Macroize feature printing to ensure we don't miss new flags
[rust-lightning] / lightning / src / ln / peer_handler.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! Top level peer message handling and socket handling logic lives here.
11 //!
12 //! Instead of actually servicing sockets ourselves we require that you implement the
13 //! SocketDescriptor interface and use that to receive actions which you should perform on the
14 //! socket, and call into PeerManager with bytes read from the socket. The PeerManager will then
15 //! call into the provided message handlers (probably a ChannelManager and NetGraphmsgHandler) with messages
16 //! they should handle, and encoding/sending response messages.
17
18 use bitcoin::secp256k1::key::{SecretKey,PublicKey};
19
20 use ln::features::InitFeatures;
21 use ln::msgs;
22 use ln::msgs::{ChannelMessageHandler, LightningError, RoutingMessageHandler};
23 use ln::channelmanager::{SimpleArcChannelManager, SimpleRefChannelManager};
24 use util::ser::{VecWriter, Writeable};
25 use ln::peer_channel_encryptor::{PeerChannelEncryptor,NextNoiseStep};
26 use ln::wire;
27 use ln::wire::Encode;
28 use util::byte_utils;
29 use util::events::{MessageSendEvent, MessageSendEventsProvider};
30 use util::logger::Logger;
31 use routing::network_graph::NetGraphMsgHandler;
32
33 use prelude::*;
34 use alloc::collections::LinkedList;
35 use alloc::fmt::Debug;
36 use sync::{Arc, Mutex};
37 use core::sync::atomic::{AtomicUsize, Ordering};
38 use core::{cmp, hash, fmt, mem};
39 use core::ops::Deref;
40 use std::error;
41
42 use bitcoin::hashes::sha256::Hash as Sha256;
43 use bitcoin::hashes::sha256::HashEngine as Sha256Engine;
44 use bitcoin::hashes::{HashEngine, Hash};
45
46 /// A dummy struct which implements `RoutingMessageHandler` without storing any routing information
47 /// or doing any processing. You can provide one of these as the route_handler in a MessageHandler.
48 pub struct IgnoringMessageHandler{}
49 impl MessageSendEventsProvider for IgnoringMessageHandler {
50         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> { Vec::new() }
51 }
52 impl RoutingMessageHandler for IgnoringMessageHandler {
53         fn handle_node_announcement(&self, _msg: &msgs::NodeAnnouncement) -> Result<bool, LightningError> { Ok(false) }
54         fn handle_channel_announcement(&self, _msg: &msgs::ChannelAnnouncement) -> Result<bool, LightningError> { Ok(false) }
55         fn handle_channel_update(&self, _msg: &msgs::ChannelUpdate) -> Result<bool, LightningError> { Ok(false) }
56         fn handle_htlc_fail_channel_update(&self, _update: &msgs::HTLCFailChannelUpdate) {}
57         fn get_next_channel_announcements(&self, _starting_point: u64, _batch_amount: u8) ->
58                 Vec<(msgs::ChannelAnnouncement, Option<msgs::ChannelUpdate>, Option<msgs::ChannelUpdate>)> { Vec::new() }
59         fn get_next_node_announcements(&self, _starting_point: Option<&PublicKey>, _batch_amount: u8) -> Vec<msgs::NodeAnnouncement> { Vec::new() }
60         fn sync_routing_table(&self, _their_node_id: &PublicKey, _init: &msgs::Init) {}
61         fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: msgs::ReplyChannelRange) -> Result<(), LightningError> { Ok(()) }
62         fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: msgs::ReplyShortChannelIdsEnd) -> Result<(), LightningError> { Ok(()) }
63         fn handle_query_channel_range(&self, _their_node_id: &PublicKey, _msg: msgs::QueryChannelRange) -> Result<(), LightningError> { Ok(()) }
64         fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: msgs::QueryShortChannelIds) -> Result<(), LightningError> { Ok(()) }
65 }
66 impl Deref for IgnoringMessageHandler {
67         type Target = IgnoringMessageHandler;
68         fn deref(&self) -> &Self { self }
69 }
70
71 /// A dummy struct which implements `ChannelMessageHandler` without having any channels.
72 /// You can provide one of these as the route_handler in a MessageHandler.
73 pub struct ErroringMessageHandler {
74         message_queue: Mutex<Vec<MessageSendEvent>>
75 }
76 impl ErroringMessageHandler {
77         /// Constructs a new ErroringMessageHandler
78         pub fn new() -> Self {
79                 Self { message_queue: Mutex::new(Vec::new()) }
80         }
81         fn push_error(&self, node_id: &PublicKey, channel_id: [u8; 32]) {
82                 self.message_queue.lock().unwrap().push(MessageSendEvent::HandleError {
83                         action: msgs::ErrorAction::SendErrorMessage {
84                                 msg: msgs::ErrorMessage { channel_id, data: "We do not support channel messages, sorry.".to_owned() },
85                         },
86                         node_id: node_id.clone(),
87                 });
88         }
89 }
90 impl MessageSendEventsProvider for ErroringMessageHandler {
91         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
92                 let mut res = Vec::new();
93                 mem::swap(&mut res, &mut self.message_queue.lock().unwrap());
94                 res
95         }
96 }
97 impl ChannelMessageHandler for ErroringMessageHandler {
98         // Any messages which are related to a specific channel generate an error message to let the
99         // peer know we don't care about channels.
100         fn handle_open_channel(&self, their_node_id: &PublicKey, _their_features: InitFeatures, msg: &msgs::OpenChannel) {
101                 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
102         }
103         fn handle_accept_channel(&self, their_node_id: &PublicKey, _their_features: InitFeatures, msg: &msgs::AcceptChannel) {
104                 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
105         }
106         fn handle_funding_created(&self, their_node_id: &PublicKey, msg: &msgs::FundingCreated) {
107                 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
108         }
109         fn handle_funding_signed(&self, their_node_id: &PublicKey, msg: &msgs::FundingSigned) {
110                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
111         }
112         fn handle_funding_locked(&self, their_node_id: &PublicKey, msg: &msgs::FundingLocked) {
113                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
114         }
115         fn handle_shutdown(&self, their_node_id: &PublicKey, _their_features: &InitFeatures, msg: &msgs::Shutdown) {
116                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
117         }
118         fn handle_closing_signed(&self, their_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
119                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
120         }
121         fn handle_update_add_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
122                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
123         }
124         fn handle_update_fulfill_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
125                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
126         }
127         fn handle_update_fail_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
128                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
129         }
130         fn handle_update_fail_malformed_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
131                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
132         }
133         fn handle_commitment_signed(&self, their_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
134                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
135         }
136         fn handle_revoke_and_ack(&self, their_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
137                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
138         }
139         fn handle_update_fee(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFee) {
140                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
141         }
142         fn handle_announcement_signatures(&self, their_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
143                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
144         }
145         fn handle_channel_reestablish(&self, their_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
146                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
147         }
148         // msgs::ChannelUpdate does not contain the channel_id field, so we just drop them.
149         fn handle_channel_update(&self, _their_node_id: &PublicKey, _msg: &msgs::ChannelUpdate) {}
150         fn peer_disconnected(&self, _their_node_id: &PublicKey, _no_connection_possible: bool) {}
151         fn peer_connected(&self, _their_node_id: &PublicKey, _msg: &msgs::Init) {}
152         fn handle_error(&self, _their_node_id: &PublicKey, _msg: &msgs::ErrorMessage) {}
153 }
154 impl Deref for ErroringMessageHandler {
155         type Target = ErroringMessageHandler;
156         fn deref(&self) -> &Self { self }
157 }
158
159 /// Provides references to trait impls which handle different types of messages.
160 pub struct MessageHandler<CM: Deref, RM: Deref> where
161                 CM::Target: ChannelMessageHandler,
162                 RM::Target: RoutingMessageHandler {
163         /// A message handler which handles messages specific to channels. Usually this is just a
164         /// [`ChannelManager`] object or an [`ErroringMessageHandler`].
165         ///
166         /// [`ChannelManager`]: crate::ln::channelmanager::ChannelManager
167         pub chan_handler: CM,
168         /// A message handler which handles messages updating our knowledge of the network channel
169         /// graph. Usually this is just a [`NetGraphMsgHandler`] object or an
170         /// [`IgnoringMessageHandler`].
171         ///
172         /// [`NetGraphMsgHandler`]: crate::routing::network_graph::NetGraphMsgHandler
173         pub route_handler: RM,
174 }
175
176 /// Provides an object which can be used to send data to and which uniquely identifies a connection
177 /// to a remote host. You will need to be able to generate multiple of these which meet Eq and
178 /// implement Hash to meet the PeerManager API.
179 ///
180 /// For efficiency, Clone should be relatively cheap for this type.
181 ///
182 /// Two descriptors may compare equal (by [`cmp::Eq`] and [`hash::Hash`]) as long as the original
183 /// has been disconnected, the [`PeerManager`] has been informed of the disconnection (either by it
184 /// having triggered the disconnection or a call to [`PeerManager::socket_disconnected`]), and no
185 /// further calls to the [`PeerManager`] related to the original socket occur. This allows you to
186 /// use a file descriptor for your SocketDescriptor directly, however for simplicity you may wish
187 /// to simply use another value which is guaranteed to be globally unique instead.
188 pub trait SocketDescriptor : cmp::Eq + hash::Hash + Clone {
189         /// Attempts to send some data from the given slice to the peer.
190         ///
191         /// Returns the amount of data which was sent, possibly 0 if the socket has since disconnected.
192         /// Note that in the disconnected case, [`PeerManager::socket_disconnected`] must still be
193         /// called and further write attempts may occur until that time.
194         ///
195         /// If the returned size is smaller than `data.len()`, a
196         /// [`PeerManager::write_buffer_space_avail`] call must be made the next time more data can be
197         /// written. Additionally, until a `send_data` event completes fully, no further
198         /// [`PeerManager::read_event`] calls should be made for the same peer! Because this is to
199         /// prevent denial-of-service issues, you should not read or buffer any data from the socket
200         /// until then.
201         ///
202         /// If a [`PeerManager::read_event`] call on this descriptor had previously returned true
203         /// (indicating that read events should be paused to prevent DoS in the send buffer),
204         /// `resume_read` may be set indicating that read events on this descriptor should resume. A
205         /// `resume_read` of false carries no meaning, and should not cause any action.
206         fn send_data(&mut self, data: &[u8], resume_read: bool) -> usize;
207         /// Disconnect the socket pointed to by this SocketDescriptor.
208         ///
209         /// You do *not* need to call [`PeerManager::socket_disconnected`] with this socket after this
210         /// call (doing so is a noop).
211         fn disconnect_socket(&mut self);
212 }
213
214 /// Error for PeerManager errors. If you get one of these, you must disconnect the socket and
215 /// generate no further read_event/write_buffer_space_avail/socket_disconnected calls for the
216 /// descriptor.
217 #[derive(Clone)]
218 pub struct PeerHandleError {
219         /// Used to indicate that we probably can't make any future connections to this peer, implying
220         /// we should go ahead and force-close any channels we have with it.
221         pub no_connection_possible: bool,
222 }
223 impl fmt::Debug for PeerHandleError {
224         fn fmt(&self, formatter: &mut fmt::Formatter) -> Result<(), fmt::Error> {
225                 formatter.write_str("Peer Sent Invalid Data")
226         }
227 }
228 impl fmt::Display for PeerHandleError {
229         fn fmt(&self, formatter: &mut fmt::Formatter) -> Result<(), fmt::Error> {
230                 formatter.write_str("Peer Sent Invalid Data")
231         }
232 }
233 impl error::Error for PeerHandleError {
234         fn description(&self) -> &str {
235                 "Peer Sent Invalid Data"
236         }
237 }
238
239 enum InitSyncTracker{
240         NoSyncRequested,
241         ChannelsSyncing(u64),
242         NodesSyncing(PublicKey),
243 }
244
245 /// When the outbound buffer has this many messages, we'll stop reading bytes from the peer until
246 /// we have fewer than this many messages in the outbound buffer again.
247 /// We also use this as the target number of outbound gossip messages to keep in the write buffer,
248 /// refilled as we send bytes.
249 const OUTBOUND_BUFFER_LIMIT_READ_PAUSE: usize = 10;
250 /// When the outbound buffer has this many messages, we'll simply skip relaying gossip messages to
251 /// the peer.
252 const OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP: usize = 20;
253
254 struct Peer {
255         channel_encryptor: PeerChannelEncryptor,
256         their_node_id: Option<PublicKey>,
257         their_features: Option<InitFeatures>,
258
259         pending_outbound_buffer: LinkedList<Vec<u8>>,
260         pending_outbound_buffer_first_msg_offset: usize,
261         awaiting_write_event: bool,
262
263         pending_read_buffer: Vec<u8>,
264         pending_read_buffer_pos: usize,
265         pending_read_is_header: bool,
266
267         sync_status: InitSyncTracker,
268
269         awaiting_pong: bool,
270 }
271
272 impl Peer {
273         /// Returns true if the channel announcements/updates for the given channel should be
274         /// forwarded to this peer.
275         /// If we are sending our routing table to this peer and we have not yet sent channel
276         /// announcements/updates for the given channel_id then we will send it when we get to that
277         /// point and we shouldn't send it yet to avoid sending duplicate updates. If we've already
278         /// sent the old versions, we should send the update, and so return true here.
279         fn should_forward_channel_announcement(&self, channel_id: u64)->bool{
280                 match self.sync_status {
281                         InitSyncTracker::NoSyncRequested => true,
282                         InitSyncTracker::ChannelsSyncing(i) => i < channel_id,
283                         InitSyncTracker::NodesSyncing(_) => true,
284                 }
285         }
286
287         /// Similar to the above, but for node announcements indexed by node_id.
288         fn should_forward_node_announcement(&self, node_id: PublicKey) -> bool {
289                 match self.sync_status {
290                         InitSyncTracker::NoSyncRequested => true,
291                         InitSyncTracker::ChannelsSyncing(_) => false,
292                         InitSyncTracker::NodesSyncing(pk) => pk < node_id,
293                 }
294         }
295 }
296
297 struct PeerHolder<Descriptor: SocketDescriptor> {
298         peers: HashMap<Descriptor, Peer>,
299         /// Only add to this set when noise completes:
300         node_id_to_descriptor: HashMap<PublicKey, Descriptor>,
301 }
302
303 #[cfg(not(any(target_pointer_width = "32", target_pointer_width = "64")))]
304 fn _check_usize_is_32_or_64() {
305         // See below, less than 32 bit pointers may be unsafe here!
306         unsafe { mem::transmute::<*const usize, [u8; 4]>(panic!()); }
307 }
308
309 /// SimpleArcPeerManager is useful when you need a PeerManager with a static lifetime, e.g.
310 /// when you're using lightning-net-tokio (since tokio::spawn requires parameters with static
311 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
312 /// SimpleRefPeerManager is the more appropriate type. Defining these type aliases prevents
313 /// issues such as overly long function definitions.
314 pub type SimpleArcPeerManager<SD, M, T, F, C, L> = PeerManager<SD, Arc<SimpleArcChannelManager<M, T, F, L>>, Arc<NetGraphMsgHandler<Arc<C>, Arc<L>>>, Arc<L>>;
315
316 /// SimpleRefPeerManager is a type alias for a PeerManager reference, and is the reference
317 /// counterpart to the SimpleArcPeerManager type alias. Use this type by default when you don't
318 /// need a PeerManager with a static lifetime. You'll need a static lifetime in cases such as
319 /// usage of lightning-net-tokio (since tokio::spawn requires parameters with static lifetimes).
320 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
321 /// helps with issues such as long function definitions.
322 pub type SimpleRefPeerManager<'a, 'b, 'c, 'd, 'e, 'f, 'g, SD, M, T, F, C, L> = PeerManager<SD, SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, M, T, F, L>, &'e NetGraphMsgHandler<&'g C, &'f L>, &'f L>;
323
324 /// A PeerManager manages a set of peers, described by their [`SocketDescriptor`] and marshalls
325 /// socket events into messages which it passes on to its [`MessageHandler`].
326 ///
327 /// Locks are taken internally, so you must never assume that reentrancy from a
328 /// [`SocketDescriptor`] call back into [`PeerManager`] methods will not deadlock.
329 ///
330 /// Calls to [`read_event`] will decode relevant messages and pass them to the
331 /// [`ChannelMessageHandler`], likely doing message processing in-line. Thus, the primary form of
332 /// parallelism in Rust-Lightning is in calls to [`read_event`]. Note, however, that calls to any
333 /// [`PeerManager`] functions related to the same connection must occur only in serial, making new
334 /// calls only after previous ones have returned.
335 ///
336 /// Rather than using a plain PeerManager, it is preferable to use either a SimpleArcPeerManager
337 /// a SimpleRefPeerManager, for conciseness. See their documentation for more details, but
338 /// essentially you should default to using a SimpleRefPeerManager, and use a
339 /// SimpleArcPeerManager when you require a PeerManager with a static lifetime, such as when
340 /// you're using lightning-net-tokio.
341 ///
342 /// [`read_event`]: PeerManager::read_event
343 pub struct PeerManager<Descriptor: SocketDescriptor, CM: Deref, RM: Deref, L: Deref> where
344                 CM::Target: ChannelMessageHandler,
345                 RM::Target: RoutingMessageHandler,
346                 L::Target: Logger {
347         message_handler: MessageHandler<CM, RM>,
348         peers: Mutex<PeerHolder<Descriptor>>,
349         our_node_secret: SecretKey,
350         ephemeral_key_midstate: Sha256Engine,
351
352         // Usize needs to be at least 32 bits to avoid overflowing both low and high. If usize is 64
353         // bits we will never realistically count into high:
354         peer_counter_low: AtomicUsize,
355         peer_counter_high: AtomicUsize,
356
357         logger: L,
358 }
359
360 enum MessageHandlingError {
361         PeerHandleError(PeerHandleError),
362         LightningError(LightningError),
363 }
364
365 impl From<PeerHandleError> for MessageHandlingError {
366         fn from(error: PeerHandleError) -> Self {
367                 MessageHandlingError::PeerHandleError(error)
368         }
369 }
370
371 impl From<LightningError> for MessageHandlingError {
372         fn from(error: LightningError) -> Self {
373                 MessageHandlingError::LightningError(error)
374         }
375 }
376
377 macro_rules! encode_msg {
378         ($msg: expr) => {{
379                 let mut buffer = VecWriter(Vec::new());
380                 wire::write($msg, &mut buffer).unwrap();
381                 buffer.0
382         }}
383 }
384
385 impl<Descriptor: SocketDescriptor, CM: Deref, L: Deref> PeerManager<Descriptor, CM, IgnoringMessageHandler, L> where
386                 CM::Target: ChannelMessageHandler,
387                 L::Target: Logger {
388         /// Constructs a new PeerManager with the given ChannelMessageHandler. No routing message
389         /// handler is used and network graph messages are ignored.
390         ///
391         /// ephemeral_random_data is used to derive per-connection ephemeral keys and must be
392         /// cryptographically secure random bytes.
393         ///
394         /// (C-not exported) as we can't export a PeerManager with a dummy route handler
395         pub fn new_channel_only(channel_message_handler: CM, our_node_secret: SecretKey, ephemeral_random_data: &[u8; 32], logger: L) -> Self {
396                 Self::new(MessageHandler {
397                         chan_handler: channel_message_handler,
398                         route_handler: IgnoringMessageHandler{},
399                 }, our_node_secret, ephemeral_random_data, logger)
400         }
401 }
402
403 impl<Descriptor: SocketDescriptor, RM: Deref, L: Deref> PeerManager<Descriptor, ErroringMessageHandler, RM, L> where
404                 RM::Target: RoutingMessageHandler,
405                 L::Target: Logger {
406         /// Constructs a new PeerManager with the given RoutingMessageHandler. No channel message
407         /// handler is used and messages related to channels will be ignored (or generate error
408         /// messages). Note that some other lightning implementations time-out connections after some
409         /// time if no channel is built with the peer.
410         ///
411         /// ephemeral_random_data is used to derive per-connection ephemeral keys and must be
412         /// cryptographically secure random bytes.
413         ///
414         /// (C-not exported) as we can't export a PeerManager with a dummy channel handler
415         pub fn new_routing_only(routing_message_handler: RM, our_node_secret: SecretKey, ephemeral_random_data: &[u8; 32], logger: L) -> Self {
416                 Self::new(MessageHandler {
417                         chan_handler: ErroringMessageHandler::new(),
418                         route_handler: routing_message_handler,
419                 }, our_node_secret, ephemeral_random_data, logger)
420         }
421 }
422
423 impl<Descriptor: SocketDescriptor, CM: Deref, RM: Deref, L: Deref> PeerManager<Descriptor, CM, RM, L> where
424                 CM::Target: ChannelMessageHandler,
425                 RM::Target: RoutingMessageHandler,
426                 L::Target: Logger {
427         /// Constructs a new PeerManager with the given message handlers and node_id secret key
428         /// ephemeral_random_data is used to derive per-connection ephemeral keys and must be
429         /// cryptographically secure random bytes.
430         pub fn new(message_handler: MessageHandler<CM, RM>, our_node_secret: SecretKey, ephemeral_random_data: &[u8; 32], logger: L) -> Self {
431                 let mut ephemeral_key_midstate = Sha256::engine();
432                 ephemeral_key_midstate.input(ephemeral_random_data);
433
434                 PeerManager {
435                         message_handler,
436                         peers: Mutex::new(PeerHolder {
437                                 peers: HashMap::new(),
438                                 node_id_to_descriptor: HashMap::new()
439                         }),
440                         our_node_secret,
441                         ephemeral_key_midstate,
442                         peer_counter_low: AtomicUsize::new(0),
443                         peer_counter_high: AtomicUsize::new(0),
444                         logger,
445                 }
446         }
447
448         /// Get the list of node ids for peers which have completed the initial handshake.
449         ///
450         /// For outbound connections, this will be the same as the their_node_id parameter passed in to
451         /// new_outbound_connection, however entries will only appear once the initial handshake has
452         /// completed and we are sure the remote peer has the private key for the given node_id.
453         pub fn get_peer_node_ids(&self) -> Vec<PublicKey> {
454                 let peers = self.peers.lock().unwrap();
455                 peers.peers.values().filter_map(|p| {
456                         if !p.channel_encryptor.is_ready_for_encryption() || p.their_features.is_none() {
457                                 return None;
458                         }
459                         p.their_node_id
460                 }).collect()
461         }
462
463         fn get_ephemeral_key(&self) -> SecretKey {
464                 let mut ephemeral_hash = self.ephemeral_key_midstate.clone();
465                 let low = self.peer_counter_low.fetch_add(1, Ordering::AcqRel);
466                 let high = if low == 0 {
467                         self.peer_counter_high.fetch_add(1, Ordering::AcqRel)
468                 } else {
469                         self.peer_counter_high.load(Ordering::Acquire)
470                 };
471                 ephemeral_hash.input(&byte_utils::le64_to_array(low as u64));
472                 ephemeral_hash.input(&byte_utils::le64_to_array(high as u64));
473                 SecretKey::from_slice(&Sha256::from_engine(ephemeral_hash).into_inner()).expect("You broke SHA-256!")
474         }
475
476         /// Indicates a new outbound connection has been established to a node with the given node_id.
477         /// Note that if an Err is returned here you MUST NOT call socket_disconnected for the new
478         /// descriptor but must disconnect the connection immediately.
479         ///
480         /// Returns a small number of bytes to send to the remote node (currently always 50).
481         ///
482         /// Panics if descriptor is duplicative with some other descriptor which has not yet been
483         /// [`socket_disconnected()`].
484         ///
485         /// [`socket_disconnected()`]: PeerManager::socket_disconnected
486         pub fn new_outbound_connection(&self, their_node_id: PublicKey, descriptor: Descriptor) -> Result<Vec<u8>, PeerHandleError> {
487                 let mut peer_encryptor = PeerChannelEncryptor::new_outbound(their_node_id.clone(), self.get_ephemeral_key());
488                 let res = peer_encryptor.get_act_one().to_vec();
489                 let pending_read_buffer = [0; 50].to_vec(); // Noise act two is 50 bytes
490
491                 let mut peers = self.peers.lock().unwrap();
492                 if peers.peers.insert(descriptor, Peer {
493                         channel_encryptor: peer_encryptor,
494                         their_node_id: None,
495                         their_features: None,
496
497                         pending_outbound_buffer: LinkedList::new(),
498                         pending_outbound_buffer_first_msg_offset: 0,
499                         awaiting_write_event: false,
500
501                         pending_read_buffer,
502                         pending_read_buffer_pos: 0,
503                         pending_read_is_header: false,
504
505                         sync_status: InitSyncTracker::NoSyncRequested,
506
507                         awaiting_pong: false,
508                 }).is_some() {
509                         panic!("PeerManager driver duplicated descriptors!");
510                 };
511                 Ok(res)
512         }
513
514         /// Indicates a new inbound connection has been established.
515         ///
516         /// May refuse the connection by returning an Err, but will never write bytes to the remote end
517         /// (outbound connector always speaks first). Note that if an Err is returned here you MUST NOT
518         /// call socket_disconnected for the new descriptor but must disconnect the connection
519         /// immediately.
520         ///
521         /// Panics if descriptor is duplicative with some other descriptor which has not yet been
522         /// [`socket_disconnected()`].
523         ///
524         /// [`socket_disconnected()`]: PeerManager::socket_disconnected
525         pub fn new_inbound_connection(&self, descriptor: Descriptor) -> Result<(), PeerHandleError> {
526                 let peer_encryptor = PeerChannelEncryptor::new_inbound(&self.our_node_secret);
527                 let pending_read_buffer = [0; 50].to_vec(); // Noise act one is 50 bytes
528
529                 let mut peers = self.peers.lock().unwrap();
530                 if peers.peers.insert(descriptor, Peer {
531                         channel_encryptor: peer_encryptor,
532                         their_node_id: None,
533                         their_features: None,
534
535                         pending_outbound_buffer: LinkedList::new(),
536                         pending_outbound_buffer_first_msg_offset: 0,
537                         awaiting_write_event: false,
538
539                         pending_read_buffer,
540                         pending_read_buffer_pos: 0,
541                         pending_read_is_header: false,
542
543                         sync_status: InitSyncTracker::NoSyncRequested,
544
545                         awaiting_pong: false,
546                 }).is_some() {
547                         panic!("PeerManager driver duplicated descriptors!");
548                 };
549                 Ok(())
550         }
551
552         fn do_attempt_write_data(&self, descriptor: &mut Descriptor, peer: &mut Peer) {
553                 while !peer.awaiting_write_event {
554                         if peer.pending_outbound_buffer.len() < OUTBOUND_BUFFER_LIMIT_READ_PAUSE {
555                                 match peer.sync_status {
556                                         InitSyncTracker::NoSyncRequested => {},
557                                         InitSyncTracker::ChannelsSyncing(c) if c < 0xffff_ffff_ffff_ffff => {
558                                                 let steps = ((OUTBOUND_BUFFER_LIMIT_READ_PAUSE - peer.pending_outbound_buffer.len() + 2) / 3) as u8;
559                                                 let all_messages = self.message_handler.route_handler.get_next_channel_announcements(c, steps);
560                                                 for &(ref announce, ref update_a_option, ref update_b_option) in all_messages.iter() {
561                                                         self.enqueue_message(peer, announce);
562                                                         if let &Some(ref update_a) = update_a_option {
563                                                                 self.enqueue_message(peer, update_a);
564                                                         }
565                                                         if let &Some(ref update_b) = update_b_option {
566                                                                 self.enqueue_message(peer, update_b);
567                                                         }
568                                                         peer.sync_status = InitSyncTracker::ChannelsSyncing(announce.contents.short_channel_id + 1);
569                                                 }
570                                                 if all_messages.is_empty() || all_messages.len() != steps as usize {
571                                                         peer.sync_status = InitSyncTracker::ChannelsSyncing(0xffff_ffff_ffff_ffff);
572                                                 }
573                                         },
574                                         InitSyncTracker::ChannelsSyncing(c) if c == 0xffff_ffff_ffff_ffff => {
575                                                 let steps = (OUTBOUND_BUFFER_LIMIT_READ_PAUSE - peer.pending_outbound_buffer.len()) as u8;
576                                                 let all_messages = self.message_handler.route_handler.get_next_node_announcements(None, steps);
577                                                 for msg in all_messages.iter() {
578                                                         self.enqueue_message(peer, msg);
579                                                         peer.sync_status = InitSyncTracker::NodesSyncing(msg.contents.node_id);
580                                                 }
581                                                 if all_messages.is_empty() || all_messages.len() != steps as usize {
582                                                         peer.sync_status = InitSyncTracker::NoSyncRequested;
583                                                 }
584                                         },
585                                         InitSyncTracker::ChannelsSyncing(_) => unreachable!(),
586                                         InitSyncTracker::NodesSyncing(key) => {
587                                                 let steps = (OUTBOUND_BUFFER_LIMIT_READ_PAUSE - peer.pending_outbound_buffer.len()) as u8;
588                                                 let all_messages = self.message_handler.route_handler.get_next_node_announcements(Some(&key), steps);
589                                                 for msg in all_messages.iter() {
590                                                         self.enqueue_message(peer, msg);
591                                                         peer.sync_status = InitSyncTracker::NodesSyncing(msg.contents.node_id);
592                                                 }
593                                                 if all_messages.is_empty() || all_messages.len() != steps as usize {
594                                                         peer.sync_status = InitSyncTracker::NoSyncRequested;
595                                                 }
596                                         },
597                                 }
598                         }
599
600                         if {
601                                 let next_buff = match peer.pending_outbound_buffer.front() {
602                                         None => return,
603                                         Some(buff) => buff,
604                                 };
605
606                                 let should_be_reading = peer.pending_outbound_buffer.len() < OUTBOUND_BUFFER_LIMIT_READ_PAUSE;
607                                 let pending = &next_buff[peer.pending_outbound_buffer_first_msg_offset..];
608                                 let data_sent = descriptor.send_data(pending, should_be_reading);
609                                 peer.pending_outbound_buffer_first_msg_offset += data_sent;
610                                 if peer.pending_outbound_buffer_first_msg_offset == next_buff.len() { true } else { false }
611                         } {
612                                 peer.pending_outbound_buffer_first_msg_offset = 0;
613                                 peer.pending_outbound_buffer.pop_front();
614                         } else {
615                                 peer.awaiting_write_event = true;
616                         }
617                 }
618         }
619
620         /// Indicates that there is room to write data to the given socket descriptor.
621         ///
622         /// May return an Err to indicate that the connection should be closed.
623         ///
624         /// May call [`send_data`] on the descriptor passed in (or an equal descriptor) before
625         /// returning. Thus, be very careful with reentrancy issues! The invariants around calling
626         /// [`write_buffer_space_avail`] in case a write did not fully complete must still hold - be
627         /// ready to call `[write_buffer_space_avail`] again if a write call generated here isn't
628         /// sufficient!
629         ///
630         /// [`send_data`]: SocketDescriptor::send_data
631         /// [`write_buffer_space_avail`]: PeerManager::write_buffer_space_avail
632         pub fn write_buffer_space_avail(&self, descriptor: &mut Descriptor) -> Result<(), PeerHandleError> {
633                 let mut peers = self.peers.lock().unwrap();
634                 match peers.peers.get_mut(descriptor) {
635                         None => {
636                                 // This is most likely a simple race condition where the user found that the socket
637                                 // was writeable, then we told the user to `disconnect_socket()`, then they called
638                                 // this method. Return an error to make sure we get disconnected.
639                                 return Err(PeerHandleError { no_connection_possible: false });
640                         },
641                         Some(peer) => {
642                                 peer.awaiting_write_event = false;
643                                 self.do_attempt_write_data(descriptor, peer);
644                         }
645                 };
646                 Ok(())
647         }
648
649         /// Indicates that data was read from the given socket descriptor.
650         ///
651         /// May return an Err to indicate that the connection should be closed.
652         ///
653         /// Will *not* call back into [`send_data`] on any descriptors to avoid reentrancy complexity.
654         /// Thus, however, you should call [`process_events`] after any `read_event` to generate
655         /// [`send_data`] calls to handle responses.
656         ///
657         /// If `Ok(true)` is returned, further read_events should not be triggered until a
658         /// [`send_data`] call on this descriptor has `resume_read` set (preventing DoS issues in the
659         /// send buffer).
660         ///
661         /// [`send_data`]: SocketDescriptor::send_data
662         /// [`process_events`]: PeerManager::process_events
663         pub fn read_event(&self, peer_descriptor: &mut Descriptor, data: &[u8]) -> Result<bool, PeerHandleError> {
664                 match self.do_read_event(peer_descriptor, data) {
665                         Ok(res) => Ok(res),
666                         Err(e) => {
667                                 self.disconnect_event_internal(peer_descriptor, e.no_connection_possible);
668                                 Err(e)
669                         }
670                 }
671         }
672
673         /// Append a message to a peer's pending outbound/write buffer, and update the map of peers needing sends accordingly.
674         fn enqueue_message<M: Encode + Writeable + Debug>(&self, peer: &mut Peer, message: &M) {
675                 let mut buffer = VecWriter(Vec::new());
676                 wire::write(message, &mut buffer).unwrap(); // crash if the write failed
677                 let encoded_message = buffer.0;
678
679                 log_trace!(self.logger, "Enqueueing message {:?} to {}", message, log_pubkey!(peer.their_node_id.unwrap()));
680                 peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encoded_message[..]));
681         }
682
683         fn do_read_event(&self, peer_descriptor: &mut Descriptor, data: &[u8]) -> Result<bool, PeerHandleError> {
684                 let pause_read = {
685                         let mut peers_lock = self.peers.lock().unwrap();
686                         let peers = &mut *peers_lock;
687                         let mut msgs_to_forward = Vec::new();
688                         let mut peer_node_id = None;
689                         let pause_read = match peers.peers.get_mut(peer_descriptor) {
690                                 None => {
691                                         // This is most likely a simple race condition where the user read some bytes
692                                         // from the socket, then we told the user to `disconnect_socket()`, then they
693                                         // called this method. Return an error to make sure we get disconnected.
694                                         return Err(PeerHandleError { no_connection_possible: false });
695                                 },
696                                 Some(peer) => {
697                                         assert!(peer.pending_read_buffer.len() > 0);
698                                         assert!(peer.pending_read_buffer.len() > peer.pending_read_buffer_pos);
699
700                                         let mut read_pos = 0;
701                                         while read_pos < data.len() {
702                                                 {
703                                                         let data_to_copy = cmp::min(peer.pending_read_buffer.len() - peer.pending_read_buffer_pos, data.len() - read_pos);
704                                                         peer.pending_read_buffer[peer.pending_read_buffer_pos..peer.pending_read_buffer_pos + data_to_copy].copy_from_slice(&data[read_pos..read_pos + data_to_copy]);
705                                                         read_pos += data_to_copy;
706                                                         peer.pending_read_buffer_pos += data_to_copy;
707                                                 }
708
709                                                 if peer.pending_read_buffer_pos == peer.pending_read_buffer.len() {
710                                                         peer.pending_read_buffer_pos = 0;
711
712                                                         macro_rules! try_potential_handleerror {
713                                                                 ($thing: expr) => {
714                                                                         match $thing {
715                                                                                 Ok(x) => x,
716                                                                                 Err(e) => {
717                                                                                         match e.action {
718                                                                                                 msgs::ErrorAction::DisconnectPeer { msg: _ } => {
719                                                                                                         //TODO: Try to push msg
720                                                                                                         log_debug!(self.logger, "Error handling message; disconnecting peer with: {}", e.err);
721                                                                                                         return Err(PeerHandleError{ no_connection_possible: false });
722                                                                                                 },
723                                                                                                 msgs::ErrorAction::IgnoreAndLog(level) => {
724                                                                                                         log_given_level!(self.logger, level, "Error handling message; ignoring: {}", e.err);
725                                                                                                         continue
726                                                                                                 },
727                                                                                                 msgs::ErrorAction::IgnoreError => {
728                                                                                                         log_debug!(self.logger, "Error handling message; ignoring: {}", e.err);
729                                                                                                         continue;
730                                                                                                 },
731                                                                                                 msgs::ErrorAction::SendErrorMessage { msg } => {
732                                                                                                         log_debug!(self.logger, "Error handling message; sending error message with: {}", e.err);
733                                                                                                         self.enqueue_message(peer, &msg);
734                                                                                                         continue;
735                                                                                                 },
736                                                                                         }
737                                                                                 }
738                                                                         };
739                                                                 }
740                                                         }
741
742                                                         macro_rules! insert_node_id {
743                                                                 () => {
744                                                                         match peers.node_id_to_descriptor.entry(peer.their_node_id.unwrap()) {
745                                                                                 hash_map::Entry::Occupied(_) => {
746                                                                                         log_trace!(self.logger, "Got second connection with {}, closing", log_pubkey!(peer.their_node_id.unwrap()));
747                                                                                         peer.their_node_id = None; // Unset so that we don't generate a peer_disconnected event
748                                                                                         return Err(PeerHandleError{ no_connection_possible: false })
749                                                                                 },
750                                                                                 hash_map::Entry::Vacant(entry) => {
751                                                                                         log_debug!(self.logger, "Finished noise handshake for connection with {}", log_pubkey!(peer.their_node_id.unwrap()));
752                                                                                         entry.insert(peer_descriptor.clone())
753                                                                                 },
754                                                                         };
755                                                                 }
756                                                         }
757
758                                                         let next_step = peer.channel_encryptor.get_noise_step();
759                                                         match next_step {
760                                                                 NextNoiseStep::ActOne => {
761                                                                         let act_two = try_potential_handleerror!(peer.channel_encryptor.process_act_one_with_keys(&peer.pending_read_buffer[..], &self.our_node_secret, self.get_ephemeral_key())).to_vec();
762                                                                         peer.pending_outbound_buffer.push_back(act_two);
763                                                                         peer.pending_read_buffer = [0; 66].to_vec(); // act three is 66 bytes long
764                                                                 },
765                                                                 NextNoiseStep::ActTwo => {
766                                                                         let (act_three, their_node_id) = try_potential_handleerror!(peer.channel_encryptor.process_act_two(&peer.pending_read_buffer[..], &self.our_node_secret));
767                                                                         peer.pending_outbound_buffer.push_back(act_three.to_vec());
768                                                                         peer.pending_read_buffer = [0; 18].to_vec(); // Message length header is 18 bytes
769                                                                         peer.pending_read_is_header = true;
770
771                                                                         peer.their_node_id = Some(their_node_id);
772                                                                         insert_node_id!();
773                                                                         let features = InitFeatures::known();
774                                                                         let resp = msgs::Init { features };
775                                                                         self.enqueue_message(peer, &resp);
776                                                                 },
777                                                                 NextNoiseStep::ActThree => {
778                                                                         let their_node_id = try_potential_handleerror!(peer.channel_encryptor.process_act_three(&peer.pending_read_buffer[..]));
779                                                                         peer.pending_read_buffer = [0; 18].to_vec(); // Message length header is 18 bytes
780                                                                         peer.pending_read_is_header = true;
781                                                                         peer.their_node_id = Some(their_node_id);
782                                                                         insert_node_id!();
783                                                                         let features = InitFeatures::known();
784                                                                         let resp = msgs::Init { features };
785                                                                         self.enqueue_message(peer, &resp);
786                                                                 },
787                                                                 NextNoiseStep::NoiseComplete => {
788                                                                         if peer.pending_read_is_header {
789                                                                                 let msg_len = try_potential_handleerror!(peer.channel_encryptor.decrypt_length_header(&peer.pending_read_buffer[..]));
790                                                                                 peer.pending_read_buffer = Vec::with_capacity(msg_len as usize + 16);
791                                                                                 peer.pending_read_buffer.resize(msg_len as usize + 16, 0);
792                                                                                 if msg_len < 2 { // Need at least the message type tag
793                                                                                         return Err(PeerHandleError{ no_connection_possible: false });
794                                                                                 }
795                                                                                 peer.pending_read_is_header = false;
796                                                                         } else {
797                                                                                 let msg_data = try_potential_handleerror!(peer.channel_encryptor.decrypt_message(&peer.pending_read_buffer[..]));
798                                                                                 assert!(msg_data.len() >= 2);
799
800                                                                                 // Reset read buffer
801                                                                                 peer.pending_read_buffer = [0; 18].to_vec();
802                                                                                 peer.pending_read_is_header = true;
803
804                                                                                 let mut reader = ::std::io::Cursor::new(&msg_data[..]);
805                                                                                 let message_result = wire::read(&mut reader);
806                                                                                 let message = match message_result {
807                                                                                         Ok(x) => x,
808                                                                                         Err(e) => {
809                                                                                                 match e {
810                                                                                                         msgs::DecodeError::UnknownVersion => return Err(PeerHandleError { no_connection_possible: false }),
811                                                                                                         msgs::DecodeError::UnknownRequiredFeature => {
812                                                                                                                 log_trace!(self.logger, "Got a channel/node announcement with an known required feature flag, you may want to update!");
813                                                                                                                 continue;
814                                                                                                         }
815                                                                                                         msgs::DecodeError::InvalidValue => {
816                                                                                                                 log_debug!(self.logger, "Got an invalid value while deserializing message");
817                                                                                                                 return Err(PeerHandleError { no_connection_possible: false });
818                                                                                                         }
819                                                                                                         msgs::DecodeError::ShortRead => {
820                                                                                                                 log_debug!(self.logger, "Deserialization failed due to shortness of message");
821                                                                                                                 return Err(PeerHandleError { no_connection_possible: false });
822                                                                                                         }
823                                                                                                         msgs::DecodeError::BadLengthDescriptor => return Err(PeerHandleError { no_connection_possible: false }),
824                                                                                                         msgs::DecodeError::Io(_) => return Err(PeerHandleError { no_connection_possible: false }),
825                                                                                                         msgs::DecodeError::UnsupportedCompression => {
826                                                                                                                 log_trace!(self.logger, "We don't support zlib-compressed message fields, ignoring message");
827                                                                                                                 continue;
828                                                                                                         }
829                                                                                                 }
830                                                                                         }
831                                                                                 };
832
833                                                                                 match self.handle_message(peer, message) {
834                                                                                         Err(handling_error) => match handling_error {
835                                                                                                 MessageHandlingError::PeerHandleError(e) => { return Err(e) },
836                                                                                                 MessageHandlingError::LightningError(e) => {
837                                                                                                         try_potential_handleerror!(Err(e));
838                                                                                                 },
839                                                                                         },
840                                                                                         Ok(Some(msg)) => {
841                                                                                                 peer_node_id = Some(peer.their_node_id.expect("After noise is complete, their_node_id is always set"));
842                                                                                                 msgs_to_forward.push(msg);
843                                                                                         },
844                                                                                         Ok(None) => {},
845                                                                                 }
846                                                                         }
847                                                                 }
848                                                         }
849                                                 }
850                                         }
851
852                                         peer.pending_outbound_buffer.len() > OUTBOUND_BUFFER_LIMIT_READ_PAUSE // pause_read
853                                 }
854                         };
855
856                         for msg in msgs_to_forward.drain(..) {
857                                 self.forward_broadcast_msg(peers, &msg, peer_node_id.as_ref());
858                         }
859
860                         pause_read
861                 };
862
863                 Ok(pause_read)
864         }
865
866         /// Process an incoming message and return a decision (ok, lightning error, peer handling error) regarding the next action with the peer
867         /// Returns the message back if it needs to be broadcasted to all other peers.
868         fn handle_message(&self, peer: &mut Peer, message: wire::Message) -> Result<Option<wire::Message>, MessageHandlingError> {
869                 log_trace!(self.logger, "Received message {:?} from {}", message, log_pubkey!(peer.their_node_id.unwrap()));
870
871                 // Need an Init as first message
872                 if let wire::Message::Init(_) = message {
873                 } else if peer.their_features.is_none() {
874                         log_debug!(self.logger, "Peer {} sent non-Init first message", log_pubkey!(peer.their_node_id.unwrap()));
875                         return Err(PeerHandleError{ no_connection_possible: false }.into());
876                 }
877
878                 let mut should_forward = None;
879
880                 match message {
881                         // Setup and Control messages:
882                         wire::Message::Init(msg) => {
883                                 if msg.features.requires_unknown_bits() {
884                                         log_debug!(self.logger, "Peer features required unknown version bits");
885                                         return Err(PeerHandleError{ no_connection_possible: true }.into());
886                                 }
887                                 if peer.their_features.is_some() {
888                                         return Err(PeerHandleError{ no_connection_possible: false }.into());
889                                 }
890
891                                 log_info!(self.logger, "Received peer Init message: {}", msg.features);
892
893                                 if msg.features.initial_routing_sync() {
894                                         peer.sync_status = InitSyncTracker::ChannelsSyncing(0);
895                                 }
896                                 if !msg.features.supports_static_remote_key() {
897                                         log_debug!(self.logger, "Peer {} does not support static remote key, disconnecting with no_connection_possible", log_pubkey!(peer.their_node_id.unwrap()));
898                                         return Err(PeerHandleError{ no_connection_possible: true }.into());
899                                 }
900
901                                 self.message_handler.route_handler.sync_routing_table(&peer.their_node_id.unwrap(), &msg);
902
903                                 self.message_handler.chan_handler.peer_connected(&peer.their_node_id.unwrap(), &msg);
904                                 peer.their_features = Some(msg.features);
905                         },
906                         wire::Message::Error(msg) => {
907                                 let mut data_is_printable = true;
908                                 for b in msg.data.bytes() {
909                                         if b < 32 || b > 126 {
910                                                 data_is_printable = false;
911                                                 break;
912                                         }
913                                 }
914
915                                 if data_is_printable {
916                                         log_debug!(self.logger, "Got Err message from {}: {}", log_pubkey!(peer.their_node_id.unwrap()), msg.data);
917                                 } else {
918                                         log_debug!(self.logger, "Got Err message from {} with non-ASCII error message", log_pubkey!(peer.their_node_id.unwrap()));
919                                 }
920                                 self.message_handler.chan_handler.handle_error(&peer.their_node_id.unwrap(), &msg);
921                                 if msg.channel_id == [0; 32] {
922                                         return Err(PeerHandleError{ no_connection_possible: true }.into());
923                                 }
924                         },
925
926                         wire::Message::Ping(msg) => {
927                                 if msg.ponglen < 65532 {
928                                         let resp = msgs::Pong { byteslen: msg.ponglen };
929                                         self.enqueue_message(peer, &resp);
930                                 }
931                         },
932                         wire::Message::Pong(_msg) => {
933                                 peer.awaiting_pong = false;
934                         },
935
936                         // Channel messages:
937                         wire::Message::OpenChannel(msg) => {
938                                 self.message_handler.chan_handler.handle_open_channel(&peer.their_node_id.unwrap(), peer.their_features.clone().unwrap(), &msg);
939                         },
940                         wire::Message::AcceptChannel(msg) => {
941                                 self.message_handler.chan_handler.handle_accept_channel(&peer.their_node_id.unwrap(), peer.their_features.clone().unwrap(), &msg);
942                         },
943
944                         wire::Message::FundingCreated(msg) => {
945                                 self.message_handler.chan_handler.handle_funding_created(&peer.their_node_id.unwrap(), &msg);
946                         },
947                         wire::Message::FundingSigned(msg) => {
948                                 self.message_handler.chan_handler.handle_funding_signed(&peer.their_node_id.unwrap(), &msg);
949                         },
950                         wire::Message::FundingLocked(msg) => {
951                                 self.message_handler.chan_handler.handle_funding_locked(&peer.their_node_id.unwrap(), &msg);
952                         },
953
954                         wire::Message::Shutdown(msg) => {
955                                 self.message_handler.chan_handler.handle_shutdown(&peer.their_node_id.unwrap(), peer.their_features.as_ref().unwrap(), &msg);
956                         },
957                         wire::Message::ClosingSigned(msg) => {
958                                 self.message_handler.chan_handler.handle_closing_signed(&peer.their_node_id.unwrap(), &msg);
959                         },
960
961                         // Commitment messages:
962                         wire::Message::UpdateAddHTLC(msg) => {
963                                 self.message_handler.chan_handler.handle_update_add_htlc(&peer.their_node_id.unwrap(), &msg);
964                         },
965                         wire::Message::UpdateFulfillHTLC(msg) => {
966                                 self.message_handler.chan_handler.handle_update_fulfill_htlc(&peer.their_node_id.unwrap(), &msg);
967                         },
968                         wire::Message::UpdateFailHTLC(msg) => {
969                                 self.message_handler.chan_handler.handle_update_fail_htlc(&peer.their_node_id.unwrap(), &msg);
970                         },
971                         wire::Message::UpdateFailMalformedHTLC(msg) => {
972                                 self.message_handler.chan_handler.handle_update_fail_malformed_htlc(&peer.their_node_id.unwrap(), &msg);
973                         },
974
975                         wire::Message::CommitmentSigned(msg) => {
976                                 self.message_handler.chan_handler.handle_commitment_signed(&peer.their_node_id.unwrap(), &msg);
977                         },
978                         wire::Message::RevokeAndACK(msg) => {
979                                 self.message_handler.chan_handler.handle_revoke_and_ack(&peer.their_node_id.unwrap(), &msg);
980                         },
981                         wire::Message::UpdateFee(msg) => {
982                                 self.message_handler.chan_handler.handle_update_fee(&peer.their_node_id.unwrap(), &msg);
983                         },
984                         wire::Message::ChannelReestablish(msg) => {
985                                 self.message_handler.chan_handler.handle_channel_reestablish(&peer.their_node_id.unwrap(), &msg);
986                         },
987
988                         // Routing messages:
989                         wire::Message::AnnouncementSignatures(msg) => {
990                                 self.message_handler.chan_handler.handle_announcement_signatures(&peer.their_node_id.unwrap(), &msg);
991                         },
992                         wire::Message::ChannelAnnouncement(msg) => {
993                                 if self.message_handler.route_handler.handle_channel_announcement(&msg)
994                                                 .map_err(|e| -> MessageHandlingError { e.into() })? {
995                                         should_forward = Some(wire::Message::ChannelAnnouncement(msg));
996                                 }
997                         },
998                         wire::Message::NodeAnnouncement(msg) => {
999                                 if self.message_handler.route_handler.handle_node_announcement(&msg)
1000                                                 .map_err(|e| -> MessageHandlingError { e.into() })? {
1001                                         should_forward = Some(wire::Message::NodeAnnouncement(msg));
1002                                 }
1003                         },
1004                         wire::Message::ChannelUpdate(msg) => {
1005                                 self.message_handler.chan_handler.handle_channel_update(&peer.their_node_id.unwrap(), &msg);
1006                                 if self.message_handler.route_handler.handle_channel_update(&msg)
1007                                                 .map_err(|e| -> MessageHandlingError { e.into() })? {
1008                                         should_forward = Some(wire::Message::ChannelUpdate(msg));
1009                                 }
1010                         },
1011                         wire::Message::QueryShortChannelIds(msg) => {
1012                                 self.message_handler.route_handler.handle_query_short_channel_ids(&peer.their_node_id.unwrap(), msg)?;
1013                         },
1014                         wire::Message::ReplyShortChannelIdsEnd(msg) => {
1015                                 self.message_handler.route_handler.handle_reply_short_channel_ids_end(&peer.their_node_id.unwrap(), msg)?;
1016                         },
1017                         wire::Message::QueryChannelRange(msg) => {
1018                                 self.message_handler.route_handler.handle_query_channel_range(&peer.their_node_id.unwrap(), msg)?;
1019                         },
1020                         wire::Message::ReplyChannelRange(msg) => {
1021                                 self.message_handler.route_handler.handle_reply_channel_range(&peer.their_node_id.unwrap(), msg)?;
1022                         },
1023                         wire::Message::GossipTimestampFilter(_msg) => {
1024                                 // TODO: handle message
1025                         },
1026
1027                         // Unknown messages:
1028                         wire::Message::Unknown(msg_type) if msg_type.is_even() => {
1029                                 log_debug!(self.logger, "Received unknown even message of type {}, disconnecting peer!", msg_type);
1030                                 // Fail the channel if message is an even, unknown type as per BOLT #1.
1031                                 return Err(PeerHandleError{ no_connection_possible: true }.into());
1032                         },
1033                         wire::Message::Unknown(msg_type) => {
1034                                 log_trace!(self.logger, "Received unknown odd message of type {}, ignoring", msg_type);
1035                         }
1036                 };
1037                 Ok(should_forward)
1038         }
1039
1040         fn forward_broadcast_msg(&self, peers: &mut PeerHolder<Descriptor>, msg: &wire::Message, except_node: Option<&PublicKey>) {
1041                 match msg {
1042                         wire::Message::ChannelAnnouncement(ref msg) => {
1043                                 log_trace!(self.logger, "Sending message to all peers except {:?} or the announced channel's counterparties: {:?}", except_node, msg);
1044                                 let encoded_msg = encode_msg!(msg);
1045
1046                                 for (_, peer) in peers.peers.iter_mut() {
1047                                         if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_features.is_none() ||
1048                                                         !peer.should_forward_channel_announcement(msg.contents.short_channel_id) {
1049                                                 continue
1050                                         }
1051                                         if peer.pending_outbound_buffer.len() > OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP {
1052                                                 log_trace!(self.logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id);
1053                                                 continue;
1054                                         }
1055                                         if peer.their_node_id.as_ref() == Some(&msg.contents.node_id_1) ||
1056                                            peer.their_node_id.as_ref() == Some(&msg.contents.node_id_2) {
1057                                                 continue;
1058                                         }
1059                                         if except_node.is_some() && peer.their_node_id.as_ref() == except_node {
1060                                                 continue;
1061                                         }
1062                                         peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encoded_msg[..]));
1063                                 }
1064                         },
1065                         wire::Message::NodeAnnouncement(ref msg) => {
1066                                 log_trace!(self.logger, "Sending message to all peers except {:?} or the announced node: {:?}", except_node, msg);
1067                                 let encoded_msg = encode_msg!(msg);
1068
1069                                 for (_, peer) in peers.peers.iter_mut() {
1070                                         if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_features.is_none() ||
1071                                                         !peer.should_forward_node_announcement(msg.contents.node_id) {
1072                                                 continue
1073                                         }
1074                                         if peer.pending_outbound_buffer.len() > OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP {
1075                                                 log_trace!(self.logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id);
1076                                                 continue;
1077                                         }
1078                                         if peer.their_node_id.as_ref() == Some(&msg.contents.node_id) {
1079                                                 continue;
1080                                         }
1081                                         if except_node.is_some() && peer.their_node_id.as_ref() == except_node {
1082                                                 continue;
1083                                         }
1084                                         peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encoded_msg[..]));
1085                                 }
1086                         },
1087                         wire::Message::ChannelUpdate(ref msg) => {
1088                                 log_trace!(self.logger, "Sending message to all peers except {:?}: {:?}", except_node, msg);
1089                                 let encoded_msg = encode_msg!(msg);
1090
1091                                 for (_, peer) in peers.peers.iter_mut() {
1092                                         if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_features.is_none() ||
1093                                                         !peer.should_forward_channel_announcement(msg.contents.short_channel_id)  {
1094                                                 continue
1095                                         }
1096                                         if peer.pending_outbound_buffer.len() > OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP {
1097                                                 log_trace!(self.logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id);
1098                                                 continue;
1099                                         }
1100                                         if except_node.is_some() && peer.their_node_id.as_ref() == except_node {
1101                                                 continue;
1102                                         }
1103                                         peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encoded_msg[..]));
1104                                 }
1105                         },
1106                         _ => debug_assert!(false, "We shouldn't attempt to forward anything but gossip messages"),
1107                 }
1108         }
1109
1110         /// Checks for any events generated by our handlers and processes them. Includes sending most
1111         /// response messages as well as messages generated by calls to handler functions directly (eg
1112         /// functions like [`ChannelManager::process_pending_htlc_forwards`] or [`send_payment`]).
1113         ///
1114         /// May call [`send_data`] on [`SocketDescriptor`]s. Thus, be very careful with reentrancy
1115         /// issues!
1116         ///
1117         /// [`send_payment`]: crate::ln::channelmanager::ChannelManager::send_payment
1118         /// [`ChannelManager::process_pending_htlc_forwards`]: crate::ln::channelmanager::ChannelManager::process_pending_htlc_forwards
1119         /// [`send_data`]: SocketDescriptor::send_data
1120         pub fn process_events(&self) {
1121                 {
1122                         // TODO: There are some DoS attacks here where you can flood someone's outbound send
1123                         // buffer by doing things like announcing channels on another node. We should be willing to
1124                         // drop optional-ish messages when send buffers get full!
1125
1126                         let mut peers_lock = self.peers.lock().unwrap();
1127                         let mut events_generated = self.message_handler.chan_handler.get_and_clear_pending_msg_events();
1128                         events_generated.append(&mut self.message_handler.route_handler.get_and_clear_pending_msg_events());
1129                         let peers = &mut *peers_lock;
1130                         for event in events_generated.drain(..) {
1131                                 macro_rules! get_peer_for_forwarding {
1132                                         ($node_id: expr) => {
1133                                                 {
1134                                                         match peers.node_id_to_descriptor.get($node_id) {
1135                                                                 Some(descriptor) => match peers.peers.get_mut(&descriptor) {
1136                                                                         Some(peer) => {
1137                                                                                 if peer.their_features.is_none() {
1138                                                                                         continue;
1139                                                                                 }
1140                                                                                 peer
1141                                                                         },
1142                                                                         None => panic!("Inconsistent peers set state!"),
1143                                                                 },
1144                                                                 None => {
1145                                                                         continue;
1146                                                                 },
1147                                                         }
1148                                                 }
1149                                         }
1150                                 }
1151                                 match event {
1152                                         MessageSendEvent::SendAcceptChannel { ref node_id, ref msg } => {
1153                                                 log_debug!(self.logger, "Handling SendAcceptChannel event in peer_handler for node {} for channel {}",
1154                                                                 log_pubkey!(node_id),
1155                                                                 log_bytes!(msg.temporary_channel_id));
1156                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1157                                         },
1158                                         MessageSendEvent::SendOpenChannel { ref node_id, ref msg } => {
1159                                                 log_debug!(self.logger, "Handling SendOpenChannel event in peer_handler for node {} for channel {}",
1160                                                                 log_pubkey!(node_id),
1161                                                                 log_bytes!(msg.temporary_channel_id));
1162                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1163                                         },
1164                                         MessageSendEvent::SendFundingCreated { ref node_id, ref msg } => {
1165                                                 log_debug!(self.logger, "Handling SendFundingCreated event in peer_handler for node {} for channel {} (which becomes {})",
1166                                                                 log_pubkey!(node_id),
1167                                                                 log_bytes!(msg.temporary_channel_id),
1168                                                                 log_funding_channel_id!(msg.funding_txid, msg.funding_output_index));
1169                                                 // TODO: If the peer is gone we should generate a DiscardFunding event
1170                                                 // indicating to the wallet that they should just throw away this funding transaction
1171                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1172                                         },
1173                                         MessageSendEvent::SendFundingSigned { ref node_id, ref msg } => {
1174                                                 log_debug!(self.logger, "Handling SendFundingSigned event in peer_handler for node {} for channel {}",
1175                                                                 log_pubkey!(node_id),
1176                                                                 log_bytes!(msg.channel_id));
1177                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1178                                         },
1179                                         MessageSendEvent::SendFundingLocked { ref node_id, ref msg } => {
1180                                                 log_debug!(self.logger, "Handling SendFundingLocked event in peer_handler for node {} for channel {}",
1181                                                                 log_pubkey!(node_id),
1182                                                                 log_bytes!(msg.channel_id));
1183                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1184                                         },
1185                                         MessageSendEvent::SendAnnouncementSignatures { ref node_id, ref msg } => {
1186                                                 log_debug!(self.logger, "Handling SendAnnouncementSignatures event in peer_handler for node {} for channel {})",
1187                                                                 log_pubkey!(node_id),
1188                                                                 log_bytes!(msg.channel_id));
1189                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1190                                         },
1191                                         MessageSendEvent::UpdateHTLCs { ref node_id, updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fulfill_htlcs, ref update_fail_htlcs, ref update_fail_malformed_htlcs, ref update_fee, ref commitment_signed } } => {
1192                                                 log_debug!(self.logger, "Handling UpdateHTLCs event in peer_handler for node {} with {} adds, {} fulfills, {} fails for channel {}",
1193                                                                 log_pubkey!(node_id),
1194                                                                 update_add_htlcs.len(),
1195                                                                 update_fulfill_htlcs.len(),
1196                                                                 update_fail_htlcs.len(),
1197                                                                 log_bytes!(commitment_signed.channel_id));
1198                                                 let peer = get_peer_for_forwarding!(node_id);
1199                                                 for msg in update_add_htlcs {
1200                                                         self.enqueue_message(peer, msg);
1201                                                 }
1202                                                 for msg in update_fulfill_htlcs {
1203                                                         self.enqueue_message(peer, msg);
1204                                                 }
1205                                                 for msg in update_fail_htlcs {
1206                                                         self.enqueue_message(peer, msg);
1207                                                 }
1208                                                 for msg in update_fail_malformed_htlcs {
1209                                                         self.enqueue_message(peer, msg);
1210                                                 }
1211                                                 if let &Some(ref msg) = update_fee {
1212                                                         self.enqueue_message(peer, msg);
1213                                                 }
1214                                                 self.enqueue_message(peer, commitment_signed);
1215                                         },
1216                                         MessageSendEvent::SendRevokeAndACK { ref node_id, ref msg } => {
1217                                                 log_debug!(self.logger, "Handling SendRevokeAndACK event in peer_handler for node {} for channel {}",
1218                                                                 log_pubkey!(node_id),
1219                                                                 log_bytes!(msg.channel_id));
1220                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1221                                         },
1222                                         MessageSendEvent::SendClosingSigned { ref node_id, ref msg } => {
1223                                                 log_debug!(self.logger, "Handling SendClosingSigned event in peer_handler for node {} for channel {}",
1224                                                                 log_pubkey!(node_id),
1225                                                                 log_bytes!(msg.channel_id));
1226                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1227                                         },
1228                                         MessageSendEvent::SendShutdown { ref node_id, ref msg } => {
1229                                                 log_debug!(self.logger, "Handling Shutdown event in peer_handler for node {} for channel {}",
1230                                                                 log_pubkey!(node_id),
1231                                                                 log_bytes!(msg.channel_id));
1232                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1233                                         },
1234                                         MessageSendEvent::SendChannelReestablish { ref node_id, ref msg } => {
1235                                                 log_debug!(self.logger, "Handling SendChannelReestablish event in peer_handler for node {} for channel {}",
1236                                                                 log_pubkey!(node_id),
1237                                                                 log_bytes!(msg.channel_id));
1238                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1239                                         },
1240                                         MessageSendEvent::BroadcastChannelAnnouncement { msg, update_msg } => {
1241                                                 log_debug!(self.logger, "Handling BroadcastChannelAnnouncement event in peer_handler for short channel id {}", msg.contents.short_channel_id);
1242                                                 if self.message_handler.route_handler.handle_channel_announcement(&msg).is_ok() && self.message_handler.route_handler.handle_channel_update(&update_msg).is_ok() {
1243                                                         self.forward_broadcast_msg(peers, &wire::Message::ChannelAnnouncement(msg), None);
1244                                                         self.forward_broadcast_msg(peers, &wire::Message::ChannelUpdate(update_msg), None);
1245                                                 }
1246                                         },
1247                                         MessageSendEvent::BroadcastNodeAnnouncement { msg } => {
1248                                                 log_debug!(self.logger, "Handling BroadcastNodeAnnouncement event in peer_handler");
1249                                                 if self.message_handler.route_handler.handle_node_announcement(&msg).is_ok() {
1250                                                         self.forward_broadcast_msg(peers, &wire::Message::NodeAnnouncement(msg), None);
1251                                                 }
1252                                         },
1253                                         MessageSendEvent::BroadcastChannelUpdate { msg } => {
1254                                                 log_debug!(self.logger, "Handling BroadcastChannelUpdate event in peer_handler for short channel id {}", msg.contents.short_channel_id);
1255                                                 if self.message_handler.route_handler.handle_channel_update(&msg).is_ok() {
1256                                                         self.forward_broadcast_msg(peers, &wire::Message::ChannelUpdate(msg), None);
1257                                                 }
1258                                         },
1259                                         MessageSendEvent::SendChannelUpdate { ref node_id, ref msg } => {
1260                                                 log_trace!(self.logger, "Handling SendChannelUpdate event in peer_handler for node {} for channel {}",
1261                                                                 log_pubkey!(node_id), msg.contents.short_channel_id);
1262                                                 let peer = get_peer_for_forwarding!(node_id);
1263                                                 peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg)));
1264                                         },
1265                                         MessageSendEvent::PaymentFailureNetworkUpdate { ref update } => {
1266                                                 self.message_handler.route_handler.handle_htlc_fail_channel_update(update);
1267                                         },
1268                                         MessageSendEvent::HandleError { ref node_id, ref action } => {
1269                                                 match *action {
1270                                                         msgs::ErrorAction::DisconnectPeer { ref msg } => {
1271                                                                 if let Some(mut descriptor) = peers.node_id_to_descriptor.remove(node_id) {
1272                                                                         if let Some(mut peer) = peers.peers.remove(&descriptor) {
1273                                                                                 if let Some(ref msg) = *msg {
1274                                                                                         log_trace!(self.logger, "Handling DisconnectPeer HandleError event in peer_handler for node {} with message {}",
1275                                                                                                         log_pubkey!(node_id),
1276                                                                                                         msg.data);
1277                                                                                         self.enqueue_message(&mut peer, msg);
1278                                                                                         // This isn't guaranteed to work, but if there is enough free
1279                                                                                         // room in the send buffer, put the error message there...
1280                                                                                         self.do_attempt_write_data(&mut descriptor, &mut peer);
1281                                                                                 } else {
1282                                                                                         log_trace!(self.logger, "Handling DisconnectPeer HandleError event in peer_handler for node {} with no message", log_pubkey!(node_id));
1283                                                                                 }
1284                                                                         }
1285                                                                         descriptor.disconnect_socket();
1286                                                                         self.message_handler.chan_handler.peer_disconnected(&node_id, false);
1287                                                                 }
1288                                                         },
1289                                                         msgs::ErrorAction::IgnoreAndLog(level) => {
1290                                                                 log_given_level!(self.logger, level, "Received a HandleError event to be ignored for node {}", log_pubkey!(node_id));
1291                                                         },
1292                                                         msgs::ErrorAction::IgnoreError => {
1293                                                                 log_debug!(self.logger, "Received a HandleError event to be ignored for node {}", log_pubkey!(node_id));
1294                                                         },
1295                                                         msgs::ErrorAction::SendErrorMessage { ref msg } => {
1296                                                                 log_trace!(self.logger, "Handling SendErrorMessage HandleError event in peer_handler for node {} with message {}",
1297                                                                                 log_pubkey!(node_id),
1298                                                                                 msg.data);
1299                                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1300                                                         },
1301                                                 }
1302                                         },
1303                                         MessageSendEvent::SendChannelRangeQuery { ref node_id, ref msg } => {
1304                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1305                                         },
1306                                         MessageSendEvent::SendShortIdsQuery { ref node_id, ref msg } => {
1307                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1308                                         }
1309                                         MessageSendEvent::SendReplyChannelRange { ref node_id, ref msg } => {
1310                                                 log_trace!(self.logger, "Handling SendReplyChannelRange event in peer_handler for node {} with num_scids={} first_blocknum={} number_of_blocks={}, sync_complete={}",
1311                                                         log_pubkey!(node_id),
1312                                                         msg.short_channel_ids.len(),
1313                                                         msg.first_blocknum,
1314                                                         msg.number_of_blocks,
1315                                                         msg.sync_complete);
1316                                                 self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
1317                                         }
1318                                 }
1319                         }
1320
1321                         for (descriptor, peer) in peers.peers.iter_mut() {
1322                                 self.do_attempt_write_data(&mut (*descriptor).clone(), peer);
1323                         }
1324                 }
1325         }
1326
1327         /// Indicates that the given socket descriptor's connection is now closed.
1328         pub fn socket_disconnected(&self, descriptor: &Descriptor) {
1329                 self.disconnect_event_internal(descriptor, false);
1330         }
1331
1332         fn disconnect_event_internal(&self, descriptor: &Descriptor, no_connection_possible: bool) {
1333                 let mut peers = self.peers.lock().unwrap();
1334                 let peer_option = peers.peers.remove(descriptor);
1335                 match peer_option {
1336                         None => {
1337                                 // This is most likely a simple race condition where the user found that the socket
1338                                 // was disconnected, then we told the user to `disconnect_socket()`, then they
1339                                 // called this method. Either way we're disconnected, return.
1340                         },
1341                         Some(peer) => {
1342                                 match peer.their_node_id {
1343                                         Some(node_id) => {
1344                                                 peers.node_id_to_descriptor.remove(&node_id);
1345                                                 self.message_handler.chan_handler.peer_disconnected(&node_id, no_connection_possible);
1346                                         },
1347                                         None => {}
1348                                 }
1349                         }
1350                 };
1351         }
1352
1353         /// Disconnect a peer given its node id.
1354         ///
1355         /// Set `no_connection_possible` to true to prevent any further connection with this peer,
1356         /// force-closing any channels we have with it.
1357         ///
1358         /// If a peer is connected, this will call [`disconnect_socket`] on the descriptor for the
1359         /// peer. Thus, be very careful about reentrancy issues.
1360         ///
1361         /// [`disconnect_socket`]: SocketDescriptor::disconnect_socket
1362         pub fn disconnect_by_node_id(&self, node_id: PublicKey, no_connection_possible: bool) {
1363                 let mut peers_lock = self.peers.lock().unwrap();
1364                 if let Some(mut descriptor) = peers_lock.node_id_to_descriptor.remove(&node_id) {
1365                         log_trace!(self.logger, "Disconnecting peer with id {} due to client request", node_id);
1366                         peers_lock.peers.remove(&descriptor);
1367                         self.message_handler.chan_handler.peer_disconnected(&node_id, no_connection_possible);
1368                         descriptor.disconnect_socket();
1369                 }
1370         }
1371
1372         /// This function should be called roughly once every 30 seconds.
1373         /// It will send pings to each peer and disconnect those which did not respond to the last
1374         /// round of pings.
1375         ///
1376         /// May call [`send_data`] on all [`SocketDescriptor`]s. Thus, be very careful with reentrancy
1377         /// issues!
1378         ///
1379         /// [`send_data`]: SocketDescriptor::send_data
1380         pub fn timer_tick_occurred(&self) {
1381                 let mut peers_lock = self.peers.lock().unwrap();
1382                 {
1383                         let peers = &mut *peers_lock;
1384                         let node_id_to_descriptor = &mut peers.node_id_to_descriptor;
1385                         let peers = &mut peers.peers;
1386                         let mut descriptors_needing_disconnect = Vec::new();
1387
1388                         peers.retain(|descriptor, peer| {
1389                                 if peer.awaiting_pong {
1390                                         descriptors_needing_disconnect.push(descriptor.clone());
1391                                         match peer.their_node_id {
1392                                                 Some(node_id) => {
1393                                                         log_trace!(self.logger, "Disconnecting peer with id {} due to ping timeout", node_id);
1394                                                         node_id_to_descriptor.remove(&node_id);
1395                                                         self.message_handler.chan_handler.peer_disconnected(&node_id, false);
1396                                                 }
1397                                                 None => {
1398                                                         // This can't actually happen as we should have hit
1399                                                         // is_ready_for_encryption() previously on this same peer.
1400                                                         unreachable!();
1401                                                 },
1402                                         }
1403                                         return false;
1404                                 }
1405
1406                                 if !peer.channel_encryptor.is_ready_for_encryption() {
1407                                         // The peer needs to complete its handshake before we can exchange messages
1408                                         return true;
1409                                 }
1410
1411                                 let ping = msgs::Ping {
1412                                         ponglen: 0,
1413                                         byteslen: 64,
1414                                 };
1415                                 self.enqueue_message(peer, &ping);
1416
1417                                 let mut descriptor_clone = descriptor.clone();
1418                                 self.do_attempt_write_data(&mut descriptor_clone, peer);
1419
1420                                 peer.awaiting_pong = true;
1421                                 true
1422                         });
1423
1424                         for mut descriptor in descriptors_needing_disconnect.drain(..) {
1425                                 descriptor.disconnect_socket();
1426                         }
1427                 }
1428         }
1429 }
1430
1431 #[cfg(test)]
1432 mod tests {
1433         use ln::peer_handler::{PeerManager, MessageHandler, SocketDescriptor};
1434         use ln::msgs;
1435         use util::events;
1436         use util::test_utils;
1437
1438         use bitcoin::secp256k1::Secp256k1;
1439         use bitcoin::secp256k1::key::{SecretKey, PublicKey};
1440
1441         use prelude::*;
1442         use sync::{Arc, Mutex};
1443         use core::sync::atomic::Ordering;
1444
1445         #[derive(Clone)]
1446         struct FileDescriptor {
1447                 fd: u16,
1448                 outbound_data: Arc<Mutex<Vec<u8>>>,
1449         }
1450         impl PartialEq for FileDescriptor {
1451                 fn eq(&self, other: &Self) -> bool {
1452                         self.fd == other.fd
1453                 }
1454         }
1455         impl Eq for FileDescriptor { }
1456         impl core::hash::Hash for FileDescriptor {
1457                 fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
1458                         self.fd.hash(hasher)
1459                 }
1460         }
1461
1462         impl SocketDescriptor for FileDescriptor {
1463                 fn send_data(&mut self, data: &[u8], _resume_read: bool) -> usize {
1464                         self.outbound_data.lock().unwrap().extend_from_slice(data);
1465                         data.len()
1466                 }
1467
1468                 fn disconnect_socket(&mut self) {}
1469         }
1470
1471         struct PeerManagerCfg {
1472                 chan_handler: test_utils::TestChannelMessageHandler,
1473                 routing_handler: test_utils::TestRoutingMessageHandler,
1474                 logger: test_utils::TestLogger,
1475         }
1476
1477         fn create_peermgr_cfgs(peer_count: usize) -> Vec<PeerManagerCfg> {
1478                 let mut cfgs = Vec::new();
1479                 for _ in 0..peer_count {
1480                         cfgs.push(
1481                                 PeerManagerCfg{
1482                                         chan_handler: test_utils::TestChannelMessageHandler::new(),
1483                                         logger: test_utils::TestLogger::new(),
1484                                         routing_handler: test_utils::TestRoutingMessageHandler::new(),
1485                                 }
1486                         );
1487                 }
1488
1489                 cfgs
1490         }
1491
1492         fn create_network<'a>(peer_count: usize, cfgs: &'a Vec<PeerManagerCfg>) -> Vec<PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, &'a test_utils::TestLogger>> {
1493                 let mut peers = Vec::new();
1494                 for i in 0..peer_count {
1495                         let node_secret = SecretKey::from_slice(&[42 + i as u8; 32]).unwrap();
1496                         let ephemeral_bytes = [i as u8; 32];
1497                         let msg_handler = MessageHandler { chan_handler: &cfgs[i].chan_handler, route_handler: &cfgs[i].routing_handler };
1498                         let peer = PeerManager::new(msg_handler, node_secret, &ephemeral_bytes, &cfgs[i].logger);
1499                         peers.push(peer);
1500                 }
1501
1502                 peers
1503         }
1504
1505         fn establish_connection<'a>(peer_a: &PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, &'a test_utils::TestLogger>, peer_b: &PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, &'a test_utils::TestLogger>) -> (FileDescriptor, FileDescriptor) {
1506                 let secp_ctx = Secp256k1::new();
1507                 let a_id = PublicKey::from_secret_key(&secp_ctx, &peer_a.our_node_secret);
1508                 let mut fd_a = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
1509                 let mut fd_b = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
1510                 let initial_data = peer_b.new_outbound_connection(a_id, fd_b.clone()).unwrap();
1511                 peer_a.new_inbound_connection(fd_a.clone()).unwrap();
1512                 assert_eq!(peer_a.read_event(&mut fd_a, &initial_data).unwrap(), false);
1513                 peer_a.process_events();
1514                 assert_eq!(peer_b.read_event(&mut fd_b, &fd_a.outbound_data.lock().unwrap().split_off(0)).unwrap(), false);
1515                 peer_b.process_events();
1516                 assert_eq!(peer_a.read_event(&mut fd_a, &fd_b.outbound_data.lock().unwrap().split_off(0)).unwrap(), false);
1517                 (fd_a.clone(), fd_b.clone())
1518         }
1519
1520         #[test]
1521         fn test_disconnect_peer() {
1522                 // Simple test which builds a network of PeerManager, connects and brings them to NoiseState::Finished and
1523                 // push a DisconnectPeer event to remove the node flagged by id
1524                 let cfgs = create_peermgr_cfgs(2);
1525                 let chan_handler = test_utils::TestChannelMessageHandler::new();
1526                 let mut peers = create_network(2, &cfgs);
1527                 establish_connection(&peers[0], &peers[1]);
1528                 assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 1);
1529
1530                 let secp_ctx = Secp256k1::new();
1531                 let their_id = PublicKey::from_secret_key(&secp_ctx, &peers[1].our_node_secret);
1532
1533                 chan_handler.pending_events.lock().unwrap().push(events::MessageSendEvent::HandleError {
1534                         node_id: their_id,
1535                         action: msgs::ErrorAction::DisconnectPeer { msg: None },
1536                 });
1537                 assert_eq!(chan_handler.pending_events.lock().unwrap().len(), 1);
1538                 peers[0].message_handler.chan_handler = &chan_handler;
1539
1540                 peers[0].process_events();
1541                 assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 0);
1542         }
1543
1544         #[test]
1545         fn test_timer_tick_occurred() {
1546                 // Create peers, a vector of two peer managers, perform initial set up and check that peers[0] has one Peer.
1547                 let cfgs = create_peermgr_cfgs(2);
1548                 let peers = create_network(2, &cfgs);
1549                 establish_connection(&peers[0], &peers[1]);
1550                 assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 1);
1551
1552                 // peers[0] awaiting_pong is set to true, but the Peer is still connected
1553                 peers[0].timer_tick_occurred();
1554                 peers[0].process_events();
1555                 assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 1);
1556
1557                 // Since timer_tick_occurred() is called again when awaiting_pong is true, all Peers are disconnected
1558                 peers[0].timer_tick_occurred();
1559                 peers[0].process_events();
1560                 assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 0);
1561         }
1562
1563         #[test]
1564         fn test_do_attempt_write_data() {
1565                 // Create 2 peers with custom TestRoutingMessageHandlers and connect them.
1566                 let cfgs = create_peermgr_cfgs(2);
1567                 cfgs[0].routing_handler.request_full_sync.store(true, Ordering::Release);
1568                 cfgs[1].routing_handler.request_full_sync.store(true, Ordering::Release);
1569                 let peers = create_network(2, &cfgs);
1570
1571                 // By calling establish_connect, we trigger do_attempt_write_data between
1572                 // the peers. Previously this function would mistakenly enter an infinite loop
1573                 // when there were more channel messages available than could fit into a peer's
1574                 // buffer. This issue would now be detected by this test (because we use custom
1575                 // RoutingMessageHandlers that intentionally return more channel messages
1576                 // than can fit into a peer's buffer).
1577                 let (mut fd_a, mut fd_b) = establish_connection(&peers[0], &peers[1]);
1578
1579                 // Make each peer to read the messages that the other peer just wrote to them.
1580                 peers[0].process_events();
1581                 peers[1].read_event(&mut fd_b, &fd_a.outbound_data.lock().unwrap().split_off(0)).unwrap();
1582                 peers[1].process_events();
1583                 peers[0].read_event(&mut fd_a, &fd_b.outbound_data.lock().unwrap().split_off(0)).unwrap();
1584
1585                 // Check that each peer has received the expected number of channel updates and channel
1586                 // announcements.
1587                 assert_eq!(cfgs[0].routing_handler.chan_upds_recvd.load(Ordering::Acquire), 100);
1588                 assert_eq!(cfgs[0].routing_handler.chan_anns_recvd.load(Ordering::Acquire), 50);
1589                 assert_eq!(cfgs[1].routing_handler.chan_upds_recvd.load(Ordering::Acquire), 100);
1590                 assert_eq!(cfgs[1].routing_handler.chan_anns_recvd.load(Ordering::Acquire), 50);
1591         }
1592 }