Allow(unused_imports) on prelude imports
[rust-lightning] / lightning / src / util / test_channel_signer.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 use crate::ln::channel::{ANCHOR_OUTPUT_VALUE_SATOSHI, MIN_CHAN_DUST_LIMIT_SATOSHIS};
11 use crate::ln::chan_utils::{HTLCOutputInCommitment, ChannelPublicKeys, HolderCommitmentTransaction, CommitmentTransaction, ChannelTransactionParameters, TrustedCommitmentTransaction, ClosingTransaction};
12 use crate::ln::channel_keys::{HtlcKey};
13 use crate::ln::{msgs, PaymentPreimage};
14 use crate::sign::{InMemorySigner, ChannelSigner};
15 use crate::sign::ecdsa::{EcdsaChannelSigner, WriteableEcdsaChannelSigner};
16
17 #[allow(unused_imports)]
18 use crate::prelude::*;
19
20 use core::cmp;
21 use crate::sync::{Mutex, Arc};
22 #[cfg(test)] use crate::sync::MutexGuard;
23
24 use bitcoin::blockdata::transaction::Transaction;
25 use bitcoin::hashes::Hash;
26 use bitcoin::sighash;
27 use bitcoin::sighash::EcdsaSighashType;
28
29 use bitcoin::secp256k1;
30 #[cfg(taproot)]
31 use bitcoin::secp256k1::All;
32 use bitcoin::secp256k1::{SecretKey, PublicKey};
33 use bitcoin::secp256k1::{Secp256k1, ecdsa::Signature};
34 #[cfg(taproot)]
35 use musig2::types::{PartialSignature, PublicNonce, SecretNonce};
36 use crate::sign::HTLCDescriptor;
37 use crate::util::ser::{Writeable, Writer};
38 use crate::io::Error;
39 use crate::ln::features::ChannelTypeFeatures;
40 #[cfg(taproot)]
41 use crate::ln::msgs::PartialSignatureWithNonce;
42 #[cfg(taproot)]
43 use crate::sign::taproot::TaprootChannelSigner;
44
45 /// Initial value for revoked commitment downward counter
46 pub const INITIAL_REVOKED_COMMITMENT_NUMBER: u64 = 1 << 48;
47
48 /// An implementation of Sign that enforces some policy checks.  The current checks
49 /// are an incomplete set.  They include:
50 ///
51 /// - When signing, the holder transaction has not been revoked
52 /// - When revoking, the holder transaction has not been signed
53 /// - The holder commitment number is monotonic and without gaps
54 /// - The revoked holder commitment number is monotonic and without gaps
55 /// - There is at least one unrevoked holder transaction at all times
56 /// - The counterparty commitment number is monotonic and without gaps
57 /// - The pre-derived keys and pre-built transaction in CommitmentTransaction were correctly built
58 ///
59 /// Eventually we will probably want to expose a variant of this which would essentially
60 /// be what you'd want to run on a hardware wallet.
61 ///
62 /// Note that counterparty signatures on the holder transaction are not checked, but it should
63 /// be in a complete implementation.
64 ///
65 /// Note that before we do so we should ensure its serialization format has backwards- and
66 /// forwards-compatibility prefix/suffixes!
67 #[derive(Clone)]
68 pub struct TestChannelSigner {
69         pub inner: InMemorySigner,
70         /// Channel state used for policy enforcement
71         pub state: Arc<Mutex<EnforcementState>>,
72         pub disable_revocation_policy_check: bool,
73         /// When `true` (the default), the signer will respond immediately with signatures. When `false`,
74         /// the signer will return an error indicating that it is unavailable.
75         pub available: Arc<Mutex<bool>>,
76 }
77
78 impl PartialEq for TestChannelSigner {
79         fn eq(&self, o: &Self) -> bool {
80                 Arc::ptr_eq(&self.state, &o.state)
81         }
82 }
83
84 impl TestChannelSigner {
85         /// Construct an TestChannelSigner
86         pub fn new(inner: InMemorySigner) -> Self {
87                 let state = Arc::new(Mutex::new(EnforcementState::new()));
88                 Self {
89                         inner,
90                         state,
91                         disable_revocation_policy_check: false,
92                         available: Arc::new(Mutex::new(true)),
93                 }
94         }
95
96         /// Construct an TestChannelSigner with externally managed storage
97         ///
98         /// Since there are multiple copies of this struct for each channel, some coordination is needed
99         /// so that all copies are aware of enforcement state.  A pointer to this state is provided
100         /// here, usually by an implementation of KeysInterface.
101         pub fn new_with_revoked(inner: InMemorySigner, state: Arc<Mutex<EnforcementState>>, disable_revocation_policy_check: bool) -> Self {
102                 Self {
103                         inner,
104                         state,
105                         disable_revocation_policy_check,
106                         available: Arc::new(Mutex::new(true)),
107                 }
108         }
109
110         pub fn channel_type_features(&self) -> &ChannelTypeFeatures { self.inner.channel_type_features().unwrap() }
111
112         #[cfg(test)]
113         pub fn get_enforcement_state(&self) -> MutexGuard<EnforcementState> {
114                 self.state.lock().unwrap()
115         }
116
117         /// Marks the signer's availability.
118         ///
119         /// When `true`, methods are forwarded to the underlying signer as normal. When `false`, some
120         /// methods will return `Err` indicating that the signer is unavailable. Intended to be used for
121         /// testing asynchronous signing.
122         pub fn set_available(&self, available: bool) {
123                 *self.available.lock().unwrap() = available;
124         }
125 }
126
127 impl ChannelSigner for TestChannelSigner {
128         fn get_per_commitment_point(&self, idx: u64, secp_ctx: &Secp256k1<secp256k1::All>) -> PublicKey {
129                 self.inner.get_per_commitment_point(idx, secp_ctx)
130         }
131
132         fn release_commitment_secret(&self, idx: u64) -> [u8; 32] {
133                 {
134                         let mut state = self.state.lock().unwrap();
135                         assert!(idx == state.last_holder_revoked_commitment || idx == state.last_holder_revoked_commitment - 1, "can only revoke the current or next unrevoked commitment - trying {}, last revoked {}", idx, state.last_holder_revoked_commitment);
136                         assert!(idx > state.last_holder_commitment, "cannot revoke the last holder commitment - attempted to revoke {} last commitment {}", idx, state.last_holder_commitment);
137                         state.last_holder_revoked_commitment = idx;
138                 }
139                 self.inner.release_commitment_secret(idx)
140         }
141
142         fn validate_holder_commitment(&self, holder_tx: &HolderCommitmentTransaction, _outbound_htlc_preimages: Vec<PaymentPreimage>) -> Result<(), ()> {
143                 let mut state = self.state.lock().unwrap();
144                 let idx = holder_tx.commitment_number();
145                 assert!(idx == state.last_holder_commitment || idx == state.last_holder_commitment - 1, "expecting to validate the current or next holder commitment - trying {}, current {}", idx, state.last_holder_commitment);
146                 state.last_holder_commitment = idx;
147                 Ok(())
148         }
149
150         fn validate_counterparty_revocation(&self, idx: u64, _secret: &SecretKey) -> Result<(), ()> {
151                 if !*self.available.lock().unwrap() {
152                         return Err(());
153                 }
154                 let mut state = self.state.lock().unwrap();
155                 assert!(idx == state.last_counterparty_revoked_commitment || idx == state.last_counterparty_revoked_commitment - 1, "expecting to validate the current or next counterparty revocation - trying {}, current {}", idx, state.last_counterparty_revoked_commitment);
156                 state.last_counterparty_revoked_commitment = idx;
157                 Ok(())
158         }
159
160         fn pubkeys(&self) -> &ChannelPublicKeys { self.inner.pubkeys() }
161
162         fn channel_keys_id(&self) -> [u8; 32] { self.inner.channel_keys_id() }
163
164         fn provide_channel_parameters(&mut self, channel_parameters: &ChannelTransactionParameters) {
165                 self.inner.provide_channel_parameters(channel_parameters)
166         }
167 }
168
169 impl EcdsaChannelSigner for TestChannelSigner {
170         fn sign_counterparty_commitment(&self, commitment_tx: &CommitmentTransaction, inbound_htlc_preimages: Vec<PaymentPreimage>, outbound_htlc_preimages: Vec<PaymentPreimage>, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()> {
171                 self.verify_counterparty_commitment_tx(commitment_tx, secp_ctx);
172
173                 {
174                         if !*self.available.lock().unwrap() {
175                                 return Err(());
176                         }
177                         let mut state = self.state.lock().unwrap();
178                         let actual_commitment_number = commitment_tx.commitment_number();
179                         let last_commitment_number = state.last_counterparty_commitment;
180                         // These commitment numbers are backwards counting.  We expect either the same as the previously encountered,
181                         // or the next one.
182                         assert!(last_commitment_number == actual_commitment_number || last_commitment_number - 1 == actual_commitment_number, "{} doesn't come after {}", actual_commitment_number, last_commitment_number);
183                         // Ensure that the counterparty doesn't get more than two broadcastable commitments -
184                         // the last and the one we are trying to sign
185                         assert!(actual_commitment_number >= state.last_counterparty_revoked_commitment - 2, "cannot sign a commitment if second to last wasn't revoked - signing {} revoked {}", actual_commitment_number, state.last_counterparty_revoked_commitment);
186                         state.last_counterparty_commitment = cmp::min(last_commitment_number, actual_commitment_number)
187                 }
188
189                 Ok(self.inner.sign_counterparty_commitment(commitment_tx, inbound_htlc_preimages, outbound_htlc_preimages, secp_ctx).unwrap())
190         }
191
192         fn sign_holder_commitment(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
193                 if !*self.available.lock().unwrap() {
194                         return Err(());
195                 }
196                 let trusted_tx = self.verify_holder_commitment_tx(commitment_tx, secp_ctx);
197                 let state = self.state.lock().unwrap();
198                 let commitment_number = trusted_tx.commitment_number();
199                 if state.last_holder_revoked_commitment - 1 != commitment_number && state.last_holder_revoked_commitment - 2 != commitment_number {
200                         if !self.disable_revocation_policy_check {
201                                 panic!("can only sign the next two unrevoked commitment numbers, revoked={} vs requested={} for {}",
202                                        state.last_holder_revoked_commitment, commitment_number, self.inner.commitment_seed[0])
203                         }
204                 }
205                 Ok(self.inner.sign_holder_commitment(commitment_tx, secp_ctx).unwrap())
206         }
207
208         #[cfg(any(test,feature = "unsafe_revoked_tx_signing"))]
209         fn unsafe_sign_holder_commitment(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
210                 Ok(self.inner.unsafe_sign_holder_commitment(commitment_tx, secp_ctx).unwrap())
211         }
212
213         fn sign_justice_revoked_output(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
214                 if !*self.available.lock().unwrap() {
215                         return Err(());
216                 }
217                 Ok(EcdsaChannelSigner::sign_justice_revoked_output(&self.inner, justice_tx, input, amount, per_commitment_key, secp_ctx).unwrap())
218         }
219
220         fn sign_justice_revoked_htlc(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
221                 if !*self.available.lock().unwrap() {
222                         return Err(());
223                 }
224                 Ok(EcdsaChannelSigner::sign_justice_revoked_htlc(&self.inner, justice_tx, input, amount, per_commitment_key, htlc, secp_ctx).unwrap())
225         }
226
227         fn sign_holder_htlc_transaction(
228                 &self, htlc_tx: &Transaction, input: usize, htlc_descriptor: &HTLCDescriptor,
229                 secp_ctx: &Secp256k1<secp256k1::All>
230         ) -> Result<Signature, ()> {
231                 if !*self.available.lock().unwrap() {
232                         return Err(());
233                 }
234                 let state = self.state.lock().unwrap();
235                 if state.last_holder_revoked_commitment - 1 != htlc_descriptor.per_commitment_number &&
236                         state.last_holder_revoked_commitment - 2 != htlc_descriptor.per_commitment_number
237                 {
238                         if !self.disable_revocation_policy_check {
239                                 panic!("can only sign the next two unrevoked commitment numbers, revoked={} vs requested={} for {}",
240                                        state.last_holder_revoked_commitment, htlc_descriptor.per_commitment_number, self.inner.commitment_seed[0])
241                         }
242                 }
243                 assert_eq!(htlc_tx.input[input], htlc_descriptor.unsigned_tx_input());
244                 assert_eq!(htlc_tx.output[input], htlc_descriptor.tx_output(secp_ctx));
245                 {
246                         let witness_script = htlc_descriptor.witness_script(secp_ctx);
247                         let sighash_type = if self.channel_type_features().supports_anchors_zero_fee_htlc_tx() {
248                                 EcdsaSighashType::SinglePlusAnyoneCanPay
249                         } else {
250                                 EcdsaSighashType::All
251                         };
252                         let sighash = &sighash::SighashCache::new(&*htlc_tx).segwit_signature_hash(
253                                 input, &witness_script, htlc_descriptor.htlc.amount_msat / 1000, sighash_type
254                         ).unwrap();
255                         let countersignatory_htlc_key = HtlcKey::from_basepoint(
256                                 &secp_ctx, &self.inner.counterparty_pubkeys().unwrap().htlc_basepoint, &htlc_descriptor.per_commitment_point,
257                         );
258
259                         secp_ctx.verify_ecdsa(
260                                 &hash_to_message!(sighash.as_byte_array()), &htlc_descriptor.counterparty_sig, &countersignatory_htlc_key.to_public_key()
261                         ).unwrap();
262                 }
263                 Ok(EcdsaChannelSigner::sign_holder_htlc_transaction(&self.inner, htlc_tx, input, htlc_descriptor, secp_ctx).unwrap())
264         }
265
266         fn sign_counterparty_htlc_transaction(&self, htlc_tx: &Transaction, input: usize, amount: u64, per_commitment_point: &PublicKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
267                 if !*self.available.lock().unwrap() {
268                         return Err(());
269                 }
270                 Ok(EcdsaChannelSigner::sign_counterparty_htlc_transaction(&self.inner, htlc_tx, input, amount, per_commitment_point, htlc, secp_ctx).unwrap())
271         }
272
273         fn sign_closing_transaction(&self, closing_tx: &ClosingTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
274                 closing_tx.verify(self.inner.funding_outpoint().unwrap().into_bitcoin_outpoint())
275                         .expect("derived different closing transaction");
276                 Ok(self.inner.sign_closing_transaction(closing_tx, secp_ctx).unwrap())
277         }
278
279         fn sign_holder_anchor_input(
280                 &self, anchor_tx: &Transaction, input: usize, secp_ctx: &Secp256k1<secp256k1::All>,
281         ) -> Result<Signature, ()> {
282                 debug_assert!(MIN_CHAN_DUST_LIMIT_SATOSHIS > ANCHOR_OUTPUT_VALUE_SATOSHI);
283                 // As long as our minimum dust limit is enforced and is greater than our anchor output
284                 // value, an anchor output can only have an index within [0, 1].
285                 assert!(anchor_tx.input[input].previous_output.vout == 0 || anchor_tx.input[input].previous_output.vout == 1);
286                 if !*self.available.lock().unwrap() {
287                         return Err(());
288                 }
289                 EcdsaChannelSigner::sign_holder_anchor_input(&self.inner, anchor_tx, input, secp_ctx)
290         }
291
292         fn sign_channel_announcement_with_funding_key(
293                 &self, msg: &msgs::UnsignedChannelAnnouncement, secp_ctx: &Secp256k1<secp256k1::All>
294         ) -> Result<Signature, ()> {
295                 self.inner.sign_channel_announcement_with_funding_key(msg, secp_ctx)
296         }
297 }
298
299 impl WriteableEcdsaChannelSigner for TestChannelSigner {}
300
301 #[cfg(taproot)]
302 impl TaprootChannelSigner for TestChannelSigner {
303         fn generate_local_nonce_pair(&self, commitment_number: u64, secp_ctx: &Secp256k1<All>) -> PublicNonce {
304                 todo!()
305         }
306
307         fn partially_sign_counterparty_commitment(&self, counterparty_nonce: PublicNonce, commitment_tx: &CommitmentTransaction, inbound_htlc_preimages: Vec<PaymentPreimage>, outbound_htlc_preimages: Vec<PaymentPreimage>, secp_ctx: &Secp256k1<All>) -> Result<(PartialSignatureWithNonce, Vec<secp256k1::schnorr::Signature>), ()> {
308                 todo!()
309         }
310
311         fn finalize_holder_commitment(&self, commitment_tx: &HolderCommitmentTransaction, counterparty_partial_signature: PartialSignatureWithNonce, secp_ctx: &Secp256k1<All>) -> Result<PartialSignature, ()> {
312                 todo!()
313         }
314
315         fn sign_justice_revoked_output(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, secp_ctx: &Secp256k1<All>) -> Result<secp256k1::schnorr::Signature, ()> {
316                 todo!()
317         }
318
319         fn sign_justice_revoked_htlc(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<All>) -> Result<secp256k1::schnorr::Signature, ()> {
320                 todo!()
321         }
322
323         fn sign_holder_htlc_transaction(&self, htlc_tx: &Transaction, input: usize, htlc_descriptor: &HTLCDescriptor, secp_ctx: &Secp256k1<All>) -> Result<secp256k1::schnorr::Signature, ()> {
324                 todo!()
325         }
326
327         fn sign_counterparty_htlc_transaction(&self, htlc_tx: &Transaction, input: usize, amount: u64, per_commitment_point: &PublicKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<All>) -> Result<secp256k1::schnorr::Signature, ()> {
328                 todo!()
329         }
330
331         fn partially_sign_closing_transaction(&self, closing_tx: &ClosingTransaction, secp_ctx: &Secp256k1<All>) -> Result<PartialSignature, ()> {
332                 todo!()
333         }
334
335         fn sign_holder_anchor_input(&self, anchor_tx: &Transaction, input: usize, secp_ctx: &Secp256k1<All>) -> Result<secp256k1::schnorr::Signature, ()> {
336                 todo!()
337         }
338 }
339
340 impl Writeable for TestChannelSigner {
341         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), Error> {
342                 // TestChannelSigner has two fields - `inner` ([`InMemorySigner`]) and `state`
343                 // ([`EnforcementState`]). `inner` is serialized here and deserialized by
344                 // [`SignerProvider::read_chan_signer`]. `state` is managed by [`SignerProvider`]
345                 // and will be serialized as needed by the implementation of that trait.
346                 self.inner.write(writer)?;
347                 Ok(())
348         }
349 }
350
351 impl TestChannelSigner {
352         fn verify_counterparty_commitment_tx<'a, T: secp256k1::Signing + secp256k1::Verification>(&self, commitment_tx: &'a CommitmentTransaction, secp_ctx: &Secp256k1<T>) -> TrustedCommitmentTransaction<'a> {
353                 commitment_tx.verify(
354                         &self.inner.get_channel_parameters().unwrap().as_counterparty_broadcastable(),
355                         self.inner.counterparty_pubkeys().unwrap(), self.inner.pubkeys(), secp_ctx
356                 ).expect("derived different per-tx keys or built transaction")
357         }
358
359         fn verify_holder_commitment_tx<'a, T: secp256k1::Signing + secp256k1::Verification>(&self, commitment_tx: &'a CommitmentTransaction, secp_ctx: &Secp256k1<T>) -> TrustedCommitmentTransaction<'a> {
360                 commitment_tx.verify(
361                         &self.inner.get_channel_parameters().unwrap().as_holder_broadcastable(),
362                         self.inner.pubkeys(), self.inner.counterparty_pubkeys().unwrap(), secp_ctx
363                 ).expect("derived different per-tx keys or built transaction")
364         }
365 }
366
367 /// The state used by [`TestChannelSigner`] in order to enforce policy checks
368 ///
369 /// This structure is maintained by KeysInterface since we may have multiple copies of
370 /// the signer and they must coordinate their state.
371 #[derive(Clone)]
372 pub struct EnforcementState {
373         /// The last counterparty commitment number we signed, backwards counting
374         pub last_counterparty_commitment: u64,
375         /// The last counterparty commitment they revoked, backwards counting
376         pub last_counterparty_revoked_commitment: u64,
377         /// The last holder commitment number we revoked, backwards counting
378         pub last_holder_revoked_commitment: u64,
379         /// The last validated holder commitment number, backwards counting
380         pub last_holder_commitment: u64,
381 }
382
383 impl EnforcementState {
384         /// Enforcement state for a new channel
385         pub fn new() -> Self {
386                 EnforcementState {
387                         last_counterparty_commitment: INITIAL_REVOKED_COMMITMENT_NUMBER,
388                         last_counterparty_revoked_commitment: INITIAL_REVOKED_COMMITMENT_NUMBER,
389                         last_holder_revoked_commitment: INITIAL_REVOKED_COMMITMENT_NUMBER,
390                         last_holder_commitment: INITIAL_REVOKED_COMMITMENT_NUMBER,
391                 }
392         }
393 }