Update tests to test re-claiming of forwarded HTLCs on startup
authorMatt Corallo <git@bluematt.me>
Mon, 21 Aug 2023 18:44:22 +0000 (18:44 +0000)
committerMatt Corallo <git@bluematt.me>
Tue, 12 Sep 2023 19:03:17 +0000 (19:03 +0000)
Because some of these tests require connecting blocks without
calling `get_and_clear_pending_msg_events`, we need to split up
the block connection utilities to only optionally call
sanity-checks.

lightning/src/chain/channelmonitor.rs
lightning/src/ln/chan_utils.rs
lightning/src/ln/chanmon_update_fail_tests.rs
lightning/src/ln/channelmanager.rs
lightning/src/ln/functional_test_utils.rs

index 47f5605edbb3cbeaa45ff3dfed8609baa6a422fa..257d794eaf5cc63354e890389ad211e3753edc15 100644 (file)
@@ -67,7 +67,7 @@ use crate::sync::{Mutex, LockTestExt};
 /// much smaller than a full [`ChannelMonitor`]. However, for large single commitment transaction
 /// updates (e.g. ones during which there are hundreds of HTLCs pending on the commitment
 /// transaction), a single update may reach upwards of 1 MiB in serialized size.
-#[derive(Clone, PartialEq, Eq)]
+#[derive(Clone, Debug, PartialEq, Eq)]
 #[must_use]
 pub struct ChannelMonitorUpdate {
        pub(crate) updates: Vec<ChannelMonitorUpdateStep>,
@@ -487,7 +487,7 @@ impl_writeable_tlv_based_enum_upgradable!(OnchainEvent,
 
 );
 
-#[derive(Clone, PartialEq, Eq)]
+#[derive(Clone, Debug, PartialEq, Eq)]
 pub(crate) enum ChannelMonitorUpdateStep {
        LatestHolderCommitmentTXInfo {
                commitment_tx: HolderCommitmentTransaction,
index 18048d8efd87a50fea85cd037f375148b0f916c3..968de7b43b5e079d2dac2f522350900680e100ee 100644 (file)
@@ -450,7 +450,7 @@ pub fn derive_public_revocation_key<T: secp256k1::Verification>(secp_ctx: &Secp2
 /// channel basepoints via the new function, or they were obtained via
 /// CommitmentTransaction.trust().keys() because we trusted the source of the
 /// pre-calculated keys.
-#[derive(PartialEq, Eq, Clone)]
+#[derive(PartialEq, Eq, Clone, Debug)]
 pub struct TxCreationKeys {
        /// The broadcaster's per-commitment public key which was used to derive the other keys.
        pub per_commitment_point: PublicKey,
@@ -1028,7 +1028,7 @@ impl<'a> DirectedChannelTransactionParameters<'a> {
 /// Information needed to build and sign a holder's commitment transaction.
 ///
 /// The transaction is only signed once we are ready to broadcast.
-#[derive(Clone)]
+#[derive(Clone, Debug)]
 pub struct HolderCommitmentTransaction {
        inner: CommitmentTransaction,
        /// Our counterparty's signature for the transaction
@@ -1134,7 +1134,7 @@ impl HolderCommitmentTransaction {
 }
 
 /// A pre-built Bitcoin commitment transaction and its txid.
-#[derive(Clone)]
+#[derive(Clone, Debug)]
 pub struct BuiltCommitmentTransaction {
        /// The commitment transaction
        pub transaction: Transaction,
@@ -1305,7 +1305,7 @@ impl<'a> TrustedClosingTransaction<'a> {
 ///
 /// This class can be used inside a signer implementation to generate a signature given the relevant
 /// secret key.
-#[derive(Clone)]
+#[derive(Clone, Debug)]
 pub struct CommitmentTransaction {
        commitment_number: u64,
        to_broadcaster_value_sat: u64,
index 3001485b09739f95b2dad0539b29d54cdfffecd0..dc7f108449decd336d388ca785c6d18a777393ab 100644 (file)
@@ -3102,10 +3102,10 @@ fn test_blocked_chan_preimage_release() {
        expect_payment_sent(&nodes[2], payment_preimage_2, None, true, true);
 }
 
-fn do_test_inverted_mon_completion_order(complete_bc_commitment_dance: bool) {
-       // When we forward a payment and receive an `update_fulfill_htlc` message from the downstream
-       // channel, we immediately claim the HTLC on the upstream channel, before even doing a
-       // `commitment_signed` dance on the downstream channel. This implies that our
+fn do_test_inverted_mon_completion_order(with_latest_manager: bool, complete_bc_commitment_dance: bool) {
+       // When we forward a payment and receive `update_fulfill_htlc`+`commitment_signed` messages
+       // from the downstream channel, we immediately claim the HTLC on the upstream channel, before
+       // even doing a `commitment_signed` dance on the downstream channel. This implies that our
        // `ChannelMonitorUpdate`s are generated in the right order - first we ensure we'll get our
        // money, then we write the update that resolves the downstream node claiming their money. This
        // is safe as long as `ChannelMonitorUpdate`s complete in the order in which they are
@@ -3130,6 +3130,10 @@ fn do_test_inverted_mon_completion_order(complete_bc_commitment_dance: bool) {
        let (payment_preimage, payment_hash, ..) = route_payment(&nodes[0], &[&nodes[1], &nodes[2]], 100_000);
 
        let mon_ab = get_monitor!(nodes[1], chan_id_ab).encode();
+       let mut manager_b = Vec::new();
+       if !with_latest_manager {
+               manager_b = nodes[1].node.encode();
+       }
 
        nodes[2].node.claim_funds(payment_preimage);
        check_added_monitors(&nodes[2], 1);
@@ -3166,7 +3170,9 @@ fn do_test_inverted_mon_completion_order(complete_bc_commitment_dance: bool) {
        }
 
        // Now reload node B
-       let manager_b = nodes[1].node.encode();
+       if with_latest_manager {
+               manager_b = nodes[1].node.encode();
+       }
 
        let mon_bc = get_monitor!(nodes[1], chan_id_bc).encode();
        reload_node!(nodes[1], &manager_b, &[&mon_ab, &mon_bc], persister, new_chain_monitor, nodes_1_deserialized);
@@ -3174,48 +3180,82 @@ fn do_test_inverted_mon_completion_order(complete_bc_commitment_dance: bool) {
        nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
        nodes[2].node.peer_disconnected(&nodes[1].node.get_our_node_id());
 
-       // If we used the latest ChannelManager to reload from, we should have both channels still
-       // live. The B <-> C channel's final RAA ChannelMonitorUpdate must still be blocked as
-       // before - the ChannelMonitorUpdate for the A <-> B channel hasn't completed.
-       // When we call `timer_tick_occurred` we will get that monitor update back, which we'll
-       // complete after reconnecting to our peers.
-       persister.set_update_ret(ChannelMonitorUpdateStatus::InProgress);
-       nodes[1].node.timer_tick_occurred();
-       check_added_monitors(&nodes[1], 1);
-       assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty());
+       if with_latest_manager {
+               // If we used the latest ChannelManager to reload from, we should have both channels still
+               // live. The B <-> C channel's final RAA ChannelMonitorUpdate must still be blocked as
+               // before - the ChannelMonitorUpdate for the A <-> B channel hasn't completed.
+               // When we call `timer_tick_occurred` we will get that monitor update back, which we'll
+               // complete after reconnecting to our peers.
+               persister.set_update_ret(ChannelMonitorUpdateStatus::InProgress);
+               nodes[1].node.timer_tick_occurred();
+               check_added_monitors(&nodes[1], 1);
+               assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty());
 
-       // Now reconnect B to both A and C. If the B <-> C commitment signed dance wasn't run to
-       // the end go ahead and do that, though the
-       // `pending_responding_commitment_signed_dup_monitor` in `reconnect_args` indicates that we
-       // expect to *not* receive the final RAA ChannelMonitorUpdate.
-       if complete_bc_commitment_dance {
-               reconnect_nodes(ReconnectArgs::new(&nodes[1], &nodes[2]));
+               // Now reconnect B to both A and C. If the B <-> C commitment signed dance wasn't run to
+               // the end go ahead and do that, though the
+               // `pending_responding_commitment_signed_dup_monitor` in `reconnect_args` indicates that we
+               // expect to *not* receive the final RAA ChannelMonitorUpdate.
+               if complete_bc_commitment_dance {
+                       reconnect_nodes(ReconnectArgs::new(&nodes[1], &nodes[2]));
+               } else {
+                       let mut reconnect_args = ReconnectArgs::new(&nodes[1], &nodes[2]);
+                       reconnect_args.pending_responding_commitment_signed.1 = true;
+                       reconnect_args.pending_responding_commitment_signed_dup_monitor.1 = true;
+                       reconnect_args.pending_raa = (false, true);
+                       reconnect_nodes(reconnect_args);
+               }
+
+               reconnect_nodes(ReconnectArgs::new(&nodes[0], &nodes[1]));
+
+               // (Finally) complete the A <-> B ChannelMonitorUpdate, ensuring the preimage is durably on
+               // disk in the proper ChannelMonitor, unblocking the B <-> C ChannelMonitor updating
+               // process.
+               let (outpoint, _, ab_update_id) = nodes[1].chain_monitor.latest_monitor_update_id.lock().unwrap().get(&chan_id_ab).unwrap().clone();
+               nodes[1].chain_monitor.chain_monitor.channel_monitor_updated(outpoint, ab_update_id).unwrap();
+
+               // When we fetch B's HTLC update messages next (now that the ChannelMonitorUpdate has
+               // completed), it will also release the final RAA ChannelMonitorUpdate on the B <-> C
+               // channel.
        } else {
-               let mut reconnect_args = ReconnectArgs::new(&nodes[1], &nodes[2]);
-               reconnect_args.pending_responding_commitment_signed.1 = true;
-               reconnect_args.pending_responding_commitment_signed_dup_monitor.1 = true;
-               reconnect_args.pending_raa = (false, true);
-               reconnect_nodes(reconnect_args);
-       }
+               // If the ChannelManager used in the reload was stale, check that the B <-> C channel was
+               // closed.
+               //
+               // Note that this will also process the ChannelMonitorUpdates which were queued up when we
+               // reloaded the ChannelManager. This will re-emit the A<->B preimage as well as the B<->C
+               // force-closure ChannelMonitorUpdate. Once the A<->B preimage update completes, the claim
+               // commitment update will be allowed to go out.
+               check_added_monitors(&nodes[1], 0);
+               persister.set_update_ret(ChannelMonitorUpdateStatus::InProgress);
+               persister.set_update_ret(ChannelMonitorUpdateStatus::InProgress);
+               check_closed_event(&nodes[1], 1, ClosureReason::OutdatedChannelManager, false, &[nodes[2].node.get_our_node_id()], 100_000);
+               check_added_monitors(&nodes[1], 2);
+
+               nodes[1].node.timer_tick_occurred();
+               check_added_monitors(&nodes[1], 0);
 
-       reconnect_nodes(ReconnectArgs::new(&nodes[0], &nodes[1]));
+               // Don't bother to reconnect B to C - that channel has been closed. We don't need to
+               // exchange any messages here even though there's a pending commitment update because the
+               // ChannelMonitorUpdate hasn't yet completed.
+               reconnect_nodes(ReconnectArgs::new(&nodes[0], &nodes[1]));
 
-       // (Finally) complete the A <-> B ChannelMonitorUpdate, ensuring the preimage is durably on
-       // disk in the proper ChannelMonitor, unblocking the B <-> C ChannelMonitor updating
-       // process.
-       let (outpoint, _, ab_update_id) = nodes[1].chain_monitor.latest_monitor_update_id.lock().unwrap().get(&chan_id_ab).unwrap().clone();
-       nodes[1].chain_monitor.chain_monitor.channel_monitor_updated(outpoint, ab_update_id).unwrap();
+               let (outpoint, _, ab_update_id) = nodes[1].chain_monitor.latest_monitor_update_id.lock().unwrap().get(&chan_id_ab).unwrap().clone();
+               nodes[1].chain_monitor.chain_monitor.channel_monitor_updated(outpoint, ab_update_id).unwrap();
+
+               // The ChannelMonitorUpdate which was completed prior to the reconnect only contained the
+               // preimage (as it was a replay of the original ChannelMonitorUpdate from before we
+               // restarted). When we go to fetch the commitment transaction updates we'll poll the
+               // ChannelMonitorUpdate completion, then generate (and complete) a new ChannelMonitorUpdate
+               // with the actual commitment transaction, which will allow us to fulfill the HTLC with
+               // node A.
+       }
 
-       // When we fetch B's HTLC update messages here (now that the ChannelMonitorUpdate has
-       // completed), it will also release the final RAA ChannelMonitorUpdate on the B <-> C
-       // channel.
        let bs_updates = get_htlc_update_msgs(&nodes[1], &nodes[0].node.get_our_node_id());
        check_added_monitors(&nodes[1], 1);
 
        nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_updates.update_fulfill_htlcs[0]);
        do_commitment_signed_dance(&nodes[0], &nodes[1], &bs_updates.commitment_signed, false, false);
 
-       expect_payment_forwarded!(nodes[1], &nodes[0], &nodes[2], Some(1_000), false, false);
+       expect_payment_forwarded!(nodes[1], &nodes[0], &nodes[2], Some(1_000), false, !with_latest_manager);
 
        // Finally, check that the payment was, ultimately, seen as sent by node A.
        expect_payment_sent(&nodes[0], payment_preimage, None, true, true);
@@ -3223,6 +3263,169 @@ fn do_test_inverted_mon_completion_order(complete_bc_commitment_dance: bool) {
 
 #[test]
 fn test_inverted_mon_completion_order() {
-       do_test_inverted_mon_completion_order(true);
-       do_test_inverted_mon_completion_order(false);
+       do_test_inverted_mon_completion_order(true, true);
+       do_test_inverted_mon_completion_order(true, false);
+       do_test_inverted_mon_completion_order(false, true);
+       do_test_inverted_mon_completion_order(false, false);
+}
+
+fn do_test_durable_preimages_on_closed_channel(close_chans_before_reload: bool, close_only_a: bool, hold_post_reload_mon_update: bool) {
+       // Test that we can apply a `ChannelMonitorUpdate` with a payment preimage even if the channel
+       // is force-closed between when we generate the update on reload and when we go to handle the
+       // update or prior to generating the update at all.
+
+       if !close_chans_before_reload && close_only_a {
+               // If we're not closing, it makes no sense to "only close A"
+               panic!();
+       }
+
+       let chanmon_cfgs = create_chanmon_cfgs(3);
+       let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
+
+       let persister;
+       let new_chain_monitor;
+       let nodes_1_deserialized;
+
+       let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
+       let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs);
+
+       let chan_id_ab = create_announced_chan_between_nodes(&nodes, 0, 1).2;
+       let chan_id_bc = create_announced_chan_between_nodes(&nodes, 1, 2).2;
+
+       // Route a payment from A, through B, to C, then claim it on C. Once we pass B the
+       // `update_fulfill_htlc` we have a monitor update for both of B's channels. We complete the one
+       // on the B<->C channel but leave the A<->B monitor update pending, then reload B.
+       let (payment_preimage, payment_hash, ..) = route_payment(&nodes[0], &[&nodes[1], &nodes[2]], 1_000_000);
+
+       let mon_ab = get_monitor!(nodes[1], chan_id_ab).encode();
+
+       nodes[2].node.claim_funds(payment_preimage);
+       check_added_monitors(&nodes[2], 1);
+       expect_payment_claimed!(nodes[2], payment_hash, 1_000_000);
+
+       chanmon_cfgs[1].persister.set_update_ret(ChannelMonitorUpdateStatus::InProgress);
+       let cs_updates = get_htlc_update_msgs(&nodes[2], &nodes[1].node.get_our_node_id());
+       nodes[1].node.handle_update_fulfill_htlc(&nodes[2].node.get_our_node_id(), &cs_updates.update_fulfill_htlcs[0]);
+
+       // B generates a new monitor update for the A <-> B channel, but doesn't send the new messages
+       // for it since the monitor update is marked in-progress.
+       check_added_monitors(&nodes[1], 1);
+       assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty());
+
+       // Now step the Commitment Signed Dance between B and C forward a bit, ensuring we won't get
+       // the preimage when the nodes reconnect, at which point we have to ensure we get it from the
+       // ChannelMonitor.
+       nodes[1].node.handle_commitment_signed(&nodes[2].node.get_our_node_id(), &cs_updates.commitment_signed);
+       check_added_monitors(&nodes[1], 1);
+       let _ = get_revoke_commit_msgs!(nodes[1], nodes[2].node.get_our_node_id());
+
+       let mon_bc = get_monitor!(nodes[1], chan_id_bc).encode();
+
+       if close_chans_before_reload {
+               if !close_only_a {
+                       chanmon_cfgs[1].persister.set_update_ret(ChannelMonitorUpdateStatus::InProgress);
+                       nodes[1].node.force_close_broadcasting_latest_txn(&chan_id_bc, &nodes[2].node.get_our_node_id()).unwrap();
+                       check_closed_broadcast(&nodes[1], 1, true);
+                       check_closed_event(&nodes[1], 1, ClosureReason::HolderForceClosed, false, &[nodes[2].node.get_our_node_id()], 100000);
+               }
+
+               chanmon_cfgs[1].persister.set_update_ret(ChannelMonitorUpdateStatus::InProgress);
+               nodes[1].node.force_close_broadcasting_latest_txn(&chan_id_ab, &nodes[0].node.get_our_node_id()).unwrap();
+               check_closed_broadcast(&nodes[1], 1, true);
+               check_closed_event(&nodes[1], 1, ClosureReason::HolderForceClosed, false, &[nodes[0].node.get_our_node_id()], 100000);
+       }
+
+       // Now reload node B
+       let manager_b = nodes[1].node.encode();
+       reload_node!(nodes[1], &manager_b, &[&mon_ab, &mon_bc], persister, new_chain_monitor, nodes_1_deserialized);
+
+       nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
+       nodes[2].node.peer_disconnected(&nodes[1].node.get_our_node_id());
+
+       if close_chans_before_reload {
+               // If the channels were already closed, B will rebroadcast its closing transactions here.
+               let bs_close_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
+               if close_only_a {
+                       assert_eq!(bs_close_txn.len(), 2);
+               } else {
+                       assert_eq!(bs_close_txn.len(), 3);
+               }
+       }
+
+       nodes[0].node.force_close_broadcasting_latest_txn(&chan_id_ab, &nodes[1].node.get_our_node_id()).unwrap();
+       check_closed_event(&nodes[0], 1, ClosureReason::HolderForceClosed, false, &[nodes[1].node.get_our_node_id()], 100000);
+       let as_closing_tx = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
+       assert_eq!(as_closing_tx.len(), 1);
+
+       // In order to give A's closing transaction to B without processing background events first,
+       // use the _without_consistency_checks utility method. This is similar to connecting blocks
+       // during startup prior to the node being full initialized.
+       mine_transaction_without_consistency_checks(&nodes[1], &as_closing_tx[0]);
+
+       // After a timer tick a payment preimage ChannelMonitorUpdate is applied to the A<->B
+       // ChannelMonitor (possible twice), even though the channel has since been closed.
+       check_added_monitors(&nodes[1], 0);
+       let mons_added = if close_chans_before_reload { if !close_only_a { 4 } else { 3 } } else { 2 };
+       if hold_post_reload_mon_update {
+               for _ in 0..mons_added {
+                       persister.set_update_ret(ChannelMonitorUpdateStatus::InProgress);
+               }
+       }
+       nodes[1].node.timer_tick_occurred();
+       check_added_monitors(&nodes[1], mons_added);
+
+       // Finally, check that B created a payment preimage transaction and close out the payment.
+       let bs_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
+       assert_eq!(bs_txn.len(), if close_chans_before_reload && !close_only_a { 2 } else { 1 });
+       let bs_preimage_tx = &bs_txn[0];
+       check_spends!(bs_preimage_tx, as_closing_tx[0]);
+
+       if !close_chans_before_reload {
+               check_closed_broadcast(&nodes[1], 1, true);
+               check_closed_event(&nodes[1], 1, ClosureReason::CommitmentTxConfirmed, false, &[nodes[0].node.get_our_node_id()], 100000);
+       } else {
+               // While we forwarded the payment a while ago, we don't want to process events too early or
+               // we'll run background tasks we wanted to test individually.
+               expect_payment_forwarded!(nodes[1], nodes[0], nodes[2], None, true, !close_only_a);
+       }
+
+       mine_transactions(&nodes[0], &[&as_closing_tx[0], bs_preimage_tx]);
+       check_closed_broadcast(&nodes[0], 1, true);
+       expect_payment_sent(&nodes[0], payment_preimage, None, true, true);
+
+       if !close_chans_before_reload || close_only_a {
+               // Make sure the B<->C channel is still alive and well by sending a payment over it.
+               let mut reconnect_args = ReconnectArgs::new(&nodes[1], &nodes[2]);
+               reconnect_args.pending_responding_commitment_signed.1 = true;
+               if !close_chans_before_reload {
+                       // TODO: If the A<->B channel was closed before we reloaded, the `ChannelManager`
+                       // will consider the forwarded payment complete and allow the B<->C
+                       // `ChannelMonitorUpdate` to complete, wiping the payment preimage. This should not
+                       // be allowed, and needs fixing.
+                       reconnect_args.pending_responding_commitment_signed_dup_monitor.1 = true;
+               }
+               reconnect_args.pending_raa.1 = true;
+
+               reconnect_nodes(reconnect_args);
+               let (outpoint, ab_update_id, _) = nodes[1].chain_monitor.latest_monitor_update_id.lock().unwrap().get(&chan_id_ab).unwrap().clone();
+               nodes[1].chain_monitor.chain_monitor.force_channel_monitor_updated(outpoint, ab_update_id);
+               expect_payment_forwarded!(nodes[1], nodes[0], nodes[2], Some(1000), true, false);
+               if !close_chans_before_reload {
+                       // Once we call `process_pending_events` the final `ChannelMonitor` for the B<->C
+                       // channel will fly, removing the payment preimage from it.
+                       check_added_monitors(&nodes[1], 1);
+               }
+               assert!(nodes[1].node.get_and_clear_pending_events().is_empty());
+               send_payment(&nodes[1], &[&nodes[2]], 100_000);
+       }
+}
+
+#[test]
+fn test_durable_preimages_on_closed_channel() {
+       do_test_durable_preimages_on_closed_channel(true, true, true);
+       do_test_durable_preimages_on_closed_channel(true, true, false);
+       do_test_durable_preimages_on_closed_channel(true, false, true);
+       do_test_durable_preimages_on_closed_channel(true, false, false);
+       do_test_durable_preimages_on_closed_channel(false, false, true);
+       do_test_durable_preimages_on_closed_channel(false, false, false);
 }
index d68de5de39fb409585bd0cbe7bd4fb9cef6d170f..e2d7c90f783b5e9a93d92f80ecff3c21cf741285 100644 (file)
@@ -177,7 +177,7 @@ pub(super) enum HTLCForwardInfo {
 }
 
 /// Tracks the inbound corresponding to an outbound HTLC
-#[derive(Clone, Hash, PartialEq, Eq)]
+#[derive(Clone, Debug, Hash, PartialEq, Eq)]
 pub(crate) struct HTLCPreviousHopData {
        // Note that this may be an outbound SCID alias for the associated channel.
        short_channel_id: u64,
@@ -283,7 +283,7 @@ impl Readable for InterceptId {
        }
 }
 
-#[derive(Clone, Copy, PartialEq, Eq, Hash)]
+#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
 /// Uniquely describes an HTLC by its source. Just the guaranteed-unique subset of [`HTLCSource`].
 pub(crate) enum SentHTLCId {
        PreviousHopData { short_channel_id: u64, htlc_id: u64 },
@@ -314,7 +314,7 @@ impl_writeable_tlv_based_enum!(SentHTLCId,
 
 /// Tracks the inbound corresponding to an outbound HTLC
 #[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash
-#[derive(Clone, PartialEq, Eq)]
+#[derive(Clone, Debug, PartialEq, Eq)]
 pub(crate) enum HTLCSource {
        PreviousHopData(HTLCPreviousHopData),
        OutboundRoute {
index 90edd4abb7bde58a96f04228f908154b8985ffec..c677d12d45c062afdba3f7a53d4cc1a5d06ebef4 100644 (file)
@@ -17,7 +17,7 @@ use crate::chain::transaction::OutPoint;
 use crate::events::{ClaimedHTLC, ClosureReason, Event, HTLCDestination, MessageSendEvent, MessageSendEventsProvider, PathFailure, PaymentPurpose, PaymentFailureReason};
 use crate::events::bump_transaction::{BumpTransactionEventHandler, Wallet, WalletSource};
 use crate::ln::{ChannelId, PaymentPreimage, PaymentHash, PaymentSecret};
-use crate::ln::channelmanager::{self, AChannelManager, ChainParameters, ChannelManager, ChannelManagerReadArgs, RAACommitmentOrder, PaymentSendFailure, RecipientOnionFields, PaymentId, MIN_CLTV_EXPIRY_DELTA};
+use crate::ln::channelmanager::{AChannelManager, ChainParameters, ChannelManager, ChannelManagerReadArgs, RAACommitmentOrder, PaymentSendFailure, RecipientOnionFields, PaymentId, MIN_CLTV_EXPIRY_DELTA};
 use crate::routing::gossip::{P2PGossipSync, NetworkGraph, NetworkUpdate};
 use crate::routing::router::{self, PaymentParameters, Route, RouteParameters};
 use crate::ln::features::InitFeatures;
@@ -73,6 +73,20 @@ pub fn mine_transactions<'a, 'b, 'c, 'd>(node: &'a Node<'b, 'c, 'd>, txn: &[&Tra
        let height = node.best_block_info().1 + 1;
        confirm_transactions_at(node, txn, height);
 }
+/// Mine a single block containing the given transaction without extra consistency checks which may
+/// impact ChannelManager state.
+pub fn mine_transaction_without_consistency_checks<'a, 'b, 'c, 'd>(node: &'a Node<'b, 'c, 'd>, tx: &Transaction) {
+       let height = node.best_block_info().1 + 1;
+       let mut block = Block {
+               header: BlockHeader { version: 0x20000000, prev_blockhash: node.best_block_hash(), merkle_root: TxMerkleNode::all_zeros(), time: height, bits: 42, nonce: 42 },
+               txdata: Vec::new(),
+       };
+       for _ in 0..*node.network_chan_count.borrow() { // Make sure we don't end up with channels at the same short id by offsetting by chan_count
+               block.txdata.push(Transaction { version: 0, lock_time: PackedLockTime::ZERO, input: Vec::new(), output: Vec::new() });
+       }
+       block.txdata.push((*tx).clone());
+       do_connect_block_without_consistency_checks(node, block, false);
+}
 /// Mine the given transaction at the given height, mining blocks as required to build to that
 /// height
 ///
@@ -211,16 +225,16 @@ pub fn connect_blocks<'a, 'b, 'c, 'd>(node: &'a Node<'b, 'c, 'd>, depth: u32) ->
        assert!(depth >= 1);
        for i in 1..depth {
                let prev_blockhash = block.header.block_hash();
-               do_connect_block(node, block, skip_intermediaries);
+               do_connect_block_with_consistency_checks(node, block, skip_intermediaries);
                block = create_dummy_block(prev_blockhash, height + i, Vec::new());
        }
        let hash = block.header.block_hash();
-       do_connect_block(node, block, false);
+       do_connect_block_with_consistency_checks(node, block, false);
        hash
 }
 
 pub fn connect_block<'a, 'b, 'c, 'd>(node: &'a Node<'b, 'c, 'd>, block: &Block) {
-       do_connect_block(node, block.clone(), false);
+       do_connect_block_with_consistency_checks(node, block.clone(), false);
 }
 
 fn call_claimable_balances<'a, 'b, 'c, 'd>(node: &'a Node<'b, 'c, 'd>) {
@@ -230,8 +244,14 @@ fn call_claimable_balances<'a, 'b, 'c, 'd>(node: &'a Node<'b, 'c, 'd>) {
        }
 }
 
-fn do_connect_block<'a, 'b, 'c, 'd>(node: &'a Node<'b, 'c, 'd>, block: Block, skip_intermediaries: bool) {
+fn do_connect_block_with_consistency_checks<'a, 'b, 'c, 'd>(node: &'a Node<'b, 'c, 'd>, block: Block, skip_intermediaries: bool) {
+       call_claimable_balances(node);
+       do_connect_block_without_consistency_checks(node, block, skip_intermediaries);
        call_claimable_balances(node);
+       node.node.test_process_background_events();
+}
+
+fn do_connect_block_without_consistency_checks<'a, 'b, 'c, 'd>(node: &'a Node<'b, 'c, 'd>, block: Block, skip_intermediaries: bool) {
        let height = node.best_block_info().1 + 1;
        #[cfg(feature = "std")] {
                eprintln!("Connecting block using Block Connection Style: {:?}", *node.connect_style.borrow());
@@ -286,8 +306,6 @@ fn do_connect_block<'a, 'b, 'c, 'd>(node: &'a Node<'b, 'c, 'd>, block: Block, sk
                        }
                }
        }
-       call_claimable_balances(node);
-       node.node.test_process_background_events();
 
        for tx in &block.txdata {
                for input in &tx.input {