Change variable nomenclature for to_self_delay
[rust-lightning] / lightning / src / chain / keysinterface.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! keysinterface provides keys into rust-lightning and defines some useful enums which describe
11 //! spendable on-chain outputs which the user owns and is responsible for using just as any other
12 //! on-chain output which is theirs.
13
14 use bitcoin::blockdata::transaction::{Transaction, TxOut, SigHashType};
15 use bitcoin::blockdata::script::{Script, Builder};
16 use bitcoin::blockdata::opcodes;
17 use bitcoin::network::constants::Network;
18 use bitcoin::util::bip32::{ExtendedPrivKey, ExtendedPubKey, ChildNumber};
19 use bitcoin::util::bip143;
20
21 use bitcoin::hashes::{Hash, HashEngine};
22 use bitcoin::hashes::sha256::HashEngine as Sha256State;
23 use bitcoin::hashes::sha256::Hash as Sha256;
24 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
25 use bitcoin::hash_types::WPubkeyHash;
26
27 use bitcoin::secp256k1::key::{SecretKey, PublicKey};
28 use bitcoin::secp256k1::{Secp256k1, Signature, Signing};
29 use bitcoin::secp256k1;
30
31 use util::byte_utils;
32 use util::ser::{Writeable, Writer, Readable};
33
34 use chain::transaction::OutPoint;
35 use ln::chan_utils;
36 use ln::chan_utils::{HTLCOutputInCommitment, make_funding_redeemscript, ChannelPublicKeys, LocalCommitmentTransaction, PreCalculatedTxCreationKeys};
37 use ln::msgs::UnsignedChannelAnnouncement;
38
39 use std::sync::atomic::{AtomicUsize, Ordering};
40 use std::io::Error;
41 use ln::msgs::DecodeError;
42
43 /// When on-chain outputs are created by rust-lightning (which our counterparty is not able to
44 /// claim at any point in the future) an event is generated which you must track and be able to
45 /// spend on-chain. The information needed to do this is provided in this enum, including the
46 /// outpoint describing which txid and output index is available, the full output which exists at
47 /// that txid/index, and any keys or other information required to sign.
48 #[derive(Clone, PartialEq)]
49 pub enum SpendableOutputDescriptor {
50         /// An output to a script which was provided via KeysInterface, thus you should already know
51         /// how to spend it. No keys are provided as rust-lightning was never given any keys - only the
52         /// script_pubkey as it appears in the output.
53         /// These may include outputs from a transaction punishing our counterparty or claiming an HTLC
54         /// on-chain using the payment preimage or after it has timed out.
55         StaticOutput {
56                 /// The outpoint which is spendable
57                 outpoint: OutPoint,
58                 /// The output which is referenced by the given outpoint.
59                 output: TxOut,
60         },
61         /// An output to a P2WSH script which can be spent with a single signature after a CSV delay.
62         ///
63         /// The witness in the spending input should be:
64         /// <BIP 143 signature> <empty vector> (MINIMALIF standard rule) <provided witnessScript>
65         ///
66         /// Note that the nSequence field in the spending input must be set to to_self_delay
67         /// (which means the transaction is not broadcastable until at least to_self_delay
68         /// blocks after the outpoint confirms).
69         ///
70         /// These are generally the result of a "revocable" output to us, spendable only by us unless
71         /// it is an output from an old state which we broadcast (which should never happen).
72         ///
73         /// To derive the delayed_payment key which is used to sign for this input, you must pass the
74         /// local delayed_payment_base_key (ie the private key which corresponds to the pubkey in
75         /// ChannelKeys::pubkeys().delayed_payment_basepoint) and the provided per_commitment_point to
76         /// chan_utils::derive_private_key. The public key can be generated without the secret key
77         /// using chan_utils::derive_public_key and only the delayed_payment_basepoint which appears in
78         /// ChannelKeys::pubkeys().
79         ///
80         /// To derive the remote_revocation_pubkey provided here (which is used in the witness
81         /// script generation), you must pass the remote revocation_basepoint (which appears in the
82         /// call to ChannelKeys::on_accept) and the provided per_commitment point
83         /// to chan_utils::derive_public_revocation_key.
84         ///
85         /// The witness script which is hashed and included in the output script_pubkey may be
86         /// regenerated by passing the revocation_pubkey (derived as above), our delayed_payment pubkey
87         /// (derived as above), and the to_self_delay contained here to
88         /// chan_utils::get_revokeable_redeemscript.
89         //
90         // TODO: we need to expose utility methods in KeyManager to do all the relevant derivation.
91         DynamicOutputP2WSH {
92                 /// The outpoint which is spendable
93                 outpoint: OutPoint,
94                 /// Per commitment point to derive delayed_payment_key by key holder
95                 per_commitment_point: PublicKey,
96                 /// The nSequence value which must be set in the spending input to satisfy the OP_CSV in
97                 /// the witness_script.
98                 to_self_delay: u16,
99                 /// The output which is referenced by the given outpoint
100                 output: TxOut,
101                 /// The channel keys state used to proceed to derivation of signing key. Must
102                 /// be pass to KeysInterface::derive_channel_keys.
103                 key_derivation_params: (u64, u64),
104                 /// The remote_revocation_pubkey used to derive witnessScript
105                 remote_revocation_pubkey: PublicKey
106         },
107         /// An output to a P2WPKH, spendable exclusively by our payment key (ie the private key which
108         /// corresponds to the public key in ChannelKeys::pubkeys().payment_point).
109         /// The witness in the spending input, is, thus, simply:
110         /// <BIP 143 signature> <payment key>
111         ///
112         /// These are generally the result of our counterparty having broadcast the current state,
113         /// allowing us to claim the non-HTLC-encumbered outputs immediately.
114         StaticOutputRemotePayment {
115                 /// The outpoint which is spendable
116                 outpoint: OutPoint,
117                 /// The output which is reference by the given outpoint
118                 output: TxOut,
119                 /// The channel keys state used to proceed to derivation of signing key. Must
120                 /// be pass to KeysInterface::derive_channel_keys.
121                 key_derivation_params: (u64, u64),
122         }
123 }
124
125 impl Writeable for SpendableOutputDescriptor {
126         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
127                 match self {
128                         &SpendableOutputDescriptor::StaticOutput { ref outpoint, ref output } => {
129                                 0u8.write(writer)?;
130                                 outpoint.write(writer)?;
131                                 output.write(writer)?;
132                         },
133                         &SpendableOutputDescriptor::DynamicOutputP2WSH { ref outpoint, ref per_commitment_point, ref to_self_delay, ref output, ref key_derivation_params, ref remote_revocation_pubkey } => {
134                                 1u8.write(writer)?;
135                                 outpoint.write(writer)?;
136                                 per_commitment_point.write(writer)?;
137                                 to_self_delay.write(writer)?;
138                                 output.write(writer)?;
139                                 key_derivation_params.0.write(writer)?;
140                                 key_derivation_params.1.write(writer)?;
141                                 remote_revocation_pubkey.write(writer)?;
142                         },
143                         &SpendableOutputDescriptor::StaticOutputRemotePayment { ref outpoint, ref output, ref key_derivation_params } => {
144                                 2u8.write(writer)?;
145                                 outpoint.write(writer)?;
146                                 output.write(writer)?;
147                                 key_derivation_params.0.write(writer)?;
148                                 key_derivation_params.1.write(writer)?;
149                         },
150                 }
151                 Ok(())
152         }
153 }
154
155 impl Readable for SpendableOutputDescriptor {
156         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
157                 match Readable::read(reader)? {
158                         0u8 => Ok(SpendableOutputDescriptor::StaticOutput {
159                                 outpoint: Readable::read(reader)?,
160                                 output: Readable::read(reader)?,
161                         }),
162                         1u8 => Ok(SpendableOutputDescriptor::DynamicOutputP2WSH {
163                                 outpoint: Readable::read(reader)?,
164                                 per_commitment_point: Readable::read(reader)?,
165                                 to_self_delay: Readable::read(reader)?,
166                                 output: Readable::read(reader)?,
167                                 key_derivation_params: (Readable::read(reader)?, Readable::read(reader)?),
168                                 remote_revocation_pubkey: Readable::read(reader)?,
169                         }),
170                         2u8 => Ok(SpendableOutputDescriptor::StaticOutputRemotePayment {
171                                 outpoint: Readable::read(reader)?,
172                                 output: Readable::read(reader)?,
173                                 key_derivation_params: (Readable::read(reader)?, Readable::read(reader)?),
174                         }),
175                         _ => Err(DecodeError::InvalidValue),
176                 }
177         }
178 }
179
180 /// Set of lightning keys needed to operate a channel as described in BOLT 3.
181 ///
182 /// Signing services could be implemented on a hardware wallet. In this case,
183 /// the current ChannelKeys would be a front-end on top of a communication
184 /// channel connected to your secure device and lightning key material wouldn't
185 /// reside on a hot server. Nevertheless, a this deployment would still need
186 /// to trust the ChannelManager to avoid loss of funds as this latest component
187 /// could ask to sign commitment transaction with HTLCs paying to attacker pubkeys.
188 ///
189 /// A more secure iteration would be to use hashlock (or payment points) to pair
190 /// invoice/incoming HTLCs with outgoing HTLCs to implement a no-trust-ChannelManager
191 /// at the price of more state and computation on the hardware wallet side. In the future,
192 /// we are looking forward to design such interface.
193 ///
194 /// In any case, ChannelMonitor or fallback watchtowers are always going to be trusted
195 /// to act, as liveness and breach reply correctness are always going to be hard requirements
196 /// of LN security model, orthogonal of key management issues.
197 ///
198 /// If you're implementing a custom signer, you almost certainly want to implement
199 /// Readable/Writable to serialize out a unique reference to this set of keys so
200 /// that you can serialize the full ChannelManager object.
201 ///
202 // (TODO: We shouldn't require that, and should have an API to get them at deser time, due mostly
203 // to the possibility of reentrancy issues by calling the user's code during our deserialization
204 // routine).
205 // TODO: We should remove Clone by instead requesting a new ChannelKeys copy when we create
206 // ChannelMonitors instead of expecting to clone the one out of the Channel into the monitors.
207 pub trait ChannelKeys : Send+Clone {
208         /// Gets the per-commitment point for a specific commitment number
209         ///
210         /// Note that the commitment number starts at (1 << 48) - 1 and counts backwards.
211         fn get_per_commitment_point<T: secp256k1::Signing + secp256k1::Verification>(&self, idx: u64, secp_ctx: &Secp256k1<T>) -> PublicKey;
212         /// Gets the commitment secret for a specific commitment number as part of the revocation process
213         ///
214         /// An external signer implementation should error here if the commitment was already signed
215         /// and should refuse to sign it in the future.
216         ///
217         /// May be called more than once for the same index.
218         ///
219         /// Note that the commitment number starts at (1 << 48) - 1 and counts backwards.
220         /// TODO: return a Result so we can signal a validation error
221         fn release_commitment_secret(&self, idx: u64) -> [u8; 32];
222         /// Gets the local channel public keys and basepoints
223         fn pubkeys(&self) -> &ChannelPublicKeys;
224         /// Gets arbitrary identifiers describing the set of keys which are provided back to you in
225         /// some SpendableOutputDescriptor types. These should be sufficient to identify this
226         /// ChannelKeys object uniquely and lookup or re-derive its keys.
227         fn key_derivation_params(&self) -> (u64, u64);
228
229         /// Create a signature for a remote commitment transaction and associated HTLC transactions.
230         ///
231         /// Note that if signing fails or is rejected, the channel will be force-closed.
232         //
233         // TODO: Document the things someone using this interface should enforce before signing.
234         // TODO: Add more input vars to enable better checking (preferably removing commitment_tx and
235         // making the callee generate it via some util function we expose)!
236         fn sign_remote_commitment<T: secp256k1::Signing + secp256k1::Verification>(&self, feerate_per_kw: u32, commitment_tx: &Transaction, keys: &PreCalculatedTxCreationKeys, htlcs: &[&HTLCOutputInCommitment], secp_ctx: &Secp256k1<T>) -> Result<(Signature, Vec<Signature>), ()>;
237
238         /// Create a signature for a local commitment transaction. This will only ever be called with
239         /// the same local_commitment_tx (or a copy thereof), though there are currently no guarantees
240         /// that it will not be called multiple times.
241         /// An external signer implementation should check that the commitment has not been revoked.
242         //
243         // TODO: Document the things someone using this interface should enforce before signing.
244         // TODO: Add more input vars to enable better checking (preferably removing commitment_tx and
245         fn sign_local_commitment<T: secp256k1::Signing + secp256k1::Verification>(&self, local_commitment_tx: &LocalCommitmentTransaction, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()>;
246
247         /// Same as sign_local_commitment, but exists only for tests to get access to local commitment
248         /// transactions which will be broadcasted later, after the channel has moved on to a newer
249         /// state. Thus, needs its own method as sign_local_commitment may enforce that we only ever
250         /// get called once.
251         #[cfg(any(test,feature = "unsafe_revoked_tx_signing"))]
252         fn unsafe_sign_local_commitment<T: secp256k1::Signing + secp256k1::Verification>(&self, local_commitment_tx: &LocalCommitmentTransaction, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()>;
253
254         /// Create a signature for each HTLC transaction spending a local commitment transaction.
255         ///
256         /// Unlike sign_local_commitment, this may be called multiple times with *different*
257         /// local_commitment_tx values. While this will never be called with a revoked
258         /// local_commitment_tx, it is possible that it is called with the second-latest
259         /// local_commitment_tx (only if we haven't yet revoked it) if some watchtower/secondary
260         /// ChannelMonitor decided to broadcast before it had been updated to the latest.
261         ///
262         /// Either an Err should be returned, or a Vec with one entry for each HTLC which exists in
263         /// local_commitment_tx. For those HTLCs which have transaction_output_index set to None
264         /// (implying they were considered dust at the time the commitment transaction was negotiated),
265         /// a corresponding None should be included in the return value. All other positions in the
266         /// return value must contain a signature.
267         fn sign_local_commitment_htlc_transactions<T: secp256k1::Signing + secp256k1::Verification>(&self, local_commitment_tx: &LocalCommitmentTransaction, secp_ctx: &Secp256k1<T>) -> Result<Vec<Option<Signature>>, ()>;
268
269         /// Create a signature for the given input in a transaction spending an HTLC or commitment
270         /// transaction output when our counterparty broadcasts an old state.
271         ///
272         /// A justice transaction may claim multiples outputs at the same time if timelocks are
273         /// similar, but only a signature for the input at index `input` should be signed for here.
274         /// It may be called multiples time for same output(s) if a fee-bump is needed with regards
275         /// to an upcoming timelock expiration.
276         ///
277         /// Amount is value of the output spent by this input, committed to in the BIP 143 signature.
278         ///
279         /// per_commitment_key is revocation secret which was provided by our counterparty when they
280         /// revoked the state which they eventually broadcast. It's not a _local_ secret key and does
281         /// not allow the spending of any funds by itself (you need our local revocation_secret to do
282         /// so).
283         ///
284         /// htlc holds HTLC elements (hash, timelock) if the output being spent is a HTLC output, thus
285         /// changing the format of the witness script (which is committed to in the BIP 143
286         /// signatures).
287         fn sign_justice_transaction<T: secp256k1::Signing + secp256k1::Verification>(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, htlc: &Option<HTLCOutputInCommitment>, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()>;
288
289         /// Create a signature for a claiming transaction for a HTLC output on a remote commitment
290         /// transaction, either offered or received.
291         ///
292         /// Such a transaction may claim multiples offered outputs at same time if we know the
293         /// preimage for each when we create it, but only the input at index `input` should be
294         /// signed for here. It may be called multiple times for same output(s) if a fee-bump is
295         /// needed with regards to an upcoming timelock expiration.
296         ///
297         /// Witness_script is either a offered or received script as defined in BOLT3 for HTLC
298         /// outputs.
299         ///
300         /// Amount is value of the output spent by this input, committed to in the BIP 143 signature.
301         ///
302         /// Per_commitment_point is the dynamic point corresponding to the channel state
303         /// detected onchain. It has been generated by our counterparty and is used to derive
304         /// channel state keys, which are then included in the witness script and committed to in the
305         /// BIP 143 signature.
306         fn sign_remote_htlc_transaction<T: secp256k1::Signing + secp256k1::Verification>(&self, htlc_tx: &Transaction, input: usize, amount: u64, per_commitment_point: &PublicKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()>;
307
308         /// Create a signature for a (proposed) closing transaction.
309         ///
310         /// Note that, due to rounding, there may be one "missing" satoshi, and either party may have
311         /// chosen to forgo their output as dust.
312         fn sign_closing_transaction<T: secp256k1::Signing>(&self, closing_tx: &Transaction, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()>;
313
314         /// Signs a channel announcement message with our funding key, proving it comes from one
315         /// of the channel participants.
316         ///
317         /// Note that if this fails or is rejected, the channel will not be publicly announced and
318         /// our counterparty may (though likely will not) close the channel on us for violating the
319         /// protocol.
320         fn sign_channel_announcement<T: secp256k1::Signing>(&self, msg: &UnsignedChannelAnnouncement, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()>;
321
322         /// Set the counterparty channel basepoints and counterparty_selected/locally_selected_contest_delay.
323         /// This is done immediately on incoming channels and as soon as the channel is accepted on outgoing channels.
324         ///
325         /// We bind locally_selected_contest_delay late here for API convenience.
326         ///
327         /// Will be called before any signatures are applied.
328         fn on_accept(&mut self, channel_points: &ChannelPublicKeys, counterparty_selected_contest_delay: u16, locally_selected_contest_delay: u16);
329 }
330
331 /// A trait to describe an object which can get user secrets and key material.
332 pub trait KeysInterface: Send + Sync {
333         /// A type which implements ChannelKeys which will be returned by get_channel_keys.
334         type ChanKeySigner : ChannelKeys;
335
336         /// Get node secret key (aka node_id or network_key)
337         fn get_node_secret(&self) -> SecretKey;
338         /// Get destination redeemScript to encumber static protocol exit points.
339         fn get_destination_script(&self) -> Script;
340         /// Get shutdown_pubkey to use as PublicKey at channel closure
341         fn get_shutdown_pubkey(&self) -> PublicKey;
342         /// Get a new set of ChannelKeys for per-channel secrets. These MUST be unique even if you
343         /// restarted with some stale data!
344         fn get_channel_keys(&self, inbound: bool, channel_value_satoshis: u64) -> Self::ChanKeySigner;
345         /// Gets a unique, cryptographically-secure, random 32 byte value. This is used for encrypting
346         /// onion packets and for temporary channel IDs. There is no requirement that these be
347         /// persisted anywhere, though they must be unique across restarts.
348         fn get_secure_random_bytes(&self) -> [u8; 32];
349 }
350
351 #[derive(Clone)]
352 /// Holds late-bound channel data.
353 /// This data is available after the channel is known to be accepted, either
354 /// when receiving an open_channel for an inbound channel or when
355 /// receiving accept_channel for an outbound channel.
356 struct AcceptedChannelData {
357         /// Counterparty public keys and base points
358         counterparty_channel_pubkeys: ChannelPublicKeys,
359         /// The contest_delay value specified by our counterparty and applied on locally-broadcastable
360         /// transactions, ie the amount of time that we have to wait to recover our funds if we
361         /// broadcast a transaction. You'll likely want to pass this to the
362         /// ln::chan_utils::build*_transaction functions when signing local transactions.
363         counterparty_selected_contest_delay: u16,
364         /// The contest_delay value specified by us and applied on transactions broadcastable
365         /// by our counterparty, ie the amount of time that they have to wait to recover their funds
366         /// if they broadcast a transaction.
367         locally_selected_contest_delay: u16,
368 }
369
370 #[derive(Clone)]
371 /// A simple implementation of ChannelKeys that just keeps the private keys in memory.
372 pub struct InMemoryChannelKeys {
373         /// Private key of anchor tx
374         pub funding_key: SecretKey,
375         /// Local secret key for blinded revocation pubkey
376         pub revocation_base_key: SecretKey,
377         /// Local secret key used for our balance in remote-broadcasted commitment transactions
378         pub payment_key: SecretKey,
379         /// Local secret key used in HTLC tx
380         pub delayed_payment_base_key: SecretKey,
381         /// Local htlc secret key used in commitment tx htlc outputs
382         pub htlc_base_key: SecretKey,
383         /// Commitment seed
384         pub commitment_seed: [u8; 32],
385         /// Local public keys and basepoints
386         pub(crate) local_channel_pubkeys: ChannelPublicKeys,
387         /// Counterparty public keys and counterparty/locally selected_contest_delay, populated on channel acceptance
388         accepted_channel_data: Option<AcceptedChannelData>,
389         /// The total value of this channel
390         channel_value_satoshis: u64,
391         /// Key derivation parameters
392         key_derivation_params: (u64, u64),
393 }
394
395 impl InMemoryChannelKeys {
396         /// Create a new InMemoryChannelKeys
397         pub fn new<C: Signing>(
398                 secp_ctx: &Secp256k1<C>,
399                 funding_key: SecretKey,
400                 revocation_base_key: SecretKey,
401                 payment_key: SecretKey,
402                 delayed_payment_base_key: SecretKey,
403                 htlc_base_key: SecretKey,
404                 commitment_seed: [u8; 32],
405                 channel_value_satoshis: u64,
406                 key_derivation_params: (u64, u64)) -> InMemoryChannelKeys {
407                 let local_channel_pubkeys =
408                         InMemoryChannelKeys::make_local_keys(secp_ctx, &funding_key, &revocation_base_key,
409                                                              &payment_key, &delayed_payment_base_key,
410                                                              &htlc_base_key);
411                 InMemoryChannelKeys {
412                         funding_key,
413                         revocation_base_key,
414                         payment_key,
415                         delayed_payment_base_key,
416                         htlc_base_key,
417                         commitment_seed,
418                         channel_value_satoshis,
419                         local_channel_pubkeys,
420                         accepted_channel_data: None,
421                         key_derivation_params,
422                 }
423         }
424
425         fn make_local_keys<C: Signing>(secp_ctx: &Secp256k1<C>,
426                                        funding_key: &SecretKey,
427                                        revocation_base_key: &SecretKey,
428                                        payment_key: &SecretKey,
429                                        delayed_payment_base_key: &SecretKey,
430                                        htlc_base_key: &SecretKey) -> ChannelPublicKeys {
431                 let from_secret = |s: &SecretKey| PublicKey::from_secret_key(secp_ctx, s);
432                 ChannelPublicKeys {
433                         funding_pubkey: from_secret(&funding_key),
434                         revocation_basepoint: from_secret(&revocation_base_key),
435                         payment_point: from_secret(&payment_key),
436                         delayed_payment_basepoint: from_secret(&delayed_payment_base_key),
437                         htlc_basepoint: from_secret(&htlc_base_key),
438                 }
439         }
440
441         /// Counterparty pubkeys.
442         /// Will panic if on_accept wasn't called.
443         pub fn counterparty_pubkeys(&self) -> &ChannelPublicKeys { &self.accepted_channel_data.as_ref().unwrap().counterparty_channel_pubkeys }
444
445         /// The contest_delay value specified by our counterparty and applied on locally-broadcastable
446         /// transactions, ie the amount of time that we have to wait to recover our funds if we
447         /// broadcast a transaction. You'll likely want to pass this to the
448         /// ln::chan_utils::build*_transaction functions when signing local transactions.
449         /// Will panic if on_accept wasn't called.
450         pub fn counterparty_selected_contest_delay(&self) -> u16 { self.accepted_channel_data.as_ref().unwrap().counterparty_selected_contest_delay }
451
452         /// The contest_delay value specified by us and applied on transactions broadcastable
453         /// by our counterparty, ie the amount of time that they have to wait to recover their funds
454         /// if they broadcast a transaction.
455         /// Will panic if on_accept wasn't called.
456         pub fn locally_selected_contest_delay(&self) -> u16 { self.accepted_channel_data.as_ref().unwrap().locally_selected_contest_delay }
457 }
458
459 impl ChannelKeys for InMemoryChannelKeys {
460         fn get_per_commitment_point<T: secp256k1::Signing + secp256k1::Verification>(&self, idx: u64, secp_ctx: &Secp256k1<T>) -> PublicKey {
461                 let commitment_secret = SecretKey::from_slice(&chan_utils::build_commitment_secret(&self.commitment_seed, idx)).unwrap();
462                 PublicKey::from_secret_key(secp_ctx, &commitment_secret)
463         }
464
465         fn release_commitment_secret(&self, idx: u64) -> [u8; 32] {
466                 chan_utils::build_commitment_secret(&self.commitment_seed, idx)
467         }
468
469         fn pubkeys(&self) -> &ChannelPublicKeys { &self.local_channel_pubkeys }
470         fn key_derivation_params(&self) -> (u64, u64) { self.key_derivation_params }
471
472         fn sign_remote_commitment<T: secp256k1::Signing + secp256k1::Verification>(&self, feerate_per_kw: u32, commitment_tx: &Transaction, pre_keys: &PreCalculatedTxCreationKeys, htlcs: &[&HTLCOutputInCommitment], secp_ctx: &Secp256k1<T>) -> Result<(Signature, Vec<Signature>), ()> {
473                 if commitment_tx.input.len() != 1 { return Err(()); }
474                 let keys = pre_keys.trust_key_derivation();
475
476                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
477                 let accepted_data = self.accepted_channel_data.as_ref().expect("must accept before signing");
478                 let channel_funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &accepted_data.counterparty_channel_pubkeys.funding_pubkey);
479
480                 let commitment_sighash = hash_to_message!(&bip143::SigHashCache::new(commitment_tx).signature_hash(0, &channel_funding_redeemscript, self.channel_value_satoshis, SigHashType::All)[..]);
481                 let commitment_sig = secp_ctx.sign(&commitment_sighash, &self.funding_key);
482
483                 let commitment_txid = commitment_tx.txid();
484
485                 let mut htlc_sigs = Vec::with_capacity(htlcs.len());
486                 for ref htlc in htlcs {
487                         if let Some(_) = htlc.transaction_output_index {
488                                 let htlc_tx = chan_utils::build_htlc_transaction(&commitment_txid, feerate_per_kw, accepted_data.locally_selected_contest_delay, htlc, &keys.delayed_payment_key, &keys.revocation_key);
489                                 let htlc_redeemscript = chan_utils::get_htlc_redeemscript(&htlc, &keys);
490                                 let htlc_sighash = hash_to_message!(&bip143::SigHashCache::new(&htlc_tx).signature_hash(0, &htlc_redeemscript, htlc.amount_msat / 1000, SigHashType::All)[..]);
491                                 let our_htlc_key = match chan_utils::derive_private_key(&secp_ctx, &keys.per_commitment_point, &self.htlc_base_key) {
492                                         Ok(s) => s,
493                                         Err(_) => return Err(()),
494                                 };
495                                 htlc_sigs.push(secp_ctx.sign(&htlc_sighash, &our_htlc_key));
496                         }
497                 }
498
499                 Ok((commitment_sig, htlc_sigs))
500         }
501
502         fn sign_local_commitment<T: secp256k1::Signing + secp256k1::Verification>(&self, local_commitment_tx: &LocalCommitmentTransaction, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()> {
503                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
504                 let counterparty_channel_data = self.accepted_channel_data.as_ref().expect("must accept before signing");
505                 let channel_funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &counterparty_channel_data.counterparty_channel_pubkeys.funding_pubkey);
506
507                 Ok(local_commitment_tx.get_local_sig(&self.funding_key, &channel_funding_redeemscript, self.channel_value_satoshis, secp_ctx))
508         }
509
510         #[cfg(any(test,feature = "unsafe_revoked_tx_signing"))]
511         fn unsafe_sign_local_commitment<T: secp256k1::Signing + secp256k1::Verification>(&self, local_commitment_tx: &LocalCommitmentTransaction, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()> {
512                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
513                 let counterparty_channel_pubkeys = &self.accepted_channel_data.as_ref().expect("must accept before signing").counterparty_channel_pubkeys;
514                 let channel_funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &counterparty_channel_pubkeys.funding_pubkey);
515
516                 Ok(local_commitment_tx.get_local_sig(&self.funding_key, &channel_funding_redeemscript, self.channel_value_satoshis, secp_ctx))
517         }
518
519         fn sign_local_commitment_htlc_transactions<T: secp256k1::Signing + secp256k1::Verification>(&self, local_commitment_tx: &LocalCommitmentTransaction, secp_ctx: &Secp256k1<T>) -> Result<Vec<Option<Signature>>, ()> {
520                 let local_csv = self.accepted_channel_data.as_ref().unwrap().counterparty_selected_contest_delay;
521                 local_commitment_tx.get_htlc_sigs(&self.htlc_base_key, local_csv, secp_ctx)
522         }
523
524         fn sign_justice_transaction<T: secp256k1::Signing + secp256k1::Verification>(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, htlc: &Option<HTLCOutputInCommitment>, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()> {
525                 let revocation_key = match chan_utils::derive_private_revocation_key(&secp_ctx, &per_commitment_key, &self.revocation_base_key) {
526                         Ok(revocation_key) => revocation_key,
527                         Err(_) => return Err(())
528                 };
529                 let per_commitment_point = PublicKey::from_secret_key(secp_ctx, &per_commitment_key);
530                 let revocation_pubkey = match chan_utils::derive_public_revocation_key(&secp_ctx, &per_commitment_point, &self.pubkeys().revocation_basepoint) {
531                         Ok(revocation_pubkey) => revocation_pubkey,
532                         Err(_) => return Err(())
533                 };
534                 let witness_script = if let &Some(ref htlc) = htlc {
535                         let counterparty_htlcpubkey = match chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.counterparty_pubkeys().htlc_basepoint) {
536                                 Ok(counterparty_htlcpubkey) => counterparty_htlcpubkey,
537                                 Err(_) => return Err(())
538                         };
539                         let local_htlcpubkey = match chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.pubkeys().htlc_basepoint) {
540                                 Ok(local_htlcpubkey) => local_htlcpubkey,
541                                 Err(_) => return Err(())
542                         };
543                         chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, &counterparty_htlcpubkey, &local_htlcpubkey, &revocation_pubkey)
544                 } else {
545                         let counterparty_delayedpubkey = match chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.counterparty_pubkeys().delayed_payment_basepoint) {
546                                 Ok(counterparty_delayedpubkey) => counterparty_delayedpubkey,
547                                 Err(_) => return Err(())
548                         };
549                         chan_utils::get_revokeable_redeemscript(&revocation_pubkey, self.locally_selected_contest_delay(), &counterparty_delayedpubkey)
550                 };
551                 let mut sighash_parts = bip143::SigHashCache::new(justice_tx);
552                 let sighash = hash_to_message!(&sighash_parts.signature_hash(input, &witness_script, amount, SigHashType::All)[..]);
553                 return Ok(secp_ctx.sign(&sighash, &revocation_key))
554         }
555
556         fn sign_remote_htlc_transaction<T: secp256k1::Signing + secp256k1::Verification>(&self, htlc_tx: &Transaction, input: usize, amount: u64, per_commitment_point: &PublicKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()> {
557                 if let Ok(htlc_key) = chan_utils::derive_private_key(&secp_ctx, &per_commitment_point, &self.htlc_base_key) {
558                         let witness_script = if let Ok(revocation_pubkey) = chan_utils::derive_public_revocation_key(&secp_ctx, &per_commitment_point, &self.pubkeys().revocation_basepoint) {
559                                 if let Ok(counterparty_htlcpubkey) = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.counterparty_pubkeys().htlc_basepoint) {
560                                         if let Ok(htlcpubkey) = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.pubkeys().htlc_basepoint) {
561                                                 chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, &counterparty_htlcpubkey, &htlcpubkey, &revocation_pubkey)
562                                         } else { return Err(()) }
563                                 } else { return Err(()) }
564                         } else { return Err(()) };
565                         let mut sighash_parts = bip143::SigHashCache::new(htlc_tx);
566                         let sighash = hash_to_message!(&sighash_parts.signature_hash(input, &witness_script, amount, SigHashType::All)[..]);
567                         return Ok(secp_ctx.sign(&sighash, &htlc_key))
568                 }
569                 Err(())
570         }
571
572         fn sign_closing_transaction<T: secp256k1::Signing>(&self, closing_tx: &Transaction, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()> {
573                 if closing_tx.input.len() != 1 { return Err(()); }
574                 if closing_tx.input[0].witness.len() != 0 { return Err(()); }
575                 if closing_tx.output.len() > 2 { return Err(()); }
576
577                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
578                 let counterparty_channel_data = self.accepted_channel_data.as_ref().expect("must accept before signing");
579                 let channel_funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &counterparty_channel_data.counterparty_channel_pubkeys.funding_pubkey);
580
581                 let sighash = hash_to_message!(&bip143::SigHashCache::new(closing_tx)
582                         .signature_hash(0, &channel_funding_redeemscript, self.channel_value_satoshis, SigHashType::All)[..]);
583                 Ok(secp_ctx.sign(&sighash, &self.funding_key))
584         }
585
586         fn sign_channel_announcement<T: secp256k1::Signing>(&self, msg: &UnsignedChannelAnnouncement, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()> {
587                 let msghash = hash_to_message!(&Sha256dHash::hash(&msg.encode()[..])[..]);
588                 Ok(secp_ctx.sign(&msghash, &self.funding_key))
589         }
590
591         fn on_accept(&mut self, channel_pubkeys: &ChannelPublicKeys, counterparty_selected_contest_delay: u16, locally_selected_contest_delay: u16) {
592                 assert!(self.accepted_channel_data.is_none(), "Already accepted");
593                 self.accepted_channel_data = Some(AcceptedChannelData {
594                         counterparty_channel_pubkeys: channel_pubkeys.clone(),
595                         counterparty_selected_contest_delay,
596                         locally_selected_contest_delay,
597                 });
598         }
599 }
600
601 impl_writeable!(AcceptedChannelData, 0,
602  { counterparty_channel_pubkeys, counterparty_selected_contest_delay, locally_selected_contest_delay });
603
604 impl Writeable for InMemoryChannelKeys {
605         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), Error> {
606                 self.funding_key.write(writer)?;
607                 self.revocation_base_key.write(writer)?;
608                 self.payment_key.write(writer)?;
609                 self.delayed_payment_base_key.write(writer)?;
610                 self.htlc_base_key.write(writer)?;
611                 self.commitment_seed.write(writer)?;
612                 self.accepted_channel_data.write(writer)?;
613                 self.channel_value_satoshis.write(writer)?;
614                 self.key_derivation_params.0.write(writer)?;
615                 self.key_derivation_params.1.write(writer)?;
616
617                 Ok(())
618         }
619 }
620
621 impl Readable for InMemoryChannelKeys {
622         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
623                 let funding_key = Readable::read(reader)?;
624                 let revocation_base_key = Readable::read(reader)?;
625                 let payment_key = Readable::read(reader)?;
626                 let delayed_payment_base_key = Readable::read(reader)?;
627                 let htlc_base_key = Readable::read(reader)?;
628                 let commitment_seed = Readable::read(reader)?;
629                 let counterparty_channel_data = Readable::read(reader)?;
630                 let channel_value_satoshis = Readable::read(reader)?;
631                 let secp_ctx = Secp256k1::signing_only();
632                 let local_channel_pubkeys =
633                         InMemoryChannelKeys::make_local_keys(&secp_ctx, &funding_key, &revocation_base_key,
634                                                              &payment_key, &delayed_payment_base_key,
635                                                              &htlc_base_key);
636                 let params_1 = Readable::read(reader)?;
637                 let params_2 = Readable::read(reader)?;
638
639                 Ok(InMemoryChannelKeys {
640                         funding_key,
641                         revocation_base_key,
642                         payment_key,
643                         delayed_payment_base_key,
644                         htlc_base_key,
645                         commitment_seed,
646                         channel_value_satoshis,
647                         local_channel_pubkeys,
648                         accepted_channel_data: counterparty_channel_data,
649                         key_derivation_params: (params_1, params_2),
650                 })
651         }
652 }
653
654 /// Simple KeysInterface implementor that takes a 32-byte seed for use as a BIP 32 extended key
655 /// and derives keys from that.
656 ///
657 /// Your node_id is seed/0'
658 /// ChannelMonitor closes may use seed/1'
659 /// Cooperative closes may use seed/2'
660 /// The two close keys may be needed to claim on-chain funds!
661 pub struct KeysManager {
662         secp_ctx: Secp256k1<secp256k1::SignOnly>,
663         node_secret: SecretKey,
664         destination_script: Script,
665         shutdown_pubkey: PublicKey,
666         channel_master_key: ExtendedPrivKey,
667         channel_child_index: AtomicUsize,
668         rand_bytes_master_key: ExtendedPrivKey,
669         rand_bytes_child_index: AtomicUsize,
670
671         seed: [u8; 32],
672         starting_time_secs: u64,
673         starting_time_nanos: u32,
674 }
675
676 impl KeysManager {
677         /// Constructs a KeysManager from a 32-byte seed. If the seed is in some way biased (eg your
678         /// CSRNG is busted) this may panic (but more importantly, you will possibly lose funds).
679         /// starting_time isn't strictly required to actually be a time, but it must absolutely,
680         /// without a doubt, be unique to this instance. ie if you start multiple times with the same
681         /// seed, starting_time must be unique to each run. Thus, the easiest way to achieve this is to
682         /// simply use the current time (with very high precision).
683         ///
684         /// The seed MUST be backed up safely prior to use so that the keys can be re-created, however,
685         /// obviously, starting_time should be unique every time you reload the library - it is only
686         /// used to generate new ephemeral key data (which will be stored by the individual channel if
687         /// necessary).
688         ///
689         /// Note that the seed is required to recover certain on-chain funds independent of
690         /// ChannelMonitor data, though a current copy of ChannelMonitor data is also required for any
691         /// channel, and some on-chain during-closing funds.
692         ///
693         /// Note that until the 0.1 release there is no guarantee of backward compatibility between
694         /// versions. Once the library is more fully supported, the docs will be updated to include a
695         /// detailed description of the guarantee.
696         pub fn new(seed: &[u8; 32], network: Network, starting_time_secs: u64, starting_time_nanos: u32) -> Self {
697                 let secp_ctx = Secp256k1::signing_only();
698                 match ExtendedPrivKey::new_master(network.clone(), seed) {
699                         Ok(master_key) => {
700                                 let node_secret = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(0).unwrap()).expect("Your RNG is busted").private_key.key;
701                                 let destination_script = match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(1).unwrap()) {
702                                         Ok(destination_key) => {
703                                                 let wpubkey_hash = WPubkeyHash::hash(&ExtendedPubKey::from_private(&secp_ctx, &destination_key).public_key.to_bytes());
704                                                 Builder::new().push_opcode(opcodes::all::OP_PUSHBYTES_0)
705                                                               .push_slice(&wpubkey_hash.into_inner())
706                                                               .into_script()
707                                         },
708                                         Err(_) => panic!("Your RNG is busted"),
709                                 };
710                                 let shutdown_pubkey = match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(2).unwrap()) {
711                                         Ok(shutdown_key) => ExtendedPubKey::from_private(&secp_ctx, &shutdown_key).public_key.key,
712                                         Err(_) => panic!("Your RNG is busted"),
713                                 };
714                                 let channel_master_key = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(3).unwrap()).expect("Your RNG is busted");
715                                 let rand_bytes_master_key = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(4).unwrap()).expect("Your RNG is busted");
716
717                                 KeysManager {
718                                         secp_ctx,
719                                         node_secret,
720                                         destination_script,
721                                         shutdown_pubkey,
722                                         channel_master_key,
723                                         channel_child_index: AtomicUsize::new(0),
724                                         rand_bytes_master_key,
725                                         rand_bytes_child_index: AtomicUsize::new(0),
726
727                                         seed: *seed,
728                                         starting_time_secs,
729                                         starting_time_nanos,
730                                 }
731                         },
732                         Err(_) => panic!("Your rng is busted"),
733                 }
734         }
735         fn derive_unique_start(&self) -> Sha256State {
736                 let mut unique_start = Sha256::engine();
737                 unique_start.input(&byte_utils::be64_to_array(self.starting_time_secs));
738                 unique_start.input(&byte_utils::be32_to_array(self.starting_time_nanos));
739                 unique_start.input(&self.seed);
740                 unique_start
741         }
742         /// Derive an old set of ChannelKeys for per-channel secrets based on a key derivation
743         /// parameters.
744         /// Key derivation parameters are accessible through a per-channel secrets
745         /// ChannelKeys::key_derivation_params and is provided inside DynamicOuputP2WSH in case of
746         /// onchain output detection for which a corresponding delayed_payment_key must be derived.
747         pub fn derive_channel_keys(&self, channel_value_satoshis: u64, params_1: u64, params_2: u64) -> InMemoryChannelKeys {
748                 let chan_id = ((params_1 & 0xFFFF_FFFF_0000_0000) >> 32) as u32;
749                 let mut unique_start = Sha256::engine();
750                 unique_start.input(&byte_utils::be64_to_array(params_2));
751                 unique_start.input(&byte_utils::be32_to_array(params_1 as u32));
752                 unique_start.input(&self.seed);
753
754                 // We only seriously intend to rely on the channel_master_key for true secure
755                 // entropy, everything else just ensures uniqueness. We rely on the unique_start (ie
756                 // starting_time provided in the constructor) to be unique.
757                 let child_privkey = self.channel_master_key.ckd_priv(&self.secp_ctx, ChildNumber::from_hardened_idx(chan_id).expect("key space exhausted")).expect("Your RNG is busted");
758                 unique_start.input(&child_privkey.private_key.key[..]);
759
760                 let seed = Sha256::from_engine(unique_start).into_inner();
761
762                 let commitment_seed = {
763                         let mut sha = Sha256::engine();
764                         sha.input(&seed);
765                         sha.input(&b"commitment seed"[..]);
766                         Sha256::from_engine(sha).into_inner()
767                 };
768                 macro_rules! key_step {
769                         ($info: expr, $prev_key: expr) => {{
770                                 let mut sha = Sha256::engine();
771                                 sha.input(&seed);
772                                 sha.input(&$prev_key[..]);
773                                 sha.input(&$info[..]);
774                                 SecretKey::from_slice(&Sha256::from_engine(sha).into_inner()).expect("SHA-256 is busted")
775                         }}
776                 }
777                 let funding_key = key_step!(b"funding key", commitment_seed);
778                 let revocation_base_key = key_step!(b"revocation base key", funding_key);
779                 let payment_key = key_step!(b"payment key", revocation_base_key);
780                 let delayed_payment_base_key = key_step!(b"delayed payment base key", payment_key);
781                 let htlc_base_key = key_step!(b"HTLC base key", delayed_payment_base_key);
782
783                 InMemoryChannelKeys::new(
784                         &self.secp_ctx,
785                         funding_key,
786                         revocation_base_key,
787                         payment_key,
788                         delayed_payment_base_key,
789                         htlc_base_key,
790                         commitment_seed,
791                         channel_value_satoshis,
792                         (params_1, params_2),
793                 )
794         }
795 }
796
797 impl KeysInterface for KeysManager {
798         type ChanKeySigner = InMemoryChannelKeys;
799
800         fn get_node_secret(&self) -> SecretKey {
801                 self.node_secret.clone()
802         }
803
804         fn get_destination_script(&self) -> Script {
805                 self.destination_script.clone()
806         }
807
808         fn get_shutdown_pubkey(&self) -> PublicKey {
809                 self.shutdown_pubkey.clone()
810         }
811
812         fn get_channel_keys(&self, _inbound: bool, channel_value_satoshis: u64) -> Self::ChanKeySigner {
813                 let child_ix = self.channel_child_index.fetch_add(1, Ordering::AcqRel);
814                 let ix_and_nanos: u64 = (child_ix as u64) << 32 | (self.starting_time_nanos as u64);
815                 self.derive_channel_keys(channel_value_satoshis, ix_and_nanos, self.starting_time_secs)
816         }
817
818         fn get_secure_random_bytes(&self) -> [u8; 32] {
819                 let mut sha = self.derive_unique_start();
820
821                 let child_ix = self.rand_bytes_child_index.fetch_add(1, Ordering::AcqRel);
822                 let child_privkey = self.rand_bytes_master_key.ckd_priv(&self.secp_ctx, ChildNumber::from_hardened_idx(child_ix as u32).expect("key space exhausted")).expect("Your RNG is busted");
823                 sha.input(&child_privkey.private_key.key[..]);
824
825                 sha.input(b"Unique Secure Random Bytes Salt");
826                 Sha256::from_engine(sha).into_inner()
827         }
828 }