pos == peer.pending_read_buffer.len() {
709                                                         peer.pending_read_buffer_pos = 0;
710
711                                                         macro_rules! try_potential_handleerror {
712                                                                 ($thing: expr) => {
713                                                                         match $thing {
714                                                                                 Ok(x) => x,
715                                                                                 Err(e) => {
716                                                                                         match e.action {
717                                                                                                 msgs::ErrorAction::DisconnectPeer { msg: _ } => {
718                                                                                                         //TODO: Try to push msg
719                                                                                                         log_trace!(self.logger, "Got Err handling message, disconnecting peer because {}", e.err);
720                                                                                                         return Err(PeerHandleError{ no_connection_possible: false });
721                                                                                                 },
722                                                                                                 msgs::ErrorAction::IgnoreError => {
723                                                                                                         log_trace!(self.logger, "Got Err handling message, ignoring because {}", e.err);
724                                                                                                         continue;
725                                                                                                 },
726                                                                                                 msgs::ErrorAction::SendErrorMessage { msg } => {
727                                                                                                         log_trace!(self.logger, "Got Err handling message, sending Error message because {}", e.err);
728                                                                                                         self.enqueue_message(peer, &msg);
729                                                                                                         continue;
730                                                                                                 },
731                                                                                         }
732                                                                                 }
733                                                                         };
734                                                                 }
735                                                         }
736
737                                                         macro_rules! insert_node_id {
738                                                                 () => {
739                                                                         match peers.node_id_to_descriptor.entry(peer.their_node_id.unwrap()) {
740                                                                                 hash_map::Entry::Occupied(_) => {
741                                                                                         log_trace!(self.logger, "Got second connection with {}, closing", log_pubkey!(peer.their_node_id.unwrap()));
742                                                                                         peer.their_node_id = None; // Unset so that we don't generate a peer_disconnected event
743                                                                                         return Err(PeerHandleError{ no_connection_possible: false })
744                                                                                 },
745                                                                                 hash_map::Entry::Vacant(entry) => {
746                                                                                         log_trace!(self.logger, "Finished noise handshake for connection with {}", log_pubkey!(peer.their_node_id.unwrap()));
747                                                                                         entry.insert(peer_descriptor.clone())
748                                                                                 },
749                                                                         };
750                                                                 }
751                                                         }
752
753                                                         let next_step = peer.channel_encryptor.get_noise_step();
754                                                         match next_step {
755                                                                 NextNoiseStep::ActOne => {
756                                                                         let act_two = try_potential_handleerror!(peer.channel_encryptor.process_act_one_with_keys(&peer.pending_read_buffer[..], &self.our_node_secret, self.get_ephemeral_key())).to_vec();
757                                                                         peer.pending_outbound_buffer.push_back(act_two);
758                                                                         peer.pending_read_buffer = [0; 66].to_vec(); // act three is 66 bytes long
759                                                                 },
760                                                                 NextNoiseStep::ActTwo => {
761                                                                         let (act_three, their_node_id) = try_potential_handleerror!(peer.channel_encryptor.process_act_two(&peer.pending_read_buffer[..], &self.our_node_secret));
762                                                                         peer.pending_outbound_buffer.push_back(act_three.to_vec());
763                                                                         peer.pending_read_buffer = [0; 18].to_vec(); // Message length header is 18 bytes
764                                                                         peer.pending_read_is_header = true;
765
766                                                                         peer.their_node_id = Some(their_node_id);
767                                                                         insert_node_id!();
768                                                                         let features = InitFeatures::known();
769                                                                         let resp = msgs::Init { features };
770                                                                         self.enqueue_message(peer, &resp);
771                                                                 },
772                                                                 NextNoiseStep::ActThree => {
773                                                                         let their_node_id = try_potential_handleerror!(peer.channel_encryptor.process_act_three(&peer.pending_read_buffer[..]));
774                                                                         peer.pending_read_buffer = [0; 18].to_vec(); // Message length header is 18 bytes
775                                                                         peer.pending_read_is_header = true;
776                                                                         peer.their_node_id = Some(their_node_id);
777                                                                         insert_node_id!();
778                                                                         let features = InitFeatures::known();
779                                                                         let resp = msgs::Init { features };
780                                                                         self.enqueue_message(peer, &resp);
781                                                                 },
782                                                                 NextNoiseStep::NoiseComplete => {
783                                                                         if peer.pending_read_is_header {
784                                                                                 let msg_len = try_potential_handleerror!(peer.channel_encryptor.decrypt_length_header(&peer.pending_read_buffer[..]));
785                                                                                 peer.pending_read_buffer = Vec::with_capacity(msg_len as usize + 16);
786                                                                                 peer.pending_read_buffer.resize(msg_len as usize + 16, 0);
787                                                                                 if msg_len < 2 { // Need at least the message type tag
788                                                                                         return Err(PeerHandleError{ no_connection_possible: false });
789                                                                                 }
790                                                                                 peer.pending_read_is_header = false;
791                                                                         } else {
792                                                                                 let msg_data = try_potential_handleerror!(peer.channel_encryptor.decrypt_message(&peer.pending_read_buffer[..]));
793                                                                                 assert!(msg_data.len() >= 2);
794
795                                                                                 // Reset read buffer
796                                                                                 peer.pending_read_buffer = [0; 18].to_vec();
797                                                                                 peer.pending_read_is_header = true;
798
799                                                                                 let mut reader = ::std::io::Cursor::new(&msg_data[..]);
800                                                                                 let message_result = wire::read(&mut reader);
801                                                                                 let message = match message_result {
802                                                                                         Ok(x) => x,
803                                                                                         Err(e) => {
804                                                                                                 match e {
805                                                                                                         msgs::DecodeError::UnknownVersion => return Err(PeerHandleError { no_connection_possible: false }),
806                                                                                                         msgs::DecodeError::UnknownRequiredFeature => {
807                                                                                                                 log_debug!(self.logger, "Got a channel/node announcement with an known required feature flag, you may want to update!");
808                                                                                                                 continue;
809                                                                                                         }
810                                                                                                         msgs::DecodeError::InvalidValue => {
811                                                                                                                 log_debug!(self.logger, "Got an invalid value while deserializing message");
812                                                                                                                 return Err(PeerHandleError { no_connection_possible: false });
813                                                                                                         }
814                                                                                                         msgs::DecodeError::ShortRead => {
815                                                                                                                 log_debug!(self.logger, "Deserialization failed due to shortness of message");
816                                                                                                                 return Err(PeerHandleError { no_connection_possible: false });
817                                                                                                         }
818                                                                                                         msgs::DecodeError::BadLengthDescriptor => return Err(PeerHandleError { no_connection_possible: false }),
819                                                                                                         msgs::DecodeError::Io(_) => return Err(PeerHandleError { no_connection_possible: false }),
820                                                                                                         msgs::DecodeError::UnsupportedCompression => {
821                                                                                                                 log_debug!(self.logger, "We don't support zlib-compressed message fields, ignoring message");
822                                                                                                                 continue;
823                                                                                                         }
824                                                                                                 }
825                                                                                         }
826                                                                                 };
827
828                                                                                 match self.handle_message(peer, message) {
829                                                                                         Err(handling_error) => match handling_error {
830                                                                                                 MessageHandlingError::PeerHandleError(e) => { return Err(e) },
831                                                                                                 MessageHandlingError::LightningError(e) => {
832                                                                                                         try_potential_handleerror!(Err(e));
833                                                                                                 },
834                                                                                         },
835                                                                                         Ok(Some(msg)) => {
836                                                                                                 peer_node_id = Some(peer.their_node_id.expect("After noise is complete, their_node_id is always set"));
837                                                                                                 msgs_to_forward.push(msg);
838                                                                                         },
839                                                                                         Ok(None) => {},
840                                                                                 }
841                                                                         }
842                                                                 }
843                                                         }
844                                                 }
845                                         }
846
847                                         peer.pending_outbound_buffer.len() > OUTBOUND_BUFFER_LIMIT_READ_PAUSE // pause_read
848                                 }
849                         };
850
851                         for msg in msgs_to_forward.drain(..) {
852                                 self.forward_broadcast_msg(peers, &msg, peer_node_id.as_ref());
853                         }
854
855                         pause_read
856                 };
857
858                 Ok(pause_read)
859         }
860
861         /// Process an incoming message and return a decision (ok, lightning error, peer handling error) regarding the next action with the peer
862         /// Returns the message back if it needs to be broadcasted to all other peers.
863         fn handle_message(&self, peer: &mut Peer, message: wire::Message) -> Result<Option<wire::Message>, MessageHandlingError> {
864                 log_trace!(self.logger, "Received message of type {} from {}", message.type_id(), log_pubkey!(peer.their_node_id.unwrap()));
865
866                 // Need an Init as first message
867                 if let wire::Message::Init(_) = message {
868                 } else if peer.their_features.is_none() {
869                         log_trace!(self.logger, "Peer {} sent non-Init first message", log_pubkey!(peer.their_node_id.unwrap()));
870                         return Err(PeerHandleError{ no_connection_possible: false }.into());
871                 }
872
873                 let mut should_forward = None;
874
875                 match message {
876                         // Setup and Control messages:
877                         wire::Message::Init(msg) => {
878                                 if msg.features.requires_unknown_bits() {
879                                         log_info!(self.logger, "Peer features required unknown version bits");
880                                         return Err(PeerHandleError{ no_connection_possible: true }.into());
881                                 }
882                                 if peer.their_features.is_some() {
883                                         return Err(PeerHandleError{ no_connection_possible: false }.into());
884                                 }
885
886                                 log_info!(
887                                         self.logger, "Received peer Init message: data_loss_protect: {}, initial_routing_sync: {}, upfront_shutdown_script: {}, gossip_queries: {}, static_remote_key: {}, unknown flags (local and global): {}",
888                                         if msg.features.supports_data_loss_protect() { "supported" } else { "not supported"},
889                                         if msg.features.initial_routing_sync() { "requested" } else { "not requested" },
890                                         if msg.features.supports_upfront_shutdown_script() { "supported" } else { "not supported"},
891                                         if msg.features.supports_gossip_queries() { "supported" } else { "not supported" },
892                                         if msg.features.supports_static_remote_key() { "supported" } else { "not supported"},
893                                         if msg.features.supports_unknown_bits() { "present" } else { "none" }
894                                 );
895
896                                 if msg.features.initial_routing_sync() {
897                                         peer.sync_status = InitSyncTracker::ChannelsSyncing(0);
898                                 }
899                                 if !msg.features.supports_static_remote_key() {
900                                         log_debug!(self.logger, "Peer {} does not support static remote key, disconnecting with no_connection_possible", log_pubkey!(peer.their_node_id.unwrap()));
901                                         return Err(PeerHandleError{ no_connection_possible: true }.into());
902                                 }
903
904                                 self.message_handler.route_handler.sync_routing_table(&peer.their_node_id.unwrap(), &msg);
905
906                                 self.message_handler.chan_handler.peer_connected(&peer.their_node_id.unwrap(), &msg);
907                                 peer.their_features = Some(msg.features);
908                         },
909                         wire::Message::Error(msg) => {
910                                 let mut data_is_printable = true;
911                                 for b in msg.data.bytes() {
912                                         if b < 32 || b > 126 {
913                                                 data_is_printable = false;
914                                                 break;
915                                         }
916                                 }
917
918                                 if data_is_printable {
919                                         log_debug!(self.logger, "Got Err message from {}: {}", log_pubkey!(peer.their_node_id.unwrap()), msg.data);
920                                 } else {
921                                         log_debug!(self.logger, "Got Err message from {} with non-ASCII error message", log_pubkey!(peer.their_node_id.unwrap()));
922                                 }
923                                 self.message_handler.chan_handler.handle_error(&peer.their_node_id.unwrap(), &msg);
924                                 if msg.channel_id == [0; 32] {
925                                         return Err(PeerHandleError{ no_connection_possible: true }.into());
926                                 }
927                         },
928
929                         wire::Message::Ping(msg) => {
930                                 if msg.ponglen < 65532 {
931                                         let resp = msgs::Pong { byteslen: msg.ponglen };
932                                         self.enqueue_message(peer, &resp);
933                                 }
934                         },
935                         wire::Message::Pong(_msg) => {
936                                 peer.awaiting_pong = false;
937                         },
938
939                         // Channel messages:
940                         wire::Message::OpenChannel(msg) => {
941                                 self.message_handler.chan_handler.handle_open_channel(&peer.their_node_id.unwrap(), peer.their_features.clone().unwrap(), &msg);
942                         },
943                         wire::Message::AcceptChannel(msg) => {
944                                 self.message_handler.chan_handler.handle_accept_channel(&peer.their_node_id.unwrap(), peer.their_features.clone().unwrap(), &msg);
945                         },
946
947                         wire::Message::FundingCreated(msg) => {
948                                 self.message_handler.chan_handler.handle_funding_created(&peer.their_node_id.unwrap(), &msg);
949                         },
950                         wire::Message::FundingSigned(msg) => {
951                                 self.message_handler.chan_handler.handle_funding_signed(&peer.their_node_id.unwrap(), &msg);
952                         },
953                         wire::Message::FundingLocked(msg) => {
954                                 self.message_handler.chan_handler.handle_funding_locked(&peer.their_node_id.unwrap(), &msg);
955                         },
956
957                         wire::Message::Shutdown(msg) => {
958                                 self.message_handler.chan_handler.handle_shutdown(&peer.their_node_id.unwrap(), peer.their_features.as_ref().unwrap(), &msg);
959                         },
960                         wire::Message::ClosingSigned(msg) => {
961                                 self.message_handler.chan_handler.handle_closing_signed(&peer.their_node_id.unwrap(), &msg);
962                         },
963
964                         // Commitment messages:
965                         wire::Message::UpdateAddHTLC(msg) => {
966                                 self.message_handler.chan_handler.handle_update_add_htlc(&peer.their_node_id.unwrap(), &msg);
967                         },
968                         wire::Message::UpdateFulfillHTLC(msg) => {
969                                 self.message_handler.chan_handler.handle_update_fulfill_htlc(&peer.their_node_id.unwrap(), &msg);
970                         },
971                         wire::Message::UpdateFailHTLC(msg) => {
972                                 self.message_handler.chan_handler.handle_update_fail_htlc(&peer.their_node_id.unwrap(), &msg);
973                         },
974                         wire::Message::UpdateFailMalformedHTLC(msg) => {
975                                 self.message_handler.chan_handler.handle_update_fail_malformed_htlc(&peer.their_node_id.unwrap(), &msg);
976                         },
977
978                         wire::Message::CommitmentSigned(msg) => {
979                                 self.message_handler.chan_handler.handle_commitment_signed(&peer.their_node_id.unwrap(), &msg);
980                         },
981                         wire::Message::RevokeAndACK(msg) => {
982                                 self.message_handler.chan_handler.handle_revoke_and_ack(&peer.their_node_id.unwrap(), &msg);
983                         },
984                         wire::Message::UpdateFee(msg) => {
985                                 self.message_handler.chan_handler.handle_update_fee(&peer.their_node_id.unwrap(), &msg);
986                         },
987                         wire::Message::ChannelReestablish(msg) => {
988                                 self.message_handler.chan_handler.handle_channel_reestablish(&peer.their_node_id.unwrap(), &msg);
989                         },
990
991                         // Routing messages:
992                         wire::Message::AnnouncementSignatures(msg) => {
993                                 self.message_handler.chan_handler.handle_announcement_signatures(&peer.their_node_id.unwrap(), &msg);
994                         },
995                         wire::Message::ChannelAnnouncement(msg) => {
996                                 if self.message_handler.route_handler.handle_channel_announcement(&msg)
997                                                 .map_err(|e| -> MessageHandlingError { e.into() })? {
998                                         should_forward = Some(wire::Message::ChannelAnnouncement(msg));
999                                 }
1000                         },
1001                         wire::Message::NodeAnnouncement(msg) => {
1002                                 if self.message_handler.route_handler.handle_node_announcement(&msg)
1003                                                 .map_err(|e| -> MessageHandlingError { e.into() })? {
1004                                         should_forward = Some(wire::Message::NodeAnnouncement(msg));
1005                                 }
1006                         },
1007                         wire::Message::ChannelUpdate(msg) => {
1008                                 self.message_handler.chan_handler.handle_channel_update(&peer.their_node_id.unwrap(), &msg);
1009                                 if self.message_handler.route_handler.handle_channel_update(&msg)
1010                                                 .map_err(|e| -> MessageHandlingError { e.into() })? {
1011                                         should_forward = Some(wire::Message::ChannelUpdate(msg));
1012                                 }
1013                         },
1014                         wire::Message::QueryShortChannelIds(msg) => {
1015                                 self.message_handler.route_handler.handle_query_short_channel_ids(&peer.their_node_id.unwrap(), msg)?;
1016                         },
1017                         wire::Message::ReplyShortChannelIdsEnd(msg) => {
1018                                 self.message_handler.route_handler.handle_reply_short_channel_ids_end(&peer.their_node_id.unwrap(), msg)?;
1019                         },
1020                         wire::Message::QueryChannelRange(msg) => {
1021                                 self.message_handler.route_handler.handle_query_channel_range(&peer.their_node_id.unwrap(), msg)?;
1022                         },
1023                         wire::Message::ReplyChannelRange(msg) => {
1024                                 self.message_handler.route_handler.handle_reply_channel_range(&peer.their_node_id.unwrap(), msg)?;
1025                         },
1026                         wire::Message::GossipTimestampFilter(_msg) => {
1027                                 // TODO: handle message
1028                         },
1029
1030                         // Unknown messages:
1031                         wire::Message::Unknown(msg_type) if msg_type.is_even() => {
1032                                 log_debug!(self.logger, "Received unknown even message of type {}, disconnecting peer!", msg_type);
1033                                 // Fail the channel if message is an even, unknown type as per BOLT #1.
1034                                 return Err(PeerHandleError{ no_connection_possible: true }.into());
1035                         },
1036                         wire::Message::Unknown(msg_type) => {
1037                                 log_trace!(self.logger, "Received unknown odd message of type {}, ignoring", msg_type);
1038                         }
1039                 };
1040                 Ok(should_forward)
1041         }
1042
1043         fn forward_broadcast_msg(&self, peers: &mut PeerHolder<Descriptor>, msg: &wire::Message, except_node: Option<&PublicKey>) {
1044                 match msg {
1045                         wire::Message::ChannelAnnouncement(ref msg) => {
1046                                 let encoded_msg = encode_msg!(msg);
1047
1048                                 for (_, peer) in peers.peers.iter_mut() {
1049                                         if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_features.is_none() ||
1050                                                         !peer.should_forward_channel_announcement(msg.contents.short_channel_id) {
1051                                                 continue
1052                                         }
1053                                         if peer.pending_outbound_buffer.len() > OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP {
1054                                                 continue;
1055                                         }
1056                                         if peer.their_node_id.as_ref() == Some(&msg.contents.node_id_1) ||
1057                                            peer.their_node_id.as_ref() == Some(&msg.contents.node_id_2) {
1058                                                 continue;
1059                                         }
1060                                         if except_node.is_some() && peer.their_node_id.as_ref() == except_node {
1061                                                 continue;
1062                                         }
1063                                         peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encoded_msg[..]));
1064                                 }
1065                         },
1066                         wire::Message::NodeAnnouncement(ref msg) => {
1067                                 let encoded_msg = encode_msg!(msg);
1068
1069                                 for (_, peer) in peers.peers.iter_mut() {
1070                                         if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_features.is_none() ||
1071                                                         !peer.should_forward_node_announcement(msg.contents.node_id) {
1072                                                 continue
1073                                         }
1074                                         if peer.pending_outbound_buffer.len() > OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP {
1075                                                 continue;
1076                                         }
1077                                         if peer.their_node_id.as_ref() == Some(&msg.contents.node_id) {
1078                                                 continue;
1079                                         }
1080                                         if except_node.is_some() && peer.their_node_id.as_ref() == except_node {
1081                                                 continue;
1082                                         }
1083                                         peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encoded_msg[..]));
1084                                 }
1085                         },
1086                         wire::Message::ChannelUpdate(ref msg) => {
1087                                 let encoded_msg = encode_msg!(msg);
1088
1089                                 for (_, peer) in peers.peers.iter_mut() {
1090                                         if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_features.is_none() ||
1091                                                         !peer.should_forward_channel_announcement(msg.contents.short_channel_id)  {
1092                                                 continue
1093                                         }
1094                                         if peer.pending_outbound_buffer.len() > OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP {
1095                                                 continue;
1096                                         }
1097                                         if except_node.is_some() && peer.their_node_id.as_ref() == except_node {
1098                                                 continue;
1099                                         }
1100                                         peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encoded_msg[..]));
1101                                 }
1102                         },
1103                         _ => debug_assert!(false, "We shouldn't attempt to forward anything but gossip messages"),
1104                 }
1105         }
1106
1107         /// Checks for any events generated by our handlers and processes them. Includes sending most
1108         /// response messages as well as messages generated by calls to handler functions directly (eg
1109         /// functions like [`ChannelManager::process_pending_htlc_forwards`] or [`send_payment`]).
1110         ///
1111         /// May call [`send_data`] on [`SocketDescriptor`]s. Thus, be very careful with reentrancy
1112         /// issues!
1113         ///
1114         /// [`send_payment`]: crate::ln::channelmanager::ChannelManager::send_payment
1115         /// [`ChannelManager::process_pending_htlc_forwards`]: crate::ln::channelmanager::ChannelManager::process_pending_htlc_forwards
1116         /// [`send_data`]: SocketDescriptor::send_data
1117         pub fn process_events(&self) {
1118                 {
1119                         // TODO: There are some DoS attacks here where you can flood someone's outbound send
1120                         // buffer by doing things like announcing channels on another node. We should be willing to
1121                         // drop optional-ish messages when send buffers get full!
1122
1123                         let mut peers_lock = self.peers.lock().unwrap();
1124                         let mut events_generated = self.message_handler.chan_handler.get_and_clear_pending_msg_events();
1125                         events_generated.append(&mut self.message_handler.route_handler.get_and_clear_pending_msg_events());
1126                         let peers = &mut *peers_lock;
1127                         for event in events_generated.drain(..) {
1128                                 macro_rules! get_peer_for_forwarding {
1129                                         ($node_id: expr) => {
1130                                                 {
1131                                                         match peers.node_id_to_descriptor.get($node_id) {
1132                                                                 Some(descriptor) => match peers.peers.get_mut(&descriptor) {
1133                                                                         Some(peer) => {
1134                                                                                 if peer.their_features.is_none() {
1135                                                                                         continue;
1136                                                                                 }
1137                                                                                 peer
1138                                                                         },
1139                                                                         None => panic!("Inconsistent peers set state!"),
1140                                                                 },
1141                                                                 None => {
1142                                                                         continue;
1143                                                                 },
1144                                                         }
1145                                                 }
1146                                         }
1147                                 }
1148                                 match event {
1149                                         MessageSendEvent::SendAcceptChannel { ref node_id, ref msg } => {
1150                                                 log_trace!(self.logger, "Handling SendAcceptChannel event in peer_handler for node {} for channel {}",
1151                                                                 log_pubkey!(node_id),
1152                                                                 log_bytes!(msg.temporary_channel_id));
1153                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1154                                         },
1155                                         MessageSendEvent::SendOpenChannel { ref node_id, ref msg } => {
1156                                                 log_trace!(self.logger, "Handling SendOpenChannel event in peer_handler for node {} for channel {}",
1157                                                                 log_pubkey!(node_id),
1158                                                                 log_bytes!(msg.temporary_channel_id));
1159                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1160                                         },
1161                                         MessageSendEvent::SendFundingCreated { ref node_id, ref msg } => {
1162                                                 log_trace!(self.logger, "Handling SendFundingCreated event in peer_handler for node {} for channel {} (which becomes {})",
1163                                                                 log_pubkey!(node_id),
1164                                                                 log_bytes!(msg.temporary_channel_id),
1165                                                                 log_funding_channel_id!(msg.funding_txid, msg.funding_output_index));
1166                                                 // TODO: If the peer is gone we should generate a DiscardFunding event
1167                                                 // indicating to the wallet that they should just throw away this funding transaction
1168                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1169                                         },
1170                                         MessageSendEvent::SendFundingSigned { ref node_id, ref msg } => {
1171                                                 log_trace!(self.logger, "Handling SendFundingSigned event in peer_handler for node {} for channel {}",
1172                                                                 log_pubkey!(node_id),
1173                                                                 log_bytes!(msg.channel_id));
1174                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1175                                         },
1176                                         MessageSendEvent::SendFundingLocked { ref node_id, ref msg } => {
1177                                                 log_trace!(self.logger, "Handling SendFundingLocked event in peer_handler for node {} for channel {}",
1178                                                                 log_pubkey!(node_id),
1179                                                                 log_bytes!(msg.channel_id));
1180                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1181                                         },
1182                                         MessageSendEvent::SendAnnouncementSignatures { ref node_id, ref msg } => {
1183                                                 log_trace!(self.logger, "Handling SendAnnouncementSignatures event in peer_handler for node {} for channel {})",
1184                                                                 log_pubkey!(node_id),
1185                                                                 log_bytes!(msg.channel_id));
1186                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1187                                         },
1188                                         MessageSendEvent::UpdateHTLCs { ref node_id, updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fulfill_htlcs, ref update_fail_htlcs, ref update_fail_malformed_htlcs, ref update_fee, ref commitment_signed } } => {
1189                                                 log_trace!(self.logger, "Handling UpdateHTLCs event in peer_handler for node {} with {} adds, {} fulfills, {} fails for channel {}",
1190                                                                 log_pubkey!(node_id),
1191                                                                 update_add_htlcs.len(),
1192                                                                 update_fulfill_htlcs.len(),
1193                                                                 update_fail_htlcs.len(),
1194                                                                 log_bytes!(commitment_signed.channel_id));
1195                                                 let peer = get_peer_for_forwarding!(node_id);
1196                                                 for msg in update_add_htlcs {
1197                                                         self.enqueue_message(peer, msg);
1198                                                 }
1199                                                 for msg in update_fulfill_htlcs {
1200                                                         self.enqueue_message(peer, msg);
1201                                                 }
1202                                                 for msg in update_fail_htlcs {
1203                                                         self.enqueue_message(peer, msg);
1204                                                 }
1205                                                 for msg in update_fail_malformed_htlcs {
1206                                                         self.enqueue_message(peer, msg);
1207                                                 }
1208                                                 if let &Some(ref msg) = update_fee {
1209                                                         self.enqueue_message(peer, msg);
1210                                                 }
1211                                                 self.enqueue_message(peer, commitment_signed);
1212                                         },
1213                                         MessageSendEvent::SendRevokeAndACK { ref node_id, ref msg } => {
1214                                                 log_trace!(self.logger, "Handling SendRevokeAndACK event in peer_handler for node {} for channel {}",
1215                                                                 log_pubkey!(node_id),
1216                                                                 log_bytes!(msg.channel_id));
1217                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1218                                         },
1219                                         MessageSendEvent::SendClosingSigned { ref node_id, ref msg } => {
1220                                                 log_trace!(self.logger, "Handling SendClosingSigned event in peer_handler for node {} for channel {}",
1221                                                                 log_pubkey!(node_id),
1222                                                                 log_bytes!(msg.channel_id));
1223                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1224                                         },
1225                                         MessageSendEvent::SendShutdown { ref node_id, ref msg } => {
1226                                                 log_trace!(self.logger, "Handling Shutdown event in peer_handler for node {} for channel {}",
1227                                                                 log_pubkey!(node_id),
1228                                                                 log_bytes!(msg.channel_id));
1229                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1230                                         },
1231                                         MessageSendEvent::SendChannelReestablish { ref node_id, ref msg } => {
1232                                                 log_trace!(self.logger, "Handling SendChannelReestablish event in peer_handler for node {} for channel {}",
1233                                                                 log_pubkey!(node_id),
1234                                                                 log_bytes!(msg.channel_id));
1235                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1236                                         },
1237                                         MessageSendEvent::BroadcastChannelAnnouncement { msg, update_msg } => {
1238                                                 log_trace!(self.logger, "Handling BroadcastChannelAnnouncement event in peer_handler for short channel id {}", msg.contents.short_channel_id);
1239                                                 if self.message_handler.route_handler.handle_channel_announcement(&msg).is_ok() && self.message_handler.route_handler.handle_channel_update(&update_msg).is_ok() {
1240                                                         self.forward_broadcast_msg(peers, &wire::Message::ChannelAnnouncement(msg), None);
1241                                                         self.forward_broadcast_msg(peers, &wire::Message::ChannelUpdate(update_msg), None);
1242                                                 }
1243                                         },
1244                                         MessageSendEvent::BroadcastNodeAnnouncement { msg } => {
1245                                                 log_trace!(self.logger, "Handling BroadcastNodeAnnouncement event in peer_handler");
1246                                                 if self.message_handler.route_handler.handle_node_announcement(&msg).is_ok() {
1247                                                         self.forward_broadcast_msg(peers, &wire::Message::NodeAnnouncement(msg), None);
1248                                                 }
1249                                         },
1250                                         MessageSendEvent::BroadcastChannelUpdate { msg } => {
1251                                                 log_trace!(self.logger, "Handling BroadcastChannelUpdate event in peer_handler for short channel id {}", msg.contents.short_channel_id);
1252                                                 if self.message_handler.route_handler.handle_channel_update(&msg).is_ok() {
1253                                                         self.forward_broadcast_msg(peers, &wire::Message::ChannelUpdate(msg), None);
1254                                                 }
1255                                         },
1256                                         MessageSendEvent::PaymentFailureNetworkUpdate { ref update } => {
1257                                                 self.message_handler.route_handler.handle_htlc_fail_channel_update(update);
1258                                         },
1259                                         MessageSendEvent::HandleError { ref node_id, ref action } => {
1260                                                 match *action {
1261                                                         msgs::ErrorAction::DisconnectPeer { ref msg } => {
1262                                                                 if let Some(mut descriptor) = peers.node_id_to_descriptor.remove(node_id) {
1263                                                                         if let Some(mut peer) = peers.peers.remove(&descriptor) {
1264                                                                                 if let Some(ref msg) = *msg {
1265                                                                                         log_trace!(self.logger, "Handling DisconnectPeer HandleError event in peer_handler for node {} with message {}",
1266                                                                                                         log_pubkey!(node_id),
1267                                                                                                         msg.data);
1268                                                                                         self.enqueue_message(&mut peer, msg);
1269                                                                                         // This isn't guaranteed to work, but if there is enough free
1270                                                                                         // room in the send buffer, put the error message there...
1271                                                                                         self.do_attempt_write_data(&mut descriptor, &mut peer);
1272                                                                                 } else {
1273                                                                                         log_trace!(self.logger, "Handling DisconnectPeer HandleError event in peer_handler for node {} with no message", log_pubkey!(node_id));
1274                                                                                 }
1275                                                                         }
1276                                                                         descriptor.disconnect_socket();
1277                                                                         self.message_handler.chan_handler.peer_disconnected(&node_id, false);
1278                                                                 }
1279                                                         },
1280                                                         msgs::ErrorAction::IgnoreError => {},
1281                                                         msgs::ErrorAction::SendErrorMessage { ref msg } => {
1282                                                                 log_trace!(self.logger, "Handling SendErrorMessage HandleError event in peer_handler for node {} with message {}",
1283                                                                                 log_pubkey!(node_id),
1284                                                                                 msg.data);
1285                                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1286                                                         },
1287                                                 }
1288                                         },
1289                                         MessageSendEvent::SendChannelRangeQuery { ref node_id, ref msg } => {
1290                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1291                                         },
1292                                         MessageSendEvent::SendShortIdsQuery { ref node_id, ref msg } => {
1293                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1294                                         }
1295                                         MessageSendEvent::SendReplyChannelRange { ref node_id, ref msg } => {
1296                                                 log_trace!(self.logger, "Handling SendReplyChannelRange event in peer_handler for node {} with num_scids={} first_blocknum={} number_of_blocks={}, sync_complete={}",
1297                                                         log_pubkey!(node_id),
1298                                                         msg.short_channel_ids.len(),
1299                                                         msg.first_blocknum,
1300                                                         msg.number_of_blocks,
1301                                                         msg.sync_complete);
1302                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1303                                         }
1304                                 }
1305                         }
1306
1307                         for (descriptor, peer) in peers.peers.iter_mut() {
1308                                 self.do_attempt_write_data(&mut (*descriptor).clone(), peer);
1309                         }
1310                 }
1311         }
1312
1313         /// Indicates that the given socket descriptor's connection is now closed.
1314         pub fn socket_disconnected(&self, descriptor: &Descriptor) {
1315                 self.disconnect_event_internal(descriptor, false);
1316         }
1317
1318         fn disconnect_event_internal(&self, descriptor: &Descriptor, no_connection_possible: bool) {
1319                 let mut peers = self.peers.lock().unwrap();
1320                 let peer_option = peers.peers.remove(descriptor);
1321                 match peer_option {
1322                         None => {
1323                                 // This is most likely a simple race condition where the user found that the socket
1324                                 // was disconnected, then we told the user to `disconnect_socket()`, then they
1325                                 // called this method. Either way we're disconnected, return.
1326                         },
1327                         Some(peer) => {
1328                                 match peer.their_node_id {
1329                                         Some(node_id) => {
1330                                                 peers.node_id_to_descriptor.remove(&node_id);
1331                                                 self.message_handler.chan_handler.peer_disconnected(&node_id, no_connection_possible);
1332                                         },
1333                                         None => {}
1334                                 }
1335                         }
1336                 };
1337         }
1338
1339         /// Disconnect a peer given its node id.
1340         ///
1341         /// Set `no_connection_possible` to true to prevent any further connection with this peer,
1342         /// force-closing any channels we have with it.
1343         ///
1344         /// If a peer is connected, this will call [`disconnect_socket`] on the descriptor for the
1345         /// peer. Thus, be very careful about reentrancy issues.
1346         ///
1347         /// [`disconnect_socket`]: SocketDescriptor::disconnect_socket
1348         pub fn disconnect_by_node_id(&self, node_id: PublicKey, no_connection_possible: bool) {
1349                 let mut peers_lock = self.peers.lock().unwrap();
1350                 if let Some(mut descriptor) = peers_lock.node_id_to_descriptor.remove(&node_id) {
1351                         log_trace!(self.logger, "Disconnecting peer with id {} due to client request", node_id);
1352                         peers_lock.peers.remove(&descriptor);
1353                         self.message_handler.chan_handler.peer_disconnected(&node_id, no_connection_possible);
1354                         descriptor.disconnect_socket();
1355                 }
1356         }
1357
1358         /// This function should be called roughly once every 30 seconds.
1359         /// It will send pings to each peer and disconnect those which did not respond to the last
1360         /// round of pings.
1361         ///
1362         /// May call [`send_data`] on all [`SocketDescriptor`]s. Thus, be very careful with reentrancy
1363         /// issues!
1364         ///
1365         /// [`send_data`]: SocketDescriptor::send_data
1366         pub fn timer_tick_occurred(&self) {
1367                 let mut peers_lock = self.peers.lock().unwrap();
1368                 {
1369                         let peers = &mut *peers_lock;
1370                         let node_id_to_descriptor = &mut peers.node_id_to_descriptor;
1371                         let peers = &mut peers.peers;
1372                         let mut descriptors_needing_disconnect = Vec::new();
1373
1374                         peers.retain(|descriptor, peer| {
1375                                 if peer.awaiting_pong {
1376                                         descriptors_needing_disconnect.push(descriptor.clone());
1377                                         match peer.their_node_id {
1378                                                 Some(node_id) => {
1379                                                         log_trace!(self.logger, "Disconnecting peer with id {} due to ping timeout", node_id);
1380                                                         node_id_to_descriptor.remove(&node_id);
1381                                                         self.message_handler.chan_handler.peer_disconnected(&node_id, false);
1382                                                 }
1383                                                 None => {
1384                                                         // This can't actually happen as we should have hit
1385                                                         // is_ready_for_encryption() previously on this same peer.
1386                                                         unreachable!();
1387                                                 },
1388                                         }
1389                                         return false;
1390                                 }
1391
1392                                 if !peer.channel_encryptor.is_ready_for_encryption() {
1393                                         // The peer needs to complete its handshake before we can exchange messages
1394                                         return true;
1395                                 }
1396
1397                                 let ping = msgs::Ping {
1398                                         ponglen: 0,
1399                                         byteslen: 64,
1400                                 };
1401                                 self.enqueue_message(peer, &ping);
1402
1403                                 let mut descriptor_clone = descriptor.clone();
1404                                 self.do_attempt_write_data(&mut descriptor_clone, peer);
1405
1406                                 peer.awaiting_pong = true;
1407                                 true
1408                         });
1409
1410                         for mut descriptor in descriptors_needing_disconnect.drain(..) {
1411                                 descriptor.disconnect_socket();
1412                         }
1413                 }
1414         }
1415 }
1416
1417 #[cfg(test)]
1418 mod tests {
1419         use ln::peer_handler::{PeerManager, MessageHandler, SocketDescriptor};
1420         use ln::msgs;
1421         use util::events;
1422         use util::test_utils;
1423
1424         use bitcoin::secp256k1::Secp256k1;
1425         use bitcoin::secp256k1::key::{SecretKey, PublicKey};
1426
1427         use prelude::*;
1428         use std::sync::{Arc, Mutex};
1429         use core::sync::atomic::Ordering;
1430
1431         #[derive(Clone)]
1432         struct FileDescriptor {
1433                 fd: u16,
1434                 outbound_data: Arc<Mutex<Vec<u8>>>,
1435         }
1436         impl PartialEq for FileDescriptor {
1437                 fn eq(&self, other: &Self) -> bool {
1438                         self.fd == other.fd
1439                 }
1440         }
1441         impl Eq for FileDescriptor { }
1442         impl core::hash::Hash for FileDescriptor {
1443                 fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
1444                         self.fd.hash(hasher)
1445                 }
1446         }
1447
1448         impl SocketDescriptor for FileDescriptor {
1449                 fn send_data(&mut self, data: &[u8], _resume_read: bool) -> usize {
1450                         self.outbound_data.lock().unwrap().extend_from_slice(data);
1451                         data.len()
1452                 }
1453
1454                 fn disconnect_socket(&mut self) {}
1455         }
1456
1457         struct PeerManagerCfg {
1458                 chan_handler: test_utils::TestChannelMessageHandler,
1459                 routing_handler: test_utils::TestRoutingMessageHandler,
1460                 logger: test_utils::TestLogger,
1461         }
1462
1463         fn create_peermgr_cfgs(peer_count: usize) -> Vec<PeerManagerCfg> {
1464                 let mut cfgs = Vec::new();
1465                 for _ in 0..peer_count {
1466                         cfgs.push(
1467                                 PeerManagerCfg{
1468                                         chan_handler: test_utils::TestChannelMessageHandler::new(),
1469                                         logger: test_utils::TestLogger::new(),
1470                                         routing_handler: test_utils::TestRoutingMessageHandler::new(),
1471                                 }
1472                         );
1473                 }
1474
1475                 cfgs
1476         }
1477
1478         fn create_network<'a>(peer_count: usize, cfgs: &'a Vec<PeerManagerCfg>) -> Vec<PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, &'a test_utils::TestLogger>> {
1479                 let mut peers = Vec::new();
1480                 for i in 0..peer_count {
1481                         let node_secret = SecretKey::from_slice(&[42 + i as u8; 32]).unwrap();
1482                         let ephemeral_bytes = [i as u8; 32];
1483                         let msg_handler = MessageHandler { chan_handler: &cfgs[i].chan_handler, route_handler: &cfgs[i].routing_handler };
1484                         let peer = PeerManager::new(msg_handler, node_secret, &ephemeral_bytes, &cfgs[i].logger);
1485                         peers.push(peer);
1486                 }
1487
1488                 peers
1489         }
1490
1491         fn establish_connection<'a>(peer_a: &PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, &'a test_utils::TestLogger>, peer_b: &PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, &'a test_utils::TestLogger>) -> (FileDescriptor, FileDescriptor) {
1492                 let secp_ctx = Secp256k1::new();
1493                 let a_id = PublicKey::from_secret_key(&secp_ctx, &peer_a.our_node_secret);
1494                 let mut fd_a = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
1495                 let mut fd_b = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
1496                 let initial_data = peer_b.new_outbound_connection(a_id, fd_b.clone()).unwrap();
1497                 peer_a.new_inbound_connection(fd_a.clone()).unwrap();
1498                 assert_eq!(peer_a.read_event(&mut fd_a, &initial_data).unwrap(), false);
1499                 peer_a.process_events();
1500                 assert_eq!(peer_b.read_event(&mut fd_b, &fd_a.outbound_data.lock().unwrap().split_off(0)).unwrap(), false);
1501                 peer_b.process_events();
1502                 assert_eq!(peer_a.read_event(&mut fd_a, &fd_b.outbound_data.lock().unwrap().split_off(0)).unwrap(), false);
1503                 (fd_a.clone(), fd_b.clone())
1504         }
1505
1506         #[test]
1507         fn test_disconnect_peer() {
1508                 // Simple test which builds a network of PeerManager, connects and brings them to NoiseState::Finished and
1509                 // push a DisconnectPeer event to remove the node flagged by id
1510                 let cfgs = create_peermgr_cfgs(2);
1511                 let chan_handler = test_utils::TestChannelMessageHandler::new();
1512                 let mut peers = create_network(2, &cfgs);
1513                 establish_connection(&peers[0], &peers[1]);
1514                 assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 1);
1515
1516                 let secp_ctx = Secp256k1::new();
1517                 let their_id = PublicKey::from_secret_key(&secp_ctx, &peers[1].our_node_secret);
1518
1519                 chan_handler.pending_events.lock().unwrap().push(events::MessageSendEvent::HandleError {
1520                         node_id: their_id,
1521                         action: msgs::ErrorAction::DisconnectPeer { msg: None },
1522                 });
1523                 assert_eq!(chan_handler.pending_events.lock().unwrap().len(), 1);
1524                 peers[0].message_handler.chan_handler = &chan_handler;
1525
1526                 peers[0].process_events();
1527                 assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 0);
1528         }
1529
1530         #[test]
1531         fn test_timer_tick_occurred() {
1532                 // Create peers, a vector of two peer managers, perform initial set up and check that peers[0] has one Peer.
1533                 let cfgs = create_peermgr_cfgs(2);
1534                 let peers = create_network(2, &cfgs);
1535                 establish_connection(&peers[0], &peers[1]);
1536                 assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 1);
1537
1538                 // peers[0] awaiting_pong is set to true, but the Peer is still connected
1539                 peers[0].timer_tick_occurred();
1540                 peers[0].process_events();
1541                 assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 1);
1542
1543                 // Since timer_tick_occurred() is called again when awaiting_pong is true, all Peers are disconnected
1544                 peers[0].timer_tick_occurred();
1545                 peers[0].process_events();
1546                 assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 0);
1547         }
1548
1549         #[test]
1550         fn test_do_attempt_write_data() {
1551                 // Create 2 peers with custom TestRoutingMessageHandlers and connect them.
1552                 let cfgs = create_peermgr_cfgs(2);
1553                 cfgs[0].routing_handler.request_full_sync.store(true, Ordering::Release);
1554                 cfgs[1].routing_handler.request_full_sync.store(true, Ordering::Release);
1555                 let peers = create_network(2, &cfgs);
1556
1557                 // By calling establish_connect, we trigger do_attempt_write_data between
1558                 // the peers. Previously this function would mistakenly enter an infinite loop
1559                 // when there were more channel messages available than could fit into a peer's
1560                 // buffer. This issue would now be detected by this test (because we use custom
1561                 // RoutingMessageHandlers that intentionally return more channel messages
1562                 // than can fit into a peer's buffer).
1563                 let (mut fd_a, mut fd_b) = establish_connection(&peers[0], &peers[1]);
1564
1565                 // Make each peer to read the messages that the other peer just wrote to them.
1566                 peers[0].process_events();
1567                 peers[1].read_event(&mut fd_b, &fd_a.outbound_data.lock().unwrap().split_off(0)).unwrap();
1568                 peers[1].process_events();
1569                 peers[0].read_event(&mut fd_a, &fd_b.outbound_data.lock().unwrap().split_off(0)).unwrap();
1570
1571                 // Check that each peer has received the expected number of channel updates and channel
1572                 // announcements.
1573                 assert_eq!(cfgs[0].routing_handler.chan_upds_recvd.load(Ordering::Acquire), 100);
1574                 assert_eq!(cfgs[0].routing_handler.chan_anns_recvd.load(Ordering::Acquire), 50);
1575                 assert_eq!(cfgs[1].routing_handler.chan_upds_recvd.load(Ordering::Acquire), 100);
1576                 assert_eq!(cfgs[1].routing_handler.chan_anns_recvd.load(Ordering::Acquire), 50);
1577         }
1578 }